151
|
Yobi A, Wone BWM, Xu W, Alexander DC, Guo L, Ryals JA, Oliver MJ, Cushman JC. Metabolomic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance. MOLECULAR PLANT 2013; 6:369-85. [PMID: 23239830 DOI: 10.1093/mp/sss155] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Selaginella lepidophylla is one of only a few species of spike mosses (Selaginellaceae) that have evolved desiccation tolerance (DT) or the ability to 'resurrect' from an air-dried state. In order to understand the metabolic basis of DT, S. lepidophylla was subjected to a five-stage, rehydration/dehydration cycle, then analyzed using non-biased, global metabolomics profiling technology based on GC/MS and UHLC/MS/MS(2) platforms. A total of 251 metabolites including 167 named (66.5%) and 84 (33.4%) unnamed compounds were characterized. Only 42 (16.7%) and 74 (29.5%) of compounds showed significantly increased or decreased abundance, respectively, indicating that most compounds were produced constitutively, including highly abundant trehalose, sucrose, and glucose. Several glycolysis/gluconeogenesis and tricarboxylic acid (TCA) cycle intermediates showed increased abundance at 100% relative water content (RWC) and 50% RWC. Vanillate, a potent antioxidant, was also more abundant in the hydrated state. Many different sugar alcohols and sugar acids were more abundant in the hydrated state. These polyols likely decelerate the rate of water loss during the drying process as well as slow water absorption during rehydration, stabilize proteins, and scavenge reactive oxygen species (ROS). In contrast, nitrogen-rich and γ-glutamyl amino acids, citrulline, and nucleotide catabolism products (e.g. allantoin) were more abundant in the dry states, suggesting that these compounds might play important roles in nitrogen remobilization during rehydration or in ROS scavenging. UV-protective compounds such as 3-(3-hydroxyphenyl)propionate, apigenin, and naringenin, were more abundant in the dry states. Most lipids were produced constitutively, with the exception of choline phosphate, which was more abundant in dry states and likely plays a role in membrane hydration and stabilization. In contrast, several polyunsaturated fatty acids were more abundant in the hydrated states, suggesting that these compounds likely help maintain membrane fluidity during dehydration. Lastly, S. lepidophylla contained seven unnamed compounds that displayed twofold or greater abundance in dry or rehydrating states, suggesting that these compounds might play adaptive roles in DT.
Collapse
Affiliation(s)
- Abou Yobi
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557-0330, USA
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Shen M, Broeckling CD, Chu EY, Ziegler G, Baxter IR, Prenni JE, Hoekenga OA. Leveraging non-targeted metabolite profiling via statistical genomics. PLoS One 2013; 8:e57667. [PMID: 23469044 PMCID: PMC3585405 DOI: 10.1371/journal.pone.0057667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/15/2013] [Indexed: 12/03/2022] Open
Abstract
One of the challenges of systems biology is to integrate multiple sources of data in order to build a cohesive view of the system of study. Here we describe the mass spectrometry based profiling of maize kernels, a model system for genomic studies and a cornerstone of the agroeconomy. Using a network analysis, we can include 97.5% of the 8,710 features detected from 210 varieties into a single framework. More conservatively, 47.1% of compounds detected can be organized into a network with 48 distinct modules. Eigenvalues were calculated for each module and then used as inputs for genome-wide association studies. Nineteen modules returned significant results, illustrating the genetic control of biochemical networks within the maize kernel. Our approach leverages the correlations between the genome and metabolome to mutually enhance their annotation and thus enable biological interpretation. This method is applicable to any organism with sufficient bioinformatic resources.
