151
|
Kao PH, Baiya S, Lai ZY, Huang CM, Jhan LH, Lin CJ, Lai YS, Kao CF. An advanced systems biology framework of feature engineering for cold tolerance genes discovery from integrated omics and non-omics data in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:1019709. [PMID: 36247545 PMCID: PMC9562094 DOI: 10.3389/fpls.2022.1019709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Soybean is sensitive to low temperatures during the crop growing season. An urgent demand for breeding cold-tolerant cultivars to alleviate the production loss is apparent to cope with this scenario. Cold-tolerant trait is a complex and quantitative trait controlled by multiple genes, environmental factors, and their interaction. In this study, we proposed an advanced systems biology framework of feature engineering for the discovery of cold tolerance genes (CTgenes) from integrated omics and non-omics (OnO) data in soybean. An integrative pipeline was introduced for feature selection and feature extraction from different layers in the integrated OnO data using data ensemble methods and the non-parameter random forest prioritization to minimize uncertainties and false positives for accuracy improvement of results. In total, 44, 143, and 45 CTgenes were identified in short-, mid-, and long-term cold treatment, respectively, from the corresponding gene-pool. These CTgenes outperformed the remaining genes, the random genes, and the other candidate genes identified by other approaches in an independent RNA-seq database. Furthermore, we applied pathway enrichment and crosstalk network analyses to uncover relevant physiological pathways with the discovery of underlying cold tolerance in hormone- and defense-related modules. Our CTgenes were validated by using 55 SNP genotype data of 56 soybean samples in cold tolerance experiments. This suggests that the CTgenes identified from our proposed systematic framework can effectively distinguish cold-resistant and cold-sensitive lines. It is an important advancement in the soybean cold-stress response. The proposed pipelines provide an alternative solution to biomarker discovery, module discovery, and sample classification underlying a particular trait in plants in a robust and efficient way.
Collapse
Affiliation(s)
- Pei-Hsiu Kao
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Supaporn Baiya
- Department of Resource and Environment, Faculty of Science at Sriracha, Kasetsart University, Sriracha, Thailand
| | - Zheng-Yuan Lai
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Min Huang
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Li-Hsin Jhan
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Chian-Jiun Lin
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Ya-Syuan Lai
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Feng Kao
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
152
|
Lu J, Chen H, Yang Z, Sun S, Luo Q, Xie J, Tan J. Physiological and molecular mechanisms of the response of roots of Pinus massoniana Lamb. to low-temperature stress. FRONTIERS IN PLANT SCIENCE 2022; 13:954324. [PMID: 36247576 PMCID: PMC9554314 DOI: 10.3389/fpls.2022.954324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Pinus massoniana Lamb. is the timber species with the widest distribution and the largest afforestation area in China, providing a large amount of timber, turpentine and ecological products. but low temperature limits its growth and geographical distribution. Physiological and molecular studies can well explain the mechanism of P. massoniana response to low temperature. In this study, physiological and biochemical indexes, cell morphology, lignin content, gene regulatory networks, and gene expression patterns of different P. massoniana varieties (cold-tolerant and cold-sensitive) were studied from physiological, biochemical, and molecular perspectives. The results indicated that under low-temperature stress, the cold-tolerant cultivar maintained high contents of osmoregulatory substances, and the root morphology and structure remained intact. In the initial stage of low-temperature stress, the number of differentially expressed genes was 7148, and with the extension of stress time, the number of differentially expressed genes decreased to 1991. P. massoniana might direct its responses to low temperature by regulating phenylpropane metabolism, starch and sucrose metabolism, hormone signaling pathways, and transcription factors. BAM, 4CL, CCoAOMT, PRX5, WRKYs, and hormone synthesis related genes play important roles. P. massoniana cultivars may vary in response mechanisms. In this study, physiological and analytical techniques were used to study the root tip response mechanism of Masson's pine to low temperature stress. The results of this study lay a foundation for in-depth research on the molecular functions of P. massoniana under low-temperature stress conditions.
Collapse
Affiliation(s)
- Jingyu Lu
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning, China
| | - Hu Chen
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning, China
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Nanning, China
- Masson Pine Engineering Research Center of the State Forestry Administration, Nanning, China
- Masson Pine Engineering Research Center of Guangxi, Nanning, China
| | - Zhangqi Yang
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning, China
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Nanning, China
- Masson Pine Engineering Research Center of the State Forestry Administration, Nanning, China
- Masson Pine Engineering Research Center of Guangxi, Nanning, China
| | - Shuang Sun
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning, China
| | - Qunfeng Luo
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning, China
- Masson Pine Engineering Research Center of the State Forestry Administration, Nanning, China
| | - Junkang Xie
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning, China
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Nanning, China
| | - Jianhui Tan
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning, China
- Masson Pine Engineering Research Center of Guangxi, Nanning, China
| |
Collapse
|
153
|
Shi W, Riemann M, Rieger SM, Nick P. Cold-Induced Nuclear Import of CBF4 Regulates Freezing Tolerance. Int J Mol Sci 2022; 23:ijms231911417. [PMID: 36232718 PMCID: PMC9570231 DOI: 10.3390/ijms231911417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
C-repeat binding factors (CBFs) are crucial transcriptional activators in plant responses to low temperature. CBF4 differs in its slower, but more persistent regulation and its role in cold acclimation. Cold acclimation has accentuated relevance for tolerance to late spring frosts as they have become progressively more common, as a consequence of blurred seasonality in the context of global climate change. In the current study, we explore the functions of CBF4 from grapevine, VvCBF4. Overexpression of VvCBF4 fused to GFP in tobacco BY-2 cells confers cold tolerance. Furthermore, this protein shuttles from the cytoplasm to the nucleus in response to cold stress, associated with an accumulation of transcripts for other CBFs and the cold responsive gene, ERD10d. This response differs for chilling as compared to freezing and is regulated differently by upstream signalling involving oxidative burst, proteasome activity and jasmonate synthesis. The difference between chilling and freezing is also seen in the regulation of the CBF4 transcript in leaves from different grapevines differing in their cold tolerance. Therefore, we propose the quality of cold stress is transduced by different upstream signals regulating nuclear import and, thus, the transcriptional activation of grapevine CBF4.
Collapse
|
154
|
Li Y, Wang M, Guo T, Li S, Teng K, Dong D, Liu Z, Jia C, Chao Y, Han L. Overexpression of abscisic acid-insensitive gene ABI4 from Medicago truncatula, which could interact with ABA2, improved plant cold tolerance mediated by ABA signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:982715. [PMID: 36212309 PMCID: PMC9545351 DOI: 10.3389/fpls.2022.982715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
ABI4 is considered an important transcription factor with multiple regulatory functions involved in many biological events. However, its role in abiotic stresses, especially low-temperature-induced stress, is poorly understood. In this study, the MtABI4 gene was derived from M. truncatula, a widely used forage grass. Analysis of subcellular localization indicated that ABI4 was localized in the nucleus. Identification of expression characteristics showed that ABI4 was involved in the regulatory mechanisms of multiple hormones and could be induced by the low temperature. IP-MS assay revealed that MtABI4 protein could interact with xanthoxin dehydrogenase protein (ABA2). The two-hybrid yeast assay and the biomolecular fluorescence complementarity assay further supported this finding. Expression analysis demonstrated that overexpression of MtABI4 induced an increase in ABA2 gene expression both in M. truncatula and Arabidopsis, which in turn increased the ABA level in transgenic plants. In addition, the transgenic lines with the overexpression of MtABI4 exhibited enhanced tolerance to low temperature, including lower malondialdehyde content, electrical conductivity, and cell membrane permeability, compared with the wide-type lines after being cultivated for 5 days in 4°C. Gene expression and enzyme activities of the antioxidant system assay revealed the increased activities of SOD, CAT, MDHAR, and GR, and higher ASA/DHA ratio and GSH/GSSG ratio in transgenic lines. Additionally, overexpression of ABI4 also induced the expression of members of the Inducer of CBF expression genes (ICEs)-C-repeat binding transcription factor genes(CBFs)-Cold regulated genes (CORs) low-temperature response module. In summary, under low-temperature conditions, overexpression of ABI4 could enhance the content of endogenous ABA in plants through interactions with ABA2, which in turn reduced low-temperature damage in plants. This provides a new perspective for further understanding the molecular regulatory mechanism of plant response to low temperature and the improvement of plant cold tolerance.
