151
|
Wang F, Wu W, Wang D, Yang W, Sun J, Liu D, Zhang A. Characterization and Genetic Analysis of a Novel Light-Dependent Lesion Mimic Mutant, lm3, Showing Adult-Plant Resistance to Powdery Mildew in Common Wheat. PLoS One 2016; 11:e0155358. [PMID: 27175509 PMCID: PMC4866716 DOI: 10.1371/journal.pone.0155358] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/27/2016] [Indexed: 11/18/2022] Open
Abstract
Lesion mimics (LMs) that exhibit spontaneous disease-like lesions in the absence of pathogen attack might confer enhanced plant disease resistance to a wide range of pathogens. The LM mutant, lm3 was derived from a single naturally mutated individual in the F1 population of a 3-1/Jing411 cross, backcrossed six times with 3–1 as the recurrent parent and subsequently self-pollinated twice. The leaves of young seedlings of the lm3 mutant exhibited small, discrete white lesions under natural field conditions. The lesions first appeared at the leaf tips and subsequently expanded throughout the entire leaf blade to the leaf sheath. The lesions were initiated through light intensity and day length. Histochemical staining revealed that lesion formation might reflect programmed cell death (PCD) and abnormal accumulation of reactive oxygen species (ROS). The chlorophyll content in the mutant was significantly lower than that in wildtype, and the ratio of chlorophyll a/b was increased significantly in the mutant compared with wildtype, indicating that lm3 showed impairment of the biosynthesis or degradation of chlorophyll, and that Chlorophyll b was prone to damage during lesion formation. The lm3 mutant exhibited enhanced resistance to wheat powdery mildew fungus (Blumeria graminis f. sp. tritici; Bgt) infection, which was consistent with the increased expression of seven pathogenesis-related (PR) and two wheat chemically induced (WCI) genes involved in the defense-related reaction. Genetic analysis showed that the mutation was controlled through a single partially dominant gene, which was closely linked to Xbarc203 on chromosome 3BL; this gene was delimited to a 40 Mb region between SSR3B450.37 and SSR3B492.6 using a large derived segregating population and the available Chinese Spring chromosome 3B genome sequence. Taken together, our results provide information regarding the identification of a novel wheat LM gene, which will facilitate the additional fine-mapping and cloning of the gene to understand the mechanism underlying LM initiation and disease resistance in common wheat.
Collapse
Affiliation(s)
- Fang Wang
- College of Agronomy/The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Wenying Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Dongzhi Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- * E-mail: (DL); (AZ)
| | - Aimin Zhang
- College of Agronomy/The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- * E-mail: (DL); (AZ)
| |
Collapse
|
152
|
Wang WM, Liu PQ, Xu YJ, Xiao S. Protein trafficking during plant innate immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:284-98. [PMID: 26345282 DOI: 10.1111/jipb.12426] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/06/2015] [Indexed: 05/20/2023]
Abstract
Plants have evolved a sophisticated immune system to fight against pathogenic microbes. Upon detection of pathogen invasion by immune receptors, the immune system is turned on, resulting in production of antimicrobial molecules including pathogenesis-related (PR) proteins. Conceivably, an efficient immune response depends on the capacity of the plant cell's protein/membrane trafficking network to deploy the right defense-associated molecules in the right place at the right time. Recent research in this area shows that while the abundance of cell surface immune receptors is regulated by endocytosis, many intracellular immune receptors, when activated, are partitioned between the cytoplasm and the nucleus for induction of defense genes and activation of programmed cell death, respectively. Vesicle transport is an essential process for secretion of PR proteins to the apoplastic space and targeting of defense-related proteins to the plasma membrane or other endomembrane compartments. In this review, we discuss the various aspects of protein trafficking during plant immunity, with a focus on the immunity proteins on the move and the major components of the trafficking machineries engaged.
Collapse
Affiliation(s)
- Wen-Ming Wang
- Rice Research Institute & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng-Qiang Liu
- Rice Research Institute & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong-Ju Xu
- Rice Research Institute & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Science and Landscape Architecture, University of Maryland, Rockville, MD, 20850, USA
| |
Collapse
|
153
|
Park CH, Shirsekar G, Bellizzi M, Chen S, Songkumarn P, Xie X, Shi X, Ning Y, Zhou B, Suttiviriya P, Wang M, Umemura K, Wang GL. The E3 Ligase APIP10 Connects the Effector AvrPiz-t to the NLR Receptor Piz-t in Rice. PLoS Pathog 2016; 12:e1005529. [PMID: 27031246 PMCID: PMC4816579 DOI: 10.1371/journal.ppat.1005529] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/05/2016] [Indexed: 11/19/2022] Open
Abstract
Although nucleotide-binding domain, leucine-rich repeat (NLR) proteins are the major immune receptors in plants, the mechanism that controls their activation and immune signaling remains elusive. Here, we report that the avirulence effector AvrPiz-t from Magnaporthe oryzae targets the rice E3 ligase APIP10 for degradation, but that APIP10, in return, ubiquitinates AvrPiz-t and thereby causes its degradation. Silencing of APIP10 in the non-Piz-t background compromises the basal defense against M. oryzae. Conversely, silencing of APIP10 in the Piz-t background causes cell death, significant accumulation of Piz-t, and enhanced resistance to M. oryzae, suggesting that APIP10 is a negative regulator of Piz-t. We show that APIP10 promotes degradation of Piz-t via the 26S proteasome system. Furthermore, we demonstrate that AvrPiz-t stabilizes Piz-t during M. oryzae infection. Together, our results show that APIP10 is a novel E3 ligase that functionally connects the fungal effector AvrPiz-t to its NLR receptor Piz-t in rice.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gautam Shirsekar
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Maria Bellizzi
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Songbiao Chen
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Pattavipha Songkumarn
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Xin Xie
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuetao Shi
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuese Ning
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Zhou
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Pavinee Suttiviriya
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Mo Wang
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Kenji Umemura
- Meiji Seika Kaisha Ltd, Health & Bioscience Laboratories, Tokyo, Japan
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
154
|
Min HJ, Jung YJ, Kang BG, Kim WT. CaPUB1, a Hot Pepper U-box E3 Ubiquitin Ligase, Confers Enhanced Cold Stress Tolerance and Decreased Drought Stress Tolerance in Transgenic Rice (Oryza sativa L.). Mol Cells 2016; 39:250-7. [PMID: 26674966 PMCID: PMC4794607 DOI: 10.14348/molcells.2016.2290] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 11/27/2022] Open
Abstract
Abiotic stresses such as drought and low temperature critically restrict plant growth, reproduction, and productivity. Higher plants have developed various defense strategies against these unfavorable conditions. CaPUB1 (Capsicum annuum Putative U-box protein 1) is a hot pepper U-box E3 Ub ligase. Transgenic Arabidopsis plants that constitutively expressed CaPUB1 exhibited drought-sensitive phenotypes, suggesting that it functions as a negative regulator of the drought stress response. In this study, CaPUB1 was over-expressed in rice (Oryza sativa L.), and the phenotypic properties of transgenic rice plants were examined in terms of their drought and cold stress tolerance. Ubi:CaPUB1 T3 transgenic rice plants displayed phenotypes hypersensitive to dehydration, suggesting that its role in the negative regulation of drought stress response is conserved in dicot Arabidopsis and monocot rice plants. In contrast, Ubi:CaPUB1 progeny exhibited phenotypes markedly tolerant to prolonged low temperature (4°C) treatment, compared to those of wild-type plants, as determined by survival rates, electrolyte leakage, and total chlorophyll content. Cold stress-induced marker genes, including DREB1A, DREB1B, DREB1C, and Cytochrome P450, were more up-regulated by cold treatment in Ubi:CaPUB1 plants than in wild-type plants. These results suggest that CaPUB1 serves as both a negative regulator of the drought stress response and a positive regulator of the cold stress response in transgenic rice plants. This raises the possibility that CaPUB1 participates in the cross-talk between drought and low-temperature signaling pathways.
Collapse
Affiliation(s)
- Hye Jo Min
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749,
Korea
| | - Ye Jin Jung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749,
Korea
| | - Bin Goo Kang
- ReSEAT Program, Korea Institute of Science and Technology Information, Seoul 130-741,
Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749,
Korea
| |
Collapse
|
155
|
Royaert S, Jansen J, da Silva DV, de Jesus Branco SM, Livingstone DS, Mustiga G, Marelli JP, Araújo IS, Corrêa RX, Motamayor JC. Identification of candidate genes involved in Witches' broom disease resistance in a segregating mapping population of Theobroma cacao L. in Brazil. BMC Genomics 2016; 17:107. [PMID: 26865216 PMCID: PMC4750280 DOI: 10.1186/s12864-016-2415-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 01/26/2016] [Indexed: 01/17/2023] Open
Abstract
Background Witches’ broom disease (WBD) caused by the fungus Moniliophthora perniciosa is responsible for considerable economic losses for cacao producers. One of the ways to combat WBD is to plant resistant cultivars. Resistance may be governed by a few genetic factors, mainly found in wild germplasm. Results We developed a dense genetic linkage map with a length of 852.8 cM that contains 3,526 SNPs and is based on the MP01 mapping population, which counts 459 trees from a cross between the resistant ‘TSH 1188’ and the tolerant ‘CCN 51’ at the Mars Center for Cocoa Science in Barro Preto, Bahia, Brazil. Seven quantitative trait loci (QTL) that are associated with WBD were identified on five different chromosomes using a multi-trait QTL analysis for outbreeders. Phasing of the haplotypes at the major QTL region on chromosome IX on a diversity panel of genotypes clearly indicates that the major resistance locus comes from a well-known source of WBD resistance, the clone ‘SCAVINA 6’. Various potential candidate genes identified within all QTL may be involved in different steps leading to disease resistance. Preliminary expression data indicate that at least three of these candidate genes may play a role during the first 12 h after infection, with clear differences between ‘CCN 51’ and ‘TSH 1188’. Conclusions We combined the information from a large mapping population with very distinct parents that segregate for WBD, a dense set of mapped markers, rigorous phenotyping capabilities and the availability of a sequenced genome to identify several genomic regions that are involved in WBD resistance. We also identified a novel source of resistance that most likely comes from the ‘CCN 51’ parent. Thanks to the large population size of the MP01 population, we were able to pick up QTL and markers with relatively small effects that can contribute to the creation and selection of more tolerant/resistant plant material. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2415-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Royaert
- Mars Center for Cocoa Science, CP 55, Itajuípe, BA, CEP 45.630-000, Brazil.
| | - Johannes Jansen
- Biometris, Wageningen University and Research Centre, P.O. Box 100, 6700 AC, Wageningen, The Netherlands.
| | - Daniela Viana da Silva
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, Km 16, Bairro Salobrinho, Ilhéus, BA, CEP 45.662-900, Brazil.
| | - Samuel Martins de Jesus Branco
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, Km 16, Bairro Salobrinho, Ilhéus, BA, CEP 45.662-900, Brazil.
| | | | - Guiliana Mustiga
- Mars, Incorporated, 13601 Old Cutler Road, Miami, FL, 33158, USA.
| | | | - Ioná Santos Araújo
- Departamento de Ciências Vegetais, Universidade Federal Rural do Semi-Arido, BR 110 - Km 47, Bairro Pres. Costa e Silva, Mossoró, RN, CEP 59.625-900, Brazil.
| | - Ronan Xavier Corrêa
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, Km 16, Bairro Salobrinho, Ilhéus, BA, CEP 45.662-900, Brazil.
| | | |
Collapse
|
156
|
Ghannam A, Jacques A, de Ruffray P, Kauffmann S. NtRING1, putative RING-finger E3 ligase protein, is a positive regulator of the early stages of elicitin-induced HR in tobacco. PLANT CELL REPORTS 2016; 35:415-28. [PMID: 26542819 DOI: 10.1007/s00299-015-1893-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/09/2015] [Accepted: 10/28/2015] [Indexed: 05/25/2023]
Abstract
KEY MESSAGE NtRING1 is a RING-finger protein with a putative E3 ligase activity. NtRING1 regulates HR establishment against different pathogens. Loss-/gain-of-function of NtRING1 altered early stages of HR phenotype establishment. Plant defence responses against pathogens often involve the restriction of pathogens by inducing a hypersensitive response (HR). cDNA clones DD11-39, DD38-11 and DD34-26 were previously obtained from a differential screen aimed at characterising tobacco genes with an elicitin-induced HR-specific pattern of expression. Our precedent observations suggested that DD11-39, DD38-11 and DD34-26 might play roles in the HR establishment. Only for DD11-39 a full-length cDNA sequence was obtained and the corresponding protein encoded for a type-HC RING-finger/putative E3 ligase protein which we termed NtRING1. The expression of NtRING1 was upregulated upon HR induction by elicitin, Ralstonia solanacearum, or tobacco mosaic virus (TMV) in tobacco. Silencing of NtRING1 remarkably delayed the establishment of elicitin-induced HR in tobacco as well as the expression of different early induction genes in tissues undergoing HR. Accordingly, transient overexpression of NtRING1 accelerated the HR launching upon elicitin treatment. Taking together, our data suggests that NtRING1 plays a functional role in the early establishment of HR.