Collapse
Affiliation(s)
- Miaoqing Shen
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
- United States Department of Agriculture, Agricultural Research Service, RW Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| | - Corey D. Broeckling
- Colorado State University, Proteomics and Metabolomics Facility, Fort Collins, Colorado, United States of America
| | - Elly Yiyi Chu
- United States Department of Agriculture, Agricultural Research Service, RW Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| | - Gregory Ziegler
- United States Department of Agriculture, Agricultural Research Service, Plant Genetics Research Unit, St. Louis, Missouri, United States of America
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Ivan R. Baxter
- United States Department of Agriculture, Agricultural Research Service, Plant Genetics Research Unit, St. Louis, Missouri, United States of America
| | - Jessica E. Prenni
- Colorado State University, Proteomics and Metabolomics Facility, Fort Collins, Colorado, United States of America
| | - Owen A. Hoekenga
- United States Department of Agriculture, Agricultural Research Service, RW Holley Center for Agriculture and Health, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
153
|
Gechev TS, Benina M, Obata T, Tohge T, Sujeeth N, Minkov I, Hille J, Temanni MR, Marriott AS, Bergström E, Thomas-Oates J, Antonio C, Mueller-Roeber B, Schippers JHM, Fernie AR, Toneva V. Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cell Mol Life Sci 2013; 70:689-709. [PMID: 22996258 PMCID: PMC11113823 DOI: 10.1007/s00018-012-1155-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 12/29/2022]
Abstract
Haberlea rhodopensis is a resurrection plant with remarkable tolerance to desiccation. Haberlea exposed to drought stress, desiccation, and subsequent rehydration showed no signs of damage or severe oxidative stress compared to untreated control plants. Transcriptome analysis by next-generation sequencing revealed a drought-induced reprogramming, which redirected resources from growth towards cell protection. Repression of photosynthetic and growth-related genes during water deficiency was concomitant with induction of transcription factors (members of the NAC, NF-YA, MADS box, HSF, GRAS, and WRKY families) presumably acting as master switches of the genetic reprogramming, as well as with an upregulation of genes related to sugar metabolism, signaling, and genes encoding early light-inducible (ELIP), late embryogenesis abundant (LEA), and heat shock (HSP) proteins. At the same time, genes encoding other LEA, HSP, and stress protective proteins were constitutively expressed at high levels even in unstressed controls. Genes normally involved in tolerance to salinity, chilling, and pathogens were also highly induced, suggesting a possible cross-tolerance against a number of abiotic and biotic stress factors. A notable percentage of the genes highly regulated in dehydration and subsequent rehydration were novel, with no sequence homology to genes from other plant genomes. Additionally, an extensive antioxidant gene network was identified with several gene families possessing a greater number of antioxidant genes than most other species with sequenced genomes. Two of the transcripts most abundant during all conditions encoded catalases and five more catalases were induced in water-deficient samples. Using the pharmacological inhibitor 3-aminotriazole (AT) to compromise catalase activity resulted in increased sensitivity to desiccation. Metabolome analysis by GC or LC-MS revealed accumulation of sucrose, verbascose, spermidine, and γ-aminobutyric acid during drought, as well as particular secondary metabolites accumulating during rehydration. This observation, together with the complex antioxidant system and the constitutive expression of stress protective genes suggests that both constitutive and inducible mechanisms contribute to the extreme desiccation tolerance of H. rhodopensis.
Collapse
Affiliation(s)
- Tsanko S Gechev
- Department of Plant Physiology and Plant Molecular Biology, University of Plovdiv, 24 Tsar Assen Str., Plovdiv, 4000, Bulgaria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H, Dai F, Wu F, Zhang G. Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS One 2013; 8:e55431. [PMID: 23383190 PMCID: PMC3561194 DOI: 10.1371/journal.pone.0055431] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/22/2012] [Indexed: 12/18/2022] Open
Abstract
A thorough understanding of the mechanisms underlying barley salt tolerance and exploitation of elite genetic resource are essential for utilizing wild barley germplasm in developing barley varieties with salt tolerance. In order to reveal the physiological and molecular difference in salt tolerance between Tibetan wild barley (Hordeum spontaneum) and cultivated barley (Hordeum vulgare), profiles of 82 key metabolites were studies in wild and cultivated barley in response to salinity. According to shoot dry biomass under salt stress, XZ16 is a fast growing and salt tolerant wild barley. The results of metabolite profiling analysis suggested osmotic adjustment was a basic mechanism, and polyols played important roles in developing salt tolerance only in roots, and high level of sugars and energy in roots and active photosynthesis in leaves were important for barley to develop salt tolerance. The metabolites involved in tolerance enhancement differed between roots and shoots, and also between genotypes. Tibetan wild barley, XZ16 had higher chlorophyll content and higher contents of compatible solutes than CM72, while the cultivated barley, CM72 probably enhanced its salt tolerance mainly through increasing glycolysis and energy consumption, when the plants were exposed to high salinity. The current research extends our understanding of the mechanisms involved in barley salt tolerance and provides possible utilization of Tibetan wild barley in developing barley cultivars with salt tolerance.
