151
|
Sánchez-Romero N, Schophuizen CM, Giménez I, Masereeuw R. In vitro systems to study nephropharmacology: 2D versus 3D models. Eur J Pharmacol 2016; 790:36-45. [DOI: 10.1016/j.ejphar.2016.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 12/20/2022]
|
152
|
Yoon HJ, Shin SR, Cha JM, Lee SH, Kim JH, Do JT, Song H, Bae H. Cold Water Fish Gelatin Methacryloyl Hydrogel for Tissue Engineering Application. PLoS One 2016; 11:e0163902. [PMID: 27723807 PMCID: PMC5056724 DOI: 10.1371/journal.pone.0163902] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/18/2016] [Indexed: 01/07/2023] Open
Abstract
Gelatin methacryloyl (GelMA) is a versatile biomaterial that has been used in various biomedical fields. Thus far, however, GelMA is mostly obtained from mammalian sources, which are associated with a risk of transmission of diseases, such as mad cow disease, as well as certain religious restrictions. In this study, we synthesized GelMA using fish-derived gelatin by a conventional GelMA synthesis method, and evaluated its physical properties and cell responses. The lower melting point of fish gelatin compared to porcine gelatin allowed larger-scale synthesis of GelMA and enabled hydrogel fabrication at room temperature. The properties (mechanical strength, water swelling degree and degradation rate) of fish GelMA differed from those of porcine GelMA, and could be tuned to suit diverse applications. Cells adhered, proliferated, and formed networks with surrounding cells on fish GelMA, and maintained high initial cell viability. These data suggest that fish GelMA could be utilized in a variety of biomedical fields as a substitute for mammalian-derived materials.
Collapse
Affiliation(s)
- Hee Jeong Yoon
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, 05029, Korea
| | - Su Ryon Shin
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts, 02139, USA
| | - Jae Min Cha
- Medical Device Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
- Samsung Biomedical Research Institute, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Seoul, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, Bundang-gu, Gyeonggi-do, Republic of Korea
| | - Jin-Hoi Kim
- College of Animal Bioscience and Technology, Department of Stem Cell and Regenerative Biology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, 05029, Korea
| | - Jeong Tae Do
- College of Animal Bioscience and Technology, Department of Stem Cell and Regenerative Biology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, 05029, Korea
| | - Hyuk Song
- College of Animal Bioscience and Technology, Department of Stem Cell and Regenerative Biology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, 05029, Korea
| | - Hojae Bae
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, 05029, Korea
| |
Collapse
|
153
|
Lee JP, Kassianidou E, MacDonald JI, Francis MB, Kumar S. N-terminal specific conjugation of extracellular matrix proteins to 2-pyridinecarboxaldehyde functionalized polyacrylamide hydrogels. Biomaterials 2016; 102:268-76. [PMID: 27348850 PMCID: PMC4939314 DOI: 10.1016/j.biomaterials.2016.06.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 01/30/2023]
Abstract
Polyacrylamide hydrogels have been used extensively to study cell responses to the mechanical and biochemical properties of extracellular matrix substrates. A key step in fabricating these substrates is the conjugation of cell adhesion proteins to the polyacrylamide surfaces, which typically involves nonspecifically anchoring these proteins via side-chain functional groups. This can result in a loss of presentation control and altered bioactivity. Here, we describe a new functionalization strategy in which we anchor full-length extracellular matrix proteins to polyacrylamide substrates using 2-pyridinecarboxaldehyde, which can be co-polymerized into polyacrylamide gels and used to immobilize proteins by their N-termini. This one-step reaction proceeds under mild aqueous conditions and does not require additional reagents. We demonstrate that these substrates can readily conjugate to various extracellular matrix proteins, as well as promote cell adhesion and spreading. Notably, this chemistry supports the assembly and cellular remodeling of large collagen fibers, which is not observed using conventional side-chain amine-conjugation chemistry.
