151
|
Ishimoto K, Gaffney EA. Hydrodynamic Clustering of Human Sperm in Viscoelastic Fluids. Sci Rep 2018; 8:15600. [PMID: 30349142 PMCID: PMC6197292 DOI: 10.1038/s41598-018-33584-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022] Open
Abstract
We have numerically investigated sperm clustering behaviours, modelling cells as superpositions of regularised flow singularities, coarse-grained from experimentally obtained digital microscopy of human sperm, both in watery medium and a highly viscous-weakly elastic, methylcellulose medium. We find that the cell yaw and cell pulling dynamics inhibit clustering in low viscosity media. In contrast clustering is readily visible in simulations modelling sperm within a methylcellulose medium, in line with previous observations that bovine sperm clustering is much more prominent in a rheological polyacrylamide medium. Furthermore, the fine-scale details of sperm flagellar movement substantially impact large-scale collective behaviours, further motivating the need for the digital microscopy and characterization of sperm to understand their dynamics.
Collapse
Affiliation(s)
- Kenta Ishimoto
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK. .,Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, 153-8914, Japan.
| | - Eamonn A Gaffney
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
152
|
Hoell C, Löwen H, Menzel AM. Particle-scale statistical theory for hydrodynamically induced polar ordering in microswimmer suspensions. J Chem Phys 2018; 149:144902. [DOI: 10.1063/1.5048304] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Christian Hoell
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas M. Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
153
|
Doostmohammadi A, Ignés-Mullol J, Yeomans JM, Sagués F. Active nematics. Nat Commun 2018; 9:3246. [PMID: 30131558 PMCID: PMC6104062 DOI: 10.1038/s41467-018-05666-8] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 06/28/2018] [Accepted: 07/19/2018] [Indexed: 11/09/2022] Open
Abstract
Active matter extracts energy from its surroundings at the single particle level and transforms it into mechanical work. Examples include cytoskeleton biopolymers and bacterial suspensions. Here, we review experimental, theoretical and numerical studies of active nematics - a type of active system that is characterised by self-driven units with elongated shape. We focus primarily on microtubule-kinesin mixtures and the hydrodynamic theories that describe their properties. An important theme is active turbulence and the associated motile topological defects. We discuss ways in which active turbulence may be controlled, a pre-requisite to harvesting energy from active materials, and we consider the appearance, and possible implications, of active nematics and topological defects to cellular systems and biological processes.
Collapse
Affiliation(s)
- Amin Doostmohammadi
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon Laboratory, Parks Rd., Oxford, OX1 3PU, UK.
| | - Jordi Ignés-Mullol
- Departament de Ciència de Materials i Química Física and Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, Martí I Franquès 1, 08028, Barcelona, Catalonia, Spain
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon Laboratory, Parks Rd., Oxford, OX1 3PU, UK
| | - Francesc Sagués
- Departament de Ciència de Materials i Química Física and Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, Martí I Franquès 1, 08028, Barcelona, Catalonia, Spain
| |
Collapse
|
154
|
Abaurrea Velasco C, Abkenar M, Gompper G, Auth T. Collective behavior of self-propelled rods with quorum sensing. Phys Rev E 2018; 98:022605. [PMID: 30253508 DOI: 10.1103/physreve.98.022605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Active agents-like phoretic particles, bacteria, sperm, and cytoskeletal filaments in motility assays-show a large variety of motility-induced collective behaviors, such as aggregation, clustering, and phase separation. The behavior of dense suspensions of engineered phoretic particles and of bacteria during biofilm formation is determined by two qualitatively different physical mechanisms: (i) volume exclusion (short-range steric repulsion) and (ii) quorum sensing (longer-range reduced propulsion due to alteration of the local chemical environment). To systematically characterize such systems, we study semi-penetrable self-propelled rods in two dimensions, with a propulsion force that decreases with increasing local rod density, by employing Brownian dynamics simulations. Volume exclusion and quorum sensing both lead to phase separation; however, the structure of the systems and the rod dynamics vastly differ. Quorum sensing enhances the polarity of the clusters, induces perpendicularity of rods at the cluster borders, and enhances cluster formation. For systems where the rods essentially become passive at high densities, formation of asters and stripes is observed. Systems of rods with larger aspect ratios show more ordered structures compared to those with smaller aspect ratios, due to their stronger alignment, with almost circular asters for strongly density-dependent propulsion force. With increasing range of the quorum-sensing interaction, the local density decreases, asters become less stable, and polar hedgehog clusters and clusters with domains appear.
Collapse
Affiliation(s)
- Clara Abaurrea Velasco
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Masoud Abkenar
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Thorsten Auth
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
155
|
Yang W, Misko VR, Marchesoni F, Nori F. Colloidal transport through trap arrays controlled by active microswimmers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:264004. [PMID: 29775184 DOI: 10.1088/1361-648x/aac61b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigate the dynamics of a binary mixture consisting of active and passive colloidal particles diffusing in a 2D array of truncated harmonic wells, or traps. We explore the possibility of using a small fraction of active particles to manipulate a much larger fraction of passive particles, for instance, to confine them in or extract them from the traps. The results of our study have potential application in biology and medical sciences, for example, to remove dead cells or undesired contaminants from biological systems by means of self-propelled nano-robots.
Collapse
Affiliation(s)
- Wen Yang
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, People's Republic of China
| | | | | | | |
Collapse
|
156
|
Daddi-Moussa-Ider A, Lisicki M, Mathijssen AJTM, Hoell C, Goh S, Bławzdziewicz J, Menzel AM, Löwen H. State diagram of a three-sphere microswimmer in a channel. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:254004. [PMID: 29757157 DOI: 10.1088/1361-648x/aac470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Geometric confinements are frequently encountered in soft matter systems and in particular significantly alter the dynamics of swimming microorganisms in viscous media. Surface-related effects on the motility of microswimmers can lead to important consequences in a large number of biological systems, such as biofilm formation, bacterial adhesion and microbial activity. On the basis of low-Reynolds-number hydrodynamics, we explore the state diagram of a three-sphere microswimmer under channel confinement in a slit geometry and fully characterize the swimming behavior and trajectories for neutral swimmers, puller- and pusher-type swimmers. While pushers always end up trapped at the channel walls, neutral swimmers and pullers may further perform a gliding motion and maintain a stable navigation along the channel. We find that the resulting dynamical system exhibits a supercritical pitchfork bifurcation in which swimming in the mid-plane becomes unstable beyond a transition channel height while two new stable limit cycles or fixed points that are symmetrically disposed with respect to the channel mid-height emerge. Additionally, we show that an accurate description of the averaged swimming velocity and rotation rate in a channel can be captured analytically using the method of hydrodynamic images, provided that the swimmer size is much smaller than the channel height.
Collapse
Affiliation(s)
- Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Symmetric shear banding and swarming vortices in bacterial superfluids. Proc Natl Acad Sci U S A 2018; 115:7212-7217. [PMID: 29941551 DOI: 10.1073/pnas.1722505115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial suspensions-a premier example of active fluids-show an unusual response to shear stresses. Instead of increasing the viscosity of the suspending fluid, the emergent collective motions of swimming bacteria can turn a suspension into a superfluid with zero apparent viscosity. Although the existence of active superfluids has been demonstrated in bulk rheological measurements, the microscopic origin and dynamics of such an exotic phase have not been experimentally probed. Here, using high-speed confocal rheometry, we study the dynamics of concentrated bacterial suspensions under simple planar shear. We find that bacterial superfluids under shear exhibit unusual symmetric shear bands, defying the conventional wisdom on shear banding of complex fluids, where the formation of steady shear bands necessarily breaks the symmetry of unsheared samples. We propose a simple hydrodynamic model based on the local stress balance and the ergodic sampling of nonequilibrium shear configurations, which quantitatively describes the observed symmetric shear-banding structure. The model also successfully predicts various interesting features of swarming vortices in stationary bacterial suspensions. Our study provides insights into the physical properties of collective swarming in active fluids and illustrates their profound influences on transport processes.
