151
|
Fritz M, Lokstein H, Hackenberg D, Welti R, Roth M, Zähringer U, Fulda M, Hellmeyer W, Ott C, Wolter FP, Heinz E. Channeling of eukaryotic diacylglycerol into the biosynthesis of plastidial phosphatidylglycerol. J Biol Chem 2007; 282:4613-4625. [PMID: 17158889 DOI: 10.1074/jbc.m606295200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plastidial glycolipids contain diacylglycerol (DAG) moieties, which are either synthesized in the plastids (prokaryotic lipids) or originate in the extraplastidial compartment (eukaryotic lipids) necessitating their transfer into plastids. In contrast, the only phospholipid in plastids, phosphatidylglycerol (PG), contains exclusively prokaryotic DAG backbones. PG contributes in several ways to the functions of chloroplasts, but it is not known to what extent its prokaryotic nature is required to fulfill these tasks. As a first step toward answering this question, we produced transgenic tobacco plants that contain eukaryotic PG in thylakoids. This was achieved by targeting a bacterial DAG kinase into chloroplasts in which the heterologous enzyme was also incorporated into the envelope fraction. From lipid analysis we conclude that the DAG kinase phosphorylated eukaryotic DAG forming phosphatidic acid, which was converted into PG. This resulted in PG with 2-3 times more eukaryotic than prokaryotic DAG backbones. In the newly formed PG the unique Delta3-trans-double bond, normally confined to 3-trans-hexadecenoic acid, was also found in sn-2-bound cis-unsaturated C18 fatty acids. In addition, a lipidomics technique allowed the characterization of phosphatidic acid, which is assumed to be derived from eukaryotic DAG precursors in the chloroplasts of the transgenic plants. The differences in lipid composition had only minor effects on measured functions of the photosynthetic apparatus, whereas the most obvious phenotype was a significant reduction in growth.
Collapse
Affiliation(s)
- Markus Fritz
- Biozentrum Klein Flottbek, Universität Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany; Max-Planck-Gesellschaft, Generalverwaltung, Hofgartenstrasse 8, D-80539 München, Germany
| | - Heiko Lokstein
- Institut für Biochemie und Biologie, Universität Potsdam, Pflanzenphysiologie, Karl-Liebknecht-Strasse 24-25, D-14476 Golm, Germany
| | - Dieter Hackenberg
- Institut für Biologie/Pflanzenphysiologie, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin
| | - Ruth Welti
- Division of Biology, Kansas State University, Kansas Lipidomics Research Center, Manhattan, Kansas 66506-4901
| | - Mary Roth
- Division of Biology, Kansas State University, Kansas Lipidomics Research Center, Manhattan, Kansas 66506-4901
| | - Ulrich Zähringer
- Leibniz-Zentrum für Medizin und Biowissenschaften, Forschungszentrum Borstel, Parkallee 4, D-23845 Borstel, Germany
| | - Martin Fulda
- Biozentrum Klein Flottbek, Universität Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany; Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August Universität Göttingen, Biochemie der Pflanze, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany, and the.
| | - Wiebke Hellmeyer
- Biozentrum Klein Flottbek, Universität Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany
| | - Claudia Ott
- Biozentrum Klein Flottbek, Universität Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany
| | - Frank P Wolter
- Biozentrum Klein Flottbek, Universität Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany; Bundesverband Deutscher Pflanzenzüchter, GVSmbH, Kaufmannstrasse 71-73, D-53115 Bonn, Germany
| | - Ernst Heinz
- Biozentrum Klein Flottbek, Universität Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany
| |
Collapse
|
152
|
Jouhet J, Maréchal E, Block MA. Glycerolipid transfer for the building of membranes in plant cells. Prog Lipid Res 2007; 46:37-55. [PMID: 16970991 DOI: 10.1016/j.plipres.2006.06.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 06/14/2006] [Accepted: 06/20/2006] [Indexed: 01/05/2023]
Abstract
Membranes of plant organelles have specific glycerolipid compositions. Selective distribution of lipids at the levels of subcellular organelles, membrane leaflets and membrane domains reflects a complex and finely tuned lipid homeostasis. Glycerolipid neosynthesis occurs mainly in plastid envelope and endoplasmic reticulum membranes. Since most lipids are not only present in the membranes where they are synthesized, one cannot explain membrane specific lipid distribution by metabolic processes confined in each membrane compartment. In this review, we present our current understanding of glycerolipid trafficking in plant cells. We examine the potential mechanisms involved in lipid transport inside bilayers and from one membrane to another. We survey lipid transfers going through vesicular membrane flow and those dependent on lipid transfer proteins at membrane contact sites. By introducing recently described membrane lipid reorganization during phosphate deprivation and recent developments issued from mutant analyses, we detail the specific lipid transfers towards or outwards the chloroplast envelope.
