151
|
Dai Y, Lu Y, Zhou Z, Wang X, Ge H, Sun Q. B-box containing protein 1 from Malus domestica (MdBBX1) is involved in the abiotic stress response. PeerJ 2022; 10:e12852. [PMID: 35178298 PMCID: PMC8815370 DOI: 10.7717/peerj.12852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023] Open
Abstract
B-box proteins (BBXs), which act as transcription factors, mainly regulate photomorphogenesis. However, the molecular functions underlying the activity of plant BBXs in response to abiotic stress remain largely unclear. In this investigation, we found that a BBX from Malus domestica (MdBBX1) was involved in the response to various abiotic stresses. The expression of MdBBX1 was significantly upregulated in response to abiotic stresses and abscisic acid (ABA). Recombinant MdBBX1 increased stress tolerance in Escherichia coli cells. In addition, overexpression of MdBBX1 in Arabidopsis decreased sensitivity to exogenous ABA, resulting in a germination rate and root length that were greater and longer, respectively, than those of wild-type (WT) plants. Moreover, the expression of ABI5 was decreased in MdBBX1-overexpressing lines under ABA treatment. After salt and drought treatments, compared with the WT plants, the MdBBX1 transgenic plants displayed enhanced tolerance and had a higher survival rate. Furthermore, under salt stress, increased proline (PRO) contents, decreased levels of malondialdehyde (MDA), increased activity of antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX)) and decreased accumulation of reactive oxygen species (ROS) were observed in the MdBBX1-overexpressing plants. Overall, our results provide evidence that MdBBX1 might play a critical role in the regulation of abiotic stress tolerance by reducing the generation of ROS.
Collapse
Affiliation(s)
- Yaqing Dai
- College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Ying Lu
- College of Life Science, Shandong Agricultural University, Taian, Shandong, China,Institute of Shandong River Wetlands, Jinan, Shandong, China
| | - Zhou Zhou
- College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Xiaoyun Wang
- College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Hongjuan Ge
- Qingdao Academy of Agricultural Science, Qingdao, Shandong, China
| | - Qinghua Sun
- College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
152
|
Abstract
Abscisic acid (ABA) is recognized as the key hormonal regulator of plant stress physiology. This phytohormone is also involved in plant growth and development under normal conditions. Over the last 50 years the components of ABA machinery have been well characterized, from synthesis to molecular perception and signaling; knowledge about the fine regulation of these ABA machinery components is starting to increase. In this article, we review a particular regulation of the ABA machinery that comes from the plant circadian system and extends to multiple levels. The circadian clock is a self-sustained molecular oscillator that perceives external changes and prepares plants to respond to them in advance. The circadian system constitutes the most important predictive homeostasis mechanism in living beings. Moreover, the circadian clock has several output pathways that control molecular, cellular and physiological downstream processes, such as hormonal response and transcriptional activity. One of these outputs involves the ABA machinery. The circadian oscillator components regulate expression and post-translational modification of ABA machinery elements, from synthesis to perception and signaling response. The circadian clock establishes a gating in the ABA response during the day, which fine tunes stomatal closure and plant growth response.
Collapse
|
153
|
The Seed and the Metabolism Regulation. BIOLOGY 2022; 11:biology11020168. [PMID: 35205035 PMCID: PMC8869448 DOI: 10.3390/biology11020168] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022]
Abstract
Simple Summary Seeds are the reproductive units of higher plants. They have a significant place in agriculture and plant diversity maintenance. Because they are dehydrated, they can remain viable in the environment for centuries. This review explores the dry seed as a metabolically inactive organism, but well organized to protect its components and enter intensive repair to restore metabolic activities upon imbibition for the completion of germination. Metabolism regulation is also critical for the most important seed traits, dormancy, and ageing recovery capacity. Abstract The seed represents a critical stage in the life cycle of flowering plants. It corresponds to a dry structure carrying the plant embryo in dormant or quiescent state. Orthodox seeds possess a very low water content, preventing biochemical reactions, especially respiration. If the desiccation of living organisms leads to a loss of homeostasis, structure, and metabolism, the seeds go through it successfully thanks to their structure, cellular organization, and growth regulation. Seeds set up a certain number of sophisticated molecules to protect valuable macromolecules or organelles from dehydration/rehydration cycles. Moreover, dormancy takes place in a coordinated process with environmental cues in order to ensure embryo development at the most appropriate conditions for the establishment of the new plant. Moreover, repair processes are programmed to be ready to operate to maximize germination success and seed longevity. This review focuses on the physiology of the seed as related to hydration forces, respiration, and biochemical reactions in the transition from thermodynamically undefined dry state to self-sustained living system. Such processes are of importance for basic knowledge of the regulation of metabolism of living organisms, but also for the control of germination in the context of climate change due to global warming.
Collapse
|
154
|
Zhang Y, Xu S, Yue S, Zhang X, Qiao Y, Liu M, Zhou Y. Reciprocal Field Transplant Experiment and Comparative Transcriptome Analysis Provide Insights Into Differences in Seed Germination Time of Two Populations From Different Geographic Regions of Zostera marina L. FRONTIERS IN PLANT SCIENCE 2022; 12:793060. [PMID: 35116049 PMCID: PMC8804501 DOI: 10.3389/fpls.2021.793060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Seagrasses are the only submerged marine higher plants, which can colonize the sea through sexual (via seeds) reproduction. The transition between seed dormancy and germination is an important ecological trait and a key stage in the life cycle of higher plants. According to our observations, the seeds of Zostera marina L. (eelgrass) in Swan Lake (SL) and Qingdao Bay (QB) in northern China have the same maturation time (summer) but different germination time. To investigate this phenomenon, we further carried out reciprocal transplantation experiment and transcriptome analysis. Results revealed that differences in the seed germination time between the two sites do exist and are determined by internal molecular mechanisms as opposed to environmental factors. Furthermore, we conducted comparative transcriptome analysis of seeds at the mature and early germination stages in both locations. The results that the number of genes related to energy, hormone and cell changes was higher in SL than in QB, could account for that the dormancy depth of seeds in SL was deeper than that in QB; consequently, the seeds in SL needed to mobilize more related genes to break dormancy and start germination. The results could have important practical implications for seagrass meadow restoration via seeds and provide in-depth and comprehensive data for understanding the molecular mechanisms related to seagrass seed germination.
Collapse
Affiliation(s)
- Yu Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| | - Shaochun Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| | - Shidong Yue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| | - Xiaomei Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| | - Yongliang Qiao
- Qingdao University of Science and Technology, Qingdao, China
| | - Mingjie Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| | - Yi Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| |
Collapse
|
155
|
Zhang Z, Luo S, Liu Z, Wan Z, Gao X, Qiao Y, Yu J, Zhang G. Genome-wide identification and expression analysis of the cucumber PYL gene family. PeerJ 2022; 10:e12786. [PMID: 35047239 PMCID: PMC8759363 DOI: 10.7717/peerj.12786] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/21/2021] [Indexed: 01/10/2023] Open
Abstract
Abscisic acid (ABA) is a very important hormone in plants. It regulates growth and development of plants and plays an important role in biotic and abiotic stresses. The Pyrabactin resistance 1-like (PYR/PYL) proteins play a central role in ABA signal transduction pathways. The working system of PYL genes in cucumber, an important economical vegetable (Cucumis sativus L.), has not been fully studied yet. Through bioinformatics, a total of 14 individual PYL genes were identified in Chinese long '9930' cucumber. Fourteen PYL genes were distributed on six chromosomes of cucumber, and their encoded proteins predicted to be distributed in cytoplasm and nucleus. Based on the phylogenetic analysis, the PYL genes of cucumber, Arabidopsis, rice, apple, Brachypodium distachyon and soybeancould be classified into three groups. Genetic structures and conserved domains analysis revealed that CsPYL genes in the same group have similar exons and conserved domains. By predicting cis-elements in the promoters, we found that all CsPYL members contained hormone and stress-related elements. Additionally, the expression patterns of CsPYL genes were specific in tissues. Finally, we further examined the expression of 14 CsPYL genes under ABA, PEG, salt stress. The qRT-PCR results showed that most PYL gene expression levels were up-regulated. Furthermore, with different treatments about 3h, the relative expression of PYL8 was up-regulated and more than 20 times higher than 0h. It indicated that this gene may play an important role in abiotic stress.
Collapse
Affiliation(s)
- Zeyu Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China,College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shilei Luo
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China,College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zeci Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China,College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zilong Wan
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China,College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xueqin Gao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China,College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yali Qiao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China,College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China,College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guobin Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China,College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
156
|
Ali F, Qanmber G, Li F, Wang Z. Updated role of ABA in seed maturation, dormancy, and germination. J Adv Res 2022; 35:199-214. [PMID: 35003801 PMCID: PMC8721241 DOI: 10.1016/j.jare.2021.03.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/03/2021] [Accepted: 03/27/2021] [Indexed: 12/17/2022] Open
Abstract
Functional ABA biosynthesis genes show specific roles for ABA accumulation at different stages of seed development and seedling establishment. De novo ABA biosynthesis during embryogenesis is required for late seed development, maturation, and induction of primary dormancy. ABA plays multiple roles with the key LAFL hub to regulate various downstream signaling genes in seed and seedling development. Key ABA signaling genes ABI3, ABI4, and ABI5 play important multiple functions with various cofactors during seed development such as de-greening, desiccation tolerance, maturation, dormancy, and seed vigor. The crosstalk between ABA and other phytohormones are complicated and important for seed development and seedling establishment.
Background Seed is vital for plant survival and dispersion, however, its development and germination are influenced by various internal and external factors. Abscisic acid (ABA) is one of the most important phytohormones that influence seed development and germination. Until now, impressive progresses in ABA metabolism and signaling pathways during seed development and germination have been achieved. At the molecular level, ABA biosynthesis, degradation, and signaling genes were identified to play important roles in seed development and germination. Additionally, the crosstalk between ABA and other hormones such as gibberellins (GA), ethylene (ET), Brassinolide (BR), and auxin also play critical roles. Although these studies explored some actions and mechanisms by which ABA-related factors regulate seed morphogenesis, dormancy, and germination, the complete network of ABA in seed traits is still unclear. Aim of review Presently, seed faces challenges in survival and viability. Due to the vital positive roles in dormancy induction and maintenance, as well as a vibrant negative role in the seed germination of ABA, there is a need to understand the mechanisms of various ABA regulators that are involved in seed dormancy and germination with the updated knowledge and draw a better network for the underlying mechanisms of the ABA, which would advance the understanding and artificial modification of the seed vigor and longevity regulation. Key scientific concept of review Here, we review functions and mechanisms of ABA in different seed development stages and seed germination, discuss the current progresses especially on the crosstalk between ABA and other hormones and signaling molecules, address novel points and key challenges (e.g., exploring more regulators, more cofactors involved in the crosstalk between ABA and other phytohormones, and visualization of active ABA in the plant), and outline future perspectives for ABA regulating seed associated traits.