Collapse
Affiliation(s)
- Ahmed Ghannam
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084, Strasbourg, France.
- Laboratory Functional Genomics for Plant Immunomodulation, Plant Pathology Division, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria.
| | - Alban Jacques
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084, Strasbourg, France
- Ecole d'ingénieurs de Purpan, Laboratoire d'Agro-Physiologie, 75 voie du TOEC, 31076, Toulouse Cedex 3, France
| | - Patrice de Ruffray
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Serge Kauffmann
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084, Strasbourg, France
| |
Collapse
|
157
|
Moshe A, Gorovits R, Liu Y, Czosnek H. Tomato plant cell death induced by inhibition of HSP90 is alleviated by Tomato yellow leaf curl virus infection. MOLECULAR PLANT PATHOLOGY 2016; 17:247-60. [PMID: 25962748 PMCID: PMC6638530 DOI: 10.1111/mpp.12275] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
To ensure a successful long-term infection cycle, begomoviruses must restrain their destructive effect on host cells and prevent drastic plant responses, at least in the early stages of infection. The monopartite begomovirus Tomato yellow leaf curl virus (TYLCV) does not induce a hypersensitive response and cell death on whitefly-mediated infection of virus-susceptible tomato plants until diseased tomatoes become senescent. The way in which begomoviruses evade plant defences and interfere with cell death pathways is still poorly understood. We show that the chaperone HSP90 (heat shock protein 90) and its co-chaperone SGT1 (suppressor of the G2 allele of Skp1) are involved in the establishment of TYLCV infection. Inactivation of HSP90, as well as silencing of the Hsp90 and Sgt1 genes, leads to the accumulation of damaged ubiquitinated proteins and to a cell death phenotype. These effects are relieved under TYLCV infection. HSP90-dependent inactivation of 26S proteasome degradation and the transcriptional activation of the heat shock transcription factors HsfA2 and HsfB1 and of the downstream genes Hsp17 and Apx1/2 are suppressed in TYLCV-infected tomatoes. Following suppression of the plant stress response, TYLCV can replicate and accumulate in a permissive environment.
Collapse
Affiliation(s)
- Adi Moshe
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Rena Gorovits
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Yule Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Henryk Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
158
|
Li Y, Kabbage M, Liu W, Dickman MB. Aspartyl Protease-Mediated Cleavage of BAG6 Is Necessary for Autophagy and Fungal Resistance in Plants. THE PLANT CELL 2016; 28:233-47. [PMID: 26739014 PMCID: PMC4746679 DOI: 10.1105/tpc.15.00626] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/24/2015] [Accepted: 12/31/2015] [Indexed: 05/04/2023]
Abstract
The Bcl-2-associated athanogene (BAG) family is an evolutionarily conserved group of cochaperones that modulate numerous cellular processes. Previously we found that Arabidopsis thaliana BAG6 is required for basal immunity against the fungal phytopathogen Botrytis cinerea. However, the mechanisms by which BAG6 controls immunity are obscure. Here, we address this important question by determining the molecular mechanisms responsible for BAG6-mediated basal resistance. We show that Arabidopsis BAG6 is cleaved in vivo in a caspase-1-like-dependent manner and via a combination of pull-downs, mass spectrometry, yeast two-hybrid assays, and chemical genomics, we demonstrate that BAG6 interacts with a C2 GRAM domain protein (BAGP1) and an aspartyl protease (APCB1), both of which are required for BAG6 processing. Furthermore, fluorescence and transmission electron microscopy established that BAG6 cleavage triggers autophagy in the host that coincides with disease resistance. Targeted inactivation of BAGP1 or APCB1 results in the blocking of BAG6 processing and loss of resistance. Mutation of the cleavage site blocks cleavage and inhibits autophagy in plants; disease resistance is also compromised. Taken together, these results identify a mechanism that couples an aspartyl protease with a molecular cochaperone to trigger autophagy and plant defense, providing a key link between fungal recognition and the induction of cell death and resistance.
Collapse
Affiliation(s)
- Yurong Li
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Wende Liu
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Martin B Dickman
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
159
|
Wang SH, Lim JH, Kim SS, Cho SH, Yoo SC, Koh HJ, Sakuraba Y, Paek NC. Mutation of SPOTTED LEAF3 (SPL3) impairs abscisic acid-responsive signalling and delays leaf senescence in rice. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7045-59. [PMID: 26276867 PMCID: PMC4765782 DOI: 10.1093/jxb/erv401] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Lesion mimic mutants commonly display spontaneous cell death in pre-senescent green leaves under normal conditions, without pathogen attack. Despite molecular and phenotypic characterization of several lesion mimic mutants, the mechanisms of the spontaneous formation of cell death lesions remain largely unknown. Here, the rice lesion mimic mutant spotted leaf3 (spl3) was examined. When grown under a light/dark cycle, the spl3 mutant appeared similar to wild-type at early developmental stages, but lesions gradually appeared in the mature leaves close to heading stage. By contrast, in spl3 mutants grown under continuous light, severe cell death lesions formed in developing leaves, even at the seedling stage. Histochemical analysis showed that hydrogen peroxide accumulated in the mutant, likely causing the cell death phenotype. By map-based cloning and complementation, it was shown that a 1-bp deletion in the first exon of Oryza sativa Mitogen-Activated Protein Kinase Kinase Kinase1 (OsMAPKKK1)/OsEDR1/OsACDR1 causes the spl3 mutant phenotype. The spl3 mutant was found to be insensitive to abscisic acid (ABA), showing normal root growth in ABA-containing media and delayed leaf yellowing during dark-induced and natural senescence. Expression of ABA signalling-associated genes was also less responsive to ABA treatment in the mutant. Furthermore, the spl3 mutant had lower transcript levels and activities of catalases, which scavenge hydrogen peroxide, probably due to impairment of ABA-responsive signalling. Finally, a possible molecular mechanism of lesion formation in the mature leaves of spl3 mutant is discussed.
Collapse
Affiliation(s)
- Seung-Hyun Wang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Jung-Hyun Lim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Sang-Sook Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Sung-Hwan Cho
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Soo-Cheul Yoo
- Department of Plant Life and Environmental Science, Hankyong National University, Ansung 456-749, Korea
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Yasuhito Sakuraba
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 232-916, Korea
| |
Collapse
|
160
|
Wang J, Ye B, Yin J, Yuan C, Zhou X, Li W, He M, Wang J, Chen W, Qin P, Ma B, Wang Y, Li S, Chen X. Characterization and fine mapping of a light-dependent leaf lesion mimic mutant 1 in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:44-51. [PMID: 26410574 DOI: 10.1016/j.plaphy.2015.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 05/10/2023]
Abstract
Plants that spontaneously produce lesion mimics or spots, without any signs of obvious adversity, such as pesticide and mechanical damage, or pathogen infection, are so-called lesion mimic mutants (lmms). In rice, many lmms exhibit enhanced resistance to pathogens, which provides a unique opportunity to uncover the molecular mechanism underlying lmms. We isolated a rice light-dependent leaf lesion mimic mutant 1 (llm1). Lesion spots appeared in the leaves of the llm1 mutant at the tillering stage. Furthermore, the mutant llm1 had similar agronomic traits to wild type rice. Trypan blue and diamiobenzidine staining analyses revealed that the lesion spot formation on the llm1 mutant was due to programmed cell death and reactive oxygen species. The chloroplasts were severely damaged in the llm1 mutant, suggesting that chloroplast damage was associated with the formation of lesion spots in llm1. More importantly, llm1 exhibited enhanced resistance to bacterial blight pathogens within increased expression of pathogenesis related genes (PRs). Using a map-based cloning approach, we delimited the LLM1 locus to a 121-kb interval between two simple sequence repeat markers, RM17470 and RM17473, on chromosome 4. We sequenced the candidate genes on the interval and found that a base mutation had substituted adenine phosphate for thymine in the last exon of LOC_Os04g52130, which led to an amino acid change (Asp(388) to Val) in the llm1 mutant. Our investigation showed that the putative coproporphyrinogen III oxidase (CPOX) encoded by LOC_Os04g52130 was produced by LLM1 and that amino acid Asp(388) was essential for CPOX function. Our study provides the basis for further investigations into the mechanism underlying lesion mimic initiation associated with LLM1.