Collapse
Affiliation(s)
- Juliette Jouhet
- Laboratoire de Physiologie, Cellulaire Végétale, UMR 5168 (CNRS/CEA/Université Joseph Fourier/INRA), DRDC/PCV, CEA-Grenoble, 17 rue des Martyrs, F-38054 Grenoble-cedex 9, France
| | | | | |
Collapse
|
153
|
Awai K, Xu C, Lu B, Benning C. Lipid trafficking between the endoplasmic reticulum and the chloroplast. Biochem Soc Trans 2006; 34:395-8. [PMID: 16709171 DOI: 10.1042/bst0340395] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The photosynthetic (thylakoid) membrane of plants is one of the most extensive biological cell membrane systems found in Nature. It harbours the photosynthetic apparatus, which is essential to life on Earth as carbon dioxide is fixed and atmospheric oxygen released by photosynthesis. Lipid biosynthetic enzymes of different subcellular compartments participate in the biogenesis of the thylakoid membrane system. This process requires the extensive exchange of lipid precursors between the chloroplast and the ER (endoplasmic reticulum). The underlying lipid trafficking phenomena are not yet understood at the mechanistic level, but genetic mutants of the model plant Arabidopsis thaliana with disruptions in lipid trafficking between the ER and the chloroplast have recently become available. Their study has led to the identification of components of the lipid transfer machinery at the inner chloroplast envelope.
Collapse
Affiliation(s)
- K Awai
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, 48824, USA
| | | | | | | |
Collapse
|
154
|
Levine T, Loewen C. Inter-organelle membrane contact sites: through a glass, darkly. Curr Opin Cell Biol 2006; 18:371-8. [PMID: 16806880 DOI: 10.1016/j.ceb.2006.06.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 06/08/2006] [Indexed: 11/13/2022]
Abstract
Inter-organelle membrane contact sites are zones where heterologous membranes, usually the endoplasmic reticulum plus a partner organelle, come into close apposition. These sites are very poorly understood because so few of their components have been identified; however, it is clear that they are specialised for traffic of material and information between the two membranes. There have been recent advances in the study of lipid transfer proteins, such as ceramide transfer protein (CERT) and homologues of oxysterol binding protein (OSBP). Not only can these proteins carry lipids across the cytoplasm, but they have been found to target both the endoplasmic reticulum and a partnering organelle, and in some cases have been localised to membrane contact sites. Further work will be needed to test whether these lipid transfer proteins act when anchored at inter-organelle contact sites.
Collapse
Affiliation(s)
- Tim Levine
- Division of Cell Biology, UCL Institute of Ophthalmology, Bath St, London EC1V 9EL, UK.
| | | |
Collapse
|
155
|
A phosphatidic acid-binding protein of the chloroplast inner envelope membrane involved in lipid trafficking. Proc Natl Acad Sci U S A 2006; 103:10817-22. [PMID: 16818883 DOI: 10.1073/pnas.0602754103] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The biogenesis of the photosynthetic thylakoid membranes inside plant chloroplasts requires enzymes at the plastid envelope and the endoplasmic reticulum (ER). Extensive lipid trafficking is required for thylakoid lipid biosynthesis. Here the trigalactosyldiacylglycerol2 (tgd2) mutant of Arabidopsis is described. To the extent tested, tgd2 showed a complex lipid phenotype identical to the previously described tgd1 mutant. The aberrant accumulation of oligogalactolipids and triacylglycerols and the reduction of molecular species of galactolipids derived from the ER are consistent with a disruption of the import of ER-derived lipids into the plastid. The TGD1 protein is a permease-like component of an ABC transporter located in the chloroplast inner envelope membrane. The TGD2 gene encodes a phosphatidic acid-binding protein with a predicted mycobacterial cell entry domain. It is tethered to the inner chloroplast envelope membrane facing the outer envelope membrane. Presumed bacterial orthologs of TGD1 and TGD2 in Gram-negative bacteria are typically organized in transcriptional units, suggesting their involvement in a common biological process. Expression of the tgd2-1 mutant cDNA caused a dominant-negative effect replicating the tgd2 mutant phenotype. This result is interpreted as the interference of the mutant protein with its native protein complex. It is proposed that TGD2 represents the substrate-binding or regulatory component of a phosphatidic acid/lipid transport complex in the chloroplast inner envelope membrane.