Collapse
Affiliation(s)
- Faiza Ali
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Ghulam Qanmber
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
157
|
Gao Y, Ji J, Zhang Y, Yang N, Zhang M. Biochemical and transcriptomic analyses of the symbiotic interaction between Cremastra appendiculata and the mycorrhizal fungus Coprinellus disseminatus. BMC PLANT BIOLOGY 2022; 22:15. [PMID: 34983403 PMCID: PMC8725509 DOI: 10.1186/s12870-021-03388-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cremastra appendiculata is a rare terrestrial orchid with a high market value as an ornamental and medicinal plant. However, the species depends entirely on fungi for seed germination under natural conditions. In a previous study, we have successfully isolated and identified the mycorrhizal fungus Coprinellus disseminatus which was able to induce the germination of C. appendiculata seeds. We then speculated that C. disseminatus may do so by breaking the testa imposed dormancy of the seeds. In this study, biochemical and transcriptomic analyses were used to characterize the germination of C. appendiculata seeds, collected at different stages of germination, as affected by C. disseminatus. RESULTS The lignocellulose in the seeds coat of C. appendiculata was degraded by the mycorrhizal fungus resulting in facilitated absorption of water. The rate of decline in lignin content was 67 and 73% at 6 and 12 days after sowing, respectively. The water content increased from 13 to 90% during symbiosis. A total of 15,382 genes showing significantly different levels of expression (log2 FPKM≥2.0, Qvalue≤0.05) were successfully identified among all libraries, where the highest number of DEGs was shared between 6 days versus 0 day after symbiotic germination. Gene annotation results suggested that 15 key genes related water-status, such as DHN gene family and Xero 1 were down-regulated. The genes zeaxanthin epoxidase ZEP, 9-cis-epoxycarotenoid dioxygenase NCED3 and β-carotene hydroxylase involved in the biosynthesis of abscisic acid (ABA) were significantly down-regulated in 6 days as compared to 0 day after symbiotic germination. CONCLUSIONS This work demonstrates that mycorrhizal fungus C. disseminatus can stimulate C. appendiculata seeds germination through a mechanism of breaking the testa imposed dormancy and inducing water absorption of the embryo.
Collapse
Affiliation(s)
- Yanyan Gao
- College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, 550025, Guizhou, China
| | - Jun Ji
- College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, 550025, Guizhou, China
| | - Yujin Zhang
- College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, 550025, Guizhou, China
| | - Ningxian Yang
- College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, 550025, Guizhou, China
| | - Mingsheng Zhang
- College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China.
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, 550025, Guizhou, China.
| |
Collapse
|
158
|
Jia KP, Mi J, Ali S, Ohyanagi H, Moreno JC, Ablazov A, Balakrishna A, Berqdar L, Fiore A, Diretto G, Martínez C, de Lera AR, Gojobori T, Al-Babili S. An alternative, zeaxanthin epoxidase-independent abscisic acid biosynthetic pathway in plants. MOLECULAR PLANT 2022; 15:151-166. [PMID: 34547513 DOI: 10.1016/j.molp.2021.09.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/26/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Abscisic acid (ABA) is an important carotenoid-derived phytohormone that plays essential roles in plant response to biotic and abiotic stresses as well as in various physiological and developmental processes. In Arabidopsis, ABA biosynthesis starts with the epoxidation of zeaxanthin by the ABA DEFICIENT 1 (ABA1) enzyme, leading to epoxycarotenoids; e.g., violaxanthin. The oxidative cleavage of 9-cis-epoxycarotenoids, a key regulatory step catalyzed by 9-CIS-EPOXYCAROTENOID DIOXYGENASE, forms xanthoxin, which is converted in further reactions mediated by ABA DEFICIENT 2 (ABA2), ABA DEFICIENT 3 (ABA3), and ABSCISIC ALDEHYDE OXIDASE 3 (AAO3) into ABA. By combining genetic and biochemical approaches, we unravel here an ABA1-independent ABA biosynthetic pathway starting upstream of zeaxanthin. We identified the carotenoid cleavage products (i.e., apocarotenoids, β-apo-11-carotenal, 9-cis-β-apo-11-carotenal, 3-OH-β-apo-11-carotenal, and 9-cis-3-OH-β-apo-11-carotenal) as intermediates of this ABA1-independent ABA biosynthetic pathway. Using labeled compounds, we showed that β-apo-11-carotenal, 9-cis-β-apo-11-carotenal, and 3-OH-β-apo-11-carotenal are successively converted into 9-cis-3-OH-β-apo-11-carotenal, xanthoxin, and finally into ABA in both Arabidopsis and rice. When applied to Arabidopsis, these β-apo-11-carotenoids exert ABA biological functions, such as maintaining seed dormancy and inducing the expression of ABA-responsive genes. Moreover, the transcriptomic analysis revealed a high overlap of differentially expressed genes regulated by β-apo-11-carotenoids and ABA, suggesting that β-apo-11-carotenoids exert ABA-independent regulatory activities. Taken together, our study identifies a biological function for the common plant metabolites, β-apo-11-carotenoids, extends our knowledge about ABA biosynthesis, and provides new insights into plant apocarotenoid metabolic networks.
Collapse
Affiliation(s)
- Kun-Peng Jia
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China
| | - Jianing Mi
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Shawkat Ali
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Hajime Ohyanagi
- Biological and Environmental Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Juan C Moreno
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abdugaffor Ablazov
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Aparna Balakrishna
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Lamis Berqdar
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Alessia Fiore
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123 Rome, Italy
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123 Rome, Italy
| | - Claudio Martínez
- Universidade de Vigo, Facultade de Química and CINBIO, 36310 Vigo, Spain
| | - Angel R de Lera
- Universidade de Vigo, Facultade de Química and CINBIO, 36310 Vigo, Spain
| | - Takashi Gojobori
- Biological and Environmental Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Salim Al-Babili
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
159
|
Jahan A, Yamazaki Y, Islam M, Ghosh TK, Yoshimura N, Kato H, Ishizaki K, Shinozawa A, Sakata Y, Takezawa D. Differential regulations of abscisic acid-induced desiccation tolerance and vegetative dormancy by group B3 Raf kinases in liverworts. FRONTIERS IN PLANT SCIENCE 2022; 13:952820. [PMID: 35968153 PMCID: PMC9370073 DOI: 10.3389/fpls.2022.952820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/04/2022] [Indexed: 05/10/2023]
Abstract
Phytohormone abscisic acid (ABA) plays a key role in stomata closure, osmostress acclimation, and vegetative and embryonic dormancy. Group B3 Raf protein kinases (B3-Rafs) serve as positive regulators of ABA and osmostress signaling in the moss Physcomitrium patens and the angiosperm Arabidopsis thaliana. While P. patens has a single B3-Raf called ARK, specific members of B3-Rafs among six paralogs regulate ABA and osmostress signaling in A. thaliana, indicating functional diversification of B3-Rafs in angiosperms. However, we found that the liverwort Marchantia polymorpha, belonging to another class of bryophytes, has three paralogs of B3-Rafs, MpARK1, MpARK2, and MpARK3, with structural variations in the regulatory domains of the polypeptides. By reporter assays of the P. patens ark line and analysis of genome-editing lines of M. polymorpha, we found that these B3-Rafs are functionally redundant in ABA response, with respect to inhibition of growth, tolerance to desiccation and expression of stress-associated transcripts, the majority of which are under the control of the PYR/PYL/RCAR-like receptor MpPYL1. Interestingly, gemmae in gemma cups were germinating only in mutant lines associated with MpARK1, indicating that dormancy in the gametophyte is controlled by a specific B3-Raf paralog. These results indicated not only conservation of the role of B3-Rafs in ABA and osmostress response in liverworts but also functional diversification of B3-Rafs, which is likely to have occurred in the early stages of land plant evolution.
Collapse
Affiliation(s)
- Akida Jahan
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Yuto Yamazaki
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Mousona Islam
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Biological Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Totan Kumar Ghosh
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Nami Yoshimura
- Graduate School of Science, Kobe University, Kobe, Japan
| | - Hirotaka Kato
- Graduate School of Science, Kobe University, Kobe, Japan
| | | | - Akihisa Shinozawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yoichi Sakata
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Daisuke Takezawa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- *Correspondence: Daisuke Takezawa,
| |
Collapse
|
160
|
Martín G, Duque P. Etiolated Hypocotyls: A New System to Study the Impact of Abiotic Stress on Cell Expansion. Methods Mol Biol 2022; 2494:195-205. [PMID: 35467208 DOI: 10.1007/978-1-0716-2297-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Abiotic stress impacts a wide range of plant developmental processes. Among them, cell expansion is particularly important given its contribution to plant growth and morphogenesis. Here, we describe a new phenotypic system to quantify accurately the impact of different sources of abiotic stress on the cell's capacity to expand. This approach monitors hypocotyl growth in Arabidopsis thaliana etiolated seedlings, as in the dark this embryonic organ is known to grow solely by expanding its cells, without cell division.
Collapse
Affiliation(s)
- Guiomar Martín
- Plant Molecular Biology Group, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Paula Duque
- Plant Molecular Biology Group, Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
161
|
Mishra BS, Sharma M, Laxmi A. Role of sugar and auxin crosstalk in plant growth and development. PHYSIOLOGIA PLANTARUM 2022; 174:e13546. [PMID: 34480799 DOI: 10.1111/ppl.13546] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 05/07/2023]
Abstract
Under the natural environment, nutrient signals interact with phytohormones to coordinate and reprogram plant growth and survival. Sugars are important molecules that control almost all morphological and physiological processes in plants, ranging from seed germination to senescence. In addition to their functions as energy resources, osmoregulation, storage molecules, and structural components, sugars function as signaling molecules and interact with various plant signaling pathways, such as hormones, stress, and light to modulate growth and development according to fluctuating environmental conditions. Auxin, being an important phytohormone, is associated with almost all stages of the plant's life cycle and also plays a vital role in response to the dynamic environment for better growth and survival. In the previous years, substantial progress has been made that showed a range of common responses mediated by sugars and auxin signaling. This review discusses how sugar signaling affects auxin at various levels from its biosynthesis to perception and downstream gene activation. On the same note, the review also highlights the role of auxin signaling in fine-tuning sugar metabolism and carbon partitioning. Furthermore, we discussed the crosstalk between the two signaling machineries in the regulation of various biological processes, such as gene expression, cell cycle, development, root system architecture, and shoot growth. In conclusion, the review emphasized the role of sugar and auxin crosstalk in the regulation of several agriculturally important traits. Thus, engineering of sugar and auxin signaling pathways could potentially provide new avenues to manipulate for agricultural purposes.
Collapse
Affiliation(s)
- Bhuwaneshwar Sharan Mishra
- National Institute of Plant Genome Research, New Delhi, India
- Bhuwaneshwar Sharan Mishra, Ram Gulam Rai P. G. College Banktashiv, Affiliated to Deen Dayal Upadhyaya Gorakhpur University Gorakhpur, Deoria, Uttar Pradesh, India
| | - Mohan Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
162
|
Wu S, Wu D, Song J, Zhang Y, Tan Q, Yang T, Yang J, Wang S, Xu J, Xu W, Liu A. Metabolomic and transcriptomic analyses reveal new insights into the role of abscisic acid in modulating mango fruit ripening. HORTICULTURE RESEARCH 2022; 9:uhac102. [PMID: 35795388 PMCID: PMC9250656 DOI: 10.1093/hr/uhac102] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/18/2022] [Indexed: 05/16/2023]
Abstract
Mango (Mangifera indica L.) is a climacteric tropical fruit consumed around the world. Although ethylene and abscisic acid (ABA) have been considered to be stimulators that trigger mango fruit ripening, their regulation mechanisms in modulating mango fruit ripening remain uncertain. In this study, we performed integrative analyses of metabolome and transcriptome data combined with a series of physiological and experimental analyses in the 'Keitt' mango, and we characterized changes in accumulation of specific metabolites at different stages during fruit development and ripening, which were strongly correlated with transcriptional changes and embodied physiological changes as well as taste formation. Specifically, we found that ABA, rather than ethylene, was highly associated with mango ripening, and exogenous ABA application promoted mango fruit ripening. Transcriptomic analysis identified diverse ripening-related genes involved in sugar and carotenoid biosynthesis and softening-related metabolic processes. Furthermore, networks of ABA- and ripening-related genes (such as MiHY5, MiGBF4, MiABI5, and MibZIP9) were constructed, and the direct regulation by the key ABA-responsive transcription factor MiHY5 of ripening-related genes was experimentally confirmed by a range of evidence. Taken together, our results indicate that ABA plays a key role in directly modulating mango fruit ripening through MiHY5, suggesting the need to reconsider how we understand ABA function in modulating climacteric fruit ripening.