Collapse
|
158
|
Blanch-Mercader C, Yashunsky V, Garcia S, Duclos G, Giomi L, Silberzan P. Turbulent Dynamics of Epithelial Cell Cultures. PHYSICAL REVIEW LETTERS 2018; 120:208101. [PMID: 29864293 DOI: 10.1103/physrevlett.120.208101] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/12/2018] [Indexed: 05/23/2023]
Abstract
We investigate the large length and long time scales collective flows and structural rearrangements within in vitro human bronchial epithelial cell (HBEC) cultures. Activity-driven collective flows result in ensembles of vortices randomly positioned in space. By analyzing a large population of vortices, we show that their area follows an exponential law with a constant mean value and their rotational frequency is size independent, both being characteristic features of the chaotic dynamics of active nematic suspensions. Indeed, we find that HBECs self-organize in nematic domains of several cell lengths. Nematic defects are found at the interface between domains with a total number that remains constant due to the dynamical balance of nucleation and annihilation events. The mean velocity fields in the vicinity of defects are well described by a hydrodynamic theory of extensile active nematics.
Collapse
Affiliation(s)
- C Blanch-Mercader
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University-Sorbonne Université, UPMC-CNRS-Equipe labellisée Ligue Contre le Cancer, 75005 Paris, France
| | - V Yashunsky
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University-Sorbonne Université, UPMC-CNRS-Equipe labellisée Ligue Contre le Cancer, 75005 Paris, France
| | - S Garcia
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University-Sorbonne Université, UPMC-CNRS-Equipe labellisée Ligue Contre le Cancer, 75005 Paris, France
| | - G Duclos
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University-Sorbonne Université, UPMC-CNRS-Equipe labellisée Ligue Contre le Cancer, 75005 Paris, France
| | - L Giomi
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands
| | - P Silberzan
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University-Sorbonne Université, UPMC-CNRS-Equipe labellisée Ligue Contre le Cancer, 75005 Paris, France
| |
Collapse
|
159
|
Affiliation(s)
| | - Chantal Valeriani
- Departamento de Física Aplicada I, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Angelo Cacciuto
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
160
|
Mickelin O, Słomka J, Burns KJ, Lecoanet D, Vasil GM, Faria LM, Dunkel J. Anomalous Chained Turbulence in Actively Driven Flows on Spheres. PHYSICAL REVIEW LETTERS 2018; 120:164503. [PMID: 29756929 DOI: 10.1103/physrevlett.120.164503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Indexed: 06/08/2023]
Abstract
Recent experiments demonstrate the importance of substrate curvature for actively forced fluid dynamics. Yet, the covariant formulation and analysis of continuum models for nonequilibrium flows on curved surfaces still poses theoretical challenges. Here, we introduce and study a generalized covariant Navier-Stokes model for fluid flows driven by active stresses in nonplanar geometries. The analytical tractability of the theory is demonstrated through exact stationary solutions for the case of a spherical bubble geometry. Direct numerical simulations reveal a curvature-induced transition from a burst phase to an anomalous turbulent phase that differs distinctly from externally forced classical 2D Kolmogorov turbulence. This new type of active turbulence is characterized by the self-assembly of finite-size vortices into linked chains of antiferromagnetic order, which percolate through the entire fluid domain, forming an active dynamic network. The coherent motion of the vortex chain network provides an efficient mechanism for upward energy transfer from smaller to larger scales, presenting an alternative to the conventional energy cascade in classical 2D turbulence.
Collapse
Affiliation(s)
- Oscar Mickelin
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Jonasz Słomka
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Keaton J Burns
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Daniel Lecoanet
- Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA
| | - Geoffrey M Vasil
- School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Luiz M Faria
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| |
Collapse
|
161
|
Daddi-Moussa-Ider A, Lisicki M, Hoell C, Löwen H. Swimming trajectories of a three-sphere microswimmer near a wall. J Chem Phys 2018; 148:134904. [DOI: 10.1063/1.5021027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Maciej Lisicki
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Rd., Cambridge CB3 0WA, United Kingdom
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Christian Hoell
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
162
|
Abstract
We unveil orbital topologies of two nearby swimming microorganisms using an artificial microswimmer, called Quadroar. Depending on the initial conditions of the microswimmers, we find diverse families of attractors including dynamical equilibria, bound orbits, braids, and pursuit–evasion games. We also observe a hydrodynamic slingshot effect: a system of two hydrodynamically interacting swimmers moving along braids can advance in space faster than non-interacting swimmers that have the same actuation parameters and initial conditions as the interacting ones. Our findings suggest the existence of complex collective behaviors of microswimmers, from equilibrium to rapidly streaming states.
Collapse
|
163
|
Tsang ACH, Shelley MJ, Kanso E. Activity-induced instability of phonons in 1D microfluidic crystals. SOFT MATTER 2018; 14:945-950. [PMID: 29319100 DOI: 10.1039/c7sm01335c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
One-dimensional crystals of passively-driven particles in microfluidic channels exhibit collective vibrational modes reminiscent of acoustic 'phonons'. These phonons are induced by the long-range hydrodynamic interactions among the particles and are neutrally stable at the linear level. Here, we analyze the effect of particle activity - self-propulsion - on the emergence and stability of these phonons. We show that the direction of wave propagation in active crystals is sensitive to the intensity of the background flow. We also show that activity couples, at the linear level, transverse waves to the particles' rotational motion, inducing a new mode of instability that persists in the limit of large background flow, or, equivalently, vanishingly small activity. We then report a new phenomenon of phonons switching back and forth between two adjacent crystals in both passively-driven and active systems, similar in nature to the wave switching observed in quantum mechanics, optical communication, and density stratified fluids. These findings could have implications for the design of commercial microfluidic systems and the self-assembly of passive and active micro-particles into one-dimensional structures.
Collapse
Affiliation(s)
- Alan Cheng Hou Tsang
- Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089, USA. and Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Michael J Shelley
- Center for Computational Biology, Flatiron Institute, New York, New York 10010, USA and Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
| | - Eva Kanso
- Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089, USA. and Center for Computational Biology, Flatiron Institute, New York, New York 10010, USA and Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
| |
Collapse
|
164
|
James M, Wilczek M. Vortex dynamics and Lagrangian statistics in a model for active turbulence. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:21. [PMID: 29435676 DOI: 10.1140/epje/i2018-11625-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
Cellular suspensions such as dense bacterial flows exhibit a turbulence-like phase under certain conditions. We study this phenomenon of "active turbulence" statistically by using numerical tools. Following Wensink et al. (Proc. Natl. Acad. Sci. U.S.A. 109, 14308 (2012)), we model active turbulence by means of a generalized Navier-Stokes equation. Two-point velocity statistics of active turbulence, both in the Eulerian and the Lagrangian frame, is explored. We characterize the scale-dependent features of two-point statistics in this system. Furthermore, we extend this statistical study with measurements of vortex dynamics in this system. Our observations suggest that the large-scale statistics of active turbulence is close to Gaussian with sub-Gaussian tails.
Collapse
Affiliation(s)
- Martin James
- Max Planck Institute for Dynamics and Self-Organization (MPI DS), Am Faßberg 17, 37077, Göttingen, Germany
| | - Michael Wilczek
- Max Planck Institute for Dynamics and Self-Organization (MPI DS), Am Faßberg 17, 37077, Göttingen, Germany.
| |
Collapse
|
165
|
Prathyusha KR, Henkes S, Sknepnek R. Dynamically generated patterns in dense suspensions of active filaments. Phys Rev E 2018; 97:022606. [PMID: 29548173 DOI: 10.1103/physreve.97.022606] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 06/08/2023]
Abstract
We use Langevin dynamics simulations to study dynamical behavior of a dense planar layer of active semiflexible filaments. Using the strength of active force and the thermal persistence length as parameters, we map a detailed phase diagram and identify several nonequilibrium phases in this system. In addition to a slowly flowing melt phase, we observe that, for sufficiently high activity, collective flow accompanied by signatures of local polar and nematic order appears in the system. This state is also characterized by strong density fluctuations. Furthermore, we identify an activity-driven crossover from this state of coherently flowing bundles of filaments to a phase with no global flow, formed by individual filaments coiled into rotating spirals. This suggests a mechanism where the system responds to activity by changing the shape of active agents, an effect with no analog in systems of active particles without internal degrees of freedom.