Collapse
Affiliation(s)
- Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Shengguan Cai
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Mingxian Chen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lingzhen Ye
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhonghua Chen
- School of Science and Health, University of Western Sydney, Penrith, New South Wales, Australia
| | - Haitao Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Fei Dai
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Feibo Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
155
|
Iwaki T, Guo L, Ryals JA, Yasuda S, Shimazaki T, Kikuchi A, Watanabe KN, Kasuga M, Yamaguchi-Shinozaki K, Ogawa T, Ohta D. Metabolic profiling of transgenic potato tubers expressing Arabidopsis dehydration response element-binding protein 1A (DREB1A). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:893-900. [PMID: 23286584 DOI: 10.1021/jf304071n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Untargeted metabolome analyses play a critical role in understanding possible metabolic fluctuations of crops under varying environmental conditions. This study reports metabolic profiles of transgenic potato tubers expressing the Arabidopsis DREB1A transcription factor gene, which induces expression of genes involved in environmental stress tolerance. A combination of targeted and untargeted metabolomics demonstrated considerable metabolome differences between the transgenic lines and nontransgenic parent cultivars. In the transgenic lines, stimulation of stress responses was suggested by elevated levels of the glutathione metabolite, γ-aminobutyric acid (GABA), and by the accumulation of β-cyanoalanine, a byproduct of ethylene biosynthesis. These results suggest that the Arabidopsis DREB1A expression might directly or indirectly enhance endogenous potato stress tolerance systems. The results indicate that transgenesis events could alter the metabolic compositions in food crops, and therefore metabolomics analysis could be a most valuable tool to monitor such changes.
Collapse
Affiliation(s)
- Toshio Iwaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Benina M, Obata T, Mehterov N, Ivanov I, Petrov V, Toneva V, Fernie AR, Gechev TS. Comparative metabolic profiling of Haberlea rhodopensis, Thellungiella halophyla, and Arabidopsis thaliana exposed to low temperature. FRONTIERS IN PLANT SCIENCE 2013; 4:499. [PMID: 24376451 PMCID: PMC3859123 DOI: 10.3389/fpls.2013.00499] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 11/19/2013] [Indexed: 05/05/2023]
Abstract
Haberlea rhodopensis is a resurrection species with extreme resistance to drought stress and desiccation but also with ability to withstand low temperatures and freezing stress. In order to identify biochemical strategies which contribute to Haberlea's remarkable stress tolerance, the metabolic reconfiguration of H. rhodopensis during low temperature (4°C) and subsequent return to optimal temperatures (21°C) was investigated and compared with that of the stress tolerant Thellungiella halophyla and the stress sensitive Arabidopsis thaliana. Metabolic analysis by GC-MS revealed intrinsic differences in the metabolite levels of the three species even at 21°C. H. rhodopensis had significantly more raffinose, melibiose, trehalose, rhamnose, myo-inositol, sorbitol, galactinol, erythronate, threonate, 2-oxoglutarate, citrate, and glycerol than the other two species. A. thaliana had the highest levels of putrescine and fumarate, while T. halophila had much higher levels of several amino acids, including alanine, asparagine, beta-alanine, histidine, isoleucine, phenylalanine, serine, threonine, and valine. In addition, the three species responded differently to the low temperature treatment and the subsequent recovery, especially with regard to the sugar metabolism. Chilling induced accumulation of maltose in H. rhodopensis and raffinose in A. thaliana but the raffinose levels in low temperature exposed Arabidopsis were still much lower than these in unstressed Haberlea. While all species accumulated sucrose during chilling, that accumulation was transient in H. rhodopensis and A. thaliana but sustained in T. halophila after the return to optimal temperature. Thus, Haberlea's metabolome appeared primed for chilling stress but the low temperature acclimation induced additional stress-protective mechanisms. A diverse array of sugars, organic acids, and polyols constitute Haberlea's main metabolic defence mechanisms against chilling, while accumulation of amino acids and amino acid derivatives contribute to the low temperature acclimation in Arabidopsis and Thellungiella. Collectively, these results show inherent differences in the metabolomes under the ambient temperature and the strategies to respond to low temperature in the three species.