Collapse
Affiliation(s)
- Shibo Wu
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Wu
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Song
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
| | - Yanyu Zhang
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Tan
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianquan Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jingya Yang
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | - Wei Xu
- Corresponding authors. E-mail: , , ,
| | | |
Collapse
|
163
|
Shen J, Chen Q, Li Z, Zheng Q, Xu Y, Zhou H, Mao H, Shen Q, Liu P. Proteomic and metabolomic analysis of Nicotiana benthamiana under dark stress. FEBS Open Bio 2022; 12:231-249. [PMID: 34792288 PMCID: PMC8727940 DOI: 10.1002/2211-5463.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 10/15/2021] [Accepted: 11/13/2021] [Indexed: 11/08/2022] Open
Abstract
Exposure to extended periods of darkness is a common source of abiotic stress that significantly affects plant growth and development. To understand how Nicotiana benthamiana responds to dark stress, the proteomes and metabolomes of leaves treated with darkness were studied. In total, 5763 proteins and 165 primary metabolites were identified following dark treatment. Additionally, the expression of autophagy-related gene (ATG) proteins was transiently upregulated. Weighted gene coexpression network analysis (WGCNA) was utilized to find the protein modules associated with the response to dark stress. A total of four coexpression modules were obtained. The results indicated that heat-shock protein (HSP70), SnRK1-interacting protein 1, 2A phosphatase-associated protein of 46 kDa (Tap46), and glutamate dehydrogenase (GDH) might play crucial roles in N. benthamiana's response to dark stress. Furthermore, a protein-protein interaction (PPI) network was constructed and top-degreed proteins were predicted to identify potential key factors in the response to dark stress. These proteins include isopropylmalate isomerase (IPMI), eukaryotic elongation factor 5A (ELF5A), and ribosomal protein 5A (RPS5A). Finally, metabolic analysis suggested that some amino acids and sugars were involved in the dark-responsive pathways. Thus, these results provide a new avenue for understanding the defensive mechanism against dark stress at the protein and metabolic levels in N. benthamiana.
Collapse
Affiliation(s)
- Juan‐Juan Shen
- College of ChemistryZhengzhou UniversityZhengzhouChina
- Chemistry Research Institution of Henan Academy of SciencesZhengzhouChina
| | - Qian‐Si Chen
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Ze‐Feng Li
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Qing‐Xia Zheng
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Ya‐Long Xu
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Hui‐Na Zhou
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Hong‐Yan Mao
- College of ChemistryZhengzhou UniversityZhengzhouChina
| | - Qi Shen
- College of ChemistryZhengzhou UniversityZhengzhouChina
| | - Ping‐Ping Liu
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| |
Collapse
|
164
|
Nagar P, Sharma N, Jain M, Sharma G, Prasad M, Mustafiz A. OsPSKR15, a phytosulfokine receptor from rice enhances abscisic acid response and drought stress tolerance. PHYSIOLOGIA PLANTARUM 2022; 174:e13569. [PMID: 34549425 DOI: 10.1111/ppl.13569] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Abscisic acid (ABA) is a major phytohormone that acts as stimuli and plays an important role in plant growth, development, and environmental stress responses. Membrane-localized receptor-like kinases (RLKs) help to detect extracellular stimuli and activate downstream signaling responses to modulate a variety of biological processes. Phytosulfokine receptor (PSKR), a Leu-rich repeat (LRR)-RLK, has been characterized for its role in growth, development and biotic stress. Here, we observed that OsPSKR15, a rice PSKR, was upregulated by ABA in Oryza sativa. We demonstrated OsPSKR15 is a positive regulator in plant response to ABA. Ectopic expression of OsPSKR15 in Arabidopsis thaliana increased the sensitivity to ABA during germination, growth and stomatal closure. Consistently, the expression of ABA-inducible genes was significantly upregulated in these plants. OsPSKR15 also regulated reactive oxygen species (ROS)-mediated ABA signaling in guard cells, thereby governing stomatal closure. Furthermore, the constitutive expression of OsPSKR15 enhanced drought tolerance by reducing the transpirational water loss in Arabidopsis. We also reported that OsPSKR15 directly interacts with AtPYL9 and its orthologue OsPYL11 of rice through its kinase domain in the plasma membrane and nucleus. Altogether, these results reveal an important role of OsPSKR15 in plant response toward abiotic stress in an ABA-dependent manner.
Collapse
Affiliation(s)
- Preeti Nagar
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | - Muskan Jain
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Gauri Sharma
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
| | - Ananda Mustafiz
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
165
|
Wang Z, Gou X. The First Line of Defense: Receptor-like Protein Kinase-Mediated Stomatal Immunity. Int J Mol Sci 2021; 23:ijms23010343. [PMID: 35008769 PMCID: PMC8745683 DOI: 10.3390/ijms23010343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Stomata regulate gas and water exchange between the plant and external atmosphere, which are vital for photosynthesis and transpiration. Stomata are also the natural entrance for pathogens invading into the apoplast. Therefore, stomata play an important role in plants against pathogens. The pattern recognition receptors (PRRs) locate in guard cells to perceive pathogen/microbe-associated molecular patterns (PAMPs) and trigger a series of plant innate immune responses, including rapid closure of stomata to limit bacterial invasion, which is termed stomatal immunity. Many PRRs involved in stomatal immunity are plasma membrane-located receptor-like protein kinases (RLKs). This review focuses on the current research progress of RLK-mediated signaling pathways involved in stomatal immunity, and discusses questions that need to be addressed in future research.
Collapse
|
166
|
Ma R, Liu W, Li S, Zhu X, Yang J, Zhang N, Si H. Genome-Wide Identification, Characterization and Expression Analysis of the CIPK Gene Family in Potato ( Solanum tuberosum L.) and the Role of StCIPK10 in Response to Drought and Osmotic Stress. Int J Mol Sci 2021; 22:ijms222413535. [PMID: 34948331 PMCID: PMC8708990 DOI: 10.3390/ijms222413535] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
The potato (Solanum tuberosum L.), one of the most important food crops worldwide, is sensitive to environmental stresses. Sensor–responder complexes comprising calcineurin B-like (CBL) proteins and CBL-interacting protein kinases (CIPKs) not only modulate plant growth and development but also mediate numerous stress responses. Here, using a Hidden Markov Model and BLAST searches, 27 CIPK genes were identified in potato and divided into five groups by phylogenetic analysis and into two clades (intron-poor and intron-rich) by gene structure analysis. Quantitative reverse-transcription PCR (qRT-PCR) assays revealed that StCIPK genes play important roles in plant growth, development and abiotic stress tolerance. Up-regulated expression of StCIPK10 was significantly induced by drought, PEG6000 and ABA. StCIPK10 enhances both the ability of potato to scavenge reactive oxygen species and the content of corresponding osmoregulation substances, thereby strengthening tolerance to drought and osmotic stress. StCIPK10 is located at the intersection between the abscisic acid and abiotic stress signaling pathways, which control both root growth and stomatal closure in potato. In addition, StCIPK10 interacts with StCBL1, StCBL4, StCBL6, StCBL7, StCBL8, StCBL11 and StCBL12, and is specifically recruited to the plasma membrane by StCBL11.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Dingxi Academy of Agricultural Sciences, Dingxi 743000, China
| | - Weigang Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Shigui Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xi Zhu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-931-763-1875
| |
Collapse
|
167
|
Wang J, Xu Y, Zhang W, Zheng Y, Yuan B, Li Q, Leng P. Tomato SlPP2C5 Is Involved in the Regulation of Fruit Development and Ripening. PLANT & CELL PHYSIOLOGY 2021; 62:1760-1769. [PMID: 34428298 DOI: 10.1093/pcp/pcab130] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/06/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Abscisic acid (ABA) regulates plant development mainly through its signaling, in which ABA binds to receptors to inhibit type 2C protein phosphatases (PP2Cs). The exact roles of PP2Cs in fruit development are still unclear. In this work, we verify that tomato SlPP2C5 works as a negative regulator in ABA signaling during fruit development. SlPP2C5 was inhibited by both monomeric and dimeric ABA receptors SlPYLs through ABA dose-dependent way, and it interacted physically with SlPYLs and SlSnRK2s. SlPP2C5 was highly expressed in fruits induced by exogenous ABA. Plants with overexpressed SlPP2C5 had lower sensitivity to ABA, which showed faster seed germination and primary root growth compared to Wild type (WT), while SlPP2C5-suppressed plants were more sensitive to ABA. SlPP2C5-over-expression (OE) delayed fruit ripening onset, while SlPP2C5-RNAi advanced fruit ripening. Alteration of SlPP2C5 expression impacts fruit quality parameters as well, including pericarp thickness, fruit shape index, seed number and weight and the soluble solid content. RNA-seq analysis revealed that there were significant expression differences of genes related to ethylene release and lycopene synthesis between WT and both SlPP2C5-OE and SlPP2C5-RNAi lines with an inversed variation. Taken together, our findings demonstrate that SlPP2C5 plays an important role in the regulation of fruit development, ripening and quality.
Collapse
Affiliation(s)
- Juan Wang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Yandan Xu
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Wenbo Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Yu Zheng
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Bing Yuan
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Qian Li
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Ping Leng
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
168
|
Wang S, Liu W, He Y, Adegoke TV, Ying J, Tong X, Li Z, Tang L, Wang H, Zhang J, Tian Z, Wang Y. bZIP72 promotes submerged rice seed germination and coleoptile elongation by activating ADH1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:112-118. [PMID: 34775177 DOI: 10.1016/j.plaphy.2021.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Seed germination and coleoptile elongation in response to flooding stress is an important trait for the direct seeding of rice. However, the genes regulating this process and the underlying mechanisms are little understood. In this study, bZIP72 was identified as a positive regulator of seed germination under submergence. Transcription of bZIP72 was submergence induced. Over-expression of bZIP72 enhanced submerged seed germination and coleoptile elongation, while bzip72 mutants exhibited the opposite tendency. Using biochemical interaction assays, we showed that bZIP72 directly binds to the promoter of alcohol dehydrogenase 1 (ADH1), enhances its activity, and subsequently produces more NAD+, NADH and ATP involved in the alcoholic fermentation and glycolysis pathway, ultimately providing necessary energy reserves thus conferring tolerance to submergence. In summary, this research provides novel insights into bZIP72 participation in submerged rice seed germination and coleoptile elongation.
Collapse
Affiliation(s)
- Shuang Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Wanning Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Yong He
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Tosin Victor Adegoke
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Jiezheng Ying
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, LinAn, 311300, China
| | - Xiaohong Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Zhiyong Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Liqun Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Huimei Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China.
| | - Zhihong Tian
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, 434025, China.
| | - Yifeng Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
169
|
Kim H, Song E, Kim Y, Choi E, Hwang J, Lee JH. Loss-of-function of ARABIDOPSIS F-BOX PROTEIN HYPERSENSITIVE TO ABA 1 enhances drought tolerance and delays germination. PHYSIOLOGIA PLANTARUM 2021; 173:2376-2389. [PMID: 34687457 DOI: 10.1111/ppl.13588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
ABA is a phytohormone involved in diverse plant events such as seed germination and drought response. An F-box protein functions as a substrate receptor of the SCF complex and is responsible for ubiquitination of target proteins, triggering their subsequent degradation mediated by ubiquitin proteasome system. Here, we have isolated a gene named ARABIDOPSIS F-BOX PROTEIN HYPERSENSITIVE TO ABA 1 (AFA1) that was upregulated by ABA. AFA1 interacted with adaptor proteins of the SCF complex, implying its role as a substrate receptor of the complex. Its loss of function mutants, afa1 seedlings, exhibited ABA-hypersensitivity, including delayed germination in the presence of ABA. Moreover, loss of AFA1 led to increased drought tolerance in adult plants. Microarray data with ABA treatments indicated that 129 and 219 genes were upregulated or downregulated, respectively, by more than three times in afa1 relative to the wild type. Among the upregulated genes in afa1, the expression of 28.7% was induced by more than three times in the presence of ABA, while only 9.3% was repressed to the same extent. These data indicate that AFA1 is involved in the downregulation of many ABA-inducible genes, in accordance with the ABA-hypersensitive phenotype of afa1. Epistasis analysis showed that AFA1 could play a role upstream of ABI4 and ABI5 in the ABA signaling for germination inhibition. Collectively, our findings suggest that AFA1 is a novel F-box protein that negatively regulates ABA signaling.