Collapse
Affiliation(s)
- Jing Wang
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu 611130, China
| | - Bangquan Ye
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu 611130, China
| | - Junjie Yin
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu 611130, China
| | - Can Yuan
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu 611130, China
| | - Xiaogang Zhou
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu 611130, China
| | - Weitao Li
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu 611130, China
| | - Min He
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu 611130, China
| | - Jichun Wang
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu 611130, China
| | - Weilan Chen
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu 611130, China
| | - Peng Qin
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu 611130, China
| | - Bintian Ma
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu 611130, China
| | - Yuping Wang
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu 611130, China; Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Shigui Li
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu 611130, China; State Key Laboratory of Hybrid Rice, Sichuan Agricultural University at Wenjiang, Chengdu 611130, China; Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Xuewei Chen
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu 611130, China; State Key Laboratory of Hybrid Rice, Sichuan Agricultural University at Wenjiang, Chengdu 611130, China; Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China.
| |
Collapse
|
161
|
Ning Y, Shi X, Wang R, Fan J, Park CH, Zhang C, Zhang T, Ouyang X, Li S, Wang GL. OsELF3-2, an Ortholog of Arabidopsis ELF3, Interacts with the E3 Ligase APIP6 and Negatively Regulates Immunity against Magnaporthe oryzae in Rice. MOLECULAR PLANT 2015; 8:1679-1682. [PMID: 26296797 DOI: 10.1016/j.molp.2015.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 07/14/2015] [Accepted: 08/09/2015] [Indexed: 06/04/2023]
Affiliation(s)
- Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuetao Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiangbo Fan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA
| | - Chan Ho Park
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA
| | - Chongyang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ting Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinhao Ouyang
- Rice Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shigui Li
- Rice Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
162
|
Guimaraes PM, Guimaraes LA, Morgante CV, Silva OB, Araujo ACG, Martins ACQ, Saraiva MAP, Oliveira TN, Togawa RC, Leal-Bertioli SCM, Bertioli DJ, Brasileiro ACM. Root Transcriptome Analysis of Wild Peanut Reveals Candidate Genes for Nematode Resistance. PLoS One 2015; 10:e0140937. [PMID: 26488731 PMCID: PMC4619257 DOI: 10.1371/journal.pone.0140937] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/30/2015] [Indexed: 11/24/2022] Open
Abstract
Wild peanut relatives (Arachis spp.) are genetically diverse and were adapted to a range of environments during the evolution course, constituting an important source of allele diversity for resistance to biotic and abiotic stresses. The wild diploid A. stenosperma harbors high levels of resistance to a variety of pathogens, including the root-knot nematode (RKN) Meloidogyne arenaria, through the onset of the Hypersensitive Response (HR). In order to identify genes and regulators triggering this defense response, a comprehensive root transcriptome analysis during the first stages of this incompatible interaction was conducted using Illumina Hi-Seq. Overall, eight cDNA libraries were produced generating 28.2 GB, which were de novo assembled into 44,132 contigs and 37,882 loci. Differentially expressed genes (DEGs) were identified and clustered according to their expression profile, with the majority being downregulated at 6 DAI, which coincides with the onset of the HR. Amongst these DEGs, 27 were selected for further qRT-PCR validation allowing the identification of nematode-responsive candidate genes that are putatively related to the resistance response. Those candidates are engaged in the salycilic (NBS-LRR, lipocalins, resveratrol synthase) and jasmonic (patatin, allene oxidase cyclase) acids pathways, and also related to hormonal balance (auxin responsive protein, GH3) and cellular plasticity and signaling (tetraspanin, integrin, expansin), with some of them showing contrasting expression behavior between Arachis RKN-resistant and susceptible genotypes. As these candidate genes activate different defensive signaling systems, the genetic (HR) and the induced resistance (IR), their pyramidding in one genotype via molecular breeding or transgenic strategy might contribute to a more durable resistance, thus improving the long-term control of RKN in peanut.
Collapse
Affiliation(s)
| | | | | | - Orzenil B. Silva
- EMBRAPA Genetic Resources and Biotechnology, Brasilia, DF, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Zhu Y, Li Y, Fei F, Wang Z, Wang W, Cao A, Liu Y, Han S, Xing L, Wang H, Chen W, Tang S, Huang X, Shen Q, Xie Q, Wang X. E3 ubiquitin ligase gene CMPG1-V from Haynaldia villosa L. contributes to powdery mildew resistance in common wheat (Triticum aestivum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:154-68. [PMID: 26287740 DOI: 10.1111/tpj.12966] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 05/20/2023]
Abstract
Powdery mildew is one of the most devastating wheat fungal diseases. A diploid wheat relative, Haynaldia villosa L., is highly resistant to powdery mildew, and its genetic resource of resistances, such as the Pm21 locus, is now widely used in wheat breeding. Here we report the cloning of a resistance gene from H. villosa, designated CMPG1-V, that encodes a U-box E3 ubiquitin ligase. Expression of the CMPG1-V gene was induced in the leaf and stem of H. villosa upon inoculation with Blumeria graminis f. sp. tritici (Bgt) fungus, and the presence of Pm21 is essential for its rapid induction of expression. CMPG1-V has conserved key residues for E3 ligase, and possesses E3 ligase activity in vitro and in vivo. CMPG1-V is localized in the nucleus, endoplasmic reticulum, plasma membrane and partially in trans-Golgi network/early endosome vesicles. Transgenic wheat over-expressing CMPG1-V showed improved broad-spectrum powdery mildew resistance at seedling and adult stages, associated with an increase in expression of salicylic acid-responsive genes, H2 O2 accumulation, and cell-wall protein cross-linking at the Bgt infection sites, and the expression of CMPG1-V in H. villosa was increased when treated with salicylic acid, abscisic acid and H2 O2 . These results indicate the involvement of E3 ligase in defense responses to Bgt fungus in wheat, particularly in broad-spectrum disease resistance, and suggest association of reactive oxidative species and the phytohormone pathway with CMPG1-V-mediated powdery mildew resistance.
Collapse
Affiliation(s)
- Yanfei Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Yingbo Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Fei Fei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Zongkuan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Wei Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Aizhong Cao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Yuan Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Shuang Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Liping Xing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Haiyan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Wei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Sanyuan Tang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiahe Huang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qianhua Shen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
164
|
Yin J, Zhu X, Yuan C, Wang J, Li W, Wang Y, He M, Cheng Q, Ye B, Chen W, Linghu Q, Wang J, Ma B, Qin P, Li S, Chen X. Characterization and Fine Mapping of a Novel Vegetative Senescence Lethal Mutant Locus in Rice. J Genet Genomics 2015; 42:511-4. [DOI: 10.1016/j.jgg.2015.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/25/2015] [Accepted: 05/04/2015] [Indexed: 12/24/2022]
|
165
|
Genome-wide survey and expression analysis of the PUB family in Chinese cabbage (Brassica rapa ssp. pekinesis). Mol Genet Genomics 2015; 290:2241-60. [DOI: 10.1007/s00438-015-1075-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
|
166
|
Carbonell A, Fahlgren N, Mitchell S, Cox KL, Reilly KC, Mockler TC, Carrington JC. Highly specific gene silencing in a monocot species by artificial microRNAs derived from chimeric miRNA precursors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:1061-1075. [PMID: 25809382 PMCID: PMC4464980 DOI: 10.1111/tpj.12835] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/11/2015] [Accepted: 03/19/2015] [Indexed: 05/17/2023]
Abstract
Artificial microRNAs (amiRNAs) are used for selective gene silencing in plants. However, current methods to produce amiRNA constructs for silencing transcripts in monocot species are not suitable for simple, cost-effective and large-scale synthesis. Here, a series of expression vectors based on Oryza sativa MIR390 (OsMIR390) precursor was developed for high-throughput cloning and high expression of amiRNAs in monocots. Four different amiRNA sequences designed to target specifically endogenous genes and expressed from OsMIR390-based vectors were validated in transgenic Brachypodium distachyon plants. Surprisingly, amiRNAs accumulated to higher levels and were processed more accurately when expressed from chimeric OsMIR390-based precursors that include distal stem-loop sequences from Arabidopsis thaliana MIR390a (AtMIR390a). In all cases, transgenic plants displayed the predicted phenotypes induced by target gene repression, and accumulated high levels of amiRNAs and low levels of the corresponding target transcripts. Genome-wide transcriptome profiling combined with 5'-RLM-RACE analysis in transgenic plants confirmed that amiRNAs were highly specific.
Collapse
Affiliation(s)
| | - Noah Fahlgren
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Skyler Mitchell
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Kevin L Cox
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Kevin C Reilly
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Todd C Mockler
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | | |
Collapse
|
167
|
He Q, McLellan H, Boevink PC, Sadanandom A, Xie C, Birch PRJ, Tian Z. U-box E3 ubiquitin ligase PUB17 acts in the nucleus to promote specific immune pathways triggered by Phytophthora infestans. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3189-99. [PMID: 25873665 PMCID: PMC4449539 DOI: 10.1093/jxb/erv128] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ubiquitination regulates many processes in plants, including immunity. The E3 ubiquitin ligase PUB17 is a positive regulator of programmed cell death (PCD) triggered by resistance proteins CF4/9 in tomato. Its role in immunity to the potato late blight pathogen, Phytophthora infestans, was investigated here. Silencing StPUB17 in potato by RNAi and NbPUB17 in Nicotiana benthamiana by virus-induced gene silencing (VIGS) each enhanced P. infestans leaf colonization. PAMP-triggered immunity (PTI) transcriptional responses activated by flg22, and CF4/Avr4-mediated PCD were attenuated by silencing PUB17. However, silencing PUB17 did not compromise PCD triggered by P. infestans PAMP INF1, or co-expression of R3a/AVR3a, demonstrating that not all PTI- and PCD-associated responses require PUB17. PUB17 localizes to the plant nucleus and especially in the nucleolus. Transient over-expression of a dominant-negative StPUB17(V314I,V316I) mutant, which retained nucleolar localization, suppressed CF4-mediated cell death and enhanced P. infestans colonization. Exclusion of the StPUB17(V314I,V316I) mutant from the nucleus abolished its dominant-negative activity, demonstrating that StPUB17 functions in the nucleus. PUB17 is a positive regulator of immunity to late blight that acts in the nucleus to promote specific PTI and PCD pathways.
Collapse
Affiliation(s)
- Qin He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China and the National Centre for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Division of Plant Sciences, University of Dundee, James Hutton Institute (JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK Dundee Effector Consortium, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Hazel McLellan
- Division of Plant Sciences, University of Dundee, James Hutton Institute (JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK Dundee Effector Consortium, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Petra C Boevink
- Dundee Effector Consortium, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Ari Sadanandom
- Durham Centre for Crop Improvement Technology School of Biological and Biomedical Sciences, Durham University, Durham DH1 3HP, UK
| | - Conghua Xie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China and the National Centre for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Paul R J Birch
- Division of Plant Sciences, University of Dundee, James Hutton Institute (JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK Dundee Effector Consortium, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China and the National Centre for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China;
| |
Collapse
|
168
|
Zhou J, Lu D, Xu G, Finlayson SA, He P, Shan L. The dominant negative ARM domain uncovers multiple functions of PUB13 in Arabidopsis immunity, flowering, and senescence. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3353-66. [PMID: 25873653 PMCID: PMC4449551 DOI: 10.1093/jxb/erv148] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Regulating the intensity and duration of immune responses is crucial to combat infections without deleterious side effects. Arabidopsis FLS2, the receptor for bacterial flagellin, activates immune signalling by association with its partner BAK1. Upon flagellin (flg22) perception, the plant U-box E3 ubiquitin ligases PUB12 and PUB13 complex with FLS2 in a BAK1-dependent manner, and ubiquitinate FLS2 for protein degradation, thereby down-regulating flagellin signalling. Domain deletion analysis indicates that the ARM domain of PUB13 interacts with the FLS2-BAK1 complex and is phosphorylated by BAK1. Overexpression of the PUB13 ARM domain alone inhibits flg22-induced FLS2-PUB13 association and PUB12/13-mediated FLS2 ubiquitination and degradation in Arabidopsis, suggesting that ectopic expression of the ARM domain in planta generates a dominant negative effect via blocking the ubiquitination activity. Similar to the pub12pub13 double mutant, transgenic plants expressing the PUB13 ARM domain display enhanced immune responses compared with wild-type plants. Moreover, PUB13ARM transgenic plants and the pub12pub13 mutant are more sensitive to stress-induced leaf senescence accompanied by elevated expression of stress-induced senescence marker genes. The resemblance between PUB13ARM transgenic plants and the pub12pub13 mutant provides genetic evidence that ectopic expression of the PUB ARM domain serves as an alternative approach to dissect the overlapping functions of closely related PUB genes.