Collapse
Affiliation(s)
- Maria Benina
- Department of Plant Physiology and Plant Molecular Biology, University of PlovdivPlovdiv, Bulgaria
- Institute of Molecular Biology and BiotechnologyPlovdiv, Bulgaria
| | - Toshihiro Obata
- Department Willmitzer, Max Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | - Nikolay Mehterov
- Department of Plant Physiology and Plant Molecular Biology, University of PlovdivPlovdiv, Bulgaria
- Institute of Molecular Biology and BiotechnologyPlovdiv, Bulgaria
| | - Ivan Ivanov
- Department of Plant Physiology and Plant Molecular Biology, University of PlovdivPlovdiv, Bulgaria
| | - Veselin Petrov
- Department of Plant Physiology and Plant Molecular Biology, University of PlovdivPlovdiv, Bulgaria
- Institute of Molecular Biology and BiotechnologyPlovdiv, Bulgaria
| | - Valentina Toneva
- Department of Plant Physiology and Plant Molecular Biology, University of PlovdivPlovdiv, Bulgaria
- Institute of Molecular Biology and BiotechnologyPlovdiv, Bulgaria
- *Correspondence: Valentina Toneva, Department of Plant Physiology and Plant Molecular Biology, University of Plovdiv, 24 Tsar Assen str., Plovdiv 4000, Bulgaria e-mail:
| | - Alisdair R. Fernie
- Department Willmitzer, Max Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | - Tsanko S. Gechev
- Department of Plant Physiology and Plant Molecular Biology, University of PlovdivPlovdiv, Bulgaria
- Institute of Molecular Biology and BiotechnologyPlovdiv, Bulgaria
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of PotsdamPotsdam, Germany
| |
Collapse
|
157
|
Yobi A, Wone BWM, Xu W, Alexander DC, Guo L, Ryals JA, Oliver MJ, Cushman JC. Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of Selaginella reveals insights into the resurrection trait. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:983-99. [PMID: 23061970 DOI: 10.1111/tpj.12008] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Spike mosses (Selaginellaceae) represent an ancient lineage of vascular plants in which some species have evolved desiccation tolerance (DT). A sister-group contrast to reveal the metabolic basis of DT was conducted between a desiccation-tolerant species, Selaginella lepidophylla, and a desiccation-sensitive species, Selaginella moellendorffii, at 100% relative water content (RWC) and 50% RWC using non-biased, global metabolomics profiling technology, based on GC/MS and UHLC/MS/MS(2) platforms. A total of 301 metabolites, including 170 named (56.5%) and 131 (43.5%) unnamed compounds, were characterized across both species. S. lepidophylla retained significantly higher abundances of sucrose, mono- and polysaccharides, and sugar alcohols than did S. moellendorffii. Aromatic amino acids, the well-known osmoprotectant betaine and flavonoids were also more abundant in S. lepidophylla. Notably, levels of γ-glutamyl amino acid, linked with glutathione metabolism in the detoxification of reactive oxygen species, and with possible nitrogen remobilization following rehydration, were markedly higher in S. lepidophylla. Markers for lipoxygenase activity were also greater in S. lepidophylla, especially at 50% RWC. S. moellendorffii contained more than twice the number of unnamed compounds, with only a slightly greater abundance than in S. lepidophylla. In contrast, S. lepidophylla contained 14 unnamed compounds of fivefold or greater abundance than in S. moellendorffii, suggesting that these compounds might play critical roles in DT. Overall, S. lepidophylla appears poised to tolerate desiccation in a constitutive manner using a wide range of metabolites with some inducible components, whereas S. moellendorffii mounts only limited metabolic responses to dehydration stress.