Collapse
Affiliation(s)
- Hani Kim
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Eunyoung Song
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
| | - Yeojin Kim
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
| | - Eunsil Choi
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
| | - Jae-Hoon Lee
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
170
|
Cannon AE, Marston EJ, Kiszonas AM, Hauvermale AL, See DR. Late-maturity α-amylase (LMA): exploring the underlying mechanisms and end-use quality effects in wheat. PLANTA 2021; 255:2. [PMID: 34837530 PMCID: PMC8627422 DOI: 10.1007/s00425-021-03749-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
MAIN CONCLUSION A comprehensive understanding of LMA from the underlying molecular aspects to the end-use quality effects will greatly benefit the global wheat industry and those whose livelihoods depend upon it. Late-maturity α-amylase (LMA) leads to the expression and protein accumulation of high pI α-amylases during late grain development. This α-amylase is maintained through harvest and leads to an unacceptable low falling number (FN), the wheat industry's standard measure for predicting end-use quality. Unfortunately, low FN leads to significant financial losses for growers. As a result, wheat researchers are working to understand and eliminate LMA from wheat breeding programs, with research aims that include unraveling the genetic, biochemical, and physiological mechanisms that lead to LMA expression. In addition, cereal chemists and quality scientists are working to determine if and how LMA-affected grain impacts end-use quality. This review is a comprehensive overview of studies focused on LMA and includes open questions and future directions.
Collapse
Affiliation(s)
- Ashley E. Cannon
- Wheat Health, Genetics, and Quality Research Unit, USDA Agricultural Research Service, Pullman, WA USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA USA
| | - Elliott J. Marston
- Department of Plant Pathology, Washington State University, Pullman, WA USA
| | - Alecia M. Kiszonas
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA USA
| | - Amber L. Hauvermale
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA USA
| | - Deven R. See
- Wheat Health, Genetics, and Quality Research Unit, USDA Agricultural Research Service, Pullman, WA USA
- Department of Plant Pathology, Washington State University, Pullman, WA USA
| |
Collapse
|
171
|
Liu C, Wang H, Zhang X, Ma F, Guo T, Li C. Activation of the ABA Signal Pathway Mediated by GABA Improves the Drought Resistance of Apple Seedlings. Int J Mol Sci 2021; 22:ijms222312676. [PMID: 34884481 PMCID: PMC8657939 DOI: 10.3390/ijms222312676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Drought seriously affects the yield and quality of apples. γ-aminobutyric acid (GABA) plays an important role in the responses of plants to various stresses. However, the role and possible mechanism of GABA in the drought response of apple seedlings remain unknown. To explore the effect of GABA on apple seedlings under drought stress, seedlings of Malus hupehensis were treated with seven concentrations of GABA, and the response of seedlings under 15-day drought stress was observed. The results showed that 0.5 mM GABA was the most effective at relieving drought stress. Treatment with GABA reduced the relative electrical conductivity and MDA content of leaves induced by drought stress and significantly increased the relative water content of leaves. Exogenous GABA significantly decreased the stomatal conductance and intercellular carbon dioxide concentration and transpiration rate, and it significantly increased the photosynthetic rate under drought. GABA also reduced the accumulation of superoxide anions and hydrogen peroxide in leaf tissues under drought and increased the activities of POD, SOD, and CAT and the content of GABA. Exogenous treatment with GABA acted through the accumulation of abscisic acid (ABA) in the leaves to significantly decrease stomatal conductance and increase the stomatal closure rate, and the levels of expression of ABA-related genes PYL4, ABI1, ABI2, HAB1, ABF3, and OST1 changed in response to drought. Taken together, exogenous GABA can enhance the drought tolerance of apple seedlings.
Collapse
|
172
|
Wang J, Wang L, Yan Y, Zhang S, Li H, Gao Z, Wang C, Guo X. GhWRKY21 regulates ABA-mediated drought tolerance by fine-tuning the expression of GhHAB in cotton. PLANT CELL REPORTS 2021; 40:2135-2150. [PMID: 32888081 DOI: 10.1007/s00299-020-02590-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE We report that GhWRKY21, a WRKY transcription factor, plays essential roles in regulating the intensity of the drought-induced ABA signalling pathway by facilitating the expression of GhHAB in cotton (Gossypium hirsutum). Abscisic acid (ABA) is one of the most important plant hormones in response to abiotic stress. However, activation of the ABA signalling pathway often leads to growth inhibition. The mechanisms that regulate the intensity of ABA signals are poorly understood. Here, we isolated and analysed the cotton group IId WRKY transcription factor (TF) gene GhWRKY21. Functional analysis indicated that GhWRKY21 plays a negative role in the drought response of cotton. Silencing of GhWRKY21 in cotton dramatically increased drought tolerance, whereas ectopic GhWRKY21 overexpression in Nicotiana benthamiana decreased drought tolerance. Furthermore, the GhWRKY21-mediated drought tolerance was ABA dependent. To clarify the mechanism underlying the GhWRKY21-mediated regulation of drought tolerance, 17 clade-A-type type 2C protein phosphatase (PP2C) genes, which are negative regulators of ABA signalling, were identified in cotton. Notably, GhWRKY21 interacted specifically with the W-box element within the promoter of GhHAB and regulated its expression. Silencing of GhHAB in cotton yielded a phenotype similar to that of GhWRKY21-silenced cotton. These results suggest that GhWRKY21 regulates the intensity of ABA signals by facilitating the expression of GhHAB. In summary, these findings dramatically improve our understanding of the function of WRKY TFs and provide insights into the mechanism of ABA-mediated drought tolerance.
Collapse
Affiliation(s)
- Jiayu Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Yan Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Shuxin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Zheng Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
173
|
Song Y, Zhang X, Li M, Yang H, Fu D, Lv J, Ding Y, Gong Z, Shi Y, Yang S. The direct targets of CBFs: In cold stress response and beyond. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1874-1887. [PMID: 34379362 DOI: 10.1111/jipb.13161] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Cold acclimation in Arabidopsis thaliana triggers a significant transcriptional reprogramming altering the expression patterns of thousands of cold-responsive (COR) genes. Essential to this process is the C-repeat binding factor (CBF)-dependent pathway, involving the activity of AP2/ERF (APETALA2/ethylene-responsive factor)-type CBF transcription factors required for plant cold acclimation. In this study, we performed chromatin immunoprecipitation assays followed by deep sequencing (ChIP-seq) to determine the genome-wide binding sites of the CBF transcription factors. Cold-induced CBF proteins specifically bind to the conserved C-repeat (CRT)/dehydration-responsive elements (CRT/DRE; G/ACCGAC) of their target genes. A Gene Ontology enrichment analysis showed that 1,012 genes are targeted by all three CBFs. Combined with a transcriptional analysis of the cbf1,2,3 triple mutant, we define 146 CBF regulons as direct CBF targets. In addition, the CBF-target genes are significantly enriched in functions associated with hormone, light, and circadian rhythm signaling, suggesting that the CBFs act as key integrators of endogenous and external environmental cues. Our findings not only define the genome-wide binding patterns of the CBFs during the early cold response, but also provide insights into the role of the CBFs in regulating multiple biological processes of plants.
Collapse
Affiliation(s)
- Yue Song
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Minze Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hao Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Diyi Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jian Lv
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
174
|
Wang Q, Xu Y, Zhang M, Zhu F, Sun M, Lian X, Zhao G, Duan D. Transcriptome and metabolome analysis of stress tolerance to aluminium in Vitis quinquangularis. PLANTA 2021; 254:105. [PMID: 34687358 DOI: 10.1007/s00425-021-03759-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Transcriptional and metabolic regulation of aluminium tolerance of Chinese wild Vitis quinquangularis after Al treatment for 12 h: genes and pathways related to stress resistance are activated to cope with Al stress. The phytotoxicity of aluminium (Al) has become a major issue in inhibiting plant growth in acidic soils. Chinese wild Vitis species have excellent stress resistance. In this study, to explore the mechanism underlying Al tolerance in Chinese wild Vitis quinquangularis, we conducted a transcriptome analysis to understand the changes in gene expression and pathways in V. quinquangularis leaves after Al treatment for 12 h (Al_12 h). Compared with the control (CK) treatment, 2266 upregulated differentially expressed genes (DEGs) and 2943 downregulated DEGs were identified after Al treatment. We analysed the top 60 upregulated DEGs and found that these genes were related mostly to cell wall organization or biogenesis, transition metal ion binding, etc. Another analysis of all the upregulated DEGs showed that genes related to the ABC transport pathway, salicylic acid (SA), jasmonic acid (JA) and abscisic acid (ABA) hormone signalling pathway were expressed. Transcriptome and metabolome analysis revealed that genes and metabolites (phenylalanine, cinnamate and quercetin) related to the phenylalanine metabolic pathway were expressed. In summary, the results provide a new contribution to a better understanding of the metabolic changes that occur in grapes after Al stress as well as to research on improving the resistance of grape cultivars.
Collapse
Affiliation(s)
- Qingyang Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yifan Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ming Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Fanding Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Mingxuan Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xinyu Lian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Guifang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Dong Duan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
175
|
Arabidopsis LSH8 Positively Regulates ABA Signaling by Changing the Expression Pattern of ABA-Responsive Proteins. Int J Mol Sci 2021; 22:ijms221910314. [PMID: 34638657 PMCID: PMC8508927 DOI: 10.3390/ijms221910314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 01/17/2023] Open
Abstract
Phytohormone ABA regulates the expression of numerous genes to significantly affect seed dormancy, seed germination and early seedling responses to biotic and abiotic stresses. However, the function of many ABA-responsive genes remains largely unknown. In order to improve the ABA-related signaling network, we conducted a large-scale ABA phenotype screening. LSH, an important transcription factor family, extensively participates in seedling development and floral organogenesis in plants, but whether its family genes are involved in the ABA signaling pathway has not been reported. Here we describe a new function of the transcription factor LSH8 in an ABA signaling pathway. In this study, we found that LSH8 was localized in the nucleus, and the expression level of LSH8 was significantly induced by exogenous ABA at the transcription level and protein level. Meanwhile, seed germination and root length measurements revealed that lsh8 mutant lines were ABA insensitive, whereas LSH8 overexpression lines showed an ABA-hypersensitive phenotype. With further TMT labeling quantitative proteomic analysis, we found that under ABA treatment, ABA-responsive proteins (ARPs) in the lsh8 mutant presented different changing patterns with those in wild-type Col4. Additionally, the number of ARPs contained in the lsh8 mutant was 397, six times the number in wild-type Col4. In addition, qPCR analysis found that under ABA treatment, LSH8 positively mediated the expression of downstream ABA-related genes of ABI3, ABI5, RD29B and RAB18. These results indicate that in Arabidopsis, LSH8 is a novel ABA regulator that could specifically change the expression pattern of APRs to positively mediate ABA responses.