Collapse
Affiliation(s)
- Yinruizhi Li
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Mengdi Wang
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Tao Guo
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing Landscape and Gardening Research Institute, Chongqing, China
| | - Shuwen Li
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Ke Teng
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Di Dong
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Zhuocheng Liu
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Chenyan Jia
- Inner Mongolia Mengcao Ecological Environment (Group) Co., Ltd., Hohhot, China
| | - Yuehui Chao
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Liebao Han
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| |
Collapse
|
155
|
Outcomes of Low-Temperature Stress on Biological Alterations within Pothos (Epipremnum aureum) Leaves. Life (Basel) 2022; 12:life12091432. [PMID: 36143467 PMCID: PMC9506535 DOI: 10.3390/life12091432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Pothos (Epipremnum aureum) is a commonly used indoor ornamental foliage, particularly in the middle and lower regions of the Yangtze River in China. It typically grows in the tropical area, and it is yet unclear whether prolonged winter temperatures cause plant damage and impact its development. In this study, the E. aureum chilling injury response was explored by maintaining it at 1 °C. Based on the acquired results, low-temperature stress (LTS) induced wilting and yellowing of leaves and diminished chloroplast pigment concentrations, particularly the chlorophyll b content. LTS also induced overproduction of reactive oxygen species (ROS) within E. aureum and enhanced the relative electrical conductivity and superoxide dismutase activity. In addition, with prolonged LTS, the anatomical structure of E. aureum was severely damaged, resulting in a marked reduction in the photochemical activity of the photosystem Ⅱ reaction center and suppressed photosynthesis. Moreover, results of the transcriptomic analysis revealed that LTS induced the expression of genes involved in the α-linolenic acid metabolic pathway, plant hormone network, host plant–pathogen association, and MAPK axis, suggesting that LTS would activate its resistant response to cold stress. These results unraveled the physiological and transcriptomical response of E. aureum to chilling injury, which would lay a theoretical foundation for the cultivation of low-temperature-tolerant varieties of E. aureum.
Collapse
|
156
|
Liu S, Li T, Fang S, Zhang P, Yi D, Cong B, Zhang Z, Zhao L. Metabolic profiling and gene expression analyses provide insights into cold adaptation of an Antarctic moss Pohlia nutans. FRONTIERS IN PLANT SCIENCE 2022; 13:1006991. [PMID: 36176693 PMCID: PMC9514047 DOI: 10.3389/fpls.2022.1006991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Antarctica is the coldest, driest, and most windy continent on earth. The major terrestrial vegetation consists of cryptogams (mosses and lichens) and two vascular plant species. However, the molecular mechanism of cold tolerance and relevant regulatory networks were largely unknown in these Antarctic plants. Here, we investigated the global alterations in metabolites and regulatory pathways of an Antarctic moss (Pohlia nutans) under cold stress using an integrated multi-omics approach. We found that proline content and several antioxidant enzyme activities were significantly increased in P. nutans under cold stress, but the contents of chlorophyll and total flavonoids were markedly decreased. A total of 559 metabolites were detected using ultra high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). We observed 39 and 71 differentially changed metabolites (DCMs) after 24 h and 60 h cold stress, indicating that several major pathways were differentially activated for producing fatty acids, alkaloids, flavonoids, terpenoids, and phenolic acids. In addition, the quantitative transcriptome sequencing was conducted to uncover the global transcriptional profiles of P. nutans under cold stress. The representative differentially expressed genes (DEGs) were identified and summarized to the function including Ca2+ signaling, ABA signaling, jasmonate signaling, fatty acids biosynthesis, flavonoid biosynthesis, and other biological processes. The integrated dataset analyses of metabolome and transcriptome revealed that jasmonate signaling, auxin signaling, very-long-chain fatty acids and flavonoid biosynthesis pathways might contribute to P. nutans acclimating to cold stress. Overall, these observations provide insight into Antarctic moss adaptations to polar habitats and the impact of global climate change on Antarctic plants.
Collapse
Affiliation(s)
- Shenghao Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| | - Tingting Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Shuo Fang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Pengying Zhang
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Qingdao, China
| | - Dan Yi
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Bailin Cong
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| | - Zhaohui Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Linlin Zhao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| |
Collapse
|
157
|
Wang Y, Li N, Zhan J, Wang X, Zhou XR, Shi J, Wang H. Genome-wide analysis of the JAZ subfamily of transcription factors and functional verification of BnC08.JAZ1-1 in Brassica napus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:93. [PMID: 36096884 PMCID: PMC9469596 DOI: 10.1186/s13068-022-02192-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/30/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND JAZ subfamily plays crucial roles in growth and development, stress, and hormone responses in various plant species. Despite its importance, the structural and functional analyses of the JAZ subfamily in Brassica napus are still limited. RESULTS Comparing to the existence of 12 JAZ genes (AtJAZ1-AtJAZ12) in Arabidopsis, there are 28, 31, and 56 JAZ orthologues in the reference genome of B. rapa, B. oleracea, and B. napus, respectively, in accordance with the proven triplication events during the evolution of Brassicaceae. The phylogenetic analysis showed that 127 JAZ proteins from A. thaliana, B. rapa, B. oleracea, and B. napus could fall into five groups. The structure analysis of all 127 JAZs showed that these proteins have the common motifs of TIFY and Jas, indicating their conservation in Brassicaceae species. In addition, the cis-element analysis showed that the main motif types are related to phytohormones, biotic and abiotic stresses. The qRT-PCR of the representative 11 JAZ genes in B. napus demonstrated that different groups of BnJAZ individuals have distinct patterns of expression under normal conditions or treatments with distinctive abiotic stresses and phytohormones. Especially, the expression of BnJAZ52 (BnC08.JAZ1-1) was significantly repressed by abscisic acid (ABA), gibberellin (GA), indoleacetic acid (IAA), polyethylene glycol (PEG), and NaCl treatments, while induced by methyl jasmonate (MeJA), cold and waterlogging. Expression pattern analysis showed that BnC08.JAZ1-1 was mainly expressed in the vascular bundle and young flower including petal, pistil, stamen, and developing ovule, but not in the stem, leaf, and mature silique and seed. Subcellular localization showed that the protein was localized in the nucleus, in line with its orthologues in Arabidopsis. Overexpression of BnC08.JAZ1-1 in Arabidopsis resulted in enhanced seed weight, likely through regulating the expression of the downstream response genes involved in the ubiquitin-proteasome pathway and phospholipid metabolism pathway. CONCLUSIONS The systematic identification, phylogenetic, syntenic, and expression analyses of BnJAZs subfamily improve our understanding of their roles in responses to stress and phytohormone in B. napus. In addition, the preliminary functional validation of BnC08.JAZ1-1 in Arabidopsis demonstrated that this subfamily might also play a role in regulating seed weight.