Collapse
Affiliation(s)
- Jinggeng Zhou
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Dongping Lu
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Guangyuan Xu
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Scott A Finlayson
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ping He
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
169
|
Luo Q, Li Y, Wang W, Fei X, Deng X. Genome-wide survey and expression analysis of Chlamydomonas reinhardtii U-box E3 ubiquitin ligases (CrPUBs) reveal a functional lipid metabolism module. PLoS One 2015; 10:e0122600. [PMID: 25822994 PMCID: PMC4378952 DOI: 10.1371/journal.pone.0122600] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/11/2015] [Indexed: 11/18/2022] Open
Abstract
E3 ubiquitin ligases determine the substrate specificity of ubiquitination. Plant U-box (PUB) E3 ligases, with a typical 70-amino acid U-box domain, participate in plant developmental processes and environmental responses. Thus far, 64 PUB proteins have been identified in Arabidopsis and 77 PUB proteins have been identified in Oryza. However, detailed studies on U-box genes in the model microalgae Chlamydomonas reinhardtii are lacking. Here, we present a comprehensive analysis of the genes encoding U-box family proteins in C. reinhardtii. Following BLASTP analysis, 30 full-length U-box genes were identified in the C. reinhardtii genome sequence. Bioinformatics analyses of CrPUB genes were performed to characterize the phylogenetic relationships, chromosomal locations and gene structures of each member. The 30 identified CrPUB proteins are clustered into 3 distinct subfamilies, and the genes for these proteins are unevenly distributed among 14 chromosomes. Furthermore, the quantitative real-time RT-PCR or semi-quantitative RT-PCR analysis of 30 CrPUB mRNA abundances under nitrogen starvation showed that 18 CrPUB genes were induced by N starvation and that 7 genes were repressed in the N-poor environment. We selected five CrPUB genes exhibiting marked changes in expression under N-free conditions for further analysis in RNAi experiments and examined the oil content of these gene-silenced transgenic strains. The silencing of CrPUB5 and CrPUB14, which are typically down-regulated under N starvation, induced 9.8%-45.0% and 14.4%-61.8% lipid accumulation, respectively. In contrast, the silencing of CrPUB11, CrPUB23 and CrPUB28, which are markedly up-regulated under N-free conditions, decreased the lipid content by 5.5%-27.8%, 8.1%-27.3% and 6.6%-27.9%, respectively. These results provide a useful reference for the identification and functional analysis of this gene family and fundamental information for microalgae lipid metabolism research.
Collapse
Affiliation(s)
- Qiulan Luo
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China
| | - Yajun Li
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China
| | - Wenquan Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China
| | - Xiaowen Fei
- School of Science, Hainan Medical College, Haikou, 571101, China
| | - Xiaodong Deng
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China
- * E-mail:
| |
Collapse
|
170
|
Wang J, Qu B, Dou S, Li L, Yin D, Pang Z, Zhou Z, Tian M, Liu G, Xie Q, Tang D, Chen X, Zhu L. The E3 ligase OsPUB15 interacts with the receptor-like kinase PID2 and regulates plant cell death and innate immunity. BMC PLANT BIOLOGY 2015; 15:49. [PMID: 25849162 PMCID: PMC4330927 DOI: 10.1186/s12870-015-0442-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/28/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rice blast disease is one of the most destructive diseases of rice worldwide. We previously cloned the rice blast resistance gene Pid2, which encodes a transmembrane receptor-like kinase containing an extracellular B-lectin domain and an intracellular serine/threonine kinase domain. However, little is known about Pid2-mediated signaling. RESULTS Here we report the functional characterization of the U-box/ARM repeat protein OsPUB15 as one of the PID2-binding proteins. We found that OsPUB15 physically interacted with the kinase domain of PID2 (PID2K) in vitro and in vivo and the ARM repeat domain of OsPUB15 was essential for the interaction. In vitro biochemical assays indicated that PID2K possessed kinase activity and was able to phosphorylate OsPUB15. We also found that the phosphorylated form of OsPUB15 possessed E3 ligase activity. Expression pattern analyses revealed that OsPUB15 was constitutively expressed and its encoded protein OsPUB15 was localized in cytosol. Transgenic rice plants over-expressing OsPUB15 at early stage displayed cell death lesions spontaneously in association with a constitutive activation of plant basal defense responses, including excessive accumulation of hydrogen peroxide, up-regulated expression of pathogenesis-related genes and enhanced resistance to blast strains. We also observed that, along with plant growth, the cell death lesions kept spreading over the whole seedlings quickly resulting in a seedling lethal phenotype. CONCLUSIONS These results reveal that the E3 ligase OsPUB15 interacts directly with the receptor-like kinase PID2 and regulates plant cell death and blast disease resistance.
Collapse
Affiliation(s)
- Jing Wang
- />State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- />Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130 China
| | - Baoyuan Qu
- />State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Shijuan Dou
- />College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001 China
| | - Liyun Li
- />College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001 China
| | - Dedong Yin
- />State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhiqian Pang
- />State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- />CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Zhuangzhi Zhou
- />State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Miaomiao Tian
- />State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Guozhen Liu
- />College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001 China
| | - Qi Xie
- />State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Dingzhong Tang
- />State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xuewei Chen
- />Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130 China
| | - Lihuang Zhu
- />State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
171
|
Liu J, Park CH, He F, Nagano M, Wang M, Bellizzi M, Zhang K, Zeng X, Liu W, Ning Y, Kawano Y, Wang GL. The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice. PLoS Pathog 2015; 11:e1004629. [PMID: 25658451 PMCID: PMC4450066 DOI: 10.1371/journal.ppat.1004629] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 12/15/2014] [Indexed: 11/18/2022] Open
Abstract
The ubiquitin proteasome system in plants plays important roles in plant-microbe interactions and in immune responses to pathogens. We previously demonstrated that the rice U-box E3 ligase SPL11 and its Arabidopsis ortholog PUB13 negatively regulate programmed cell death (PCD) and defense response. However, the components involved in the SPL11/PUB13-mediated PCD and immune signaling pathway remain unknown. In this study, we report that SPL11-interacting Protein 6 (SPIN6) is a Rho GTPase-activating protein (RhoGAP) that interacts with SPL11 in vitro and in vivo. SPL11 ubiquitinates SPIN6 in vitro and degrades SPIN6 in vivo via the 26S proteasome-dependent pathway. Both RNAi silencing in transgenic rice and knockout of Spin6 in a T-DNA insertion mutant lead to PCD and increased resistance to the rice blast pathogen Magnaporthe oryzae and the bacterial blight pathogen Xanthomonas oryzae pv. oryzae. The levels of reactive oxygen species and defense-related gene expression are significantly elevated in both the Spin6 RNAi and mutant plants. Strikingly, SPIN6 interacts with the small GTPase OsRac1, catalyze the GTP-bound OsRac1 into the GDP-bound state in vitro and has GAP activity towards OsRac1 in rice cells. Together, our results demonstrate that the RhoGAP SPIN6 acts as a linkage between a U-box E3 ligase-mediated ubiquitination pathway and a small GTPase-associated defensome system for plant immunity.
Collapse
Affiliation(s)
- Jinling Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Chan Ho Park
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Minoru Nagano
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Department of Science and Technology, Saitama University, Sakura-ku, Saitama, Japan
| | - Mo Wang
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Maria Bellizzi
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Kai Zhang
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Xiaoshan Zeng
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yoji Kawano
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Signal Transduction and Immunity Group, Shanghai Center for Plant Stress Biology, Shanghai, China
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
172
|
Antignani V, Klocko AL, Bak G, Chandrasekaran SD, Dunivin T, Nielsen E. Recruitment of PLANT U-BOX13 and the PI4Kβ1/β2 phosphatidylinositol-4 kinases by the small GTPase RabA4B plays important roles during salicylic acid-mediated plant defense signaling in Arabidopsis. THE PLANT CELL 2015; 27:243-61. [PMID: 25634989 PMCID: PMC4330583 DOI: 10.1105/tpc.114.134262] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/28/2014] [Accepted: 01/09/2015] [Indexed: 05/19/2023]
Abstract
Protection against microbial pathogens involves the activation of cellular immune responses in eukaryotes, and this cellular immunity likely involves changes in subcellular membrane trafficking. In eukaryotes, members of the Rab GTPase family of small monomeric regulatory GTPases play prominent roles in the regulation of membrane trafficking. We previously showed that RabA4B is recruited to vesicles that emerge from trans-Golgi network (TGN) compartments and regulates polarized membrane trafficking in plant cells. As part of this regulation, RabA4B recruits the closely related phosphatidylinositol 4-kinase (PI4K) PI4Kβ1 and PI4Kβ2 lipid kinases. Here, we identify a second Arabidopsis thaliana RabA4B-interacting protein, PLANT U-BOX13 (PUB13), which has recently been identified to play important roles in salicylic acid (SA)-mediated defense signaling. We show that PUB13 interacts with RabA4B through N-terminal domains and with phosphatidylinositol 4-phosphate (PI-4P) through a C-terminal armadillo domain. Furthermore, we demonstrate that a functional fluorescent PUB13 fusion protein (YFP-PUB13) localizes to TGN and Golgi compartments and that PUB13, PI4Kβ1, and PI4Kβ2 are negative regulators of SA-mediated induction of pathogenesis-related gene expression. Taken together, these results highlight a role for RabA4B and PI-4P in SA-dependent defense responses.
Collapse
Affiliation(s)
- Vincenzo Antignani
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Amy L Klocko
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Gwangbae Bak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Suma D Chandrasekaran
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Taylor Dunivin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
173
|
Sharma M, Pandey GK. Expansion and Function of Repeat Domain Proteins During Stress and Development in Plants. FRONTIERS IN PLANT SCIENCE 2015; 6:1218. [PMID: 26793205 PMCID: PMC4707873 DOI: 10.3389/fpls.2015.01218] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/17/2015] [Indexed: 05/18/2023]
Abstract
The recurrent repeats having conserved stretches of amino acids exists across all domains of life. Subsequent repetition of single sequence motif and the number and length of the minimal repeating motifs are essential characteristics innate to these proteins. The proteins with tandem peptide repeats are essential for providing surface to mediate protein-protein interactions for fundamental biological functions. Plants are enriched in tandem repeat containing proteins typically distributed into various families. This has been assumed that the occurrence of multigene repeats families in plants enable them to cope up with adverse environmental conditions and allow them to rapidly acclimatize to these conditions. The evolution, structure, and function of repeat proteins have been studied in all kingdoms of life. The presence of repeat proteins is particularly profuse in multicellular organisms in comparison to prokaryotes. The precipitous expansion of repeat proteins in plants is presumed to be through internal tandem duplications. Several repeat protein gene families have been identified in plants. Such as Armadillo (ARM), Ankyrin (ANK), HEAT, Kelch-like repeats, Tetratricopeptide (TPR), Leucine rich repeats (LRR), WD40, and Pentatricopeptide repeats (PPR). The structure and functions of these repeat proteins have been extensively studied in plants suggesting a critical role of these repeating peptides in plant cell physiology, stress and development. In this review, we illustrate the structural, functional, and evolutionary prospects of prolific repeat proteins in plants.