Collapse
|
176
|
Yang M, Han X, Yang J, Jiang Y, Hu Y. The Arabidopsis circadian clock protein PRR5 interacts with and stimulates ABI5 to modulate abscisic acid signaling during seed germination. THE PLANT CELL 2021; 33:3022-3041. [PMID: 34152411 PMCID: PMC8462813 DOI: 10.1093/plcell/koab168] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/17/2021] [Indexed: 05/03/2023]
Abstract
Seed germination and postgerminative growth require the precise coordination of multiple intrinsic and environmental signals. The phytohormone abscisic acid (ABA) suppresses these processes in Arabidopsis thaliana and the circadian clock contributes to the regulation of ABA signaling. However, the molecular mechanism underlying circadian clock-mediated ABA signaling remains largely unknown. Here, we found that the core circadian clock proteins PSEUDO-RESPONSE REGULATOR5 (PRR5) and PRR7 physically associate with ABSCISIC ACID-INSENSITIVE5 (ABI5), a crucial transcription factor of ABA signaling. PRR5 and PRR7 positively modulate ABA signaling redundantly during seed germination. Disrupting PRR5 and PRR7 simultaneously rendered germinating seeds hyposensitive to ABA, whereas the overexpression of PRR5 enhanced ABA signaling to inhibit seed germination. Consistent with this, the expression of several ABA-responsive genes is upregulated by PRR proteins. Genetic analysis demonstrated that PRR5 promotes ABA signaling mainly dependently on ABI5. Further mechanistic investigation revealed that PRR5 stimulates the transcriptional function of ABI5 without affecting its stability. Collectively, our results indicate that these PRR proteins function synergistically with ABI5 to activate ABA responses during seed germination, thus providing a mechanistic understanding of how ABA signaling and the circadian clock are directly integrated through a transcriptional complex involving ABI5 and central circadian clock components.
Collapse
Affiliation(s)
- Milian Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jiajia Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Author for correspondence:
| |
Collapse
|
177
|
Wang S, Zhang R, Zhang Z, Zhao T, Zhang D, Sofkova S, Wu Y, Wang Y. Genome-wide analysis of the bZIP gene lineage in apple and functional analysis of MhABF in Malus halliana. PLANTA 2021; 254:78. [PMID: 34536142 DOI: 10.1007/s00425-021-03724-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 05/23/2023]
Abstract
51 MdbZIP genes were identified from the apple genome by bioinformatics methods. MhABF-OE improved tolerance to saline-alkali stress in Arabidopsis, indicating it is involved in positive regulation of saline-alkali stress response. Saline-alkali stress is a major abiotic stress limiting plant growth all over the world. Members of the bZIP family play an important role in regulating gene expression in response to many kinds of biotic and abiotic stress, including salt stress. According to the transcriptome data, 51 MdbZIP genes responding to saline-alkali stress were identified in apple genome, and their gene structures, conserved protein motifs, phylogenetic analysis, chromosome localization, and promoter cis-acting elements were analyzed. Based on transcriptome data analysis, a MdbZIP family gene (MD15G1081800), which was highly expressed under stress, was selected to isolate and named as MhABF. Expression profile analysis by quantitative real-time PCR confirmed that the expression of MhABF in the leaves of Malus halliana was 10.6-fold higher than that of the control (0 days) after 2 days of stress. Then an MhABF gene was isolated from apple rootstock M. halliana. CaMV35S promoter drived MhABF gene expression vector was constructed to infect Arabidopsis with Agrobacterium-mediated infection. And overexpression MhABF gene plants were obtained. Compared with wild type, transgenic plants grew better under saline-alkali stress and the MhABF-OE lines showed higher chlorophyll content, POD, SOD and CAT activity, which indicated that they had strong resistance to stress. These results indicate that MhABF plays an important role in plant resistance to saline-alkali stress, which lays a foundation for further study on the functions in apple.
Collapse
Affiliation(s)
- Shuangcheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Rui Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Zhongxing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Ting Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - De Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Svetla Sofkova
- Institute of Agriculture and Environment, Massey University, Palmerston North, 4442, New Zealand
| | - Yuxia Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
178
|
Li Z, Jiao Y, Zhang C, Dou M, Weng K, Wang Y, Xu Y. VvHDZ28 positively regulate salicylic acid biosynthesis during seed abortion in Thompson Seedless. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1824-1838. [PMID: 33835678 PMCID: PMC8428834 DOI: 10.1111/pbi.13596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/28/2021] [Indexed: 06/10/2023]
Abstract
Seedlessness in grapes is one of the features most appreciated by consumers. However, the mechanisms underlying seedlessness in grapes remain obscure. Here, we observe small globular embryos and globular embryos in Pinot Noir and Thompson Seedless from 20 to 30 days after flowering (DAF). From 40 to 50 DAF, we observe torpedo embryos and cotyledon embryos in Pinot Noir but aborted embryos and endosperm in Thompson Seedless. Thus, RNA-Seq analyses of seeds at these stages from Thompson Seedless and Pinot Noir were performed. A total of 6442 differentially expressed genes were identified. Among these, genes involved in SA biosynthesis, VvEDS1 and VvSARD1, were more highly expressed in Thompson Seedless than in Pinot Noir. Moreover, the content of endogenous SA is at least five times higher in Thompson Seedless than in Pinot Noir. Increased trimethylation of H3K27 of VvEDS1 and VvSARD1 may be correlated with lower SA content in Pinot Noir. We also demonstrate that VvHDZ28 positively regulates the expression of VvEDS1. Moreover, over-expression of VvHDZ28 results in seedless fruit and increased SA contents in Solanum lycopersicum. Our results reveal the potential role of SA and feedback regulation of VvHDZ28 in seedless grapes.
Collapse
Affiliation(s)
- Zhiqian Li
- College of HorticultureNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A&F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureYanglingChina
| | - Yuntong Jiao
- College of HorticultureNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A&F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureYanglingChina
| | - Chen Zhang
- College of HorticultureNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A&F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureYanglingChina
| | - Mengru Dou
- College of HorticultureNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A&F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureYanglingChina
| | - Kai Weng
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A&F UniversityYanglingChina
- College of life scienceNorthwest A&F UniversityYanglingChina
| | - Yuejin Wang
- College of HorticultureNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A&F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureYanglingChina
| | - Yan Xu
- College of HorticultureNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A&F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureYanglingChina
| |
Collapse
|
179
|
Li X, Zhong M, Qu L, Yang J, Liu X, Zhao Q, Liu X, Zhao X. AtMYB32 regulates the ABA response by targeting ABI3, ABI4 and ABI5 and the drought response by targeting CBF4 in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110983. [PMID: 34315599 DOI: 10.1016/j.plantsci.2021.110983] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/11/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
The Arabidopsis thaliana R2R3-MYB transcription factor AtMYB32 and its homologs AtMYB4 and AtMYB7 play crucial roles in the regulation of phenylpropanoid metabolism. In addition, AtMYB4 and AtMYB7 are involved in the response to abiotic stress. However, the function of AtMYB32 remains unclear. In this study, we found that AtMYB32 is induced by abscisic acid (ABA) and repressed by drought stress. AtMYB32 positively regulates ABA-mediated seed germination and early seedling development. The expression of ABSCISIC ACID-INSENSITIVE 3 (ABI3), ABI4 and ABI5, which encode key positive regulators of ABA signaling, was upregulated in response to ABA in AtMYB32-overexpressing plants and downregulated in the atmyb32-1 mutant. In addition, we found that the atmyb32-1 mutant was drought resistant. Consistent with the drought-resistant phenotype, the transcript levels of C-repeat binding factor 4 (CBF4) were higher in the atmyb32-1 mutant in response to drought stress. Electrophoretic mobility shift assays (EMSAs) and chromatin immunoprecipitation (ChIP) assays revealed that AtMYB32 binds directly to the ABI3, ABI4, ABI5 and CBF4 promoters both in vitro and in vivo. Genetically, ABI4 was found to be epistatic to AtMYB32 for ABA-induced inhibition of seed germination and early seedling development. Taken together, our findings revealed that AtMYB32 regulates the ABA response by directly promoting ABI3, ABI4 and ABI5 expression and that the drought stress response likely occurs because of repression of CBF4 expression.
Collapse
Affiliation(s)
- Xinmei Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China; Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Ming Zhong
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China; Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Lina Qu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China; Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Jiaxin Yang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China; Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Xueqing Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China
| | - Qiang Zhao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China
| | - Xuanming Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China.
| | - Xiaoying Zhao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China; Shenzhen Institute, Hunan University, Shenzhen, 518057, China.
| |
Collapse
|
180
|
Malovichko YV, Shikov AE, Nizhnikov AA, Antonets KS. Temporal Control of Seed Development in Dicots: Molecular Bases, Ecological Impact and Possible Evolutionary Ramifications. Int J Mol Sci 2021; 22:ijms22179252. [PMID: 34502157 PMCID: PMC8430901 DOI: 10.3390/ijms22179252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
In flowering plants, seeds serve as organs of both propagation and dispersal. The developing seed passes through several consecutive stages, following a conserved general outline. The overall time needed for a seed to develop, however, may vary both within and between plant species, and these temporal developmental properties remain poorly understood. In the present paper, we summarize the existing data for seed development alterations in dicot plants. For genetic mutations, the reported cases were grouped in respect of the key processes distorted in the mutant specimens. Similar phenotypes arising from the environmental influence, either biotic or abiotic, were also considered. Based on these data, we suggest several general trends of timing alterations and how respective mechanisms might add to the ecological plasticity of the families considered. We also propose that the developmental timing alterations may be perceived as an evolutionary substrate for heterochronic events. Given the current lack of plausible models describing timing control in plant seeds, the presented suggestions might provide certain insights for future studies in this field.
Collapse
Affiliation(s)
- Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
181
|
Whole-Genome Duplication and Purifying Selection Contributes to the Functional Redundancy of Auxin Response Factor ( ARF) Genes in Foxtail Millet ( Setaria italica L.). Int J Genomics 2021; 2021:2590665. [PMID: 34414231 PMCID: PMC8369178 DOI: 10.1155/2021/2590665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
Auxin response factors (ARFs) play crucial roles in auxin-mediated response, whereas molecular genetics of ARF genes was seldom investigated in Setaria italica, an important crop and C4 model plant. In the present study, genome-wide evolutionary analysis of ARFs was performed in S. italica. Twenty-four SiARF genes were identified and unevenly distributed on eight of the nine chromosomes in S. italica. Duplication mode exploration implied that 13 SiARF proteins were originated from whole-genome duplication and suffered purifying selection. Phylogeny reconstruction of SiARFs by maximum likelihood and neighbor-joining trees revealed SiARFs could be divided into four clades. SiARFs clustered within the same clade shared similar gene structure and protein domain composition, implying functional redundancy. Moreover, amino acid composition of the middle regions was conserved in SiARFs belonged to the same clade. SiARFs were categorized into either activators or repressors according to the enrichment of specific amino acids. Intrinsic disorder was featured in the middle regions of ARF activators. Finally, expression profiles of SiARFs under hormone and abiotic stress treatment not only revealed their potential function in stress response but also indicate their functional redundancy. Overall, our results provide insights into evolutionary aspects of SiARFs and benefit for further functional characterization.