Collapse
Affiliation(s)
- Ying Wang
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Na Li
- grid.464499.2The Laboratory of Melon Crops, Zhengzhou Fruit Research Institute of the Chinese Academy of Agricultural Sciences, Zhengzhou, Henan Province China
| | - Jiepeng Zhan
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xinfa Wang
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| | - Xue-Rong Zhou
- grid.1016.60000 0001 2173 2719Commonwealth Scientific & Industrial Research Organisation (CSIRO) Agriculture &Food, Canberra, ACT Australia
| | - Jiaqin Shi
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Hanzhong Wang
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
158
|
Chen Y, Kim P, Kong L, Wang X, Tan W, Liu X, Chen Y, Yang J, Chen B, Song Y, An Z, Min Phyon J, Zhang Y, Ding B, Kawabata S, Li Y, Wang Y. A dual-function transcription factor, SlJAF13, promotes anthocyanin biosynthesis in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5559-5580. [PMID: 35552695 DOI: 10.1093/jxb/erac209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/09/2022] [Indexed: 05/27/2023]
Abstract
Unlike modern tomato (Solanum lycopersicum) cultivars, cv. LA1996 harbors the dominant Aft allele, which is associated with anthocyanin synthesis in tomato fruit peel. However, the control of Aft anthocyanin biosynthesis remains unclear. Here, we used ethyl methanesulfonate-induced and CRISPR/Cas9-mediated mutation of LA1996 to show, respectively, that two class IIIf basic helix-loop-helix (bHLH) transcription factors, SlJAF13 and SlAN1, are involved in the control of anthocyanin synthesis. These transcription factors are key components of the MYB-bHLH-WD40 (MBW) complex, which positively regulates anthocyanin synthesis. Molecular and genetic analyses showed that SlJAF13 functions as an upstream activation factor of SlAN1 by binding directly to the G-Box motif of its promoter region. On the other hand, SlJAZ2, a JA signaling repressor, interferes with formation of the MBW complex to suppress anthocyanin synthesis by directly binding these two bHLH components. Unexpectedly, the transcript level of SlJAZ2 was in turn repressed in a SlJAF13-dependent manner. Mechanistically, SlJAF13 interacts with SlMYC2, inhibiting SlMYC2 activation of SlJAZ2 transcription, thus constituting a negative feedback loop governing anthocyanin accumulation. Taken together, our findings support a sophisticated regulatory network, in which SlJAF13 acts as an upstream dual-function regulator that fine tunes anthocyanin biosynthesis in tomato.
Collapse
Affiliation(s)
- Yunzhu Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Pyol Kim
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Lingzhe Kong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xin Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Wei Tan
- Horticultural Sub-academy of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
| | - Xin Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yuansen Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Jianfei Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Bowei Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yuxin Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Zeyu An
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Jong Min Phyon
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yang Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Bing Ding
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Saneyuki Kawabata
- Institute for Sustainable Agroecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Midoricho, Nishitokyo, Tokyo, 188-0002, Japan
| | - Yuhua Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
159
|
Liu Z, Li Z, Wu S, Yu C, Wang X, Wang Y, Peng Z, Gao Y, Li R, Shen Y, Duan L. Coronatine Enhances Chilling Tolerance of Tomato Plants by Inducing Chilling-Related Epigenetic Adaptations and Transcriptional Reprogramming. Int J Mol Sci 2022; 23:10049. [PMID: 36077443 PMCID: PMC9456409 DOI: 10.3390/ijms231710049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Low temperature is an important environmental factor limiting the widespread planting of tropical and subtropical crops. The application of plant regulator coronatine, which is an analog of Jasmonic acid (JA), is an effective approach to enhancing crop's resistance to chilling stress and other abiotic stresses. However, the function and mechanism of coronatine in promoting chilling resistance of tomato is unknown. In this study, coronatine treatment was demonstrated to significantly increase tomato chilling tolerance. Coronatine increases H3K4me3 modifications to make greater chromatin accessibility in multiple chilling-activated genes. Corresponding to that, the expression of CBFs, other chilling-responsive transcription factor (TF) genes, and JA-responsive genes is significantly induced by coronatine to trigger an extensive transcriptional reprogramming, thus resulting in a comprehensive chilling adaptation. These results indicate that coronatine enhances the chilling tolerance of tomato plants by inducing epigenetic adaptations and transcriptional reprogramming.
Collapse
Affiliation(s)
- Ziyan Liu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhuoyang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shifeng Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chunxin Yu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ye Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhen Peng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yuerong Gao
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Runzhi Li
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yuanyue Shen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Liusheng Duan
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
160
|
Zhou J, Liu C, Chen Q, Liu L, Niu S, Chen R, Li K, Sun Y, Shi Y, Yang C, Shen S, Li Y, Xing J, Yuan H, Liu X, Fang C, Fernie AR, Luo J. Integration of rhythmic metabolome and transcriptome provides insights into the transmission of rhythmic fluctuations and temporal diversity of metabolism in rice. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1794-1810. [PMID: 35287184 DOI: 10.1007/s11427-021-2064-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Various aspects of the organisms adapt to cyclically changing environmental conditions via transcriptional regulation. However, the role of rhythmicity in altering the global aspects of metabolism is poorly characterized. Here, we subjected four rice (Oryza sativa) varieties to a range of metabolic profiles and RNA-seq to investigate the temporal relationships of rhythm between transcription and metabolism. More than 40% of the rhythmic genes and a quarter of metabolites conservatively oscillated across four rice accessions. Compared with the metabolome, the transcriptome was more strongly regulated by rhythm; however, the rhythm of metabolites had an obvious opposite trend between day and night. Through association analysis, the time delay of rhythmic transmission from the transcript to the metabolite level was ∼4 h under long-day conditions, although the transmission was nearly synchronous for carbohydrate and nucleotide metabolism. The rhythmic accumulation of metabolites maintained highly coordinated temporal relationships in the metabolic network, whereas the correlation of some rhythmic metabolites, such as branched-chain amino acids (BCAAs), was significantly different intervariety. We further demonstrated that the cumulative diversity of BCAAs was due to the differential expression of branched-chain aminotransferase 2 at dawn. Our research reveals the flexible pattern of rice metabolic rhythm existing with conservation and diversity.
Collapse
Affiliation(s)
- Junjie Zhou
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Chengyuan Liu
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Qiyu Chen
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Ling Liu
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Shuying Niu
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Ridong Chen
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Kang Li
- College of Tropical Crops, Hainan University, Haikou, 570288, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China
| | - Yangyang Sun
- College of Tropical Crops, Hainan University, Haikou, 570288, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China
| | - Yuheng Shi
- College of Tropical Crops, Hainan University, Haikou, 570288, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangqian Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Junwei Xing
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Honglun Yuan
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Xianqing Liu
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Chuanying Fang
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, 144776, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, 570288, China.
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China.