Collapse
Affiliation(s)
- Abou Yobi
- Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557-0330, USADepartment of Biological Sciences, University of Nevada, Reno, NV 89557-0314, USAMetabolon Inc., 800 Capitola Drive, Suite 1, Durham, NC 27713, USAU.S. Department of Agriculture-Agricultural Research Service, Plant Genetic Research Unit, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Yobi A, Wone BWM, Xu W, Alexander DC, Guo L, Ryals JA, Oliver MJ, Cushman JC. Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of Selaginella reveals insights into the resurrection trait. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012. [PMID: 23061970 DOI: 10.1111/tpj.12008 [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Spike mosses (Selaginellaceae) represent an ancient lineage of vascular plants in which some species have evolved desiccation tolerance (DT). A sister-group contrast to reveal the metabolic basis of DT was conducted between a desiccation-tolerant species, Selaginella lepidophylla, and a desiccation-sensitive species, Selaginella moellendorffii, at 100% relative water content (RWC) and 50% RWC using non-biased, global metabolomics profiling technology, based on GC/MS and UHLC/MS/MS(2) platforms. A total of 301 metabolites, including 170 named (56.5%) and 131 (43.5%) unnamed compounds, were characterized across both species. S. lepidophylla retained significantly higher abundances of sucrose, mono- and polysaccharides, and sugar alcohols than did S. moellendorffii. Aromatic amino acids, the well-known osmoprotectant betaine and flavonoids were also more abundant in S. lepidophylla. Notably, levels of γ-glutamyl amino acid, linked with glutathione metabolism in the detoxification of reactive oxygen species, and with possible nitrogen remobilization following rehydration, were markedly higher in S. lepidophylla. Markers for lipoxygenase activity were also greater in S. lepidophylla, especially at 50% RWC. S. moellendorffii contained more than twice the number of unnamed compounds, with only a slightly greater abundance than in S. lepidophylla. In contrast, S. lepidophylla contained 14 unnamed compounds of fivefold or greater abundance than in S. moellendorffii, suggesting that these compounds might play critical roles in DT. Overall, S. lepidophylla appears poised to tolerate desiccation in a constitutive manner using a wide range of metabolites with some inducible components, whereas S. moellendorffii mounts only limited metabolic responses to dehydration stress.
Collapse
Affiliation(s)
- Abou Yobi
- Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557-0330, USADepartment of Biological Sciences, University of Nevada, Reno, NV 89557-0314, USAMetabolon Inc., 800 Capitola Drive, Suite 1, Durham, NC 27713, USAU.S. Department of Agriculture-Agricultural Research Service, Plant Genetic Research Unit, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Ren M, Venglat P, Qiu S, Feng L, Cao Y, Wang E, Xiang D, Wang J, Alexander D, Chalivendra S, Logan D, Mattoo A, Selvaraj G, Datla R. Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis. THE PLANT CELL 2012; 24:4850-74. [PMID: 23275579 PMCID: PMC3556962 DOI: 10.1105/tpc.112.107144] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Target of Rapamycin (TOR) is a major nutrition and energy sensor that regulates growth and life span in yeast and animals. In plants, growth and life span are intertwined not only with nutrient acquisition from the soil and nutrition generation via photosynthesis but also with their unique modes of development and differentiation. How TOR functions in these processes has not yet been determined. To gain further insights, rapamycin-sensitive transgenic Arabidopsis thaliana lines (BP12) expressing yeast FK506 Binding Protein12 were developed. Inhibition of TOR in BP12 plants by rapamycin resulted in slower overall root, leaf, and shoot growth and development leading to poor nutrient uptake and light energy utilization. Experimental limitation of nutrient availability and light energy supply in wild-type Arabidopsis produced phenotypes observed with TOR knockdown plants, indicating a link between TOR signaling and nutrition/light energy status. Genetic and physiological studies together with RNA sequencing and metabolite analysis of TOR-suppressed lines revealed that TOR regulates development and life span in Arabidopsis by restructuring cell growth, carbon and nitrogen metabolism, gene expression, and rRNA and protein synthesis. Gain- and loss-of-function Ribosomal Protein S6 (RPS6) mutants additionally show that TOR function involves RPS6-mediated nutrition and light-dependent growth and life span in Arabidopsis.