Collapse
|
174
|
Jin B, Zhou X, Jiang B, Gu Z, Zhang P, Qian Q, Chen X, Ma B. Transcriptome profiling of the spl5 mutant reveals that SPL5 has a negative role in the biosynthesis of serotonin for rice disease resistance. RICE (NEW YORK, N.Y.) 2015; 8:18. [PMID: 26029330 PMCID: PMC4449350 DOI: 10.1186/s12284-015-0052-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/22/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Rice mutant, spl5 (spotted leaf 5), has spontaneous hypersensitive-like lesions on its leaves and shows enhanced resistance to pathogens, indicating that SPL5 plays a role in programmed cell death (PCD) and disease resistance. To understand the molecular mechanism of SPL5 gene, we investigated the transcriptome profiles of the spl5 mutant leaves with few lesions (FL) and leaves with many lesions (ML) compared to the wild-type (WT) leaves respectively by microarray. RESULTS The data from microarray revealed that 243 and 896 candidate genes (Fold change ≥ 3.0) were up- or down-regulated in the spl5-FL and spl5-ML, respectively, and a large number of these genes involved in biotic defense responses or reactive oxygen species (ROS) metabolism. Interestingly, according to our microarray and real-time PCR assays, the expressions of a transcription factor OsWRKY14 and genes responsible for the biosynthesis of serotonin, anthranilate synthase (AS), indole-3-glycerolphosphate synthase (IGPS), tryptophan synthase (TS) and tryptophan decarboxylase (TDC) were significantly up-regulated in the spl5 mutant. It has been reported previously that TS and TDC expressions are regulated by OsWRKY14 in rice, which raises the possibility that OsWRKY14 regulates serotonin production through the up-regulation of TS and TDC. Our HPLC analysis further confirmed that serotonin levels were higher in the leaves of spl5 mutant than that in WT. CONCLUSIONS Since the serotonin plays a critical role in inducing disease-resistance, the increased serotonin level may contribute, at least partly, to the disease resistance in spl5. The SPL5 gene may act as a negative regulatory factor activating the serotonin metabolic pathway, and these results might provide a new insight into the spl5-induced defense response mechanisms in plants.
Collapse
Affiliation(s)
- Bin Jin
- />College of Chemistry & Life Sciences, Zhejiang Normal University, Jinhua, 321004 China
| | - Xinru Zhou
- />College of Chemistry & Life Sciences, Zhejiang Normal University, Jinhua, 321004 China
| | - Baolin Jiang
- />College of Chemistry & Life Sciences, Zhejiang Normal University, Jinhua, 321004 China
| | - Zhimin Gu
- />College of Chemistry & Life Sciences, Zhejiang Normal University, Jinhua, 321004 China
| | - Pinghua Zhang
- />College of Chemistry & Life Sciences, Zhejiang Normal University, Jinhua, 321004 China
| | - Qian Qian
- />China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006 China
| | - Xifeng Chen
- />College of Chemistry & Life Sciences, Zhejiang Normal University, Jinhua, 321004 China
| | - Bojun Ma
- />College of Chemistry & Life Sciences, Zhejiang Normal University, Jinhua, 321004 China
| |
Collapse
|
175
|
Bruggeman Q, Raynaud C, Benhamed M, Delarue M. To die or not to die? Lessons from lesion mimic mutants. FRONTIERS IN PLANT SCIENCE 2015; 6:24. [PMID: 25688254 PMCID: PMC4311611 DOI: 10.3389/fpls.2015.00024] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/12/2015] [Indexed: 05/19/2023]
Abstract
Programmed cell death (PCD) is a ubiquitous genetically regulated process consisting in an activation of finely controlled signaling pathways that lead to cellular suicide. Although some aspects of PCD control appear evolutionary conserved between plants, animals and fungi, the extent of conservation remains controversial. Over the last decades, identification and characterization of several lesion mimic mutants (LMM) has been a powerful tool in the quest to unravel PCD pathways in plants. Thanks to progress in molecular genetics, mutations causing the phenotype of a large number of LMM and their related suppressors were mapped, and the identification of the mutated genes shed light on major pathways in the onset of plant PCD such as (i) the involvements of chloroplasts and light energy, (ii) the roles of sphingolipids and fatty acids, (iii) a signal perception at the plasma membrane that requires efficient membrane trafficking, (iv) secondary messengers such as ion fluxes and ROS and (v) the control of gene expression as the last integrator of the signaling pathways.
Collapse
Affiliation(s)
- Quentin Bruggeman
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
| | - Cécile Raynaud
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Marianne Delarue
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
- *Correspondence: Marianne Delarue, Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant Sciences, Bâtiment 630, Route de Noetzlin, 91405 Orsay Cedex, France e-mail:
| |
Collapse
|
176
|
Fukuda A, Sugimoto K, Ando T, Yamamoto T, Yano M. Chromosomal locations of a gene underlying heat-accelerated brown spot formation and its suppressor genes in rice. Mol Genet Genomics 2014; 290:1085-94. [PMID: 25532750 DOI: 10.1007/s00438-014-0975-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 12/05/2014] [Indexed: 11/25/2022]
Abstract
Brown spots on mature leaves from the heading to ripening stages in rice are considered to be lesions induced by heat stress. However, there are few studies of lesions that are induced by heat stress rather than by pathogen infections. To understand the genetic background underlying such lesions, we used the chromosome segment substitution line (CSSL) SL518, derived from a distant cross between rice cultivars Koshihikari (japonica) and Nona Bokra (indica). We observed brown spots on mature leaf blades of the CSSL, although the parents barely showed any spots. Spot formation in SL518 was accelerated by high temperature, suggesting that the candidate gene for spot formation is related to heat stress response. Using progeny derived from a cross between SL518 and Koshihikari, we mapped the causative gene, BROWN-SPOTTED LEAF 1 (BSPL1), on chromosome 5. We speculated that one or more Nona Bokra genes suppress spot formation caused by BSPL1 and identified candidate genomic regions on chromosomes 2 and 9 using a cross between a near-isogenic line for BSPL1 and other CSSLs possessing Nona Bokra segments in the Koshihikari genetic background. In conclusion, our data support the concept that multiple genes are complementarily involved in brown spot formation induced by heat stress and will be useful for cloning of the novel gene(s) related to the spot formation.
Collapse
Affiliation(s)
- Atsunori Fukuda
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan,
| | | | | | | | | |
Collapse
|
177
|
Bian Y, Yang Q, Balint-Kurti PJ, Wisser RJ, Holland JB. Limits on the reproducibility of marker associations with southern leaf blight resistance in the maize nested association mapping population. BMC Genomics 2014; 15:1068. [PMID: 25475173 PMCID: PMC4300987 DOI: 10.1186/1471-2164-15-1068] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/19/2014] [Indexed: 11/10/2022] Open
Abstract
Background A previous study reported a comprehensive quantitative trait locus (QTL) and genome wide association study (GWAS) of southern leaf blight (SLB) resistance in the maize Nested Association Mapping (NAM) panel. Since that time, the genomic resources available for such analyses have improved substantially. An updated NAM genetic linkage map has a nearly six-fold greater marker density than the previous map and the combined SNPs and read-depth variants (RDVs) from maize HapMaps 1 and 2 provided 28.5 M genomic variants for association analysis, 17 fold more than HapMap 1. In addition, phenotypic values of the NAM RILs were re-estimated to account for environment-specific flowering time covariates and a small proportion of lines were dropped due to genotypic data quality problems. Comparisons of original and updated QTL and GWAS results confound the effects of linkage map density, GWAS marker density, population sample size, and phenotype estimates. Therefore, we evaluated the effects of changing each of these parameters individually and in combination to determine their relative impact on marker-trait associations in original and updated analyses. Results Of the four parameters varied, map density caused the largest changes in QTL and GWAS results. The updated QTL model had better cross-validation prediction accuracy than the previous model. Whereas joint linkage QTL positions were relatively stable to input changes, the residual values derived from those QTL models (used as inputs to GWAS) were more sensitive, resulting in substantial differences between GWAS results. The updated NAM GWAS identified several candidate genes consistent with previous QTL fine-mapping results. Conclusions The highly polygenic nature of resistance to SLB complicates the identification of causal genes. Joint linkage QTL are relatively stable to perturbations of data inputs, but their resolution is generally on the order of tens or more Mbp. GWAS associations have higher resolution, but lower power due to stringent thresholds designed to minimize false positive associations, resulting in variability of detection across studies. The updated higher density linkage map improves QTL estimation and, along with a much denser SNP HapMap, greatly increases the likelihood of detecting SNPs in linkage with causal variants. We recommend use of the updated genetic resources and results but emphasize the limited repeatability of small-effect associations. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1068) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - James B Holland
- Department of Crop Science, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
178
|
Ishikawa K, Yamaguchi K, Sakamoto K, Yoshimura S, Inoue K, Tsuge S, Kojima C, Kawasaki T. Bacterial effector modulation of host E3 ligase activity suppresses PAMP-triggered immunity in rice. Nat Commun 2014; 5:5430. [PMID: 25388636 DOI: 10.1038/ncomms6430] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/01/2014] [Indexed: 01/20/2023] Open
Abstract
Pathogen effector proteins are delivered to host cells to suppress plant immunity. However, the mechanisms by which effector proteins function are largely unknown. Here we show that expression of XopP(Xoo), an effector of rice pathogen Xanthomonas oryzae pv. oryzae, in rice strongly suppresses peptidoglycan (PGN)- and chitin-triggered immunity and resistance to X. oryzae. XopP(Xoo) targets OsPUB44, a rice ubiquitin E3 ligase with a unique U-box domain. We find that XopP(Xoo) directly interacts with the OsPUB44 U-box domain and inhibits ligase activity. Two amino-acid residues specific for the OsPUB44 U-box domain are identified, which are responsible for the interaction with XopP(Xoo). Silencing of OsPUB44 suppresses PGN- and chitin-triggered immunity and X. oryzae resistance, indicating that OsPUB44 positively regulates immune responses. Thus, it is likely that XopP(Xoo) suppresses immune responses by directly interacting with and inhibiting a positive regulator of plant immunity.
Collapse
Affiliation(s)
- Kazuya Ishikawa
- Department of Advanced Bioscience, Graduate School of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Koji Yamaguchi
- Department of Advanced Bioscience, Graduate School of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Kazuaki Sakamoto
- Department of Advanced Bioscience, Graduate School of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Satomi Yoshimura
- Department of Advanced Bioscience, Graduate School of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Kento Inoue
- Department of Advanced Bioscience, Graduate School of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Seiji Tsuge
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Chojiro Kojima
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tsutomu Kawasaki
- Department of Advanced Bioscience, Graduate School of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
179
|
Fekih R, Tamiru M, Kanzaki H, Abe A, Yoshida K, Kanzaki E, Saitoh H, Takagi H, Natsume S, Undan JR, Undan J, Terauchi R. The rice (Oryza sativa L.) LESION MIMIC RESEMBLING, which encodes an AAA-type ATPase, is implicated in defense response. Mol Genet Genomics 2014; 290:611-22. [DOI: 10.1007/s00438-014-0944-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 10/17/2014] [Indexed: 12/25/2022]
|
180
|
Serrano I, Gu Y, Qi D, Dubiella U, Innes RW. The Arabidopsis EDR1 protein kinase negatively regulates the ATL1 E3 ubiquitin ligase to suppress cell death. THE PLANT CELL 2014; 26:4532-46. [PMID: 25398498 PMCID: PMC4277226 DOI: 10.1105/tpc.114.131540] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/18/2014] [Accepted: 10/27/2014] [Indexed: 05/19/2023]
Abstract
Loss-of-function mutations in the Arabidopsis thaliana ENHANCED DISEASE RESISTANCE1 (EDR1) gene confer enhanced programmed cell death under a variety of abiotic and biotic stress conditions. All edr1 mutant phenotypes can be suppressed by missense mutations in the KEEP ON GOING gene, which encodes a trans-Golgi network/early endosome (TGN/EE)-localized E3 ubiquitin ligase. Here, we report that EDR1 interacts with a second E3 ubiquitin ligase, ARABIDOPSIS TOXICOS EN LEVADURA1 (ATL1), and negatively regulates its activity. Overexpression of ATL1 in transgenic Arabidopsis induced severe growth inhibition and patches of cell death, while transient overexpression in Nicotiana benthamiana leaves induced cell death and tissue collapse. The E3 ligase activity of ATL1 was required for both of these processes. Importantly, we found that ATL1 interacts with EDR1 on TGN/EE vesicles and that EDR1 suppresses ATL1-mediated cell death in N. benthamiana and Arabidopsis. Lastly, knockdown of ATL1 expression suppressed cell death phenotypes associated with the edr1 mutant and made Arabidopsis hypersusceptible to powdery mildew infection. Taken together, our data indicate that ATL1 is a positive regulator of programmed cell death and EDR1 negatively regulates ATL1 activity at the TGN/EE and thus controls stress responses initiated by ATL1-mediated ubiquitination events.