Collapse
Affiliation(s)
- Jessica P Lee
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Elena Kassianidou
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley, CA 94720, USA
| | - James I MacDonald
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley CA 94720, USA.
| |
Collapse
|
154
|
Jin T, Li L, Siow RCM, Liu KK. Collagen matrix stiffness influences fibroblast contraction force. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/4/047002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
155
|
Mousavi SJ, Doweidar MH. Numerical modeling of cell differentiation and proliferation in force-induced substrates via encapsulated magnetic nanoparticles. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 130:106-117. [PMID: 27208526 DOI: 10.1016/j.cmpb.2016.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Cell migration, differentiation, proliferation and apoptosis are the main processes in tissue regeneration. Mesenchymal Stem Cells have the potential to differentiate into many cell phenotypes such as tissue- or organ-specific cells to perform special functions. Experimental observations illustrate that differentiation and proliferation of these cells can be regulated according to internal forces induced within their Extracellular Matrix. The process of how exactly they interpret and transduce these signals is not well understood. METHODS A previously developed three-dimensional (3D) computational model is here extended and employed to study how force-free substrates and force-induced substrate control cell differentiation and/or proliferation during the mechanosensing process. Consistent with experimental observations, it is assumed that cell internal deformation (a mechanical signal) in correlation with the cell maturation state directly triggers cell differentiation and/or proliferation. The Extracellular Matrix is modeled as Neo-Hookean hyperelastic material assuming that cells are cultured within 3D nonlinear hydrogels. RESULTS In agreement with well-known experimental observations, the findings here indicate that within neurogenic (0.1-1kPa), chondrogenic (20-25kPa) and osteogenic (30-45kPa) substrates, Mesenchymal Stem Cells differentiation and proliferation can be precipitated by inducing the substrate with an internal force. Therefore, cells require a longer time to grow and maturate within force-free substrates than within force-induced substrates. In the instance of Mesenchymal Stem Cells differentiation into a compatible phenotype, the magnitude of the net traction force increases within chondrogenic and osteogenic substrates while it reduces within neurogenic substrates. This is consistent with experimental studies and numerical works recently published by the same authors. However, in all cases the magnitude of the net traction force considerably increases at the instant of cell proliferation because of cell-cell interaction. CONCLUSIONS The present model provides new perspectives to delineate the role of force-induced substrates in remotely controlling the cell fate during cell-matrix interaction, which open the door for new tissue regeneration methodologies.
Collapse
Affiliation(s)
- Seyed Jamaleddin Mousavi
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain; Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Mohamed Hamdy Doweidar
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain; Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain.
| |
Collapse
|
156
|
Bender BF, Aijian AP, Garrell RL. Digital microfluidics for spheroid-based invasion assays. LAB ON A CHIP 2016; 16:1505-1513. [PMID: 27020962 DOI: 10.1039/c5lc01569c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cell invasion is a key process in tissue growth, wound healing, and tumor progression. Most invasion assays examine cells cultured in adherent monolayers, which fail to recapitulate the three-dimensional nuances of the tissue microenvironment. Multicellular cell spheroids have a three-dimensional (3D) morphology and mimic the intercellular interactions found in tissues in vivo, thus providing a more physiologically relevant model for studying the tissue microenvironment and processes such as cell invasion. Spheroid-based invasion assays often require tedious, manually intensive handling protocols or the use of robotic liquid handling systems, which can be expensive to acquire, operate, and maintain. Here we describe a digital microfluidic (DμF) platform that enables formation of spheroids by the hanging drop method, encapsulation of the spheroids in collagen, and the exposure of spheroids to migration-modulating agents. Collagen sol-gel solutions up to 4 mg mL(-1), which form gels with elastic moduli up to ∼50 kPa, can be manipulated on the device. In situ spheroid migration assays show that cells from human fibroblast spheroids exhibit invasion into collagen gels, which can be either enhanced or inhibited by the delivery of exogenous migration modulating agents. Exposing fibroblast spheroids to spheroid secretions from colon cancer spheroids resulted in a >100% increase in fibroblast invasion into the collagen gel, consistent with the cancer-associated fibroblast phenotype. These data show that DμF can be used to automate the liquid handling protocols for spheroid-based invasion assays and create a cell invasion model that mimics the tissue microenvironment more closely than two-dimensional culturing techniques do. A DμF platform that facilitates the creation and assaying of 3D in vitro tissue models has the potential to make automated 3D cell-based assays more accessible to researchers in the life sciences.