Collapse
Affiliation(s)
- K R Prathyusha
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - Silke Henkes
- Institute of Complex Systems and Mathematical Biology, Department of Physics, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| | - Rastko Sknepnek
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
166
|
Reinken H, Klapp SHL, Bär M, Heidenreich S. Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions. Phys Rev E 2018; 97:022613. [PMID: 29548118 DOI: 10.1103/physreve.97.022613] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 06/08/2023]
Abstract
In this paper, we systematically derive a fourth-order continuum theory capable of reproducing mesoscale turbulence in a three-dimensional suspension of microswimmers. We start from overdamped Langevin equations for a generic microscopic model (pushers or pullers), which include hydrodynamic interactions on both small length scales (polar alignment of neighboring swimmers) and large length scales, where the solvent flow interacts with the order parameter field. The flow field is determined via the Stokes equation supplemented by an ansatz for the stress tensor. In addition to hydrodynamic interactions, we allow for nematic pair interactions stemming from excluded-volume effects. The results here substantially extend and generalize earlier findings [S. Heidenreich et al., Phys. Rev. E 94, 020601 (2016)2470-004510.1103/PhysRevE.94.020601], in which we derived a two-dimensional hydrodynamic theory. From the corresponding mean-field Fokker-Planck equation combined with a self-consistent closure scheme, we derive nonlinear field equations for the polar and the nematic order parameter, involving gradient terms of up to fourth order. We find that the effective microswimmer dynamics depends on the coupling between solvent flow and orientational order. For very weak coupling corresponding to a high viscosity of the suspension, the dynamics of mesoscale turbulence can be described by a simplified model containing only an effective microswimmer velocity.
Collapse
Affiliation(s)
- Henning Reinken
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany
| | - Sabine H L Klapp
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany
| | - Markus Bär
- Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Abbestr. 2-12, 10587 Berlin, Germany
| | - Sebastian Heidenreich
- Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Abbestr. 2-12, 10587 Berlin, Germany
| |
Collapse
|
167
|
Guillamat P, Hardoüin J, Prat BM, Ignés-Mullol J, Sagués F. Control of active turbulence through addressable soft interfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:504003. [PMID: 29125475 DOI: 10.1088/1361-648x/aa99c8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present an experimental study of a kinesin/tubulin active nematic formed at different oil interfaces. By tuning the interfacial rheology of the contacting oil, we have been able to condition and control the seemingly chaotic motion that characterizes the self-sustained active flows in our preparations. The active nematic is inherently unstable and spontaneously develops defects from an initial homogeneous state. We show that the steady state and, in particular, the density and dynamics of the defects strongly depends on the rheology of the contacting oil. Using a smectic-A thermotropic liquid crystal as the oil phase, we pattern the interface thanks to the anisotropy of the shear viscosity in this material. The geometry of the active nematic adapts to the boundary conditions at the interface by changing from the so-called active turbulent regime to laminar flows along the easy flow directions. The latter can be either a lattice of self-assembled circular paths or reconfigurable homogeneous orientations that can be addressed by means of an external magnetic field. We show that, under all confinement conditions, the spatiotemporal modes exhibited by the active liquid are consistent with a single intrinsic length scale, which can be tuned by the material parameters, and obey basic topological requirements imposed on the defects that drive the active flows. Future control strategies, including a tunable depleting agent, are discussed.
Collapse
Affiliation(s)
- P Guillamat
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona, Barcelona, Catalonia. Institute of Nanoscience and Nanotechnology, IN2UB, Universitat de Barcelona, Barcelona, Catalonia
| | | | | | | | | |
Collapse
|
168
|
Kokot G, Das S, Winkler RG, Gompper G, Aranson IS, Snezhko A. Active turbulence in a gas of self-assembled spinners. Proc Natl Acad Sci U S A 2017; 114:12870-12875. [PMID: 29158382 PMCID: PMC5724263 DOI: 10.1073/pnas.1710188114] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generated advection flows. The same-chirality spinners (clockwise or counterclockwise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. Our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.
Collapse
Affiliation(s)
- Gašper Kokot
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
| | - Shibananda Das
- Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Roland G Winkler
- Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany;
- Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Igor S Aranson
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802
| | - Alexey Snezhko
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439;
| |
Collapse
|
169
|
Adhyapak TC, Jabbari-Farouji S. Flow properties and hydrodynamic interactions of rigid spherical microswimmers. Phys Rev E 2017; 96:052608. [PMID: 29347781 DOI: 10.1103/physreve.96.052608] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Indexed: 06/07/2023]
Abstract
We analyze a minimal model for a rigid spherical microswimmer and explore the consequences of its extended surface on the interplay between its self-propulsion and flow properties. The model is the first order representation of microswimmers, such as bacteria and algae, with rigid bodies and flexible propelling appendages. The flow field of such a microswimmer at finite distances significantly differs from that of a point-force (Stokeslet) dipole. For a suspension of microswimmers, we derive the grand mobility matrix that connects the motion of an individual swimmer to the active and passive forces and torques acting on all the swimmers. Our investigation of the mobility tensors reveals that hydrodynamic interactions among rigid-bodied microswimmers differ considerably from those among the corresponding point-force dipoles. Our results are relevant for the study of collective behavior of hydrodynamically interacting microswimmers by means of Stokesian dynamics simulations at moderate concentrations.
Collapse
Affiliation(s)
- Tapan Chandra Adhyapak
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Sara Jabbari-Farouji
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
170
|
Secchi E, Rusconi R, Buzzaccaro S, Salek MM, Smriga S, Piazza R, Stocker R. Intermittent turbulence in flowing bacterial suspensions. J R Soc Interface 2017; 13:rsif.2016.0175. [PMID: 27307513 DOI: 10.1098/rsif.2016.0175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/25/2016] [Indexed: 02/06/2023] Open
Abstract
Dense suspensions of motile bacteria, possibly including the human gut microbiome, exhibit collective dynamics akin to those observed in classic, high Reynolds number turbulence with important implications for chemical and biological transport, yet this analogy has remained primarily qualitative. Here, we present experiments in which a dense suspension of Bacillus subtilis bacteria was flowed through microchannels and the velocity statistics of the flowing suspension were quantified using a recently developed velocimetry technique coupled with vortex identification methods. Observations revealed a robust intermittency phenomenon, whereby the average velocity profile of the suspension fluctuated between a plug-like flow and a parabolic flow profile. This intermittency is a hallmark of the onset of classic turbulence and Lagrangian tracking revealed that it here originates from the presence of transient vortices in the active, collective motion of the bacteria locally reinforcing the externally imposed flow. These results link together two entirely different manifestations of turbulence and show the potential of the microfluidic approach to mimic the environment characteristic of certain niches of the human microbiome.
Collapse
Affiliation(s)
- Eleonora Secchi
- Department of Chemistry (CMIC), Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 02139 Cambridge, MA, USA
| | - Roberto Rusconi
- Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 02139 Cambridge, MA, USA Department of Civil, Environmental and Geomatic Engineering, Institute for Environmental Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Stefano Buzzaccaro
- Department of Chemistry (CMIC), Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy
| | - M Mehdi Salek
- Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 02139 Cambridge, MA, USA Department of Civil, Environmental and Geomatic Engineering, Institute for Environmental Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Steven Smriga
- Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 02139 Cambridge, MA, USA Department of Civil, Environmental and Geomatic Engineering, Institute for Environmental Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Roberto Piazza
- Department of Chemistry (CMIC), Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy
| | - Roman Stocker
- Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 02139 Cambridge, MA, USA Department of Civil, Environmental and Geomatic Engineering, Institute for Environmental Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
171
|
Blow ML, Aqil M, Liebchen B, Marenduzzo D. Motility of active nematic films driven by "active anchoring". SOFT MATTER 2017; 13:6137-6144. [PMID: 28791336 DOI: 10.1039/c7sm00325k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We provide a minimal model for an active nematic film in contact with both a solid substrate and a passive isotropic fluid, and explore its dynamics in one and two dimensions using a combination of hybrid Lattice Boltzmann simulations and analytical calculations. By imposing nematic anchoring at the substrate while active flows induce a preferred alignment at the interface ("active anchoring"), we demonstrate that directed fluid flow spontaneously emerges in cases where the two anchoring types are opposing. In one dimension, our model reduces to an analogue of a loaded elastic column. Here, the transition from a stationary to a motile state is akin to the buckling bifurcation, but offers the possibility to reverse the flow direction for a given set of parameters and boundary conditions solely by changing initial conditions. The two-dimensional variant of our model allows for additional tangential instabilities, and it is found that undulations form in the interface above a threshold activity. Our results might be relevant for the design of active microfluidic geometries or curvature-guided self-assembly.