Collapse
Affiliation(s)
- Irene Serrano
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Yangnan Gu
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Dong Qi
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Ullrich Dubiella
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
181
|
Li B, Lu D, Shan L. Ubiquitination of pattern recognition receptors in plant innate immunity. MOLECULAR PLANT PATHOLOGY 2014; 15:737-746. [PMID: 25275148 PMCID: PMC4183980 DOI: 10.1111/mpp.12128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lacking an adaptive immune system, plants largely rely on plasma membrane-resident pattern recognition receptors (PRRs) to sense pathogen invasion. The activation of PRRs leads to the profound immune responses that coordinately contribute to the restriction of pathogen multiplication. Protein post-translational modifications dynamically shape the intensity and duration of the signalling pathways. In this review, we discuss the specific regulation of PRR activation and signalling by protein ubiquitination, endocytosis and degradation, with a particular focus on the bacterial flagellin receptor FLS2 (flagellin sensing 2) in Arabidopsis.
Collapse
Affiliation(s)
- Bo Li
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dongping Lu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Libo Shan
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
182
|
Olukolu BA, Wang GF, Vontimitta V, Venkata BP, Marla S, Ji J, Gachomo E, Chu K, Negeri A, Benson J, Nelson R, Bradbury P, Nielsen D, Holland JB, Balint-Kurti PJ, Johal G. A genome-wide association study of the maize hypersensitive defense response identifies genes that cluster in related pathways. PLoS Genet 2014; 10:e1004562. [PMID: 25166276 PMCID: PMC4148229 DOI: 10.1371/journal.pgen.1004562] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 06/27/2014] [Indexed: 02/04/2023] Open
Abstract
Much remains unknown of molecular events controlling the plant hypersensitive defense response (HR), a rapid localized cell death that limits pathogen spread and is mediated by resistance (R-) genes. Genetic control of the HR is hard to quantify due to its microscopic and rapid nature. Natural modifiers of the ectopic HR phenotype induced by an aberrant auto-active R-gene (Rp1-D21), were mapped in a population of 3,381 recombinant inbred lines from the maize nested association mapping population. Joint linkage analysis was conducted to identify 32 additive but no epistatic quantitative trait loci (QTL) using a linkage map based on more than 7000 single nucleotide polymorphisms (SNPs). Genome-wide association (GWA) analysis of 26.5 million SNPs was conducted after adjusting for background QTL. GWA identified associated SNPs that colocalized with 44 candidate genes. Thirty-six of these genes colocalized within 23 of the 32 QTL identified by joint linkage analysis. The candidate genes included genes predicted to be in involved programmed cell death, defense response, ubiquitination, redox homeostasis, autophagy, calcium signalling, lignin biosynthesis and cell wall modification. Twelve of the candidate genes showed significant differential expression between isogenic lines differing for the presence of Rp1-D21. Low but significant correlations between HR-related traits and several previously-measured disease resistance traits suggested that the genetic control of these traits was substantially, though not entirely, independent. This study provides the first system-wide analysis of natural variation that modulates the HR response in plants. The hypersensitive pathogen defense response (HR) in plants typically consists of a rapid, localized cell death around the point of attempted pathogen penetration. It is found in all plant species and is associated with high levels of resistance to a wide range of pathogens and pests including bacteria, fungi, viruses, nematodes, parasitic plants and insects. Little is known about the control of HR after initiation, largely because it is so rapid and localized and therefore difficult to quantify. Here we use a mutant maize gene conferring an exaggerated HR to quantify HR levels in a set of 3,381 mapping lines characterised at 26.5 million loci to identify genes associated with naturally-occurring variation in HR. Many of these genes seem to be involved in a set of connected regulatory pathways including protein degradation, control of programmed cell death, recycling of cellular components and regulation of oxidative stress. We have also shown that several of these genes show high levels of expression induction during HR. The study provides the first comprehensive list of natural variants in maize genes that modulate HR and cluster within reported pathways underlying molecular events during HR.
Collapse
Affiliation(s)
- Bode A Olukolu
- Department of Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
| | - Guan-Feng Wang
- Department of Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
| | - Vijay Vontimitta
- Department of Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, Indiana, United States of America
| | - Bala P Venkata
- Department of Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, Indiana, United States of America
| | - Sandeep Marla
- Department of Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, Indiana, United States of America
| | - Jiabing Ji
- Department of Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, Indiana, United States of America
| | - Emma Gachomo
- Department of Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, Indiana, United States of America
| | - Kevin Chu
- Department of Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, Indiana, United States of America
| | - Adisu Negeri
- Department of Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
| | - Jacqueline Benson
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Rebecca Nelson
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Peter Bradbury
- Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
| | - Dahlia Nielsen
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, United States of America
| | - James B Holland
- USDA-ARS Plant Science Research Unit, Raleigh, North Carolina, United States of America; Department of Crop Science, NC State University, Raleigh, North Carolina, United States of America
| | - Peter J Balint-Kurti
- Department of Plant Pathology, NC State University, Raleigh, North Carolina, United States of America; USDA-ARS Plant Science Research Unit, Raleigh, North Carolina, United States of America
| | - Gurmukh Johal
- Department of Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, Indiana, United States of America
| |
Collapse
|
183
|
Xu X, Zhang L, Liu B, Ye Y, Wu Y. Characterization and mapping of a spotted leaf mutant in rice (Oryza sativa). Genet Mol Biol 2014; 37:406-13. [PMID: 25071406 PMCID: PMC4094620 DOI: 10.1590/s1415-47572014005000001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 04/24/2013] [Indexed: 01/09/2023] Open
Abstract
Spotted leaf mutant belongs to a class of mutants that can produce necrotic lesions spontaneously in plants without any attack by pathogens. These mutants have no beneficial effect on plant productivity but provide a unique opportunity to study programmed cell death in plant defense responses. A novel rice spotted leaf mutant (spl30) was isolated through low-energy heavy ion irradiation. Lesion expression was sensitive to light and humidity. The spl30 mutant caused a decrease in chlorophyll and soluble protein content, with marked accumulation of reactive oxygen species (ROS) around the lesions. In addition, the spl30 mutant significantly enhanced resistance to rice bacterial blight (X. oryzae pv. oryzae) from China (C1–C7). The use of SSR markers showed that the spl30 gene was located between markers XSN2 and XSN4. The genetic distance between the spl30 gene and XSN2 and between spl30 and XSN4 was 1.7 cM and 0.2 cM, respectively. The spl30 gene is a new gene involved in lesion production and may be related to programmed cell death in rice. The ability of this mutant to confer broad resistance to bacterial blight provides a model for studying the interaction between plants and pathogenic bacteria.
Collapse
Affiliation(s)
- Xue Xu
- Key Laboratory of Ion Beam Bioengineering , Institute of Technical Biology and Agriculture Engineering of the Chinese Academy of Sciences , Hefei, Anhui , China . ; Rice Research Institute , Anhui Academy of Agricultural Sciences , Hefei, Anhui , China
| | - Lili Zhang
- Key Laboratory of Ion Beam Bioengineering , Institute of Technical Biology and Agriculture Engineering of the Chinese Academy of Sciences , Hefei, Anhui , China
| | - Binmei Liu
- Key Laboratory of Ion Beam Bioengineering , Institute of Technical Biology and Agriculture Engineering of the Chinese Academy of Sciences , Hefei, Anhui , China
| | - Yafeng Ye
- Key Laboratory of Ion Beam Bioengineering , Institute of Technical Biology and Agriculture Engineering of the Chinese Academy of Sciences , Hefei, Anhui , China
| | - Yuejin Wu
- Key Laboratory of Ion Beam Bioengineering , Institute of Technical Biology and Agriculture Engineering of the Chinese Academy of Sciences , Hefei, Anhui , China
| |
Collapse
|
184
|
Li Z, Zhang Y, Liu L, Liu Q, Bi Z, Yu N, Cheng S, Cao L. Fine mapping of the lesion mimic and early senescence 1 (lmes1) in rice (Oryza sativa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 80:300-7. [PMID: 24832615 DOI: 10.1016/j.plaphy.2014.03.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/30/2014] [Indexed: 05/05/2023]
Abstract
A novel rice mutant, lesion mimic and early senescence 1 (lmes1), was induced from the rice 93-11 cultivar in a γ-ray field. This mutant exhibited spontaneous disease-like lesions in the absence of pathogen attack at the beginning of the tillering stage. Moreover, at the booting stage, lmes1 mutants exhibited a significantly increased MDA but decreased chlorophyll content, soluble protein content and photosynthetic rate in the leaves, which are indicative of an early senescence phenotype. The lmes1 mutant was significantly more resistant than 93-11 against rice bacterial blight infection, which was consistent with a marked increase in the expression of three resistance-related genes. Here, we employed a map-based cloning approach to finely map the lmes1 gene. In an initial mapping with 94 F2 individuals derived from a cross between the lmes1 mutant and Nipponbare, the lmes1 gene was located in a 10.6-cM region on the telomere of the long arm of chromosome 7 using simple sequence repeat (SSR) markers. To finely map lmes1, we derived two F2 populations with 940 individuals from two crosses between the lmes1 mutant and two japonica rice varieties, Nipponbare and 02428. Finally, the lmes1 gene was mapped to an 88-kb region between two newly developed inDel markers, Zl-3 and Zl-22, which harbored 15 ORFs.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Hangzhou Normal University, Xuelin Road, Hangzhou 310036, China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute Hangzhou 310006, China
| | - Yingxin Zhang
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute Hangzhou 310006, China
| | - Lin Liu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Qunen Liu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhenzhen Bi
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Ning Yu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Shihua Cheng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute Hangzhou 310006, China
| | - Liyong Cao
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute Hangzhou 310006, China.
| |
Collapse
|
185
|
Shirsekar GS, Vega-Sanchez ME, Bordeos A, Baraoidan M, Swisshelm A, Fan J, Park CH, Leung H, Wang GL. Identification and characterization of suppressor mutants of spl11- mediated cell death in rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:528-36. [PMID: 24794921 DOI: 10.1094/mpmi-08-13-0259-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Lesion mimic mutants have been used to dissect programmed cell death (PCD) and defense-related pathways in plants. The rice lesion-mimic mutant spl11 exhibits race nonspecific resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae and the fungal pathogen Magnaporthe oryzae. Spl11 encodes an E3 ubiquitin ligase and is a negative regulator of PCD in rice. To study the regulation of Spl11-mediated PCD, we performed a genetic screen and identified three spl11 cell-death suppressor (sds) mutants. These suppressors were characterized for their resistance to X. oryzae pv. oryzae and M. oryzae and for their expression of defense-related genes. The suppression of the cell-death phenotypes was generally correlated with reduced expression of defense-related genes. When rice was challenged with avirulent isolates of M. oryzae, the disease phenotype was unaffected in the sds mutants, indicating that the suppression might be Spl11-mediated pathway specific and may only be involved in basal defense. In addition, we mapped one of the suppressor mutations to a 140-kb interval on the long arm of rice chromosome 1. Identification and characterization of these sds mutants should facilitate our efforts to elucidate the Spl11-mediated PCD pathway.