Collapse
Affiliation(s)
- Maozhi Ren
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Prakash Venglat
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Shuqing Qiu
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Li Feng
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Yongguo Cao
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Edwin Wang
- Computational Chemistry and Bioinformatics Group, Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec H4P 2R2, Canada
| | - Daoquan Xiang
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Jinghe Wang
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | | | | | - David Logan
- Université d’Angers, Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, LUNAM Université, Angers cedex 1, France
| | - Autar Mattoo
- Sustainable Agricultural Systems Laboratory, U.S. Department of Agriculture–Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, Maryland 20705-2350
| | - Gopalan Selvaraj
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Raju Datla
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
- Address correspondence to
| |
Collapse
|
160
|
Gechev TS, Dinakar C, Benina M, Toneva V, Bartels D. Molecular mechanisms of desiccation tolerance in resurrection plants. Cell Mol Life Sci 2012; 69:3175-86. [PMID: 22833170 PMCID: PMC11114980 DOI: 10.1007/s00018-012-1088-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
Abstract
Resurrection plants are a small but diverse group of land plants characterized by their tolerance to extreme drought or desiccation. They have the unique ability to survive months to years without water, lose most of the free water in their vegetative tissues, fall into anabiosis, and, upon rewatering, quickly regain normal activity. Thus, they are fundamentally different from other drought-surviving plants such as succulents or ephemerals, which cope with drought by maintaining higher steady state water potential or via a short life cycle, respectively. This review describes the unique physiological and molecular adaptations of resurrection plants enabling them to withstand long periods of desiccation. The recent transcriptome analysis of Craterostigma plantagineum and Haberlea rhodopensis under drought, desiccation, and subsequent rehydration revealed common genetic pathways with other desiccation-tolerant species as well as unique genes that might contribute to the outstanding desiccation tolerance of the two resurrection species. While some of the molecular responses appear to be common for both drought stress and desiccation, resurrection plants also possess genes that are highly induced or repressed during desiccation with no apparent sequence homologies to genes of other species. Thus, resurrection plants are potential sources for gene discovery. Further proteome and metabolome analyses of the resurrection plants contributed to a better understanding of molecular mechanisms that are involved in surviving severe water loss. Understanding the cellular mechanisms of desiccation tolerance in this unique group of plants may enable future molecular improvement of drought tolerance in crop plants.
Collapse
Affiliation(s)
- Tsanko S Gechev
- Department of Plant Physiology and Plant Molecular Biology, University of Plovdiv, Bulgaria.
| | | | | | | | | |
Collapse
|
161
|
Chen YZ, Pang QY, He Y, Zhu N, Branstrom I, Yan XF, Chen S. Proteomics and metabolomics of Arabidopsis responses to perturbation of glucosinolate biosynthesis. MOLECULAR PLANT 2012; 5:1138-50. [PMID: 22498773 DOI: 10.1093/mp/sss034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To understand plant molecular networks of glucosinolate metabolism, perturbation of aliphatic glucosinolate biosynthesis was established using inducible RNA interference (RNAi) in Arabidopsis. Two RNAi lines were chosen for examining global protein and metabolite changes using complementary proteomics and metabolomics approaches. Proteins involved in metabolism including photosynthesis and hormone metabolism, protein binding, energy, stress, and defense showed marked responses to glucosinolate perturbation. In parallel, metabolomics revealed major changes in the levels of amino acids, carbohydrates, peptides, and hormones. The metabolomics data were correlated with the proteomics results and revealed intimate molecular connections between cellular pathways/processes and glucosinolate metabolism. This study has provided an unprecedented view of the molecular networks of glucosinolate metabolism and laid a foundation towards rationale glucosinolate engineering for enhanced defense and quality.
Collapse
Affiliation(s)
- Ya-zhou Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
162
|
Molecular mechanisms of desiccation tolerance in resurrection plants. CELLULAR AND MOLECULAR LIFE SCIENCES : CMLS 2012. [PMID: 22833170 DOI: 10.1007/s00018‐012‐1088‐0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Resurrection plants are a small but diverse group of land plants characterized by their tolerance to extreme drought or desiccation. They have the unique ability to survive months to years without water, lose most of the free water in their vegetative tissues, fall into anabiosis, and, upon rewatering, quickly regain normal activity. Thus, they are fundamentally different from other drought-surviving plants such as succulents or ephemerals, which cope with drought by maintaining higher steady state water potential or via a short life cycle, respectively. This review describes the unique physiological and molecular adaptations of resurrection plants enabling them to withstand long periods of desiccation. The recent transcriptome analysis of Craterostigma plantagineum and Haberlea rhodopensis under drought, desiccation, and subsequent rehydration revealed common genetic pathways with other desiccation-tolerant species as well as unique genes that might contribute to the outstanding desiccation tolerance of the two resurrection species. While some of the molecular responses appear to be common for both drought stress and desiccation, resurrection plants also possess genes that are highly induced or repressed during desiccation with no apparent sequence homologies to genes of other species. Thus, resurrection plants are potential sources for gene discovery. Further proteome and metabolome analyses of the resurrection plants contributed to a better understanding of molecular mechanisms that are involved in surviving severe water loss. Understanding the cellular mechanisms of desiccation tolerance in this unique group of plants may enable future molecular improvement of drought tolerance in crop plants.