Collapse
Affiliation(s)
- Matthew L Blow
- SUPA, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Gutherie Tait Road, Edinburgh, EH9 3FD, UK.
| | | | | | | |
Collapse
|
172
|
Guillamat P, Ignés-Mullol J, Sagués F. Taming active turbulence with patterned soft interfaces. Nat Commun 2017; 8:564. [PMID: 28916801 PMCID: PMC5601458 DOI: 10.1038/s41467-017-00617-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/13/2017] [Indexed: 11/30/2022] Open
Abstract
Active matter embraces systems that self-organize at different length and time scales, often exhibiting turbulent flows apparently deprived of spatiotemporal coherence. Here, we use a layer of a tubulin-based active gel to demonstrate that the geometry of active flows is determined by a single length scale, which we reveal in the exponential distribution of vortex sizes of active turbulence. Our experiments demonstrate that the same length scale reemerges as a cutoff for a scale-free power law distribution of swirling laminar flows when the material evolves in contact with a lattice of circular domains. The observed prevalence of this active length scale can be understood by considering the role of the topological defects that form during the spontaneous folding of microtubule bundles. These results demonstrate an unexpected strategy for active systems to adapt to external stimuli, and provide with a handle to probe the existence of intrinsic length and time scales. Active nematics consist of self-driven components that develop orientational order and turbulent flow. Here Guillamat et al. investigate an active nematic constrained in a quasi-2D geometrical setup and show that there exists an intrinsic length scale that determines the geometry in all forcing regimes.
Collapse
Affiliation(s)
- P Guillamat
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain
| | - J Ignés-Mullol
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain
| | - F Sagués
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain. .,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain.
| |
Collapse
|
173
|
Abstract
Typical wild-type bacteria swimming in sparse suspensions exhibit a movement pattern called "run and tumble," characterized by straight trajectories (runs) interspersed by shorter, random reorientation (tumbles). This is achieved by rotating their flagella counterclockwise, or clockwise, respectively. The chemotaxis signaling network operates in controlling the frequency of tumbles, enabling navigation toward or away from desired regions in the medium. In contrast, while in dense populations, flagellated bacteria exhibit collective motion and form large dynamic clusters, whirls, and jets, with intricate dynamics that is fundamentally different than trajectories of sparsely swimming cells. Although collectively swarming cells do change direction at the level of the individual cell, often exhibiting reversals, it has been suggested that chemotaxis does not play a role in multicellular colony expansion, but the change in direction stems from clockwise flagellar rotation. In this paper, the effects of cell rotor switching (i.e., the ability to tumble) and chemotaxis on the collective statistics of swarming bacteria are studied experimentally in wild-type Bacillus subtilis and two mutants-one that does not tumble and one that tumbles independently of the chemotaxis system. We show that while several of the parameters examined are similar between the strains, other collective and individual characteristics are significantly different. The results demonstrate that tumbling and/or flagellar directional rotor switching has an important role on the dynamics of swarming, and imply that swarming models of self-propelled rods that do not take tumbling and/or rotor switching into account may be oversimplified.
Collapse
Affiliation(s)
- Marina Sidortsov
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
| | - Yakov Morgenstern
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
| | - Avraham Be'er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
| |
Collapse
|
174
|
Stenhammar J, Nardini C, Nash RW, Marenduzzo D, Morozov A. Role of Correlations in the Collective Behavior of Microswimmer Suspensions. PHYSICAL REVIEW LETTERS 2017; 119:028005. [PMID: 28753351 DOI: 10.1103/physrevlett.119.028005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Indexed: 06/07/2023]
Abstract
In this Letter, we study the collective behavior of a large number of self-propelled microswimmers immersed in a fluid. Using unprecedentedly large-scale lattice Boltzmann simulations, we reproduce the transition to bacterial turbulence. We show that, even well below the transition, swimmers move in a correlated fashion that cannot be described by a mean-field approach. We develop a novel kinetic theory that captures these correlations and is nonperturbative in the swimmer density. To provide an experimentally accessible measure of correlations, we calculate the diffusivity of passive tracers and reveal its nontrivial density dependence. The theory is in quantitative agreement with the lattice Boltzmann simulations and captures the asymmetry between pusher and puller swimmers below the transition to turbulence.
Collapse
Affiliation(s)
- Joakim Stenhammar
- Division of Physical Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | - Cesare Nardini
- DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- SUPA, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
- Service de Physique de l'État Condensé, CNRS UMR 3680, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Rupert W Nash
- EPCC, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Alexander Morozov
- SUPA, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
175
|
Wang L, Huang Y. Intrinsic flow structure and multifractality in two-dimensional bacterial turbulence. Phys Rev E 2017; 95:052215. [PMID: 28618644 DOI: 10.1103/physreve.95.052215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Indexed: 11/07/2022]
Abstract
The active interaction between the bacteria and fluid generates turbulent structures even at zero Reynolds number. The velocity of such a flow obtained experimentally has been quantitatively investigated based on streamline segment analysis. There is a clear transition at about 16 times the organism body length separating two different scale regimes, which may be attributed to the different influence of the viscous effect. Surprisingly the scaling extracted from the streamline segment indicates the existence of scale similarity even at the zero Reynolds number limit. Moreover, the multifractal feature can be quantitatively described via a lognormal formula with the Hurst number H=0.76 and the intermittency parameter μ=0.20, which is coincidentally in agreement with the three-dimensional hydrodynamic turbulence result. The direction of cascade is measured via the filter-space technique. An inverse energy cascade is confirmed. For the enstrophy, a forward cascade is observed when r/R≤3, and an inverse one is observed when r/R>3, where r and R are the separation distance and the bacteria body size, respectively. Additionally, the lognormal statistics is verified for the coarse-grained energy dissipation and enstrophy, which supports the lognormal formula to fit the measured scaling exponent.
Collapse
Affiliation(s)
- Lipo Wang
- UM-SJTU Joint Institute, Shanghai JiaoTong University, Shanghai 200240, People's Republic of China
| | - Yongxiang Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| |
Collapse
|
176
|
Ryan SD, Ariel G, Be'er A. Anomalous Fluctuations in the Orientation and Velocity of Swarming Bacteria. Biophys J 2017; 111:247-55. [PMID: 27410751 DOI: 10.1016/j.bpj.2016.05.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/06/2016] [Accepted: 05/26/2016] [Indexed: 10/21/2022] Open
Abstract
Simultaneous acquisition of phase-contrast light microscopy and fluorescently labeled bacteria, moving within a dense swarm, reveals the intricate interactions between cells and the collective flow around them. By comparing wild-type and immotile cells embedded in a dense wild-type swarm, the effect of the active thrust generated by the flagella can be singled out. It is shown that while the distribution of angles among cell velocity, cell orientation, and the local flow around it is Gaussian-like for immotile bacteria, wild-type cells exhibit anomalous non-Gaussian deviations and are able to move in trajectories perpendicular to the collective flow. Thus, cells can maneuver or switch between local streams and jets. A minimal model describing bacteria as hydrodynamic force dipoles shows that steric effects, hydrodynamics interactions, and local alignments all have to be taken into account to explain the observed dynamics. These findings shed light on the physical mechanisms underlying bacterial swarming and the balance between individual and collective dynamics.
Collapse
Affiliation(s)
- Shawn D Ryan
- Department of Mathematical Sciences, Kent State University, Kent, Ohio
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
| | - Avraham Be'er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel.
| |
Collapse
|
177
|
Shendruk TN, Doostmohammadi A, Thijssen K, Yeomans JM. Dancing disclinations in confined active nematics. SOFT MATTER 2017; 13:3853-3862. [PMID: 28345089 DOI: 10.1039/c6sm02310j] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The spontaneous emergence of collective flows is a generic property of active fluids and often leads to chaotic flow patterns characterised by swirls, jets, and topological disclinations in their orientation field. However, the ability to achieve structured flows and ordered disclinations is of particular importance in the design and control of active systems. By confining an active nematic fluid within a channel, we find a regular motion of disclinations, in conjunction with a well defined and dynamic vortex lattice. As pairs of moving disclinations travel through the channel, they continually exchange partners producing a dynamic ordered state, reminiscent of Ceilidh dancing. We anticipate that this biomimetic ability to self-assemble organised topological disclinations and dynamically structured flow fields in engineered geometries will pave the road towards establishing new active topological microfluidic devices.