Collapse
|
156
|
Xu C, Yu B, Cornish AJ, Froehlich JE, Benning C. Phosphatidylglycerol biosynthesis in chloroplasts of Arabidopsis mutants deficient in acyl-ACP glycerol-3- phosphate acyltransferase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:296-309. [PMID: 16774646 DOI: 10.1111/j.1365-313x.2006.02790.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The biosynthesis of phosphatidylglycerol represents a central pathway in lipid metabolism in all organisms. The enzyme catalyzing the first reaction of the pathway in the plastid, glycerol-3-phosphate acyl-acyl carrier protein acyltransferase, is thought to be encoded in Arabidopsis by the ATS1 locus. A number of genetic mutants deficient in this activity have been described. However, the corresponding mutant alleles have not yet been analyzed at the molecular level and a causal relationship between the mutant phenotypes and a deficiency at the ATS1 locus has not been established. The presence in all known ats1 mutants of near wild-type amounts of phosphatidylglycerol raised the question of whether an alternative pathway of phosphatidylglycerol assembly in the plastid exists. However, detailed analysis of several independent ats1 mutant alleles revealed that all are leaky. Reduction by RNAi of ats1-1 RNA levels in the ats1-1 mutant background led to a more severe growth phenotype (small green plants and reduced seed set), but did not decrease the relative amount of phosphatidylglycerol. In contrast, when the amount of ATS2 mRNA encoding the plastidic lysophosphatidic acid acyltransferase catalyzing the second reaction of the pathway was reduced by RNAi in the ats1-1 mutant background, phosphatidylglycerol amounts decreased, leading to a growth phenotype (small pale-yellow plants) that is reminiscent of the pgp1-1 mutant deficient in a late step of plastidic phosphatidylglycerol biosynthesis. These observations indicate coordinated regulation of plastid lipid metabolism and plant development.
Collapse
Affiliation(s)
- Changcheng Xu
- Department of Biochemistry, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
157
|
Yamaryo Y, Motohashi K, Takamiya KI, Hisabori T, Ohta H. In vitro reconstitution of monogalactosyldiacylglycerol (MGDG) synthase regulation by thioredoxin. FEBS Lett 2006; 580:4086-90. [PMID: 16824521 DOI: 10.1016/j.febslet.2006.06.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 06/22/2006] [Accepted: 06/23/2006] [Indexed: 11/15/2022]
Abstract
Monogalactosyldiacylglycerol (MGDG), a major membrane lipid of chloroplasts, is synthesized by MGDG synthase (MGD) localized in chloroplast envelope membranes. We investigated whether MGD activity is regulated in a redox-dependent manner using recombinant cucumber MGD overexpressed in Escherichia coli. We found that MGD activity is reversibly regulated by reduction and oxidation in vitro and that an intramolecular disulfide bond(s) is involved in MGD activation. Because thioredoxin efficiently reduced disulfide bonds to enhance MGD activity in vitro, MGD is potentially an envelope-bound thioredoxin target protein in higher plants.
Collapse
Affiliation(s)
- Yoshiki Yamaryo
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-14 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | | | | | | | | |
Collapse
|
158
|
Benning C, Xu C, Awai K. Non-vesicular and vesicular lipid trafficking involving plastids. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:241-7. [PMID: 16603410 DOI: 10.1016/j.pbi.2006.03.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 03/22/2006] [Indexed: 05/08/2023]
Abstract
In plants, newly synthesized fatty acids are either directly incorporated into glycerolipids in the plastid or exported and assembled into lipids at the endoplasmic reticulum (ER). ER-derived glycerolipids serve as building blocks for extraplastidic membranes. Alternatively, they can return to the plastid where their diacylglycerol backbone is incorporated into the glycerolipids of the photosynthetic membranes, the thylakoids. Thylakoid lipids are assembled at the plastid envelope membranes and are transferred to the thylakoids. Under phosphate-limited growth conditions, galactolipids are exported from the outer plastid envelope membranes to extraplastidic membranes. Proteins, such as TRIGALACTOSYLDIACYLGLYCEROL1 (TGD1) or VESICLE-INDUCING PROTEIN IN PLASTIDS1 (VIPP1), which are involved in different aspects of plastid lipid trafficking phenomena have recently been identified and mechanistic models that are based on the analysis of these components have begun to emerge.
Collapse
Affiliation(s)
- Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48823, USA.
| | | | | |
Collapse
|