| |
Collapse
|
161
|
Liu Y, Cai Y, Li Y, Zhang X, Shi N, Zhao J, Yang H. Dynamic changes in the transcriptome landscape of Arabidopsis thaliana in response to cold stress. FRONTIERS IN PLANT SCIENCE 2022; 13:983460. [PMID: 36110360 PMCID: PMC9468617 DOI: 10.3389/fpls.2022.983460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Plants must reprogram gene expression to adapt constantly changing environmental temperatures. With the increased occurrence of extremely low temperatures, the negative effects on plants, especially on growth and development, from cold stress are becoming more and more serious. In this research, strand-specific RNA sequencing (ssRNA-seq) was used to explore the dynamic changes in the transcriptome landscape of Arabidopsis thaliana exposed to cold temperatures (4°C) at different times. In total, 7,623 differentially expressed genes (DEGs) exhibited dynamic temporal changes during the cold treatments. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the DEGs were enriched in cold response, secondary metabolic processes, photosynthesis, glucosinolate biosynthesis, and plant hormone signal transduction pathways. Meanwhile, long non-coding RNAs (lncRNAs) were identified after the assembly of the transcripts, from which 247 differentially expressed lncRNAs (DElncRNAs) and their potential target genes were predicted. 3,621 differentially alternatively spliced (DAS) genes related to RNA splicing and spliceosome were identified, indicating enhanced transcriptome complexity due to the alternative splicing (AS) in the cold. In addition, 739 cold-regulated transcription factors (TFs) belonging to 52 gene families were identified as well. This research analyzed the dynamic changes of the transcriptome landscape in response to cold stress, which reveals more complete transcriptional patterns during short- and long-term cold treatment and provides new insights into functional studies of that how plants are affected by cold stress.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yajun Cai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yanzhuo Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaoling Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Nan Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jingze Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- RNA Institute, Wuhan University, Wuhan, China
| |
Collapse
|
162
|
Mishra D. A big role for a microRNA in regulating cold tolerance and hormone signaling in rice. PLANT PHYSIOLOGY 2022; 190:193-195. [PMID: 35703983 PMCID: PMC9438486 DOI: 10.1093/plphys/kiac292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
|
163
|
Li X, Liang X, Li W, Yao A, Liu W, Wang Y, Yang G, Han D. Isolation and Functional Analysis of MbCBF2, a Malus baccata (L.) Borkh CBF Transcription Factor Gene, with Functions in Tolerance to Cold and Salt Stress in Transgenic Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23179827. [PMID: 36077223 PMCID: PMC9456559 DOI: 10.3390/ijms23179827] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
CBF transcription factors (TFs) are key regulators of plant stress tolerance and play an integral role in plant tolerance to adverse growth environments. However, in the current research situation, there are few reports on the response of the CBF gene to Begonia stress. Therefore, this experiment investigated a novel CBF TF gene, named MbCBF2, which was isolated from M. baccata seedlings. According to the subcellular localization results, the MbCBF2 protein was located in the nucleus. In addition, the expression level of MbCBF2 was higher in new leaves and roots under low-temperature and high-salt induction. After the introduction of MbCBF2 into Arabidopsis thaliana, the adaptability of transgenic A. thaliana to cold and high-salt environments was significantly enhanced. In addition, the high expression of MbCBF2 can also change many physiological indicators in transgenic A. thaliana, such as increased chlorophyll and proline content, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activity, and reduced malondialdehyde (MDA) content. Therefore, it can be seen from the above results that MbCBF2 can positively regulate the response of A. thaliana to low-temperature and osmotic stress. In addition, MbCBF2 can also regulate the expression of its downstream genes in transgenic lines. It can not only positively regulate the expression of the downstream key genes AtCOR15a, AtERD10, AtRD29a/b and AtCOR6.6/47, related to cold stress at low temperatures, but can also positively regulate the expression of the downstream key genes AtNCED3, AtCAT1, AtP5CS, AtPIF1/4 and AtSnRK2.4, related to salt stress. That is, the overexpression of the MbCBF2 gene further improved the adaptability and tolerance of transgenic plants to low-temperature and high-salt environments.
Collapse
Affiliation(s)
- Xingguo Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoqi Liang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenhui Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Anqi Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wanda Liu
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
| | - Yu Wang
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
| | - Guohui Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (G.Y.); (D.H.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (G.Y.); (D.H.)
| |
Collapse
|
164
|
Huang H, Zhao W, Li C, Qiao H, Song S, Yang R, Sun L, Ma J, Ma X, Wang S. SlVQ15 interacts with jasmonate-ZIM domain proteins and SlWRKY31 to regulate defense response in tomato. PLANT PHYSIOLOGY 2022; 190:828-842. [PMID: 35689622 PMCID: PMC9434178 DOI: 10.1093/plphys/kiac275] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/06/2022] [Indexed: 06/01/2023]
Abstract
Botrytis cinerea is one of the most widely distributed and harmful pathogens worldwide. Both the phytohormone jasmonate (JA) and the VQ motif-containing proteins play crucial roles in plant resistance to B. cinerea. However, their crosstalk in resistance to B. cinerea is unclear, especially in tomato (Solanum lycopersicum). In this study, we found that the tomato VQ15 was highly induced upon B. cinerea infection and localized in the nucleus. Silencing SlVQ15 using virus-induced gene silencing reduced resistance to B. cinerea. Overexpression of SlVQ15 enhanced resistance to B. cinerea, while disruption of SlVQ15 using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9 (Cas9) technology increased susceptibility to B. cinerea. Furthermore, SlVQ15 formed homodimers. Additionally, SlVQ15 interacted with JA-ZIM domain proteins, repressors of the JA signaling pathway, and SlWRKY31. SlJAZ11 interfered with the interaction between SlVQ15 and SlWRKY31 and repressed the SlVQ15-increased transcriptional activation activity of SlWRKY31. SlVQ15 and SlWRKY31 synergistically regulated tomato resistance to B. cinerea, as silencing SlVQ15 enhanced the sensitivity of slwrky31 to B. cinerea. Taken together, our findings showed that the SlJAZ-interacting protein SlVQ15 physically interacts with SlWRKY31 to cooperatively control JA-mediated plant defense against B. cinerea.
Collapse
Affiliation(s)
| | | | | | - Hui Qiao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Susheng Song
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing 102206, China
| | - Lulu Sun
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing 102206, China
| | - Jilin Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xuechun Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | | |
Collapse
|
165
|
Zheng G, Dong X, Wei J, Liu Z, Aslam A, Cui J, Li H, Wang Y, Tian H, Cao X. Integrated methylome and transcriptome analysis unravel the cold tolerance mechanism in winter rapeseed(Brassica napus L.). BMC PLANT BIOLOGY 2022; 22:414. [PMID: 36008781 PMCID: PMC9414130 DOI: 10.1186/s12870-022-03797-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cytosine methylation, the main type of DNA methylation, regulates gene expression in plant response to environmental stress. The winter rapeseed has high economic and ecological value in China's Northwest, but the DNA methylation pattern of winter rapeseed during freezing stress remains unclear. RESULT This study integrated the methylome and transcriptome to explore the genome-scale DNA methylation pattern and its regulated pathway of winter rapeseed, using freezing-sensitive (NF) and freezing-resistant (NS) cultivars.The average methylation level decreased under freezing stress, and the decline in NF was stronger than NS after freezing stress. The CG methylation level was the highest among the three contexts of CG, CHG, and CHH. At the same time, the CHH proportion was high, and the methylation levels were highest 2 kb up/downstream, followed by the intron region. The C sub-genomes methylation level was higher than the A sub-genomes. The methylation levels of chloroplast and mitochondrial DNA were much lower than the B. napus nuclear DNA, the SINE methylation level was highest among four types of transposable elements (TEs), and the preferred sequence of DNA methylation did not change after freezing stress. A total of 1732 differentially expressed genes associated with differentially methylated genes (DMEGs) were identified in two cultivars under 12 h and 24 h in three contexts by combining whole-genome bisulfite sequencing( and RNA-Seq data. Function enrichment analysis showed that most DMEGs participated in linoleic acid metabolism, alpha-linolenic acid metabolism, carbon fixation in photosynthetic organisms, flavonoid biosynthesis, and plant hormone signal transduction pathways. Meanwhile, some DMEGs encode core transcription factors in plant response to stress. CONCLUSION Based on the findings of DNA methylation, the freezing tolerance of winter rapeseed is achieved by enhanced signal transduction, lower lipid peroxidation, stronger cell stability, increased osmolytes, and greater reactive oxygen species (ROS) scavenging. These results provide novel insights into better knowledge of the methylation regulation of tolerance mechanism in winter rapeseed under freezing stress.