Collapse
Affiliation(s)
- Tyler N Shendruk
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, UK.
| | | | | | | |
Collapse
|
178
|
Doostmohammadi A, Shendruk TN, Thijssen K, Yeomans JM. Onset of meso-scale turbulence in active nematics. Nat Commun 2017; 8:15326. [PMID: 28508858 PMCID: PMC5440851 DOI: 10.1038/ncomms15326] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/21/2017] [Indexed: 11/09/2022] Open
Abstract
Meso-scale turbulence is an innate phenomenon, distinct from inertial turbulence, that spontaneously occurs at low Reynolds number in fluidized biological systems. This spatiotemporal disordered flow radically changes nutrient and molecular transport in living fluids and can strongly affect the collective behaviour in prominent biological processes, including biofilm formation, morphogenesis and cancer invasion. Despite its crucial role in such physiological processes, understanding meso-scale turbulence and any relation to classical inertial turbulence remains obscure. Here we show how the motion of active matter along a micro-channel transitions to meso-scale turbulence through the evolution of locally disordered patches (active puffs) from an ordered vortex-lattice flow state. We demonstrate that the stationary critical exponents of this transition to meso-scale turbulence in a channel coincide with the directed percolation universality class. This finding bridges our understanding of the onset of low-Reynolds-number meso-scale turbulence and traditional scale-invariant turbulence in confinement.
Collapse
Affiliation(s)
- Amin Doostmohammadi
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK
| | - Tyler N Shendruk
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK.,Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Kristian Thijssen
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK
| |
Collapse
|
179
|
Malm AV, Waigh TA. Elastic turbulence in entangled semi-dilute DNA solutions measured with optical coherence tomography velocimetry. Sci Rep 2017; 7:1186. [PMID: 28442789 PMCID: PMC5430809 DOI: 10.1038/s41598-017-01303-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/29/2017] [Indexed: 12/11/2022] Open
Abstract
The flow instabilities of solutions of high molecular weight DNA in the entangled semi-dilute concentration regime were investigated using optical coherence tomography velocimetry, a technique that provides high spatial (probe volumes of 3.4 pL) and temporal resolution (sub μs) information on the flow behaviour of complex fluids in a rheometer. The velocity profiles of the opaque DNA solutions (high and low salt) were measured as a function of the distance across the gap of a parallel plate rheometer, and their evolution over time was measured. At lower DNA concentrations and low shear rates, the velocity fluctuations were well described by Gaussian functions and the velocity gradient was uniform across the rheometer gap, which is expected for Newtonian flows. As the DNA concentration and shear rate were increased there was a stable wall slip regime followed by an evolving wall slip regime, which is finally followed by the onset of elastic turbulence. Strain localization (shear banding) is observed on the boundaries of the flows at intermediate shear rates, but decreases in the high shear elastic turbulence regime, where bulk strain localization occurs. A dynamic phase diagram for non-linear flow was created to describe the different behaviours.
Collapse
Affiliation(s)
- A V Malm
- Biological Physics, School of Physics and Astronomy, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK.,Photon Science Institute, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK
| | - T A Waigh
- Biological Physics, School of Physics and Astronomy, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK. .,Photon Science Institute, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK.
| |
Collapse
|
180
|
Woodhouse FG, Dunkel J. Active matter logic for autonomous microfluidics. Nat Commun 2017; 8:15169. [PMID: 28440273 PMCID: PMC5414041 DOI: 10.1038/ncomms15169] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/06/2017] [Indexed: 01/24/2023] Open
Abstract
Chemically or optically powered active matter plays an increasingly important role in materials design, but its computational potential has yet to be explored systematically. The competition between energy consumption and dissipation imposes stringent physical constraints on the information transport in active flow networks, facilitating global optimization strategies that are not well understood. Here, we combine insights from recent microbial experiments with concepts from lattice-field theory and non-equilibrium statistical mechanics to introduce a generic theoretical framework for active matter logic. Highlighting conceptual differences with classical and quantum computation, we demonstrate how the inherent non-locality of incompressible active flow networks can be utilized to construct universal logical operations, Fredkin gates and memory storage in set-reset latches through the synchronized self-organization of many individual network components. Our work lays the conceptual foundation for developing autonomous microfluidic transport devices driven by bacterial fluids, active liquid crystals or chemically engineered motile colloids.
Collapse
Affiliation(s)
- Francis G. Woodhouse
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| |
Collapse
|
181
|
Yang A, Tang WS, Si T, Tang JX. Influence of Physical Effects on the Swarming Motility of Pseudomonas aeruginosa. Biophys J 2017; 112:1462-1471. [PMID: 28402888 DOI: 10.1016/j.bpj.2017.02.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 02/08/2017] [Accepted: 02/16/2017] [Indexed: 12/31/2022] Open
Abstract
Many species of bacteria can spread over a moist surface via a particular form of collective motion known as "surface swarming". This form of motility is typically studied by inoculating bacteria on a gel formed by 0.4-1.5% agar, which contains essential nutrients for their growth and proliferation. Using Pseudomonas aeruginosa and its pili-less mutant, ΔPilA, we investigate physical factors that either facilitate or restrict the swarming motility, measured by the rate of increase in area covered by a spreading bacterial colony, i.e., a swarm. The wild-type colony spreads over the agar surface in highly branched structures. The pili-less mutant fills up the area more fully as it spreads, but it also produces numerous and fragmented branches, or tendrils, at the swarm front. Whereas additional surfactants enhance swarming, increasing the agar percentage, adding extra salt or sugar or incorporating viscous agents in the agar matrix all decrease swarming, supporting the conclusion that swarming motility is restricted by the surface tension at the swarm front and swarm growth is limited by the rate of water supply from within the agar gel. The physical basis elaborated through this study provides a useful framework for understanding the swarming behavior of numerous species of bacteria.
Collapse
Affiliation(s)
- Alexander Yang
- Physics Department, Brown University, Providence, Rhode Island
| | - Wai Shing Tang
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Tieyan Si
- Harbin Institute of Technology, Harbin, P. R. China
| | - Jay X Tang
- Physics Department, Brown University, Providence, Rhode Island.
| |
Collapse
|
182
|
Ilkanaiv B, Kearns DB, Ariel G, Be'er A. Effect of Cell Aspect Ratio on Swarming Bacteria. PHYSICAL REVIEW LETTERS 2017; 118:158002. [PMID: 28452529 PMCID: PMC5525544 DOI: 10.1103/physrevlett.118.158002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Indexed: 05/29/2023]
Abstract
Swarming bacteria collectively migrate on surfaces using flagella, forming dynamic whirls and jets that consist of millions of individuals. Because some swarming bacteria elongate prior to actual motion, cell aspect ratio may play a significant role in the collective dynamics. Extensive research on self-propelled rodlike particles confirms that elongation promotes alignment, strongly affecting the dynamics. Here, we study experimentally the collective dynamics of variants of swarming Bacillus subtilis that differ in length. We show that the swarming statistics depends on the aspect ratio in a critical, fundamental fashion not predicted by theory. The fastest motion was obtained for the wild-type and variants that are similar in length. However, shorter and longer cells exhibit anomalous, non-Gaussian statistics and nonexponential decay of the autocorrelation function, indicating lower collective motility. These results suggest that the robust mechanisms to maintain aspect ratios may be important for efficient swarming motility. Wild-type cells are optimal in this sense.