Collapse
|
182
|
Beyond the Usual Suspects: Physiological Roles of the Arabidopsis Amidase Signature (AS) Superfamily Members in Plant Growth Processes and Stress Responses. Biomolecules 2021; 11:biom11081207. [PMID: 34439873 PMCID: PMC8393822 DOI: 10.3390/biom11081207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
The diversification of land plants largely relies on their ability to cope with constant environmental fluctuations, which negatively impact their reproductive fitness and trigger adaptive responses to biotic and abiotic stresses. In this limiting landscape, cumulative research attention has centred on deepening the roles of major phytohormones, mostly auxins, together with brassinosteroids, jasmonates, and abscisic acid, despite the signaling networks orchestrating the crosstalk among them are so far only poorly understood. Accordingly, this review focuses on the Arabidopsis Amidase Signature (AS) superfamily members, with the aim of highlighting the hitherto relatively underappreciated functions of AMIDASE1 (AMI1) and FATTY ACID AMIDE HYDROLASE (FAAH), as comparable coordinators of the growth-defense trade-off, by balancing auxin and ABA homeostasis through the conversion of their likely bioactive substrates, indole-3-acetamide and N-acylethanolamine.
Collapse
|
183
|
Huang S, Hu L, Zhang S, Zhang M, Jiang W, Wu T, Du X. Rice OsWRKY50 Mediates ABA-Dependent Seed Germination and Seedling Growth, and ABA-Independent Salt Stress Tolerance. Int J Mol Sci 2021; 22:ijms22168625. [PMID: 34445331 PMCID: PMC8395310 DOI: 10.3390/ijms22168625] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
Plant WRKY transcription factors play crucial roles in plant growth and development, as well as plant responses to biotic and abiotic stresses. In this study, we identified and characterized a WRKY transcription factor in rice, OsWRKY50. OsWRKY50 functions as a transcriptional repressor in the nucleus. The transcription of OsWRKY50 was repressed under salt stress conditions, but activated after abscisic acid (ABA) treatment. OsWRKY50-overexpression (OsWRKY50-OX) plants displayed increased tolerance to salt stress compared to wild type and control plants. The expression of OsLEA3, OsRAB21, OsHKT1;5, and OsP5CS1 in OsWRKY50-OX were much higher than wild type and control plants under salt stress. Furthermore, OsWRKY50-OX displayed hyposensitivity to ABA-regulated seed germination and seedling establishment. The protoplast-based transient expression system and yeast hybrid assay demonstrated that OsWRKY50 directly binds to the promoter of OsNCED5, and thus further inhibits its transcription. Taken together, our results demonstrate that rice transcription repressor OsWRKY50 mediates ABA-dependent seed germination and seedling growth and enhances salt stress tolerance via an ABA-independent pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Wu
- Correspondence: (T.W.); (X.D.)
| | | |
Collapse
|
184
|
Mehdi SMM, Krishnamoorthy S, Szczesniak MW, Ludwików A. Identification of Novel miRNAs and Their Target Genes in the Response to Abscisic Acid in Arabidopsis. Int J Mol Sci 2021; 22:7153. [PMID: 34281207 PMCID: PMC8268864 DOI: 10.3390/ijms22137153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
miRNAs are involved in various biological processes, including adaptive responses to abiotic stress. To understand the role of miRNAs in the response to ABA, ABA-responsive miRNAs were identified by small RNA sequencing in wild-type Arabidopsis, as well as in abi1td, mkkk17, and mkkk18 mutants. We identified 10 novel miRNAs in WT after ABA treatment, while in abi1td, mkkk17, and mkkk18 mutants, three, seven, and nine known miRNAs, respectively, were differentially expressed after ABA treatment. One novel miRNA (miRn-8) was differentially expressed in the mkkk17 mutant. Potential target genes of the miRNA panel were identified using psRNATarget. Sequencing results were validated by quantitative RT-PCR of several known and novel miRNAs in all genotypes. Of the predicted targets of novel miRNAs, seven target genes of six novel miRNAs were further validated by 5' RLM-RACE. Gene ontology analyses showed the potential target genes of ABA-responsive known and novel miRNAs to be involved in diverse cellular processes in plants, including development and stomatal movement. These outcomes suggest that a number of the identified miRNAs have crucial roles in plant responses to environmental stress, as well as in plant development, and might have common regulatory roles in the core ABA signaling pathway.
Collapse
Affiliation(s)
- Syed Muhammad Muntazir Mehdi
- Laboratory of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (S.M.M.M.); (S.K.)
| | - Sivakumar Krishnamoorthy
- Laboratory of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (S.M.M.M.); (S.K.)
| | - Michal Wojciech Szczesniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland;
| | - Agnieszka Ludwików
- Laboratory of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (S.M.M.M.); (S.K.)
| |
Collapse
|
185
|
Hao Y, Zong X, Ren P, Qian Y, Fu A. Basic Helix-Loop-Helix (bHLH) Transcription Factors Regulate a Wide Range of Functions in Arabidopsis. Int J Mol Sci 2021; 22:ijms22137152. [PMID: 34281206 PMCID: PMC8267941 DOI: 10.3390/ijms22137152] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/30/2023] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor family is one of the largest transcription factor gene families in Arabidopsis thaliana, and contains a bHLH motif that is highly conserved throughout eukaryotic organisms. Members of this family have two conserved motifs, a basic DNA binding region and a helix-loop-helix (HLH) region. These proteins containing bHLH domain usually act as homo- or heterodimers to regulate the expression of their target genes, which are involved in many physiological processes and have a broad range of functions in biosynthesis, metabolism and transduction of plant hormones. Although there are a number of articles on different aspects to provide detailed information on this family in plants, an overall summary is not available. In this review, we summarize various aspects of related studies that provide an overview of insights into the pleiotropic regulatory roles of these transcription factors in plant growth and development, stress response, biochemical functions and the web of signaling networks. We then provide an overview of the functional profile of the bHLH family and the regulatory mechanisms of other proteins.
Collapse
|
186
|
Ajayi OO, Held MA, Showalter AM. Three β-Glucuronosyltransferase Genes Involved in Arabinogalactan Biosynthesis Function in Arabidopsis Growth and Development. PLANTS 2021; 10:plants10061172. [PMID: 34207602 PMCID: PMC8227792 DOI: 10.3390/plants10061172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/21/2022]
Abstract
Arabinogalactan proteins (AGPs) contain arabinogalactan (AG) polysaccharides that are biologically relevant to plant growth processes. Here, the biochemical and physiological roles of three Golgi localized β-glucuronosyltransferase genes (GLCAT14A, GLCAT14B and GLCAT14C) in Arabidopsis thaliana, responsible for the addition of glucuronic acid to AG chains, were further investigated using single, double and triple glcat14 mutant plants. These proteins were localized to the Golgi apparatus when transiently expressed in Nicotiana benthamiana. Sugar analysis of AGP extracts from Arabidopsis stem, leaf and siliques showed a consistent reduction in glucuronic acid in glcat14 mutants relative to wild type, with concomitant effects resulting in tissue-specific alterations, especially in arabinose and galactose sugars. Although we observed defects in trichome branching in glca14a/b and glca14a/b/c mutants, scanning electron microscope analysis/energy dispersive microanalysis (SEM/EDX) showed no difference in the calcium content of trichomes in these mutants relative to wild type. Immunoblot analyses of the stem and leaf showed a reduction in AGPs as detected with the LM2 antibody in glcat14a/b and glcat14a/b/c mutants relative to wild type. The current work exemplifies the possibility of conducting structure-function assessment of cell wall biosynthetic genes to identify their physiological roles in plant growth and development.
Collapse
Affiliation(s)
- Oyeyemi O. Ajayi
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA;
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA;
| | - Michael A. Held
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA;
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | - Allan M. Showalter
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA;
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA;
- Correspondence:
| |
Collapse
|
187
|
Transcriptome and metabolome analyses revealing the potential mechanism of seed germination in Polygonatum cyrtonema. Sci Rep 2021; 11:12161. [PMID: 34108536 PMCID: PMC8190097 DOI: 10.1038/s41598-021-91598-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/27/2021] [Indexed: 12/02/2022] Open
Abstract
Polygonatum cyrtonema Hua (Huangjing, HJ) has medicinal and edible value in China. However, the seeds of this plant are naturally difficult to germinate. Therefore, to elucidate the mechanism underlying the germination of this plant in order to meet the market demand, the metabolomic and transcriptomic analyses were performed in this study. We observed that plant hormones and α-amylase activity were differentially regulated when comparing germinated and un-germinated seeds. In addition, the metabolites related to phenylpropanoid and flavonoid biosynthesis were significantly up-accumulated in germinated seeds. Hydroxycinnamoyl derivatives and organic acids were observed to be significantly decreased during germination. The results of this study suggested that compared to un-germinated seeds, germinated seeds promote flavonoid synthesis and inhibit lignin synthesis which could be beneficial to the germination of HJ seeds. Furthermore, these results suggested that starch if hydrolyzed into glucose, which could provide the necessary energy for germination. Our results may help to establish a foundation for further research investigating the regulatory networks of seed germination and may facilitate the propagation of HJ seeds.
Collapse
|
188
|
Jin M, Jiao J, Zhao Q, Ban Q, Gao M, Suo J, Zhu Q, Rao J. Dose effect of exogenous abscisic acid on controlling lignification of postharvest kiwifruit (Actinidia chinensis cv. hongyang). Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
189
|
Shin K, Paudyal DP, Lee SC, Hyun JW. Different Phytohormonal Responses on Satsuma Mandarin (Citrus unshiu) Leaves Infected with Host-Compatible or Host-Incompatible Elsinoë fawcettii. THE PLANT PATHOLOGY JOURNAL 2021; 37:268-279. [PMID: 34111916 PMCID: PMC8200574 DOI: 10.5423/ppj.oa.12.2020.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Citrus scab, caused by the fungal pathogen Elsinoë fawcettii, is one of the most important fungal diseases affecting Citrus spp. Citrus scab affects young tissues, including the leaves, twigs, and fruits, and produces severe fruit blemishes that reduce the market value of fresh fruits. To study the molecular responses of satsuma mandarin (C. unshiu) to E. fawcettii, plant hormone-related gene expression was analyzed in response to host-compatible (SM16-1) and host-incompatible (DAR70024) isolates. In the early phase of infection by E. fawcettii, jasmonic acid- and salicylic acid-related gene expression was induced in response to infection with the compatible isolate. However, as symptoms advanced during the late phase of the infection, the jasmonic acid- and salicylic acid-related gene expression was downregulated. The gene expression patterns were compared between compatible and incompatible interactions. As scabs were accompanied by altered tissue growth surrounding the infection site, we conducted gibberellic acid- and abscisic acid-related gene expression analysis and assessed the content of these acids during scab symptom development. Our results showed that gibberellic and abscisic acid-related gene expression and hormonal changes were reduced and induced in response to the infection, respectively. Accordingly, we propose that jasmonic and salicylic acids play a role in the early response to citrus scab, whereas gibberellic and abscisic acids participate in symptom development.