Collapse
Affiliation(s)
- Guoqiang Zheng
- State Key Laboratory of Aridland Crop Sciences, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xiaoyun Dong
- State Key Laboratory of Aridland Crop Sciences, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Jiaping Wei
- State Key Laboratory of Aridland Crop Sciences, Lanzhou, China
| | - Zigang Liu
- State Key Laboratory of Aridland Crop Sciences, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Ali Aslam
- Affiliation Faculty of Agriculture and Veterinary Sciences, Superior University, Lahore, Pakistan
| | - JunMei Cui
- State Key Laboratory of Aridland Crop Sciences, Lanzhou, China
| | - Hui Li
- State Key Laboratory of Aridland Crop Sciences, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Ying Wang
- State Key Laboratory of Aridland Crop Sciences, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Haiyan Tian
- State Key Laboratory of Aridland Crop Sciences, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xiaodong Cao
- State Key Laboratory of Aridland Crop Sciences, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
166
|
Wang L, Wang S, Tong R, Wang S, Yao J, Jiao J, Wan R, Wang M, Shi J, Zheng X. Overexpression of PgCBF3 and PgCBF7 Transcription Factors from Pomegranate Enhances Freezing Tolerance in Arabidopsis under the Promoter Activity Positively Regulated by PgICE1. Int J Mol Sci 2022; 23:ijms23169439. [PMID: 36012703 PMCID: PMC9408969 DOI: 10.3390/ijms23169439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Cold stress limits plant growth, development and yields, and the C-repeat binding factors (CBFs) function in the cold resistance in plants. However, how pomegranate CBF transcription factors respond to cold signal remains unclear. Considering the significantly up-regulated expression of PgCBF3 and PgCBF7 in cold-tolerant Punica granatum ‘Yudazi’ in comparison with cold-sensitive ‘Tunisia’ under 4 °C, the present study focused on the two CBF genes. PgCBF3 was localized in the nucleus, while PgCBF7 was localized in the cell membrane, cytoplasm, and nucleus, both owning transcriptional activation activity in yeast. Yeast one-hybrid and dual-luciferase reporter assay further confirmed that PgICE1 could specifically bind to and significantly enhance the activation activity of the promoters of PgCBF3 and PgCBF7. Compared with the wild-type plants, the PgCBF3 and PgCBF7 transgenic Arabidopsis thaliana lines had the higher survival rate after cold treatment; exhibited increased the contents of soluble sugar and proline, while lower electrolyte leakage, malondialdehyde content, and reactive oxygen species production, accompanying with elevated enzyme activity of catalase, peroxidase, and superoxide dismutase; and upregulated the expression of AtCOR15A, AtCOR47, AtRD29A, and AtKIN1. Collectively, PgCBFs were positively regulated by the upstream PgICE1 and mediated the downstream COR genes expression, thereby enhancing freezing tolerance.
Collapse
|
167
|
Attenuation of Chilling Injury and Improving Antioxidant Capacity of Persimmon Fruit by Arginine Application. Foods 2022; 11:foods11162419. [PMID: 36010419 PMCID: PMC9407207 DOI: 10.3390/foods11162419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Persimmon is a climacteric perishable fruit with a short storage life. In recent years, using natural compounds that are safe for human health and environment have obtained more attention in postharvest investigations. The current research was conducted to study efficacy of postharvest L-arginine treatment at 0, 0.3, and 0.6 mM in improving chilling tolerance and maintaining the nutritional quality of persimmon fruit during low-temperature storage. According to the results, the highest weight loss (4.3%), malondialdehyde (MDA (5.8 nmol g−1 FW)), and hydrogen peroxide (H2O2 (22.33 nmol g−1 FW)) was detected in control fruit. Fruit firmness was gradually decreased during storage, but it was slower in L-arginine-treated fruit. The highest tissue firmness (3.8 kg cm−2) was noted in fruit treated with 0.6 mM L-arginine. The chilling was gradually increased during storage. Fruits treated with L-arginine showed a lower chilling injury than the control fruit. Total soluble tannin compound and antioxidant enzymes activities in persimmons declined during cold storage. L-arginine treatment significantly maintained antioxidant enzymes activity, antioxidant capacity, and total soluble tannin compounds, while L-arginine had no significant impact on titratable acidity and total soluble solids. It seems that a reduction in oxidative damage and an increase in quality of persimmon during low-temperature storage manifested several defense mechanisms induced by exogenous application of L-arginine. These findings indicated that the application of L-arginine to maintain the quality and increase postharvest life of persimmon is very useful and can be applied during cold storage.
Collapse
|
168
|
Wang DR, Zhang XW, Xu RR, Wang GL, You CX, An JP. Apple U-box-type E3 ubiquitin ligase MdPUB23 reduces cold-stress tolerance by degrading the cold-stress regulatory protein MdICE1. HORTICULTURE RESEARCH 2022; 9:uhac171. [PMID: 36247364 PMCID: PMC9557189 DOI: 10.1093/hr/uhac171] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
Cold stress limits plant growth, geographical distribution, and crop yield. The MYC-type bHLH transcription factor ICE1 is recognized as the core positive regulator of the cold-stress response. However, how ICE1 protein levels are regulated remains to be further studied. In this study, we observed that a U-box-type E3 ubiquitin ligase, MdPUB23, positively regulated the cold-stress response in apple. The expression of MdPUB23 increased at both the transcriptional and post-translational levels in response to cold stress. Overexpression of MdPUB23 in transgenic apple enhanced sensitivity to cold stress. Further study showed that MdPUB23 directly interacted with MdICE1, promoting the ubiquitination-mediated degradation of the MdICE1 protein through the 26S-proteasome pathway and reducing the MdICE1-improved cold-stress tolerance in apple. Our results reveal that MdPUB23 regulates the cold-stress response by directly mediating the stability of the positive regulator MdICE1. The PUB23-ICE1 ubiquitination module may play a role in maintaining ICE1 protein homeostasis and preventing overreactions from causing damage to plants. The discovery of the ubiquitination regulatory pathway of ICE1 provides insights for the further exploration of plant cold-stress-response mechanisms.
Collapse
Affiliation(s)
| | | | - Rui-Rui Xu
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong, College of Biology and Oceanography, Weifang University, Weifang 261061, Shandong, China
| | - Gui-Luan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | | | | |
Collapse
|
169
|
Sun M, Shen Y, Chen Y, Wang Y, Cai X, Yang J, Jia B, Dong W, Chen X, Sun X. Osa-miR1320 targets the ERF transcription factor OsERF096 to regulate cold tolerance via JA-mediated signaling. PLANT PHYSIOLOGY 2022; 189:2500-2516. [PMID: 35522026 PMCID: PMC9342977 DOI: 10.1093/plphys/kiac208] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/09/2022] [Indexed: 05/08/2023]
Abstract
MicroRNAs play key roles in abiotic stress response. Rice (Oryza sativa L.) miR1320 is a species-specific miRNA that contributes to miR168-regulated immunity. However, it is still unknown whether miR1320 is involved in rice response to abiotic stress. In this study, we illustrated that the miR1320 precursor generated two mature miR1320s, miR1320-3p, and miR1320-5p, and they both displayed decreased expression under cold stress. Genetic evidence showed that miR1320 overexpression resulted in increased cold tolerance, while miR1320 knock down (KD) reduced cold tolerance. Furthermore, an APETALA2/ethylene-responsive factor (ERF) transcription factor OsERF096 was identified as a target of miR1320 via 5'-RACE and dual luciferase assays. OsERF096 expression was altered by miR1320 overexpression and KD and exhibited an opposite pattern to that of miR1320 in different tissues and under cold stress. Consistently, OsERF096 negatively regulated cold stress tolerance. Furthermore, we suggested that OsERF096 could bind to the GCC and DRE cis-elements and act as a transcriptional activator in the nucleus. Based on RNA-sequencing and targeted metabolomics assays, we found that OsERF096 modified hormone content and signaling pathways. Finally, phenotypic and reverse transcription-quantitative PCR assays showed that jasmonic acid (JA) methyl ester application recovered the cold-sensitive phenotype and JA-activated expression of three Dehydration Responsive Element Binding genes in the OsERF096-OE line. Taken together, our results strongly suggest that the miR1320-OsERF096 module regulates cold tolerance by repressing the JA-mediated cold signaling pathway.
Collapse
Affiliation(s)
- Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yue Chen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yan Wang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaoxi Cai
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Junkai Yang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Weifeng Dong
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xi Chen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
170
|
Bulbul Ahmed M, Humayan Kabir A. Understanding of the various aspects of gene regulatory networks related to crop improvement. Gene 2022; 833:146556. [PMID: 35609798 DOI: 10.1016/j.gene.2022.146556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/14/2022] [Accepted: 05/06/2022] [Indexed: 12/30/2022]
Abstract
The hierarchical relationship between transcription factors, associated proteins, and their target genes is defined by a gene regulatory network (GRN). GRNs allow us to understand how the genotype and environment of a plant are incorporated to control the downstream physiological responses. During plant growth or environmental acclimatization, GRNs are diverse and can be differently regulated across tissue types and organs. An overview of recent advances in the development of GRN that speed up basic and applied plant research is given here. Furthermore, the overview of genome and transcriptome involving GRN research along with the exciting advancement and application are discussed. In addition, different approaches to GRN predictions were elucidated. In this review, we also describe the role of GRN in crop improvement, crop plant manipulation, stress responses, speed breeding and identifying genetic variations/locus. Finally, the challenges and prospects of GRN in plant biology are discussed.