Collapse
Affiliation(s)
- Bella Ilkanaiv
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, Ramat Gan 52000, Israel
| | - Avraham Be'er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
| |
Collapse
|
183
|
Kurihara T, Aridome M, Ayade H, Zaid I, Mizuno D. Non-Gaussian limit fluctuations in active swimmer suspensions. Phys Rev E 2017; 95:030601. [PMID: 28415213 DOI: 10.1103/physreve.95.030601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 06/07/2023]
Abstract
We investigate the hydrodynamic fluctuations in suspensions of swimming microorganisms (Chlamydomonas) by observing the probe particles dispersed in the media. Short-term fluctuations of probe particles were superdiffusive and displayed heavily tailed non-Gaussian distributions. The analytical theory that explains the observed distribution was derived by summing the power-law-decaying hydrodynamic interactions from spatially distributed field sources (here, swimming microorganisms). The summing procedure, which we refer to as the physical limit operation, is applicable to a variety of physical fluctuations to which the classical central limiting theory does not apply. Extending the analytical formula to compare to experiments in active swimmer suspensions, we show that the non-Gaussian shape of the observed distribution obeys the analytic theory concomitantly with independently determined parameters such as the strength of force generations and the concentration of Chlamydomonas. Time evolution of the distributions collapsed to a single master curve, except for their extreme tails, for which our theory presents a qualitative explanation. Investigations thereof and the complete agreement with theoretical predictions revealed broad applicability of the formula to dispersions of active sources of fluctuations.
Collapse
Affiliation(s)
| | | | - Heev Ayade
- Kyushu University, Fukuoka 812-8581, Japan
| | - Irwin Zaid
- Rudolf Peierls Center for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom
| | | |
Collapse
|
184
|
Słomka J, Dunkel J. Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids. Proc Natl Acad Sci U S A 2017; 114:2119-2124. [PMID: 28193853 PMCID: PMC5338532 DOI: 10.1073/pnas.1614721114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Classical turbulence theory assumes that energy transport in a 3D turbulent flow proceeds through a Richardson cascade whereby larger vortices successively decay into smaller ones. By contrast, an additional inverse cascade characterized by vortex growth exists in 2D fluids and gases, with profound implications for meteorological flows and fluid mixing. The possibility of a helicity-driven inverse cascade in 3D fluids had been rejected in the 1970s based on equilibrium-thermodynamic arguments. Recently, however, it was proposed that certain symmetry-breaking processes could potentially trigger a 3D inverse cascade, but no physical system exhibiting this phenomenon has been identified to date. Here, we present analytical and numerical evidence for the existence of an inverse energy cascade in an experimentally validated 3D active fluid model, describing microbial suspension flows that spontaneously break mirror symmetry. We show analytically that self-organized scale selection, a generic feature of many biological and engineered nonequilibrium fluids, can generate parity-violating Beltrami flows. Our simulations further demonstrate how active scale selection controls mirror-symmetry breaking and the emergence of a 3D inverse cascade.
Collapse
Affiliation(s)
- Jonasz Słomka
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307
| |
Collapse
|
185
|
Daddi-Moussa-Ider A, Gekle S. Hydrodynamic interaction between particles near elastic interfaces. J Chem Phys 2017; 145:014905. [PMID: 27394123 DOI: 10.1063/1.4955099] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an analytical calculation of the hydrodynamic interaction between two spherical particles near an elastic interface such as a cell membrane. The theory predicts the frequency dependent self- and pair-mobilities accounting for the finite particle size up to the 5th order in the ratio between particle diameter and wall distance as well as between diameter and interparticle distance. We find that particle motion towards a membrane with pure bending resistance always leads to mutual repulsion similar as in the well-known case of a hard-wall. In the vicinity of a membrane with shearing resistance, however, we observe an attractive interaction in a certain parameter range which is in contrast to the behavior near a hard wall. This attraction might facilitate surface chemical reactions. Furthermore, we show that there exists a frequency range in which the pair-mobility for perpendicular motion exceeds its bulk value, leading to short-lived superdiffusive behavior. Using the analytical particle mobilities we compute collective and relative diffusion coefficients. The appropriateness of the approximations in our analytical results is demonstrated by corresponding boundary integral simulations which are in excellent agreement with the theoretical predictions.
Collapse
Affiliation(s)
- Abdallah Daddi-Moussa-Ider
- Biofluid Simulation and Modeling, Fachbereich Physik, Universität Bayreuth, Universitätsstraße 30, Bayreuth 95440, Germany
| | - Stephan Gekle
- Biofluid Simulation and Modeling, Fachbereich Physik, Universität Bayreuth, Universitätsstraße 30, Bayreuth 95440, Germany
| |
Collapse
|
186
|
de Graaf J, Stenhammar J. Lattice-Boltzmann simulations of microswimmer-tracer interactions. Phys Rev E 2017; 95:023302. [PMID: 28297968 DOI: 10.1103/physreve.95.023302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Hydrodynamic interactions in systems composed of self-propelled particles, such as swimming microorganisms and passive tracers, have a significant impact on the tracer dynamics compared to the equivalent "dry" sample. However, such interactions are often difficult to take into account in simulations due to their computational cost. Here, we perform a systematic investigation of swimmer-tracer interaction using an efficient force-counterforce-based lattice-Boltzmann (LB) algorithm [De Graaf et al., J. Chem. Phys. 144, 134106 (2016)JCPSA60021-960610.1063/1.4944962] in order to validate its ability to capture the relevant low-Reynolds-number physics. We show that the LB algorithm reproduces far-field theoretical results well, both in a system with periodic boundary conditions and in a spherical cavity with no-slip walls, for which we derive expressions here. The force-lattice coupling of the LB algorithm leads to a "smearing out" of the flow field, which strongly perturbs the tracer trajectories at close swimmer-tracer separations, and we analyze how this effect can be accurately captured using a simple renormalized hydrodynamic theory. Finally, we show that care must be taken when using LB algorithms to simulate systems of self-propelled particles, since its finite momentum transport time can lead to significant deviations from theoretical predictions based on Stokes flow. These insights should prove relevant to the future study of large-scale microswimmer suspensions using these methods.
Collapse
Affiliation(s)
- Joost de Graaf
- SUPA, School of Physics and Astronomy, University of Edinburgh, King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Joakim Stenhammar
- Division of Physical Chemistry, Lund University, Box 124, S-221 00 Lund, Sweden
| |
Collapse
|
187
|
Theillard M, Alonso-Matilla R, Saintillan D. Geometric control of active collective motion. SOFT MATTER 2017; 13:363-375. [PMID: 27906393 DOI: 10.1039/c6sm01955b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent experimental studies have shown that confinement can profoundly affect self-organization in semi-dilute active suspensions, leading to striking features such as the formation of steady and spontaneous vortices in circular domains and the emergence of unidirectional pumping motions in periodic racetrack geometries. Motivated by these findings, we analyze the two-dimensional dynamics in confined suspensions of active self-propelled swimmers using a mean-field kinetic theory where conservation equations for the particle configurations are coupled to the forced Navier-Stokes equations for the self-generated fluid flow. In circular domains, a systematic exploration of the parameter space casts light on three distinct states: equilibrium with no flow, stable vortex, and chaotic motion, and the transitions between these are explained and predicted quantitatively using a linearized theory. In periodic racetracks, similar transitions from equilibrium to net pumping to traveling waves to chaos are observed in agreement with experimental observations and are also explained theoretically. Our results underscore the subtle effects of geometry on the morphology and dynamics of emerging patterns in active suspensions and pave the way for the control of active collective motion in microfluidic devices.
Collapse
Affiliation(s)
- Maxime Theillard
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA.
| | - Roberto Alonso-Matilla
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA.
| | - David Saintillan
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA.
| |
Collapse
|
188
|
Oza AU, Heidenreich S, Dunkel J. Generalized Swift-Hohenberg models for dense active suspensions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:97. [PMID: 27815788 DOI: 10.1140/epje/i2016-16097-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
In describing the physics of living organisms, a mathematical theory that captures the generic ordering principles of intracellular and multicellular dynamics is essential for distinguishing between universal and system-specific features. Here, we compare two recently proposed nonlinear high-order continuum models for active polar and nematic suspensions, which aim to describe collective migration in dense cell assemblies and the ordering processes in ATP-driven microtubule-kinesin networks, respectively. We discuss the phase diagrams of the two models and relate their predictions to recent experiments. The satisfactory agreement with existing experimental data lends support to the hypothesis that non-equilibrium pattern formation phenomena in a wide range of active systems can be described within the same class of higher-order partial differential equations.