Collapse
|
186
|
Sharma M, Pandey A, Pandey GK. β-catenin in plants and animals: common players but different pathways. FRONTIERS IN PLANT SCIENCE 2014; 5:143. [PMID: 24782881 PMCID: PMC3989760 DOI: 10.3389/fpls.2014.00143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/25/2014] [Indexed: 05/24/2023]
|
187
|
Cai Y, Vega-Sánchez ME, Park CH, Bellizzi M, Guo Z, Wang GL. RBS1, an RNA binding protein, interacts with SPIN1 and is involved in flowering time control in rice. PLoS One 2014; 9:e87258. [PMID: 24498057 PMCID: PMC3907535 DOI: 10.1371/journal.pone.0087258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/25/2013] [Indexed: 11/30/2022] Open
Abstract
The rice U-box/ARM E3 ubiquitin ligase SPL11 negatively regulates programmed cell death (PCD) and disease resistance, and controls flowering time through interacting with the novel RNA/DNA binding KH domain protein SPIN1. Overexpression of Spin1 causes late flowering in transgenic rice under short-day (SD) and long-day (LD) conditions. In this study, we characterized the function of the RNA-binding and SPIN1-interacting 1 (RBS1) protein in flowering time regulation. Rbs1was identified in a yeast-two-hybrid screen using the full-length Spin1 cDNA as a bait and encodes an RNA binding protein with three RNA recognition motifs. The protein binds RNA in vitro and interacts with SPIN1 in the nucleus. Rbs1 overexpression causes delayed flowering under SD and LD conditions in rice. Expression analyses of flowering marker genes show that Rbs1 overexpression represses the expression of Hd3a under SD and LD conditions. Rbs1 is upregulated in both Spin1 overexpression plants and in the spl11 mutant. Interestingly, Spin1 expression is increased but Spl11 expression is repressed in the Rbs1 overexpression plants. Western blot analysis revealed that the SPIN1 protein level is increased in the Rbs1 overexpression plants and that the RBS1 protein level is also up-regulated in the Spin1 overexpression plants. These results suggest that RBS1 is a new negative regulator of flowering time that itself is positively regulated by SPIN1 but negatively regulated by SPL11 in rice.
Collapse
Affiliation(s)
- Yuhui Cai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Miguel E. Vega-Sánchez
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Chan Ho Park
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Maria Bellizzi
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Zejian Guo
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
188
|
Bae H, Kim WT. Classification and interaction modes of 40 rice E2 ubiquitin-conjugating enzymes with 17 rice ARM-U-box E3 ubiquitin ligases. Biochem Biophys Res Commun 2014; 444:575-80. [PMID: 24486490 DOI: 10.1016/j.bbrc.2014.01.098] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 01/21/2014] [Indexed: 11/29/2022]
Abstract
Rice, a monocot model crop, contains at least 48 putative E2 ubiquitin (Ub)-conjugating enzymes. Based on homology comparisons with 40 Arabidopsis E2 proteins and 35 human E2s, 48 rice E2s were classified into 15 different groups. Yeast two-hybrid analyses using the U-box-domain regions of armadillo (ARM)-U-box E3 Ub-ligases and the Ub-conjugating (UBC) domains of E2s showed that, among 40 rice E2s, 11 E2s accounted for 70% of the interactions with 17 ARM-U-box E3s. Thus, a single E2 could interact with multiple ARM-U-box E3s, suggesting the presence of E2 hubs for E2-E3 interactions in rice. Rice SPL11 ARM-U-box E3 displayed distinct self-ubiquitination patterns, including poly-ubiquitination, mono-ubiquitination, or no ubiquitination, depending on different E2 partners. This suggests that the mode of ubiquitination of SPL11 E3 is critically influenced by individual E2s.
Collapse
Affiliation(s)
- Hansol Bae
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
189
|
Sharma M, Singh A, Shankar A, Pandey A, Baranwal V, Kapoor S, Tyagi AK, Pandey GK. Comprehensive expression analysis of rice Armadillo gene family during abiotic stress and development. DNA Res 2014; 21:267-83. [PMID: 24398598 PMCID: PMC4060948 DOI: 10.1093/dnares/dst056] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genes in the Armadillo (ARM)-repeat superfamily encode proteins with a range of developmental and physiological processes in unicellular and multicellular eukaryotes. These 42 amino acid, long tandem repeat-containing proteins have been abundantly recognized in many plant species. Previous studies have confirmed that Armadillo proteins constitute a multigene family in Arabidopsis. In this study, we performed a computational analysis in the rice genome (Oryza sativa L. subsp. japonica), and identified 158 genes of Armadillo superfamily. Phylogenetic study classified them into several arbitrary groups based on a varying number of non-conserved ARM repeats and accessory domain(s) associated with them. An in-depth analysis of gene expression through microarray and Q-PCR revealed a number of ARM proteins expressing differentially in abiotic stresses and developmental conditions, suggesting a potential roles of this superfamily in development and stress signalling. Comparative phylogenetic analysis between Arabidopsis and rice Armadillo genes revealed a high degree of evolutionary conservation between the orthologues in two plant species. The non-synonymous and synonymous substitutions per site ratios (Ka/Ks) of duplicated gene pairs indicate a purifying selection. This genome-wide identification and expression analysis provides a basis for further functional analysis of Armadillo genes under abiotic stress and reproductive developmental condition in the plant lineage.
Collapse
Affiliation(s)
- Manisha Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Amarjeet Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Alka Shankar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Amita Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Vinay Baranwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Sanjay Kapoor
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Akhilesh K Tyagi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| |
Collapse
|
190
|
Huang Y, Minaker S, Roth C, Huang S, Hieter P, Lipka V, Wiermer M, Li X. An E4 ligase facilitates polyubiquitination of plant immune receptor resistance proteins in Arabidopsis. THE PLANT CELL 2014; 26:485-96. [PMID: 24449689 PMCID: PMC3963591 DOI: 10.1105/tpc.113.119057] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/12/2013] [Accepted: 01/08/2014] [Indexed: 05/22/2023]
Abstract
Proteins with nucleotide binding and leucine-rich repeat domains (NLRs) serve as immune receptors in animals and plants that recognize pathogens and activate downstream defense responses. As high accumulation of NLRs can result in unwarranted autoimmune responses, their cellular concentrations must be tightly regulated. However, the molecular mechanisms of this process are poorly detailed. The F-box protein Constitutive expressor of PR genes 1 (CPR1) was previously identified as a component of a Skp1, Cullin1, F-box protein E3 complex that targets NLRs, including Suppressor of NPR1, Constitutive 1 (SNC1) and Resistance to Pseudomonas syringae 2 (RPS2), for ubiquitination and further protein degradation. From a forward genetic screen, we identified Mutant, snc1-enhancing 3 (MUSE3), an E4 ubiquitin ligase involved in polyubiquitination of its protein targets. Knocking out MUSE3 in Arabidopsis thaliana results in increased levels of NLRs, including SNC1 and RPS2, whereas overexpressing MUSE3 together with CPR1 enhances polyubiquitination and protein degradation of these immune receptors. This report on the functional role of an E4 ligase in plants provides insight into the scarcely understood NLR degradation pathway.
Collapse
Affiliation(s)
- Yan Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sean Minaker
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Charlotte Roth
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Goettingen, 37077 Goettingen, Germany
| | - Shuai Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Goettingen, 37077 Goettingen, Germany
| | - Marcel Wiermer
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Goettingen, 37077 Goettingen, Germany
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Address correspondence to
| |
Collapse
|
191
|
Abstract
To confer resistance against pathogens and pests in plants, typically dominant resistance genes are deployed. However, because resistance is based on recognition of a single pathogen-derived molecular pattern, these narrow-spectrum genes are usually readily overcome. Disease arises from a compatible interaction between plant and pathogen. Hence, altering a plant gene that critically facilitates compatibility could provide a more broad-spectrum and durable type of resistance. Here, such susceptibility (S) genes are reviewed with a focus on the mechanisms underlying loss of compatibility. We distinguish three groups of S genes acting during different stages of infection: early pathogen establishment, modulation of host defenses, and pathogen sustenance. The many examples reviewed here show that S genes have the potential to be used in resistance breeding. However, because S genes have a function other than being a compatibility factor for the pathogen, the side effects caused by their mutation demands a one-by-one assessment of their usefulness for application.
Collapse
|
192
|
Liu W, Liu J, Triplett L, Leach JE, Wang GL. Novel insights into rice innate immunity against bacterial and fungal pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:213-41. [PMID: 24906128 DOI: 10.1146/annurev-phyto-102313-045926] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rice feeds more than half of the world's population. Rice blast, caused by the fungal pathogen Magnaporthe oryzae, and bacterial blight, caused by the bacterial pathogen Xanthomonas oryzae pv. oryzae, are major constraints to rice production worldwide. Genome sequencing and extensive molecular analysis has led to the identification of many new pathogen-associated molecular patterns (PAMPs) and avirulence and virulence effectors in both pathogens, as well as effector targets and receptors in the rice host. Characterization of these effectors, host targets, and resistance genes has provided new insight into innate immunity in plants. Some of the new findings, such as the binding activity of X. oryzae transcriptional activator-like (TAL) effectors to specific rice genomic sequences, are being used for the development of effective disease control methods and genome modification tools. This review summarizes the recent progress toward understanding the recognition and signaling events that govern rice innate immunity.
Collapse
Affiliation(s)
- Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | | | | | | | | |
Collapse
|
193
|
Ishizaki K, Mizutani M, Shimamura M, Masuda A, Nishihama R, Kohchi T. Essential role of the E3 ubiquitin ligase nopperabo1 in schizogenous intercellular space formation in the liverwort Marchantia polymorpha. THE PLANT CELL 2013; 25:4075-84. [PMID: 24170128 PMCID: PMC3877802 DOI: 10.1105/tpc.113.117051] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/25/2013] [Accepted: 10/08/2013] [Indexed: 05/17/2023]
Abstract
The vast majority of land plants develop gas-exchange tissues with intercellular spaces (ICSs) connected directly to the air. Although the developmental processes of ICS have been described in detail at the morphological and ultrastructural level in diverse land plants, little is known about the molecular mechanism responsible for ICS formation. The liverwort Marchantia polymorpha develops a multilayered tissue with a large ICS (air chamber), whose formation is initiated at selected positions of epidermal cells. We isolated a mutant of M. polymorpha showing impaired air-chamber formation, nopperabo1 (nop1), from T-DNA-tagged lines. In nop1 plants, no ICS was formed; consequently, a single-layered epidermis developed on the dorsal side of the thallus. The causal gene NOP1 encodes a Plant U-box (PUB) E3 ubiquitin ligase carrying tandem ARMADILLO (ARM) repeats in the C terminus. An in vitro ubiquitination assay indicated that the NOP1 protein possesses E3 ubiquitin ligase activity in a U-box-dependent manner. Confocal microscopy and biochemical analysis showed that NOP1 was localized to the plasma membrane. Our investigation demonstrated the essential role of the PUB-ARM-type ubiquitin ligase in ICS formation in M. polymorpha, which sheds light on the molecular mechanism of schizogenous ICS formation in land plants.