Collapse
Affiliation(s)
- Md Bulbul Ahmed
- Plant Science Department, McGill University, 21111 lakeshore Road, Ste. Anne de Bellevue H9X3V9, Quebec, Canada; Institut de Recherche en Biologie Végétale (IRBV), University of Montreal, Montréal, Québec H1X 2B2, Canada.
| | | |
Collapse
|
171
|
Ma P, Pei T, Lv B, Wang M, Dong J, Liang Z. Functional pleiotropism, diversity, and redundancy of Salvia miltiorrhiza Bunge JAZ family proteins in jasmonate-induced tanshinone and phenolic acid biosynthesis. HORTICULTURE RESEARCH 2022; 9:uhac166. [PMID: 36204204 PMCID: PMC9531341 DOI: 10.1093/hr/uhac166] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Abstract
Jasmonate (JA) signaling regulates plant growth and development, biotic and abiotic stress tolerance, and primary and secondary metabolism biosynthesis. It is extensively modulated by JA-ZIM-domain (JAZ) family genes. In previous work, we obtained nine SmJAZ genes of Salvia miltiorrhiza and proved that SmJAZ8 was the core repressor of JA-induced tanshinone and phenolic acid biosynthesis. Here, we demonstrate that SmJAZ3 and SmJAZ4 act as repressors of JA-induced biosynthesis of tanshinones and salvianolic acid B (Sal B). This suggests that SmJAZ3/4 are functionally redundant in tanshinone and Sal B biosynthesis. SmJAZ1/2/5/6/9 are activators of JA-induced tanshinone biosynthesis and repressors of JA-induced Sal B biosynthesis. This demonstrates the redundancy and diversity of SmJAZ1/2/5/6/9 functions. Besides, SmJAZ10 inhibited JA-induced Sal B synthesis, but had no effect on the synthesis of tanshinone. Two-hybrid screening (Y2H) showed that SmJAZs formed homologous or heterogeneous dimers. Y2H and firefly luciferase complementation imaging (LCI) assays revealed that SmJAZs also formed a complex regulatory network with SmMYC2a, SmMYC2b, SmMYB39, and SmPAP1. Quantitative reverse transcription-PCR (qRT-PCR) indicated that SmJAZs regulated each other at the transcriptional level. Herein, we prove that SmJAZs have functional pleiotropism, diversity, and redundancy in JA-induced tanshinone and phenolic acid biosynthesis. This study provides an important clue for further understanding the inherent biological significance and molecular mechanisms of the JAZ family as the gene number increases during plant evolution.
Collapse
Affiliation(s)
| | | | | | - Mei Wang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | | | | |
Collapse
|
172
|
Kong H, Xia W, Hou M, Ruan N, Li J, Zhu J. Cloning and function analysis of a Saussurea involucrata LEA4 gene. FRONTIERS IN PLANT SCIENCE 2022; 13:957133. [PMID: 35928707 PMCID: PMC9343949 DOI: 10.3389/fpls.2022.957133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Late embryogenesis abundant proteins (LEA) help adapt to adverse low-temperature environments. The Saussurea involucrate SiLEA4, which encodes a membrane protein, was significantly up-regulated in response to low temperature stress. Escherichia coli expressing SiLEA4 showed enhanced low-temperature tolerance, as evident from the significantly higher survival numbers and growth rates at low temperatures. Moreover, tomato strains expressing SiLEA4 had significantly greater freezing resistance, due to a significant increase in the antioxidase activities and proline content. Furthermore, they had higher yields due to higher water utilization and photosynthetic efficiency under the same water and fertilizer conditions. Thus, expressing SiLEA4 has multiple advantages: (1) mitigating chilling injury, (2) increasing yields, and (3) water-saving, which also indicates the great potential of the SiLEA4 for breeding applications.
Collapse
Affiliation(s)
- Hui Kong
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Wenwen Xia
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Mengjuan Hou
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Nan Ruan
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Jin Li
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Jianbo Zhu
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
173
|
He J, Yao L, Pecoraro L, Liu C, Wang J, Huang L, Gao W. Cold stress regulates accumulation of flavonoids and terpenoids in plants by phytohormone, transcription process, functional enzyme, and epigenetics. Crit Rev Biotechnol 2022:1-18. [PMID: 35848841 DOI: 10.1080/07388551.2022.2053056] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Plants make different defense mechanisms in response to different environmental stresses. One common way is to produce secondary metabolites. Temperature is the main environmental factor that regulates plant secondary metabolites, especially flavonoids and terpenoids. Stress caused by temperature decreasing to 4-10 °C is conducive to the accumulation of flavonoids and terpenoids. However, the accumulation mechanism under cold stress still lacks a systematic explanation. In this review, we summarize three aspects of cold stress promoting the accumulation of flavonoids and terpenoids in plants, that is, by affecting (1) the content of endogenous plant hormones, especially jasmonic acid and abscisic acid; (2) the expression level and activity of important transcription factors, such as bHLH and MYB families. This aspect also includes post-translational modification of transcription factors caused by cold stress; (3) key enzyme genes expression and activity in the biosynthesis pathway, in addition, the rate-limiting enzyme and glycosyltransferases genes are responsive to cold stress. The systematic understanding of cold stress regulates flavonoids, and terpenoids will contribute to the future research of genetic engineering breeding, metabolism regulation, glycosyltransferases mining, and plant synthetic biology.
Collapse
Affiliation(s)
- Junping He
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lu Yao
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lorenzo Pecoraro
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Changxiao Liu
- Tianjin Pharmaceutical Research Institute, Tianjin, China
| | - Juan Wang
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
174
|
Sageman-Furnas K, Nurmi M, Contag M, Plötner B, Alseekh S, Wiszniewski A, Fernie AR, Smith LM, Laitinen RAE. A. thaliana Hybrids Develop Growth Abnormalities through Integration of Stress, Hormone and Growth Signaling. PLANT & CELL PHYSIOLOGY 2022; 63:944-954. [PMID: 35460255 PMCID: PMC9282726 DOI: 10.1093/pcp/pcac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Hybrids between Arabidopsis thaliana accessions are important in revealing the consequences of epistatic interactions in plants. F1 hybrids between the A. thaliana accessions displaying either defense or developmental phenotypes have been revealing the roles of the underlying epistatic genes. The interaction of two naturally occurring alleles of the OUTGROWTH-ASSOCIATED KINASE (OAK) gene in Sha and Lag2-2, previously shown to cause a similar phenotype in a different allelic combination in A. thaliana, was required for the hybrid phenotype. Outgrowth formation in the hybrids was associated with reduced levels of salicylic acid, jasmonic acid and abscisic acid in petioles and the application of these hormones mitigated the formation of the outgrowths. Moreover, different abiotic stresses were found to mitigate the outgrowth phenotype. The involvement of stress and hormone signaling in outgrowth formation was supported by a global transcriptome analysis, which additionally revealed that TCP1, a transcription factor known to regulate leaf growth and symmetry, was downregulated in the outgrowth tissue. These results demonstrate that a combination of natural alleles of OAK regulates growth and development through the integration of hormone and stress signals and highlight the importance of natural variation as a resource to discover the function of gene variants that are not present in the most studied accessions of A. thaliana.