Collapse
Affiliation(s)
- Anand U Oza
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, 10012, New York, NY, USA.
| | - Sebastian Heidenreich
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Abbestr. 2-12, 10587, Berlin, Germany
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139-4307, Cambridge, MA, USA
| |
Collapse
|
189
|
Redner GS, Wagner CG, Baskaran A, Hagan MF. Classical Nucleation Theory Description of Active Colloid Assembly. PHYSICAL REVIEW LETTERS 2016; 117:148002. [PMID: 27740811 DOI: 10.1103/physrevlett.117.148002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 06/06/2023]
Abstract
Nonaligning self-propelled particles with purely repulsive excluded volume interactions undergo athermal motility-induced phase separation into a dilute gas and a dense cluster phase. Here, we use enhanced sampling computational methods and analytic theory to examine the kinetics of formation of the dense phase. Despite the intrinsically nonequilibrium nature of the phase transition, we show that the kinetics can be described using an approach analogous to equilibrium classical nucleation theory, governed by an effective free energy of cluster formation with identifiable bulk and surface terms. The theory captures the location of the binodal, nucleation rates as a function of supersaturation, and the cluster size distributions below the binodal, while discrepancies in the metastable region reveal additional physics about the early stages of active crystal formation. The success of the theory shows that a framework similar to equilibrium thermodynamics can be obtained directly from the microdynamics of an active system, and can be used to describe the kinetics of evolution toward nonequilibrium steady states.
Collapse
Affiliation(s)
- Gabriel S Redner
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Caleb G Wagner
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Aparna Baskaran
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
190
|
Hemingway EJ, Mishra P, Marchetti MC, Fielding SM. Correlation lengths in hydrodynamic models of active nematics. SOFT MATTER 2016; 12:7943-7952. [PMID: 27722646 DOI: 10.1039/c6sm00812g] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We examine the scaling with activity of the emergent length scales that control the nonequilibrium dynamics of an active nematic liquid crystal, using two popular hydrodynamic models that have been employed in previous studies. In both models we find that the chaotic spatio-temporal dynamics in the regime of fully developed active turbulence is controlled by a single active scale determined by the balance of active and elastic stresses, regardless of whether the active stress is extensile or contractile in nature. The observed scaling of the kinetic energy and enstrophy with activity is consistent with our single-length scale argument and simple dimensional analysis. Our results provide a unified understanding of apparent discrepancies in the previous literature and demonstrate that the essential physics is robust to the choice of model.
Collapse
Affiliation(s)
- Ewan J Hemingway
- Department of Physics, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, UK.
| | - Prashant Mishra
- Physics Department and Syracuse Soft Matter Program, Syracuse University, Syracuse, NY 13244, USA
| | - M Cristina Marchetti
- Physics Department and Syracuse Soft Matter Program, Syracuse University, Syracuse, NY 13244, USA and Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY, USA
| | - Suzanne M Fielding
- Department of Physics, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
191
|
Li G, Ardekani AM. Collective Motion of Microorganisms in a Viscoelastic Fluid. PHYSICAL REVIEW LETTERS 2016; 117:118001. [PMID: 27661719 DOI: 10.1103/physrevlett.117.118001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 06/06/2023]
Abstract
We study the collective motion of a suspension of rodlike microswimmers in a two-dimensional film of viscoelastic fluids. We find that the fluid elasticity has a small effect on a suspension of pullers, while it significantly affects the pushers. The attraction and orientational ordering of the pushers are enhanced in viscoelastic fluids. The induced polymer stresses break down the large-scale flow structures and suppress velocity fluctuations. In addition, the energy spectra and induced mixing in the suspension of pushers are greatly modified by fluid elasticity.
Collapse
Affiliation(s)
- Gaojin Li
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
192
|
Heidenreich S, Dunkel J, Klapp SHL, Bär M. Hydrodynamic length-scale selection in microswimmer suspensions. Phys Rev E 2016; 94:020601. [PMID: 27627229 DOI: 10.1103/physreve.94.020601] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Indexed: 11/07/2022]
Abstract
A universal characteristic of mesoscale turbulence in active suspensions is the emergence of a typical vortex length scale, distinctly different from the scale invariance of turbulent high-Reynolds number flows. Collective length-scale selection has been observed in bacterial fluids, endothelial tissue, and active colloids, yet the physical origins of this phenomenon remain elusive. Here, we systematically derive an effective fourth-order field theory from a generic microscopic model that allows us to predict the typical vortex size in microswimmer suspensions. Building on a self-consistent closure condition, the derivation shows that the vortex length scale is determined by the competition between local alignment forces, rotational diffusion, and intermediate-range hydrodynamic interactions. Vortex structures found in simulations of the theory agree with recent measurements in Bacillus subtilis suspensions. Moreover, our approach yields an effective viscosity enhancement (reduction), as reported experimentally for puller (pusher) microorganisms.
Collapse
Affiliation(s)
- Sebastian Heidenreich
- Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Abbestrasse 2-12, D-10587 Berlin, Germany
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue E17-412, Cambridge, Massachusetts 02139-4307, USA
| | - Sabine H L Klapp
- Institute for Theoretical Physics, Technical University Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany
| | - Markus Bär
- Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Abbestrasse 2-12, D-10587 Berlin, Germany
| |
Collapse
|
193
|
Schmitt M, Stark H. Active Brownian motion of emulsion droplets: Coarsening dynamics at the interface and rotational diffusion. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:80. [PMID: 27562831 DOI: 10.1140/epje/i2016-16080-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/13/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
A micron-sized droplet of bromine water immersed in a surfactant-laden oil phase can swim (S. Thutupalli, R. Seemann, S. Herminghaus, New J. Phys. 13 073021 (2011). The bromine reacts with the surfactant at the droplet interface and generates a surfactant mixture. It can spontaneously phase-separate due to solutocapillary Marangoni flow, which propels the droplet. We model the system by a diffusion-advection-reaction equation for the mixture order parameter at the interface including thermal noise and couple it to fluid flow. Going beyond previous work, we illustrate the coarsening dynamics of the surfactant mixture towards phase separation in the axisymmetric swimming state. Coarsening proceeds in two steps: an initially slow growth of domain size followed by a nearly ballistic regime. On larger time scales thermal fluctuations in the local surfactant composition initiates random changes in the swimming direction and the droplet performs a persistent random walk, as observed in experiments. Numerical solutions show that the rotational correlation time scales with the square of the inverse noise strength. We confirm this scaling by a perturbation theory for the fluctuations in the mixture order parameter and thereby identify the active emulsion droplet as an active Brownian particle.
Collapse
Affiliation(s)
- M Schmitt
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany.
| | - H Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany
| |
Collapse
|
194
|
Lushi E. Stability and dynamics of anisotropically tumbling chemotactic swimmers. Phys Rev E 2016; 94:022414. [PMID: 27627341 DOI: 10.1103/physreve.94.022414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 06/06/2023]
Abstract
Microswimmers such as bacteria perform random walks known as run-and-tumbles to move up chemoattractant gradients and as a result aggregate with others. It is also known that such micro-swimmers can self-organize into macroscopic patterns due to interactions with neighboring cells through the fluidic environment they live in. While the pattern formation resulting from chemotactic and hydrodynamic interactions separately and together have been previously investigated, the effect of the anisotropy in the tumbles of microswimmers has been unexplored. Here we show through linear analysis and full nonlinear simulations that the slight anisotropy in the individual swimmer tumbles can alter the collective pattern formation in nontrivial ways. We show that tumbling anisotropy diminishes the magnitude of the chemotactic aggregates but may result in more such aggregation peaks.