Collapse
Affiliation(s)
- Kimitsune Ishizaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Miya Mizutani
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Masaki Shimamura
- Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Akihide Masuda
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
194
|
Mural RV, Liu Y, Rosebrock TR, Brady JJ, Hamera S, Connor RA, Martin GB, Zeng L. The tomato Fni3 lysine-63-specific ubiquitin-conjugating enzyme and suv ubiquitin E2 variant positively regulate plant immunity. THE PLANT CELL 2013; 25:3615-31. [PMID: 24076975 PMCID: PMC3809553 DOI: 10.1105/tpc.113.117093] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 08/23/2013] [Accepted: 09/07/2013] [Indexed: 05/17/2023]
Abstract
The activation of an immune response in tomato (Solanum lycopersicum) against Pseudomonas syringae relies on the recognition of E3 ligase-deficient forms of AvrPtoB by the host protein kinase, Fen. To investigate the mechanisms by which Fen-mediated immunity is regulated, we characterize in this study a Fen-interacting protein, Fni3, and its cofactor, S. lycoperiscum Uev (Suv). Fni3 encodes a homolog of the Ubc13-type ubiquitin-conjugating enzyme that catalyzes exclusively Lys-63-linked ubiquitination, whereas Suv is a ubiquitin-conjugating enzyme variant. The C-terminal region of Fen was necessary for interaction with Fni3, and this interaction was required for cell death triggered by overexpression of Fen in Nicotiana benthamiana leaves. Fni3 was shown to be an active E2 enzyme, but Suv displayed no ubiquitin-conjugating activity; Fni3 and Suv together directed Lys-63-linked ubiquitination. Decreased expression of Fni3, another tomato Ubc13 homolog, Sl-Ubc13-2, or Suv in N. benthamiana leaves diminished cell death associated with Fen-mediated immunity and cell death elicited by several other resistance (R) proteins and their cognate effectors. We also discovered that coexpression of Fen and other R proteins/effectors with a Fni3 mutant that is compromised for ubiquitin-conjugating activity diminished the cell death. These results suggest that Fni3/Sl-Ubc13-2 and Suv regulate the immune response mediated by Fen and other R proteins through Lys-63-linked ubiquitination.
Collapse
Affiliation(s)
- Ravi V. Mural
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204
| | - Yao Liu
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204
| | - Tracy R. Rosebrock
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853
| | | | - Sadia Hamera
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204
| | - Richard A. Connor
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204
| | - Gregory B. Martin
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853
- Genomics and Biotechnology Section, Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lirong Zeng
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204
| |
Collapse
|
195
|
Liu W, Liu J, Ning Y, Ding B, Wang X, Wang Z, Wang GL. Recent progress in understanding PAMP- and effector-triggered immunity against the rice blast fungus Magnaporthe oryzae. MOLECULAR PLANT 2013; 6:605-20. [PMID: 23340743 DOI: 10.1093/mp/sst015] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most destructive diseases of rice worldwide. The rice-M. oryzae pathosystem has become a model in the study of plant-fungal interactions because of its scientific advancement and economic importance. Recent studies have identified a number of new pathogen-associated molecular patterns (PAMPs) and effectors from the blast fungus that trigger rice immune responses upon perception. Interaction analyses between avirulence effectors and their cognate resistance proteins have provided new insights into the molecular basis of plant-fungal interactions. In this review, we summarize the recent research on the characterization of those genes in both M. oryzae and rice that are important for the PAMP- and effector-triggered immunity recognition and signaling processes. We also discuss future directions for research that will further our understanding of this pathosystem.
Collapse
Affiliation(s)
- Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | | | | | | | | | | |
Collapse
|
196
|
Wang H, Lu Y, Jiang T, Berg H, Li C, Xia Y. The Arabidopsis U-box/ARM repeat E3 ligase AtPUB4 influences growth and degeneration of tapetal cells, and its mutation leads to conditional male sterility. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:511-23. [PMID: 23398263 DOI: 10.1111/tpj.12146] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/29/2013] [Accepted: 02/01/2013] [Indexed: 05/06/2023]
Abstract
Pollen formation is a complex developmental process that has been extensively investigated to unravel underlying fundamental developmental mechanisms and for genetic manipulation of the male-sterility trait for hybrid crop production. Here we describe identification of AtPUB4, a U-box/ARM repeat-containing E3 ubiquitin ligase, as a novel player in male fertility in Arabidopsis. Loss of AtPUB4 function causes hypertrophic growth of the tapetum layer. The Atpub4 mutation also leads to incomplete degeneration of the tapetal cells and strikingly abnormal exine structures of pollen grains. As a result, although the Atpub4 mutant produces viable pollen, the pollen grains adhere to each other and to the remnants of incompletely degenerated tapetal cells, and do not properly disperse from dehisced anthers for successful pollination. We found that the male-sterility phenotype caused by the Atpub4 mutation is temperature-dependent: the mutant plants are sterile when grown at 22°C but are partially fertile at 16°C. Our study also indicates that the AtPUB4-mediated pathway acts in parallel with the brassinosteroid pathway in controlling developmental fates of the tapetal cells to ensure male fertility.
Collapse
Affiliation(s)
- Hai Wang
- Department of Biology, Hong Kong Baptist University, 224 Waterloo Rd, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
197
|
Feng BH, Yang Y, Shi YF, Shen HC, Wang HM, Huang QN, Xu X, Lü XG, Wu JL. Characterization and genetic analysis of a novel rice spotted-leaf mutant HM47 with broad-spectrum resistance to Xanthomonas oryzae pv. oryzae. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:473-83. [PMID: 23210861 DOI: 10.1111/jipb.12021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/21/2012] [Indexed: 05/05/2023]
Abstract
A stable inherited rice spotted-leaf mutant HM47 derived from an EMS-induced IR64 mutant bank was identified. The mutant expressed hypersensitive response (HR)-like symptoms throughout its whole life from the first leaf to the flag leaf, without pathogen invasion. Initiation of the lesions was induced by light under natural summer field conditions. Expression of pathogenesis-related genes including PAL, PO-C1, POX22.3 and PBZ1 was enhanced significantly in association with cell death and accumulation of H2 O2 at and around the site of lesions in the mutant in contrast to that in the wild-type (WT). Disease reaction to Xanthomonas oryzae pv. oryzae from the Philippines and China showed that HM47 is a broad-spectrum disease-resistant mutant with enhanced resistance to multiple races of bacterial blight pathogens tested. An F2 progeny test showed that bacterial blight resistance to race HB-17 was co-segregated with the expression of lesions. Genetic analysis indicated that the spotted-leaf trait was controlled by a single recessive gene, tentatively named spl(HM47) , flanked by two insertion/deletion markers in a region of approximately 74 kb on the long arm of chromosome 4. Ten open reading frames are predicted, and all of them are expressed proteins. Isolation and validation of the putative genes are currently underway.
Collapse
Affiliation(s)
- Bao-Hua Feng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate Brassinosteroid-mediated growth in rice. PLoS Genet 2013; 9:e1003391. [PMID: 23526892 PMCID: PMC3597501 DOI: 10.1371/journal.pgen.1003391] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 01/31/2013] [Indexed: 11/19/2022] Open
Abstract
Heterotrimeric G proteins are an important group of signaling molecules found in eukaryotes. They function with G-protein-coupled-receptors (GPCRs) to transduce various signals such as steroid hormones in animals. Nevertheless, their functions in plants are not well-defined. Previous studies suggested that the heterotrimeric G protein α subunit known as D1/RGA1 in rice is involved in a phytohormone gibberellin-mediated signaling pathway. Evidence also implicates D1 in the action of a second phytohormone Brassinosteroid (BR) and its pathway. However, it is unclear how D1 functions in this pathway, because so far no partner has been identified to act with D1. In this study, we report a D1 genetic interactor Taihu Dwarf1 (TUD1) that encodes a functional U-box E3 ubiquitin ligase. Genetic, phenotypic, and physiological analyses have shown that tud1 is epistatic to d1 and is less sensitive to BR treatment. Histological observations showed that the dwarf phenotype of tud1 is mainly due to decreased cell proliferation and disorganized cell files in aerial organs. Furthermore, we found that D1 directly interacts with TUD1. Taken together, these results demonstrate that D1 and TUD1 act together to mediate a BR-signaling pathway. This supports the idea that a D1-mediated BR signaling pathway occurs in rice to affect plant growth and development.
Collapse
|
199
|
Bae H, Kim WT. The N-terminal tetra-peptide (IPDE) short extension of the U-box motif in rice SPL11 E3 is essential for the interaction with E2 and ubiquitin-ligase activity. Biochem Biophys Res Commun 2013; 433:266-71. [PMID: 23499843 DOI: 10.1016/j.bbrc.2013.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 03/05/2013] [Indexed: 11/24/2022]
Abstract
Rice, a monocot model plant, contains at least 77 U-box E3 ubiquitin (Ub)-ligases and 48 E2 Ub-conjugating enzymes. Here, we investigated the minimal binding domain of rice SPL11 U-box E3 to its E2 partners. Serial deletions and site-directed mutagenesis analyses indicated that, in addition to an intact U-box motif, the N-terminal tetra-peptide (IPDE) short extension of the U-box was essential for the interaction of SPL11 with E2s and Ub-ligase activity. The Ile and Pro residues at the -4 and -3 positions of the U-box, respectively, were crucial for this interaction. These results suggest that the N-terminal tetra-peptide extension of the U-box participates in the specific interaction of SPL11 E3 with E2s in a sequence-specific manner in rice.
Collapse
Affiliation(s)
- Hansol Bae
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | | |
Collapse
|
200
|
Xia Z, Su X, Liu J, Wang M. The RING-H2 finger gene 1 (RHF1) encodes an E3 ubiquitin ligase and participates in drought stress response in Nicotiana tabacum. Genetica 2013; 141:11-21. [PMID: 23381133 DOI: 10.1007/s10709-013-9702-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 01/28/2013] [Indexed: 11/26/2022]
Abstract
Drought is one of the most important limiting factors for plant growth and development. To identify genes required for drought stress response in tobacco, one highly induced mRNA encoding a RING-H2 Finger gene (RHF1) was isolated by mRNA differential display. The full-length NtRHF1 encodes a protein of 273 amino acids and contains a single C3H2C3-type RING motif in its C-terminal region. NtRHF1 is an ortholog of Arabidopsis SDIR1 (salt- and drought-induced RING finger 1) (73 % identity to AtSDIR1). The recombinant NtRHF1 protein purified from E. coli exhibited an in vitro E3 ubiquitin ligase activity. Real-time quantitative PCR analysis indicated that the transcript levels of NtRHF1 were higher in aerial tissues and were markedly up-regulated by drought stress. Overexpression of NtRHF1 enhanced drought tolerance in transgenic tobacco plants while RNA silencing of NtRHF1 reduced drought tolerance. Further expression analysis by real-time PCR indicated that NtRHF1 participates in drought stress response possibly through transcriptional regulation of downstream stress-responsive genes NtLEA5, NtERD10C, NtAREB, and NtCDPK2 in tobacco. Together, these results demonstrated that NtRHF1 plays a positive role in drought stress tolerance possibly through transcriptional regulation of several stress-responsive marker genes in tobacco. This study will facilitate to improve our understanding of molecular and functional properties of plant RING-H2 finger proteins and to provide genetic evidence on the involvement of the RING-H2 E3 ligase in drought stress response in Nicotiana tabacum plants.
Collapse
Affiliation(s)
- Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou, People's Republic of China.
| | | | | | | |
Collapse
|