Collapse
Affiliation(s)
- Katelyn Sageman-Furnas
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Markus Nurmi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Meike Contag
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Björn Plötner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Andrew Wiszniewski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Lisa M Smith
- School of Biosciences and Institute for Sustainable Food, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | |
Collapse
|
175
|
Qi C, Dong D, Li Y, Wang X, Guo L, Liu L, Dong X, Li X, Yuan X, Ren S, Zhang N, Guo YD. Heat shock-induced cold acclimation in cucumber through CsHSFA1d-activated JA biosynthesis and signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:85-102. [PMID: 35436390 DOI: 10.1111/tpj.15780] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Cucumber (Cucumis sativus) originated in tropical areas and is very sensitive to low temperatures. Cold acclimation is a universal strategy that improves plant resistance to cold stress. In this study, we report that heat shock induces cold acclimation in cucumber seedlings, via a process involving the heat-shock transcription factor HSFA1d. CsHSFA1d expression was improved by both heat shock and cold treatment. Moreover, CsHSFA1d transcripts accumulated more under cold treatment after a heat-shock pre-treatment than with either heat shock or cold treatment alone. After exposure to cold, cucumber lines overexpressing CsHSFA1d displayed stronger tolerance for cold stress than the wild type, whereas CsHSFA1d knockdown lines obtained by RNA interference were more sensitive to cold stress. Furthermore, both the overexpression of CsHSFA1d and heat-shock pre-treatment increased the endogenous jasmonic acid (JA) content in cucumber seedlings after cold treatment. Exogenous application of JA rescued the cold-sensitive phenotype of CsHSFA1d knockdown lines, underscoring that JA biosynthesis is key for CsHSFA1d-mediated cold tolerance. Higher JA content is likely to lead to the degradation of CsJAZ5, a repressor protein of the JA pathway. We also established that CsJAZ5 interacts with CsICE1. JA-induced degradation of CsJAZ5 would be expected to release CsICE1, which would then activate the ICE-CBF-COR pathway. After cold treatment, the relative expression levels of ICE-CBF-COR signaling pathway genes, such as CsICE1, CsCBF1, CsCBF2 and CsCOR1, in CsHSFA1d overexpression lines were significantly higher than in the wild type and knockdown lines. Taken together, our results help to reveal the mechanism underlying heat shock-induced cold acclimation in cucumber.
Collapse
Affiliation(s)
- Chuandong Qi
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, 430064, China
| | - Danhui Dong
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yafei Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuewei Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Luqin Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lun Liu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaonan Dong
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xingsheng Li
- Shandong Huasheng Agriculture Co. Ltd, Qingzhou, Shandong, 262500, China
| | - Xiaowei Yuan
- Shandong Huasheng Agriculture Co. Ltd, Qingzhou, Shandong, 262500, China
| | - Shuxin Ren
- School of Agriculture, Virginia State University, Petersburg, VA, USA
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
176
|
Sulfenylation of ENOLASE2 facilitates H 2O 2-conferred freezing tolerance in Arabidopsis. Dev Cell 2022; 57:1883-1898.e5. [PMID: 35809562 DOI: 10.1016/j.devcel.2022.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/23/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022]
Abstract
H2O2 affects the expression of genes that are involved in plant responses to diverse environmental stresses; however, the underlying mechanisms remain elusive. Here, we demonstrate that H2O2 enhances plant freezing tolerance through its effect on a protein product of low expression of osmotically responsive genes2 (LOS2). LOS2 is translated into a major product, cytosolic enolase2 (ENO2), and sometimes an alternative product, the transcription repressor c-Myc-binding protein (MBP-1). ENO2, but not MBP-1, promotes cold tolerance by binding the promoter of C-repeat/DRE binding factor1 (CBF1), a central transcription factor in plant cold signaling, thus activating its expression. Overexpression of CBF1 restores freezing sensitivity of a LOS2 loss-of-function mutant. Furthermore, cold-induced H2O2 increases nuclear import and transcriptional binding activity of ENO2 by sulfenylating cysteine 408 and thereby promotes its oligomerization. Collectively, our results illustrate how H2O2 activates plant cold responses by sulfenylating ENO2 and promoting its oligomerization, leading to enhanced nuclear translocation and transcriptional activation of CBF1.
Collapse
|
177
|
Pan R, Buitrago S, Peng Y, Fatouh Abou-Elwafa S, Wan K, Liu Y, Wang R, Yang X, Zhang W. Genome-wide identification of cold-tolerance genes and functional analysis of IbbHLH116 gene in sweet potato. Gene X 2022; 837:146690. [PMID: 35738441 DOI: 10.1016/j.gene.2022.146690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Sweet potato (Ipomoea batatas L.) originated from South America; therefore, it is vulnerable to low temperature. Here, the evolutionary analysis of 22 cold-responsive genes in 35 plant species revealed that the identified MYC-type basic helix-loop-helix (bHLH) transcription factors exhibit diverse structures. We found that the number of bHLH gene family members was significantly lower than that of cold-tolerant species. We further systematically evaluated the gene structure, promoter analysis, synteny analysis, and expression pattern of 28 bHLH gene family members in sweet potato. The basic helix-loop-helix protein 116 (IbbHLH116) has the closest phylogeny to the AtICE1 protein of A. thaliana. However, the IbbHLH116 protein from cold-tolerant variety FS18 showed a 37.90% of sequence homology with AtICE1 protein. Subcellular localization analysis showed that IbbHLH116 is localized in the nucleus. The transcripts of IbbHLH116 were highly accumulated in cold-tolerant genotype FS18, particularly in new leaves and stems, compared to the cold-sensitive genotype NC1 under cold stress. Overexpression of IbbHLH116 in the wild type (Col-0) A. thaliana significantly enhanced cold tolerance in transgenic plants by regulating activities of oxidative protective enzymes, such as peroxidase (POD), superoxide dismutase (SOD), and the contents of malondialdehyde (MDA), proline and soluble proteins. Moreover, overexpression of IbbHLH116 in ice1 mutant A. thaliana fully rescued the cold-sensitive phenotype by promoting the expression of C-repeat binding factors 3 (CBF3). Overexpression of IbbHLH116 in the sweet potato callus also induced the expression of CBF3 under low temperature. These results imply that IbbHLH116 can perform the function of the ICE1 gene in conferring cold tolerance in sweet potato.
Collapse
Affiliation(s)
- Rui Pan
- Research Center of Crop Stresses Resistance Technologies/ Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, China
| | - Sebastian Buitrago
- Research Center of Crop Stresses Resistance Technologies/ Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, China
| | - Ying Peng
- Research Center of Crop Stresses Resistance Technologies/ Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, China
| | | | - Kui Wan
- Research Center of Crop Stresses Resistance Technologies/ Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, China
| | - Yi Liu
- Research Center of Crop Stresses Resistance Technologies/ Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, China; Hubei Sweet potato Engineering and Technology Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Rongsen Wang
- Research Center of Crop Stresses Resistance Technologies/ Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, China
| | - Xinsun Yang
- Hubei Sweet potato Engineering and Technology Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wenying Zhang
- Research Center of Crop Stresses Resistance Technologies/ Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
178
|
Zeng H, Xu H, Wang H, Chen H, Wang G, Bai Y, Wei Y, Shi H. LSD3 mediates the oxidative stress response through fine-tuning APX2 activity and the NF-YC15-GSTs module in cassava. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1447-1461. [PMID: 35352421 DOI: 10.1111/tpj.15749] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/12/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Reactive oxygen species (ROS) overproduction leads to oxidative damage under almost all stress conditions. Lesion-Simulating Disease (LSD), a zinc finger protein, is an important negative regulator of ROS accumulation and cell death in plants. However, the in vivo role of LSD in cassava (Manihot esculenta) and the underlying molecular mechanisms remain elusive. Here, we found that MeLSD3 is essential for the oxidative stress response in cassava. MeLSD3 physically interacted with ascorbate peroxidase 2 (MeAPX2), thereby promoting its enzymatic activity. In addition, MeLSD3 also interacted with the nuclear factor YC15 (MeNF-YC15), which also interacted with nuclear factor YA2/4 (MeNF-YA2/4) and nuclear factor YB18 (MeNF-YB18) to form an MeNF-YC15-MeNF-YA2/4-MeNF-YB18 complex. Notably, MeLSD3 positively modulated the transcriptional activation of the MeNF-YC15-MeNF-YA2/4-MeNF-YB18 complex by interacting with the CCAAT boxes of the promoters of glutathione S-transferases U37/U39 (MeGST-U37/U39), activating their transcription. When one or both of MeLSD3 and the MeNF-YC15-MeNF-YA2/4-MeNF-YB18 complex were co-silenced, cassava showed decreased oxidative stress resistance, while overexpression of MeGST-U37/U39 alleviated the oxidative stress-sensitive phenotype of these silenced plants. This study illustrates the dual roles of MeLSD3 in promoting MeAPX2 activity and MeNF-YC15-MeGST-U37/U39 regulation, which underlie the oxidative stress response in cassava.