Collapse
Affiliation(s)
- Brian F Bender
- Bioengineering Department, University of California, Los Angeles, CA 90095-1600, USA.
| | - Andrew P Aijian
- Bioengineering Department, University of California, Los Angeles, CA 90095-1600, USA.
| | - Robin L Garrell
- Bioengineering Department, University of California, Los Angeles, CA 90095-1600, USA. and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA and California NanoSystems Institute, UCLA Box 722710, Los Angeles, CA, USA 90095
| |
Collapse
|
157
|
Custódio CA, Reis RL, Mano JF. Photo-Cross-Linked Laminarin-Based Hydrogels for Biomedical Applications. Biomacromolecules 2016; 17:1602-9. [DOI: 10.1021/acs.biomac.5b01736] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Catarina A. Custódio
- 3B’s Research Group
− Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark − Parque de Ciência
e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group
− Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark − Parque de Ciência
e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - João F. Mano
- 3B’s Research Group
− Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark − Parque de Ciência
e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s PT Government Associated Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
158
|
Jin T, Li L, Siow RCM, Liu KK. A novel collagen gel-based measurement technique for quantitation of cell contraction force. J R Soc Interface 2016; 12. [PMID: 25977960 DOI: 10.1098/rsif.2014.1365] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell contraction force plays an important role in wound healing, inflammation,angiogenesis and metastasis. This study describes a novel method to quantify single cell contraction force in vitro using human aortic adventitial fibroblasts embedded in a collagen gel. The technique is based on a depth sensing nano-indentation tester to measure the thickness and elasticity of collagen gels containing stimulated fibroblasts and a microscopy imaging system to estimate the gel area. In parallel, a simple theoretical model has been developed to calculate cell contraction force based on the measured parameters. Histamine (100 mM) was used to stimulate fibroblast contraction while the myosin light chain kinase inhibitor ML-7 (25 mM) was used to inhibit cell contraction. The collagen matrix used in the model provides a physiological environment for fibroblast contraction studies. Measurement of changes in collagen gel elasticity and thickness arising from histamine treatments provides a novel convenient technique to measure cell contraction force within a collagen matrix. This study demonstrates that histamine can elicit a significant increase in contraction force of fibroblasts embedded in collagen,while the Young's modulus of the gel decreases due to the gel degradation.
Collapse
|
159
|
Oelschlaeger C, Bossler F, Willenbacher N. Synthesis, Structural and Micromechanical Properties of 3D Hyaluronic Acid-Based Cryogel Scaffolds. Biomacromolecules 2016; 17:580-9. [DOI: 10.1021/acs.biomac.5b01529] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- C. Oelschlaeger
- Karlsruhe Institute of Technology (KIT), Institute for Mechanical Process Engineering and Mechanics, 76131 Karlsruhe, Germany
| | - F. Bossler
- Karlsruhe Institute of Technology (KIT), Institute for Mechanical Process Engineering and Mechanics, 76131 Karlsruhe, Germany
| | - N. Willenbacher
- Karlsruhe Institute of Technology (KIT), Institute for Mechanical Process Engineering and Mechanics, 76131 Karlsruhe, Germany
| |
Collapse
|
160
|
De Leon Rodriguez LM, Hemar Y, Cornish J, Brimble MA. Structure–mechanical property correlations of hydrogel forming β-sheet peptides. Chem Soc Rev 2016; 45:4797-824. [DOI: 10.1039/c5cs00941c] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review discusses about β-sheet peptide structure at the molecular level and the bulk mechanical properties of the corresponding hydrogels.