Collapse
Affiliation(s)
- Kihye Shin
- Citrus Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeju 63607, Korea
| | - Dilli Prasad Paudyal
- Citrus Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeju 63607, Korea
- Current address: miniPCR, Amplyus LLC, Arlington, MA 02474, USA
| | - Seong Chan Lee
- Citrus Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeju 63607, Korea
| | - Jae Wook Hyun
- Citrus Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeju 63607, Korea
| |
Collapse
|
190
|
Madadzadeh M, Abbasnejad M, Mollashahi M, Pourrahimi AM, Esmaeili-Mahani S. Phytohormone abscisic acid boosts pentobarbital-induced sleep through activation of GABA-A, PPARβ and PPARγ receptor signaling. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:216-221. [PMID: 33886795 DOI: 10.1590/0004-282x-anp-2019-0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 07/22/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Sleep disorders induce anxiety and forgetfulness and change habits. The chemical hypnotic drugs currently used have serious side effects and, therefore, people are drawn towards using natural compounds such as plant-based healing agents. Abscisic acid (ABA) is produced in a variety of mammalian tissues and it is involved in many neurophysiological functions. OBJECTIVE To investigate the possible effect of ABA on pentobarbital-induced sleep and its possible signaling through GABA-A and PPAR (γ and β) receptors, in male Wistar rats. METHODS The possible effect of ABA (5 and 10 µg/rat, intracerebroventricularly) on sleep onset latency time and duration was evaluated in a V-maze model of sleep. Pentobarbital sodium (40 mg/kg, intraperitoneally) was injected to induce sleep 30 min after administration of ABA. PPARβ (GSK0660, 80 nM/rat), PPARγ (GW9662, 3 nM/rat) or GABA-A receptor (bicuculline, 6 µg/rat) antagonists were given 15 min before ABA injection. Diazepam (2 mg/kg, intraperitoneally) was used as a positive control group. RESULTS ABA at 5 µg significantly boosted the pentobarbital-induced subhypnotic effects and promoted induction of sleep onset in a manner comparable to diazepam treatment. Furthermore, pretreatment with bicuculline significantly abolished the ABA effects on sleep parameters, while the amplifying effects of ABA on the induction of sleep onset was not significantly affected by PPARβ or PPARγ antagonists. The sleep prolonging effect of ABA was significantly prevented by both PPAR antagonists. CONCLUSIONS The data showed that ABA boosts pentobarbital-induced sleep and that GABA-A, PPARβ and PPARγ receptors are, at least in part, involved in ABA signaling.
Collapse
Affiliation(s)
- Mohammad Madadzadeh
- Shahid Bahonar University of Kerman, Faculty of Sciences, Department of Biology, Kerman, Iran
| | - Mehdi Abbasnejad
- Shahid Bahonar University of Kerman, Faculty of Sciences, Department of Biology, Kerman, Iran
| | - Mahtab Mollashahi
- Shahid Bahonar University of Kerman, Faculty of Sciences, Department of Biology, Kerman, Iran
| | - Ali Mohammad Pourrahimi
- Kerman University of Medical Sciences, Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Shahid Bahonar University of Kerman, Faculty of Sciences, Department of Biology, Kerman, Iran
| |
Collapse
|
191
|
Nabi RBS, Tayade R, Hussain A, Adhikari A, Lee IJ, Loake GJ, Yun BW. A Novel DUF569 Gene Is a Positive Regulator of the Drought Stress Response in Arabidopsis. Int J Mol Sci 2021; 22:ijms22105316. [PMID: 34070080 PMCID: PMC8158135 DOI: 10.3390/ijms22105316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022] Open
Abstract
In the last two decades, global environmental change has increased abiotic stress on plants and severely affected crops. For example, drought stress is a serious abiotic stress that rapidly and substantially alters the morphological, physiological, and molecular responses of plants. In Arabidopsis, several drought-responsive genes have been identified; however, the underlying molecular mechanism of drought tolerance in plants remains largely unclear. Here, we report that the “domain of unknown function” novel gene DUF569 (AT1G69890) positively regulates drought stress in Arabidopsis. The Arabidopsis loss-of-function mutant atduf569 showed significant sensitivity to drought stress, i.e., severe wilting at the rosette-leaf stage after water was withheld for 3 days. Importantly, the mutant plant did not recover after rewatering, unlike wild-type (WT) plants. In addition, atduf569 plants showed significantly lower abscisic acid accumulation under optimal and drought-stress conditions, as well as significantly higher electrolyte leakage when compared with WT Col-0 plants. Spectrophotometric analyses also indicated a significantly lower accumulation of polyphenols, flavonoids, carotenoids, and chlorophylls in atduf569 mutant plants. Overall, our results suggest that novel DUF569 is a positive regulator of the response to drought in Arabidopsis.
Collapse
Affiliation(s)
- Rizwana Begum Syed Nabi
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (R.B.S.N.); (R.T.); (A.A.); (I.-J.L.)
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Korea
| | - Rupesh Tayade
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (R.B.S.N.); (R.T.); (A.A.); (I.-J.L.)
| | - Adil Hussain
- Department of Agriculture, Abdul Wali Khan University, Mardan 230200, Pakistan;
| | - Arjun Adhikari
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (R.B.S.N.); (R.T.); (A.A.); (I.-J.L.)
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (R.B.S.N.); (R.T.); (A.A.); (I.-J.L.)
| | - Gary J. Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh EH9 3JH, UK
- Correspondence: (G.J.L.); (B.-W.Y.)
| | - Byung-Wook Yun
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (R.B.S.N.); (R.T.); (A.A.); (I.-J.L.)
- Correspondence: (G.J.L.); (B.-W.Y.)
| |
Collapse
|
192
|
Gao Z, Gao S, Li P, Zhang Y, Ma B, Wang Y. Exogenous methyl jasmonate promotes salt stress-induced growth inhibition and prioritizes defense response of Nitraria tangutorum Bobr. PHYSIOLOGIA PLANTARUM 2021; 172:162-175. [PMID: 33314279 DOI: 10.1111/ppl.13314] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 05/04/2023]
Abstract
Jasmonates (JAs) play a key role in the regulation of growth and the defense response to environmental stresses. JAs inhibit plant growth and promote defense response. However, their roles in desert halophyte in the response to salt stress remain poorly understood. The effects of the combination of methyl jasmonate (MeJA) and NaCl treatment (the "MeN" condition) on the growth regulation and defense response of Nitraria tangutorum seedlings were investigated. Compared with NaCl treatment alone, exogenous MeJA aggravated the growth inhibition of seedlings by antagonizing to growth-related hormones and suppressing the transcript levels of these hormones-responsive genes, including gibberellin (GA)-responsive NtPIF3, NtGAST1, NtGSAT4, and cytokinin (CYT)-responsive NtARR1, NtARR11, NtARR12. Meanwhile, exogenous MeJA enhanced defense response and alleviated the stress damage by increasing antioxidase activity and antioxidant content, accumulating more osmolytes, maintaining lower Na+ /K+ ratios in shoots and higher Na+ efflux rates in roots of plants. In addition, exogenous MeJA increased the contents of endogenous JA and ABA, and the transcript levels of genes involved in their biosynthesis and responsiveness, thereby further regulating the transcript levels of defense response genes. These findings suggest that exogenous MeJA increases salt stress-induced growth inhibition and prioritizes the defensive responses (e.g. antioxidant defense, osmotic adjustment, and ion homeostasis) of N. tangutorum. These effects may be related to the amplification of jasmonic acid (JA) and abscisic acid (ABA) signals.
Collapse
Affiliation(s)
- Ziqi Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Shuai Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Pengxuan Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Yan Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Binjie Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Yingchun Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| |
Collapse
|
193
|
Wang T, Dong Q, Wang W, Chen S, Cheng Y, Tian H, Li X, Hussain S, Wang L, Gong L, Wang S. Evolution of AITR family genes in cotton and their functions in abiotic stress tolerance. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:58-68. [PMID: 33202099 DOI: 10.1111/plb.13218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/11/2020] [Indexed: 05/18/2023]
Abstract
Abiotic stresses are major environmental factors inhibiting plant growth and development. AITRs (ABA-induced transcription repressors) are a novel family of transcription factors regulating ABA (abscisic acid) signalling and plant responses to abiotic stresses in Arabidopsis. However, the composition and evolution history of AITRs and their roles in the cotton genus are largely unknown. A total of 12 putative AITRs genes were identified in cultivated tetraploid cotton, Gossypium hirsutum. Phylogenetic analysis of GhAITRs in these tetraploid cottons and their closely related species implicate ancient genome-wide duplication occurring after speciation of Gossypium, and Theobroma could generate duplicates of GhAITRs. Duplicated GhAITRs were stably inherited following diploid speciation and further allotetraploidy in Gossypium. Homologous GhAITRs shared common expression patterns in response to ABA, drought and salinity treatments, and drought tolerance induced in transgenic Arabidopsis plants expressing GhAITR-A1. Together, our findings reveal that duplicates in the GhAITRs gene family were achieved by whole genome duplication rather than three individual duplication events, and that GhAITRs function as transcription repressors and are involved in the regulation of plant responses to ABA and drought stress. These results provide insights towards the improvement of abiotic stress tolerance in cotton using GhAITRs.
Collapse
Affiliation(s)
- T Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Q Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - W Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - S Chen
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Y Cheng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - H Tian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - X Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - S Hussain
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - L Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China
| | - L Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - S Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China
| |
Collapse
|
194
|
Kaur H, Ozga JA, Reinecke DM. Balancing of hormonal biosynthesis and catabolism pathways, a strategy to ameliorate the negative effects of heat stress on reproductive growth. PLANT, CELL & ENVIRONMENT 2021; 44:1486-1503. [PMID: 32515497 DOI: 10.1111/pce.13820] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/29/2020] [Indexed: 05/08/2023]
Abstract
In pea (Pisum sativum L.), moderate heat stress during early flowering/fruit set increased seed/ovule abortion, and concomitantly produced fruits with reduced ovary (pericarp) length, and fewer seeds at maturity. Plant hormonal networks coordinate seed and pericarp growth and development. To determine if these hormonal networks are modulated in response to heat stress, we analyzed the gene expression patterns and associated these patterns with precursors, and bioactive and inactive metabolites of the auxin, gibberellin (GA), abscisic acid (ABA), and ethylene biosynthesis/catabolism pathways in young developing seeds and pericarps of non-stressed and 4-day heat-stressed fruits. Our data suggest that within the developing seeds heat stress decreased bioactive GA levels reducing GA growth-related processes, and that increased ethylene levels may have promoted this inhibitory response. In contrast, heat stress increased auxin biosynthesis gene expression and auxin levels in the seeds and pericarps, and seed ABA levels, both effects can increase seed sink strength. We hypothesize that seeds with higher auxin- and ABA-induced sink strength and adequate bioactive GA levels will set and continue to grow, while the seeds with lower sink strength (low auxin, ABA, and GA levels) will become more sensitive to heat stress-induced ethylene leading to ovule/seed abortion.
Collapse
Affiliation(s)
- Harleen Kaur
- Plant BioSystems, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jocelyn A Ozga
- Plant BioSystems, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Dennis M Reinecke
- Plant BioSystems, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
195
|
Kim M, Jeong S, Lim CW, Lee SC. Mitogen-Activated Protein Kinase CaDIMK1 Functions as a Positive Regulator of Drought Stress Response and Abscisic Acid Signaling in Capsicum annuum. FRONTIERS IN PLANT SCIENCE 2021; 12:646707. [PMID: 33995446 PMCID: PMC8116957 DOI: 10.3389/fpls.2021.646707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Protein phosphorylation by kinase is an important mechanism for adapting to drought stress conditions. Here, we isolated the CaDIMK1 (Capsicum annuum drought-induced MAP kinase 1) from dehydrated pepper leaf tissue and functionally characterized it. Subcellular localization analysis revealed that the CaDIMK1 protein was localized in the cytoplasm and nucleus. CaDIMK1-silenced pepper plants exhibited drought-susceptible phenotypes that were characterized by increased transpiration rates, low leaf temperatures, and decreased stomatal closure. In contrast, CaDIMK1-overexpressing (OX) transgenic Arabidopsis plants were hypersensitive to abscisic acid (ABA) from germination to adult growth stages. Furthermore, the CaDIMK1-OX plants were tolerant to drought stress. The transcript levels of several stress-related genes were high in CaDIMK1-OX plants than in wild-type plants. Taken together, our data demonstrate that CaDIMK1 acts as a positive modulator of drought tolerance and ABA signal transduction in pepper plants.