Collapse
|
163
|
Ruan CJ, Rumpunen K, Nybom H. Advances in improvement of quality and resistance in a multipurpose crop: sea buckthorn. Crit Rev Biotechnol 2012; 33:126-44. [PMID: 22676076 DOI: 10.3109/07388551.2012.676024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sea buckthorn is a berry crop with multiple uses. The berries are highly appreciated for their unique taste but are also very rich in bioactive compounds with powerful nutritional and medicinal values. In addition, the plants grow well under adverse conditions, and are often used to fight soil erosion. Utilization of sea buckthorn has therefore increased around the world but serious problems have, nevertheless, been encountered due to drought, salinity, diseases and insect pests. This review covers important aspects of sea buckthorn research, such as heritable and environmentally induced variation in biochemical compounds, causes and effects of the devastating dried-shrink disease, susceptibility to insect pests, methods for conventional breeding, and the utilization of DNA markers for taxonomical and population genetic analyses, and for investigating the inheritance of quality and resistance traits. We also present possibilities to implement innovative biotechnological breeding methods, especially metabolite profiling and MAS/GRC-based markers, for fast and efficient development of elite genotypes with specific nutritional- and health-related bioactive compounds and strong resistance to biotic and abiotic stress.
Collapse
Affiliation(s)
- Cheng-Jiang Ruan
- Institute of Bio-Resources, Dalian Nationalities University, Dalian City, Liaoning, China
| | | | | |
Collapse
|
164
|
Xu YZ, Santamaria RDLR, Virdi KS, Arrieta-Montiel MP, Razvi F, Li S, Ren G, Yu B, Alexander D, Guo L, Feng X, Dweikat IM, Clemente TE, Mackenzie SA. The chloroplast triggers developmental reprogramming when mutS HOMOLOG1 is suppressed in plants. PLANT PHYSIOLOGY 2012; 159:710-20. [PMID: 22496509 PMCID: PMC3375936 DOI: 10.1104/pp.112.196055] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/06/2012] [Indexed: 05/20/2023]
Abstract
Multicellular eukaryotes demonstrate nongenetic, heritable phenotypic versatility in their adaptation to environmental changes. This inclusive inheritance is composed of interacting epigenetic, maternal, and environmental factors. Yet-unidentified maternal effects can have a pronounced influence on plant phenotypic adaptation to changing environmental conditions. To explore the control of phenotypy in higher plants, we examined the effect of a single plant nuclear gene on the expression and transmission of phenotypic variability in Arabidopsis (Arabidopsis thaliana). MutS HOMOLOG1 (MSH1) is a plant-specific nuclear gene product that functions in both mitochondria and plastids to maintain genome stability. RNA interference suppression of the gene elicits strikingly similar programmed changes in plant growth pattern in six different plant species, changes subsequently heritable independent of the RNA interference transgene. The altered phenotypes reflect multiple pathways that are known to participate in adaptation, including altered phytohormone effects for dwarfed growth and reduced internode elongation, enhanced branching, reduced stomatal density, altered leaf morphology, delayed flowering, and extended juvenility, with conversion to perennial growth pattern in short days. Some of these effects are partially reversed with the application of gibberellic acid. Genetic hemicomplementation experiments show that this phenotypic plasticity derives from changes in chloroplast state. Our results suggest that suppression of MSH1, which occurs under several forms of abiotic stress, triggers a plastidial response process that involves nongenetic inheritance.