Collapse
Affiliation(s)
| | - Yacine Hemar
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
- The Riddet Institute
| | - Jillian Cornish
- Department of Medicine
- The University of Auckland
- Auckland
- New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| |
Collapse
|
161
|
Sanen K, Paesen R, Luyck S, Phillips J, Lambrichts I, Martens W, Ameloot M. Label-free mapping of microstructural organisation in self-aligning cellular collagen hydrogels using image correlation spectroscopy. Acta Biomater 2016; 30:258-264. [PMID: 26537202 DOI: 10.1016/j.actbio.2015.10.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/01/2015] [Accepted: 10/28/2015] [Indexed: 11/19/2022]
Abstract
Hydrogels have emerged as promising biomaterials for regenerative medicine. Despite major advances, tissue engineers have faced challenges in studying the complex dynamics of cell-mediated hydrogel remodelling. Second harmonic generation (SHG) microscopy has been a pivotal tool for non-invasive visualization of collagen type I hydrogels. By taking into account the typical polarization SHG effect, we recently proposed an alternative image correlation spectroscopy (ICS) model to quantify characteristics of randomly oriented collagen fibrils. However, fibril alignment is an important feature in many tissues that needs to be monitored for effective assembly of anisotropic tissue constructs. Here we extended our previous approach to include the orientation distribution of fibrils in cellular hydrogels and show the power of this model in two biologically relevant applications. Using a collagen hydrogel contraction assay, we were able to capture cell-induced hydrogel modifications at the microscopic scale and link these to changes in overall gel dimensions over time. After 24h, the collagen density was about 3 times higher than the initial density, which was of the same order as the decrease in hydrogel area. We also showed that the orientation parameters recovered from our automated ICS model match values obtained from manual measurements. Furthermore, regions axial to cellular processes aligned at least 1.5 times faster compared with adjacent zones. Being able to capture minor temporal and spatial changes in hydrogel density and collagen fibril orientation, we demonstrated the sensitivity of this extended ICS model to deconstruct a complex environment and support its potential for tissue engineering research. STATEMENT OF SIGNIFICANCE It is generally accepted that looking beyond bulk hydrogel composition is key in understanding the mechanisms that influence the mechanical and biological properties of artificial tissues. In this manuscript, we performed label-free non-invasive imaging and extended a robust automated analysis method to characterize the microstructural organisation of cellular hydrogel systems. We underpin the sensitivity of this technique by capturing minor changes in collagen density and fibril orientation in biologically relevant systems over time. Therefore, we believe that this method is applicable in fundamental cell-matrix research and has high-throughput potential in screening arrays of hydrogel scaffolds, making it an interesting tool for future tissue engineering research.
Collapse
Affiliation(s)
- Kathleen Sanen
- Biophysics Group, Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590 Diepenbeek, Belgium
| | - Rik Paesen
- Biophysics Group, Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590 Diepenbeek, Belgium
| | - Sander Luyck
- Biophysics Group, Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590 Diepenbeek, Belgium
| | - James Phillips
- Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK
| | - Ivo Lambrichts
- Morphology Group, Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590 Diepenbeek, Belgium
| | - Wendy Martens
- Morphology Group, Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590 Diepenbeek, Belgium
| | - Marcel Ameloot
- Biophysics Group, Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590 Diepenbeek, Belgium.
| |
Collapse
|
162
|
Park JS, Suryaprakash S, Lao YH, Leong KW. Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods 2015; 84:3-16. [PMID: 25770356 PMCID: PMC4526354 DOI: 10.1016/j.ymeth.2015.03.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/19/2015] [Accepted: 03/02/2015] [Indexed: 12/14/2022] Open
Abstract
Researchers have applied mesenchymal stem cells (MSC) to a variety of therapeutic scenarios by harnessing their multipotent, regenerative, and immunosuppressive properties with tropisms toward inflamed, hypoxic, and cancerous sites. Although MSC-based therapies have been shown to be safe and effective to a certain degree, the efficacy remains low in most cases when MSC are applied alone. To enhance their therapeutic efficacy, researchers have equipped MSC with targeted delivery functions using genetic engineering, therapeutic agent incorporation, and cell surface modification. MSC can be genetically modified virally or non-virally to overexpress therapeutic proteins that complement their innate properties. MSC can also be primed with non-peptidic drugs or magnetic nanoparticles for enhanced efficacy and externally regulated targeting, respectively. Furthermore, MSC can be functionalized with targeting moieties to augment their homing toward therapeutic sites using enzymatic modification, chemical conjugation, or non-covalent interactions. These engineering techniques are still works in progress, requiring optimization to improve the therapeutic efficacy and targeting effectiveness while minimizing any loss of MSC function. In this review, we will highlight the advanced techniques of engineering MSC, describe their promise and the challenges of translation into clinical settings, and suggest future perspectives on realizing their full potential for MSC-based therapy.
Collapse
Affiliation(s)
- Ji Sun Park
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Smruthi Suryaprakash
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States.
| |
Collapse
|
163
|
Affiliation(s)
- Kuo-Kang Liu
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Michelle L. Oyen
- Engineering Department, Cambridge University, Trumpington St., Cambridge CB2 1PZ, UK
| |
Collapse
|