Collapse
|
196
|
Global Analysis of RNA-Dependent RNA Polymerase-Dependent Small RNAs Reveals New Substrates and Functions for These Proteins and SGS3 in Arabidopsis. Noncoding RNA 2021; 7:ncrna7020028. [PMID: 33925339 PMCID: PMC8167712 DOI: 10.3390/ncrna7020028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
RNA silencing pathways control eukaryotic gene expression transcriptionally or posttranscriptionally in a sequence-specific manner. In RNA silencing, the production of double-stranded RNA (dsRNA) gives rise to various classes of 20-24 nucleotide (nt) small RNAs (smRNAs). In Arabidopsis thaliana, smRNAs are often derived from long dsRNA molecules synthesized by one of the six genomically encoded RNA-dependent RNA Polymerase (RDR) proteins. However, the full complement of the RDR-dependent smRNAs and functions that these proteins and their RNA-binding cofactors play in plant RNA silencing has not been fully uncovered. To address this gap, we performed a global genomic analysis of all six RDRs and two of their cofactors to find new substrates for RDRs and targets of the resulting RDR-derived siRNAs to uncover new functions for these proteins in plants. Based on these analyses, we identified substrates for the three RDRγ clade proteins (RDR3-5), which had not been well-characterized previously. We also identified new substrates for the other three RDRs (RDR1, RDR2, and RDR6) as well as the RDR2 cofactor RNA-directed DNA methylation 12 (RDM12) and the RDR6 cofactor suppressor of gene silencing 3 (SGS3). These findings revealed that the target substrates of SGS3 are not limited to those solely utilized by RDR6, but that this protein seems to be a more general cofactor for the RDR family of proteins. Additionally, we found that RDR6 and SGS3 are involved in the production of smRNAs that target transcripts related to abiotic stresses, including water deprivation, salt stress, and ABA response, and as expected the levels of these mRNAs are increased in rdr6 and sgs3 mutant plants. Correspondingly, plants that lack these proteins (rdr6 and sgs3 mutants) are hypersensitive to ABA treatment, tolerant to high levels of PEG8000, and have a higher survival rate under salt treatment in comparison to wild-type plants. In total, our analyses have provided an extremely data-rich resource for uncovering new functions of RDR-dependent RNA silencing in plants, while also revealing a previously unexplored link between the RDR6/SGS3-dependent pathway and plant abiotic stress responses.
Collapse
|
197
|
Chun HJ, Lim LH, Cheong MS, Baek D, Park MS, Cho HM, Lee SH, Jin BJ, No DH, Cha YJ, Lee YB, Hong JC, Yun DJ, Kim MC. Arabidopsis CCoAOMT1 Plays a Role in Drought Stress Response via ROS- and ABA-Dependent Manners. PLANTS 2021; 10:plants10050831. [PMID: 33919418 PMCID: PMC8143326 DOI: 10.3390/plants10050831] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022]
Abstract
Plants possess adaptive reprogramed modules to prolonged environmental stresses, including adjustment of metabolism and gene expression for physiological and morphological adaptation. CCoAOMT1 encodes a caffeoyl CoA O-methyltransferase and is known to play an important role in adaptation of Arabidopsis plants to prolonged saline stress. In this study, we showed that the CCoAOMT1 gene plays a role in drought stress response. Transcript of CCoAOMT1 was induced by salt, dehydration (drought), and methyl viologen (MV), and loss of function mutants of CCoAOMT1, ccoaomt1-1, and ccoaomt1-2 exhibit hypersensitive phenotypes to drought and MV stresses. The ccoaomt1 mutants accumulated higher level of H2O2 in the leaves and expressed lower levels of drought-responsive genes including RD29B, RD20, RD29A, and ERD1, as well as ABA3 3 and NCED3 encoding ABA biosynthesis enzymes during drought stress compared to wild-type plants. A seed germination assay of ccoaomt1 mutants in the presence of ABA also revealed that CCoAOMT1 functions in ABA response. Our data suggests that CCoAOMT1 plays a positive role in response to drought stress response by regulating H2O2 accumulation and ABA signaling.
Collapse
Affiliation(s)
- Hyun Jin Chun
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.J.C.); (M.S.C.); (Y.B.L.)
| | - Lack Hyeon Lim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (L.H.L.); (H.M.C.); (S.H.L.); (B.J.J.); (D.H.N.); (Y.J.C.)
| | - Mi Sun Cheong
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.J.C.); (M.S.C.); (Y.B.L.)
| | - Dongwon Baek
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (M.S.P.); (J.C.H.)
| | - Mi Suk Park
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (M.S.P.); (J.C.H.)
| | - Hyun Min Cho
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (L.H.L.); (H.M.C.); (S.H.L.); (B.J.J.); (D.H.N.); (Y.J.C.)
| | - Su Hyeon Lee
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (L.H.L.); (H.M.C.); (S.H.L.); (B.J.J.); (D.H.N.); (Y.J.C.)
| | - Byung Jun Jin
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (L.H.L.); (H.M.C.); (S.H.L.); (B.J.J.); (D.H.N.); (Y.J.C.)
| | - Dong Hyeon No
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (L.H.L.); (H.M.C.); (S.H.L.); (B.J.J.); (D.H.N.); (Y.J.C.)
| | - Ye Jin Cha
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (L.H.L.); (H.M.C.); (S.H.L.); (B.J.J.); (D.H.N.); (Y.J.C.)
| | - Yong Bok Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.J.C.); (M.S.C.); (Y.B.L.)
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (L.H.L.); (H.M.C.); (S.H.L.); (B.J.J.); (D.H.N.); (Y.J.C.)
| | - Jong Chan Hong
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (M.S.P.); (J.C.H.)
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea;
| | - Min Chul Kim
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.J.C.); (M.S.C.); (Y.B.L.)
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (L.H.L.); (H.M.C.); (S.H.L.); (B.J.J.); (D.H.N.); (Y.J.C.)
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (M.S.P.); (J.C.H.)
- Correspondence: ; Tel.: +82-55-772-1874
| |
Collapse
|
198
|
Gasulla F, del Campo EM, Casano LM, Guéra A. Advances in Understanding of Desiccation Tolerance of Lichens and Lichen-Forming Algae. PLANTS (BASEL, SWITZERLAND) 2021; 10:807. [PMID: 33923980 PMCID: PMC8073698 DOI: 10.3390/plants10040807] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022]
Abstract
Lichens are symbiotic associations (holobionts) established between fungi (mycobionts) and certain groups of cyanobacteria or unicellular green algae (photobionts). This symbiotic association has been essential in the colonization of terrestrial dry habitats. Lichens possess key mechanisms involved in desiccation tolerance (DT) that are constitutively present such as high amounts of polyols, LEA proteins, HSPs, a powerful antioxidant system, thylakoidal oligogalactolipids, etc. This strategy allows them to be always ready to survive drastic changes in their water content. However, several studies indicate that at least some protective mechanisms require a minimal time to be induced, such as the induction of the antioxidant system, the activation of non-photochemical quenching including the de-epoxidation of violaxanthin to zeaxanthin, lipid membrane remodeling, changes in the proportions of polyols, ultrastructural changes, marked polysaccharide remodeling of the cell wall, etc. Although DT in lichens is achieved mainly through constitutive mechanisms, the induction of protection mechanisms might allow them to face desiccation stress in a better condition. The proportion and relevance of constitutive and inducible DT mechanisms seem to be related to the ecology at which lichens are adapted to.
Collapse
Affiliation(s)
- Francisco Gasulla
- Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, 28802 Madrid, Spain; (E.M.d.C.); (L.M.C.)
| | | | | | - Alfredo Guéra
- Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, 28802 Madrid, Spain; (E.M.d.C.); (L.M.C.)
| |
Collapse
|
199
|
Layat E, Bourcy M, Cotterell S, Zdzieszyńska J, Desset S, Duc C, Tatout C, Bailly C, Probst AV. The Histone Chaperone HIRA Is a Positive Regulator of Seed Germination. Int J Mol Sci 2021; 22:ijms22084031. [PMID: 33919775 PMCID: PMC8070706 DOI: 10.3390/ijms22084031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022] Open
Abstract
Histone chaperones regulate the flow and dynamics of histone variants and ensure their assembly into nucleosomal structures, thereby contributing to the repertoire of histone variants in specialized cells or tissues. To date, not much is known on the distribution of histone variants and their modifications in the dry seed embryo. Here, we bring evidence that genes encoding the replacement histone variant H3.3 are expressed in Arabidopsis dry seeds and that embryo chromatin is characterized by a low H3.1/H3.3 ratio. Loss of HISTONE REGULATOR A (HIRA), a histone chaperone responsible for H3.3 deposition, reduces cellular H3 levels and increases chromatin accessibility in dry seeds. These molecular differences are accompanied by increased seed dormancy in hira-1 mutant seeds. The loss of HIRA negatively affects seed germination even in the absence of HISTONE MONOUBIQUITINATION 1 or TRANSCRIPTION ELONGATION FACTOR II S, known to be required for seed dormancy. Finally, hira-1 mutant seeds show lower germination efficiency when aged under controlled deterioration conditions or when facing unfavorable environmental conditions such as high salinity. Altogether, our results reveal a dependency of dry seed chromatin organization on the replication-independent histone deposition pathway and show that HIRA contributes to modulating seed dormancy and vigor.
Collapse
Affiliation(s)
- Elodie Layat
- IBPS, UMR 7622 Biologie du Développement, CNRS, Sorbonne Université, 75005 Paris, France; (E.L.); (M.B.); (C.B.)
| | - Marie Bourcy
- IBPS, UMR 7622 Biologie du Développement, CNRS, Sorbonne Université, 75005 Paris, France; (E.L.); (M.B.); (C.B.)
| | - Sylviane Cotterell
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (S.C.); (S.D.); (C.T.)
| | - Julia Zdzieszyńska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences–SGGW, 02-776 Warsaw, Poland;
| | - Sophie Desset
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (S.C.); (S.D.); (C.T.)
| | - Céline Duc
- UFIP UMR-CNRS 6286, Épigénétique et Dynamique de la Chromatine, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France;
| | - Christophe Tatout
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (S.C.); (S.D.); (C.T.)
| | - Christophe Bailly
- IBPS, UMR 7622 Biologie du Développement, CNRS, Sorbonne Université, 75005 Paris, France; (E.L.); (M.B.); (C.B.)
| | - Aline V. Probst
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (S.C.); (S.D.); (C.T.)
- Correspondence:
| |
Collapse
|
200
|
Zhou XR, Dai L, Xu GF, Wang HS. A strain of Phoma species improves drought tolerance of Pinus tabulaeformis. Sci Rep 2021; 11:7637. [PMID: 33828138 PMCID: PMC8027514 DOI: 10.1038/s41598-021-87105-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/15/2021] [Indexed: 02/01/2023] Open
Abstract
Global warming has led to frequent droughts, posing challenges for afforestation in arid and semiarid regions. In search of labor-saving and money-saving methods to improve the survival and growth rates of trees in these regions, we isolated and identified fungal endophytes that can potentially enhance the drought-resistance abilities of seedlings. We isolated 93 endophytic strains from the roots of Pinus tabulaeformis trees grown on an arid cliff. Three isolates increased the drought resistance of the tree seedlings. Using morphological, molecular, and physiological-biochemical methods, we identified three isolates as different clones of a strain of Phoma spp. and studied the strain's effect on stress resistance-related substances in the seedlings. The results showed that the strain improved drought tolerance and increased the seedlings' proline levels and antioxidant enzyme activities. The strain also secreted abundant extracellular abscisic acid, which likely triggered the seedlings' protective mechanisms. This endophytic strain may provide a cheaper labor-saving, sustainable alternative to traditional methods of enhancing drought resistance.
Collapse
Affiliation(s)
- Xiu Ren Zhou
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453002, China.
| | - Lei Dai
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453002, China
| | - Gui Fang Xu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453002, China
| | - Hong Sheng Wang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453002, China
| |
Collapse
|