Collapse
Affiliation(s)
- Enkeleida Lushi
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA and Courant Institute of Mathematical Sciences, New York, New York, 10012, USA
| |
Collapse
|
195
|
Qiu X, Ding L, Huang Y, Chen M, Lu Z, Liu Y, Zhou Q. Intermittency measurement in two-dimensional bacterial turbulence. Phys Rev E 2016; 93:062226. [PMID: 27415272 DOI: 10.1103/physreve.93.062226] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Indexed: 11/07/2022]
Abstract
In this paper, an experimental velocity database of a bacterial collective motion, e.g., Bacillus subtilis, in turbulent phase with volume filling fraction 84% provided by Professor Goldstein at Cambridge University (UK), was analyzed to emphasize the scaling behavior of this active turbulence system. This was accomplished by performing a Hilbert-based methodology analysis to retrieve the scaling property without the β-limitation. A dual-power-law behavior separated by the viscosity scale ℓ_{ν} was observed for the qth-order Hilbert moment L_{q}(k). This dual-power-law belongs to an inverse-cascade since the scaling range is above the injection scale R, e.g., the bacterial body length. The measured scaling exponents ζ(q) of both the small-scale (k>k_{ν}) and large-scale (k<k_{ν}) motions are convex, showing the multifractality. A log-normal formula was put forward to characterize the multifractal intensity. The measured intermittency parameters are μ_{S}=0.26 and μ_{L}=0.17, respectively, for the small- and large-scale motions. It implies that the former cascade is more intermittent than the latter one, which is also confirmed by the corresponding singularity spectrum f(α) versus α. Comparison with the conventional two-dimensional Ekman-Navier-Stokes equation, a continuum model indicates that the origin of the multifractality could be a result of some additional nonlinear interaction terms, which deservers a more careful investigation.
Collapse
Affiliation(s)
- Xiang Qiu
- School of Science, Shanghai Institute of Technology, Shanghai 200235, China
| | - Long Ding
- School of Science, Shanghai Institute of Technology, Shanghai 200235, China
| | - Yongxiang Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Ming Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Zhiming Lu
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
| | - Yulu Liu
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
| | - Quan Zhou
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
| |
Collapse
|
196
|
Adhyapak TC, Stark H. Dynamics of a bacterial flagellum under reverse rotation. SOFT MATTER 2016; 12:5621-5629. [PMID: 27265475 DOI: 10.1039/c6sm00443a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To initiate tumbling of an E. coli, one of the helical flagella reverses its sense of rotation. It then transforms from its normal form first to the transient semicoiled state and subsequently to the curly-I state. The dynamics of polymorphism is effectively modeled by describing flagellar elasticity through an extended Kirchhoff free energy. However, the complete landscape of the free energy remains undetermined because the ground state energies of the polymorphic forms are not known. We investigate how variations in these ground state energies affect the dynamics of a reversely rotated flagellum of a swimming bacterium. We find that the flagellum exhibits a number of distinct dynamical states and comprehensively summarize them in a state diagram. As a result, we conclude that tuning the landscape of the extended Kirchhoff free energy alone cannot generate the intermediate full-length semicoiled state. However, our model suggests an ad hoc method to realize the sequence of polymorphic states as observed for a real bacterium. Since the elastic properties of bacterial flagella are similar, our findings can easily be extended to other peritrichous bacteria.
Collapse
Affiliation(s)
- Tapan Chandra Adhyapak
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany.
| | | |
Collapse
|
197
|
Yeo K, Lushi E, Vlahovska PM. Dynamics of inert spheres in active suspensions of micro-rotors. SOFT MATTER 2016; 12:5645-5652. [PMID: 27265340 DOI: 10.1039/c6sm00360e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Inert particles suspended in active fluids of self-propelled particles are known to often exhibit enhanced diffusion and novel coherent structures. Here we numerically investigate the dynamical behavior and self-organization in a system consisting of passive and actively rotating spheres of the same size. The particles interact through direct collisions and the fluid flows generated as they move. In the absence of passive particles, three states emerge in a binary mixture of spinning spheres depending on particle fraction: a dilute gas-like state where the rotors move chaotically, a phase-separated state where like-rotors move in lanes or vortices, and a jammed state where crystals continuously assemble, melt and move (K. Yeo, E. Lushi, and P. M. Vlahovska, Phys. Rev. Lett., 2015, 114, 188301). Passive particles added to the rotor suspension modify the system dynamics and pattern formation: while states identified in the pure active suspension still emerge, they occur at different densities and mixture proportions. The dynamical behavior of the inert particles is also non-trivially dependent on the system composition.
Collapse
Affiliation(s)
- Kyongmin Yeo
- IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | | | | |
Collapse
|
198
|
Abstract
Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models.
Collapse
|
199
|
Thampi SP, Doostmohammadi A, Shendruk TN, Golestanian R, Yeomans JM. Active micromachines: Microfluidics powered by mesoscale turbulence. SCIENCE ADVANCES 2016; 2:e1501854. [PMID: 27419229 PMCID: PMC4942321 DOI: 10.1126/sciadv.1501854] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 06/14/2016] [Indexed: 05/06/2023]
Abstract
Dense active matter, from bacterial suspensions and microtubule bundles driven by motor proteins to cellular monolayers and synthetic Janus particles, is characterized by mesoscale turbulence, which is the emergence of chaotic flow structures. By immersing an ordered array of symmetric rotors in an active fluid, we introduce a microfluidic system that exploits spontaneous symmetry breaking in mesoscale turbulence to generate work. The lattice of rotors self-organizes into a spin state where neighboring discs continuously rotate in permanent alternating directions due to combined hydrodynamic and elastic effects. Our virtual prototype demonstrates a new research direction for the design of micromachines powered by the nematohydrodynamic properties of active turbulence.
Collapse
Affiliation(s)
- Sumesh P. Thampi
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
| | - Amin Doostmohammadi
- Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
| | - Tyler N. Shendruk
- Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
| | - Ramin Golestanian
- Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
| | - Julia M. Yeomans
- Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
- Corresponding author.
| |
Collapse
|
200
|
Ardeshiri H, Benkeddad I, Schmitt FG, Souissi S, Toschi F, Calzavarini E. Lagrangian model of copepod dynamics: Clustering by escape jumps in turbulence. Phys Rev E 2016; 93:043117. [PMID: 27176400 DOI: 10.1103/physreve.93.043117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 11/07/2022]
Abstract
Planktonic copepods are small crustaceans that have the ability to swim by quick powerful jumps. Such an aptness is used to escape from high shear regions, which may be caused either by flow perturbations, produced by a large predator (i.e., fish larvae), or by the inherent highly turbulent dynamics of the ocean. Through a combined experimental and numerical study, we investigate the impact of jumping behavior on the small-scale patchiness of copepods in a turbulent environment. Recorded velocity tracks of copepods displaying escape response jumps in still water are here used to define and tune a Lagrangian copepod (LC) model. The model is further employed to simulate the behavior of thousands of copepods in a fully developed hydrodynamic turbulent flow obtained by direct numerical simulation of the Navier-Stokes equations. First, we show that the LC velocity statistics is in qualitative agreement with available experimental observations of copepods in turbulence. Second, we quantify the clustering of LC, via the fractal dimension D_{2}. We show that D_{2} can be as low as ∼2.3 and that it critically depends on the shear-rate sensitivity of the proposed LC model, in particular it exhibits a minimum in a narrow range of shear-rate values. We further investigate the effect of jump intensity, jump orientation, and geometrical aspect ratio of the copepods on the small-scale spatial distribution. At last, possible ecological implications of the observed clustering on encounter rates and mating success are discussed.
Collapse
Affiliation(s)
- H Ardeshiri
- Université de Lille, CNRS, FRE 3723, LML, Laboratoire de Mécanique de Lille, F 59000 Lille, France.,Université de Lille, CNRS, Université de Littoral Cote d'Opale, UMR 8187, LOG, Laboratoire d'Océanologie et de Géoscience, F 62930 Wimereux, France
| | - I Benkeddad
- Université de Lille, CNRS, Université de Littoral Cote d'Opale, UMR 8187, LOG, Laboratoire d'Océanologie et de Géoscience, F 62930 Wimereux, France
| | - F G Schmitt
- Université de Lille, CNRS, Université de Littoral Cote d'Opale, UMR 8187, LOG, Laboratoire d'Océanologie et de Géoscience, F 62930 Wimereux, France
| | - S Souissi
- Université de Lille, CNRS, Université de Littoral Cote d'Opale, UMR 8187, LOG, Laboratoire d'Océanologie et de Géoscience, F 62930 Wimereux, France
| | - F Toschi
- Department of Applied Physics and Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.,Istituto per le Applicazioni del Calcolo CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - E Calzavarini
- Université de Lille, CNRS, FRE 3723, LML, Laboratoire de Mécanique de Lille, F 59000 Lille, France
| |
Collapse
|