Collapse
|
165
|
Kueger S, Steinhauser D, Willmitzer L, Giavalisco P. High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:39-50. [PMID: 22449042 DOI: 10.1111/j.1365-313x.2012.04902.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The main goal of metabolomics is the comprehensive qualitative and quantitative analysis of the time- and space-resolved distribution of all metabolites present in a given biological system. Because metabolite structures, in contrast to transcript and protein sequences, are not directly deducible from the genomic DNA sequence, the massive increase in genomic information is only indirectly of use to metabolomics, leaving compound annotation as a key problem to be solved by the available analytical techniques. Furthermore, as metabolites vary widely in both concentration and chemical behavior, there is no single analytical procedure allowing the unbiased and comprehensive structural elucidation and determination of all metabolites present in a given biological system. In this review the different approaches for targeted and non-targeted metabolomics analysis will be described with special emphasis on mass spectrometry-based techniques. Particular attention is given to approaches which can be employed for the annotation of unknown compounds. In the second part, the different experimental approaches aimed at tissue-specific or subcellular analysis of metabolites are discussed including a range of non-mass spectrometry based technologies.
Collapse
Affiliation(s)
- Stephan Kueger
- Botanical Institute II, University of Cologne, Zülpicherstrasse 47b, Cologne, Germany
| | | | | | | |
Collapse
|
166
|
Saeed M, Dahab AHA, Wangzhen G, Tianzhen Z. A cascade of recently discovered molecular mechanisms involved in abiotic stress tolerance of plants. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:188-99. [PMID: 22433075 DOI: 10.1089/omi.2011.0109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Today, agriculture is facing a tremendous threat from the climate change menace. As human survival is dependent on a constant supply of food from plants as the primary producers, we must aware of the underlying molecular mechanisms that plants have acquired as a result of molecular evolution to cope this rapidly changing environment. This understanding will help us in designing programs aimed at developing crop plant cultivars best suited to our needs of a sustainable agriculture. The field of systems biology is rapidly progressing, and new insight is coming out about the molecular mechanisms involved in abiotic stress tolerance. There is a cascade of changes in transcriptome, proteome, and metabolome of plants during these stress responses. We have tried to cover most pronounced recent developments in the field of "omics" related to abiotic stress tolerance of plants. These changes are very coordinated, and often there is crosstalk between different components of stress tolerance. The functions of various molecular entities are becoming more clear and being associated with more precise biological phenomenon.
Collapse
Affiliation(s)
- Muhammad Saeed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | | | | | | |
Collapse
|
167
|
Jogaiah S, Govind SR, Tran LSP. Systems biology-based approaches toward understanding drought tolerance in food crops. Crit Rev Biotechnol 2012; 33:23-39. [PMID: 22364373 DOI: 10.3109/07388551.2012.659174] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Economically important crops, such as maize, wheat, rice, barley, and other food crops are affected by even small changes in water potential at important growth stages. Developing a comprehensive understanding of host response to drought requires a global view of the complex mechanisms involved. Research on drought tolerance has generally been conducted using discipline-specific approaches. However, plant stress response is complex and interlinked to a point where discipline-specific approaches do not give a complete global analysis of all the interlinked mechanisms. Systems biology perspective is needed to understand genome-scale networks required for building long-lasting drought resistance. Network maps have been constructed by integrating multiple functional genomics data with both model plants, such as Arabidopsis thaliana, Lotus japonicus, and Medicago truncatula, and various food crops, such as rice and soybean. Useful functional genomics data have been obtained from genome-wide comparative transcriptome and proteome analyses of drought responses from different crops. This integrative approach used by many groups has led to identification of commonly regulated signaling pathways and genes following exposure to drought. Combination of functional genomics and systems biology is very useful for comparative analysis of other food crops and has the ability to develop stable food systems worldwide. In addition, studying desiccation tolerance in resurrection plants will unravel how combination of molecular genetic and metabolic processes interacts to produce a resurrection phenotype. Systems biology-based approaches have helped in understanding how these individual factors and mechanisms (biochemical, molecular, and metabolic) "interact" spatially and temporally. Signaling network maps of such interactions are needed that can be used to design better engineering strategies for improving drought tolerance of important crop species.
Collapse
Affiliation(s)
- Sudisha Jogaiah
- Downy Mildew Research Laboratory, Department of Studies in Biotechnology, University of Mysore, Mysore, Karnataka, India
| | | | | |
Collapse
|