Collapse
Affiliation(s)
- Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Haoran Xu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Hao Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Hao Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Guanqi Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
179
|
Schwenkert S, Fernie AR, Geigenberger P, Leister D, Möhlmann T, Naranjo B, Neuhaus HE. Chloroplasts are key players to cope with light and temperature stress. TRENDS IN PLANT SCIENCE 2022; 27:577-587. [PMID: 35012879 DOI: 10.1016/j.tplants.2021.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/16/2021] [Accepted: 12/09/2021] [Indexed: 05/04/2023]
Abstract
Under natural environmental conditions, changes in light intensity and temperature are closely interwoven, and of all organelles, only chloroplasts react strongly upon alterations of these two parameters. We review increasing evidence indicating that changes in chloroplast metabolism are critical for the comprehensive cellular answer in a challenging environment. This cellular answer starts with rapid modifications of thylakoid-located processes, followed by modifications in the stroma and transport activities across the chloroplast envelope. We propose that the 'modulators' involved contribute to plant stress tolerance and that deciphering of their characteristics is essential to understand 'acclimation'. Especially in times of climatic changes, we must gain knowledge on physiological reactions that might become instrumental for directed breeding strategies aiming to develop stress-tolerant crop plants.
Collapse
|
180
|
Integrative Comparative Assessment of Cold Acclimation in Evergreen and Deciduous Iris Species. Antioxidants (Basel) 2022; 11:antiox11050977. [PMID: 35624841 PMCID: PMC9137773 DOI: 10.3390/antiox11050977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Cold acclimation (CA) is a strategy which plants have evolved to increase freezing tolerance. Global climate change could obstruct CA and raise the probability of winter injury, especially for evergreens. Hence, understanding the regulatory mechanism of CA is crucial to improve freezing tolerance in evergreen plants. A comparative study on a pair of closely related evergreen and deciduous iris species in response to cold through CA was conducive to uncovering and complementing the knowledge of CA. We investigated morphological, physiological and biochemical changes, as well as the expression of associated genes in the functional leaves of both iris species from natural CA to deacclimation. Briefly, fast and strong CA in the evergreen iris might cause early expressions of BAM1, NCED3, GPX6, etc., which leads to strong enzyme activity of starch degradation, abscisic acid biosynthesis and reactive oxygen species scavenging. Additionally, genes belonging to the antioxidant system were mainly induced during deacclimation. These results suggest that interspecies differences in the leaf freezing tolerance of irises are associated with the rate and degree of CA, which activates multiple signaling networks with complex interactions and induces the transcription of cold-responsive genes. Moreover, the ICE–CBF–COR signaling cascade may integrate and initiate diverse cold-responsive pathways during CA of the evergreen iris. The findings of this study provide valuable insight to further research on CA mechanisms and implicate genes which could support breeding strategies in herbaceous perennials under climate changes.
Collapse
|
181
|
Photosynthesis Mediated by RBOH-Dependent Signaling Is Essential for Cold Stress Memory. Antioxidants (Basel) 2022; 11:antiox11050969. [PMID: 35624833 PMCID: PMC9137663 DOI: 10.3390/antiox11050969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cold tolerance is improved by cold stress acclimation (CS-ACC), and the cold tolerance level is ‘remembered’ by plants. However, the underlying signaling mechanisms remain largely unknown. Here, the CS memory mechanism was studied by bioinformation, plant physiological and photosynthetic parameters, and gene expression. We found that CS-ACC induced the acquisition of CS memory and enhanced the maintenance of acquired cold tolerance (MACT) in cucumber seedlings. The H2O2 content and NADPH oxidase activity encoded by CsRBOH was maintained at higher levels during recovery after CS-ACC and inhibition of RBOH-dependent signaling after CS-ACC resulted in a decrease in the H2O2 content, NADPH oxidase activity, and MACT. CsRBOH2, 3, 4, and 5 showed high expression during recovery after CS-ACC. Many BZR-binding sites were identified in memory-responsive CsRBOHs promoters, and CsBZR1 and 3 showed high expression during recovery after CS-ACC. Inhibition of RBOH-dependent signaling or brassinosteroids affected the maintenance of the expression of these memory-responsive CsRBOHs and CsBZRs. The photosynthetic efficiency (PE) decreased but then increased with the prolonged recovery after CS-ACC, and was higher than the control at 48 h of recovery; however, inhibition of RBOH-dependent signaling resulted in a lower PE. Further etiolated seedlings experiments showed that a photosynthetic capacity was necessary for CS memory. Therefore, photosynthesis mediated by RBOH-dependent signaling is essential for CS memory.
Collapse
|
182
|
Genetic Mechanisms of Cold Signaling in Wheat (Triticum aestivum L.). Life (Basel) 2022; 12:life12050700. [PMID: 35629367 PMCID: PMC9147279 DOI: 10.3390/life12050700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Cold stress is a major environmental factor affecting the growth, development, and productivity of various crop species. With the current trajectory of global climate change, low temperatures are becoming more frequent and can significantly decrease crop yield. Wheat (Triticum aestivum L.) is the first domesticated crop and is the most popular cereal crop in the world. Because of a lack of systematic research on cold signaling pathways and gene regulatory networks, the underlying molecular mechanisms of cold signal transduction in wheat are poorly understood. This study reviews recent progress in wheat, including the ICE-CBF-COR signaling pathway under cold stress and the effects of cold stress on hormonal pathways, reactive oxygen species (ROS), and epigenetic processes and elements. This review also highlights possible strategies for improving cold tolerance in wheat.
Collapse
|
183
|
Abstract
Plant hormones are signalling compounds that regulate crucial aspects of growth, development and environmental stress responses. Abiotic stresses, such as drought, salinity, heat, cold and flooding, have profound effects on plant growth and survival. Adaptation and tolerance to such stresses require sophisticated sensing, signalling and stress response mechanisms. In this Review, we discuss recent advances in understanding how diverse plant hormones control abiotic stress responses in plants and highlight points of hormonal crosstalk during abiotic stress signalling. Control mechanisms and stress responses mediated by plant hormones including abscisic acid, auxin, brassinosteroids, cytokinins, ethylene and gibberellins are discussed. We discuss new insights into osmotic stress sensing and signalling mechanisms, hormonal control of gene regulation and plant development during stress, hormone-regulated submergence tolerance and stomatal movements. We further explore how innovative imaging approaches are providing insights into single-cell and tissue hormone dynamics. Understanding stress tolerance mechanisms opens new opportunities for agricultural applications.
Collapse
|
184
|
Tian J, Ma Y, Chen Y, Chen X, Wei A. Plant Hormone Response to Low-Temperature Stress in Cold-Tolerant and Cold-Sensitive Varieties of Zanthoxylum bungeanum Maxim. FRONTIERS IN PLANT SCIENCE 2022; 13:847202. [PMID: 35574137 PMCID: PMC9102381 DOI: 10.3389/fpls.2022.847202] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/29/2022] [Indexed: 05/27/2023]
Abstract
Plant growth and survival in nature, its growth process, will be affected by various factors from the environment, among which temperature has a greater impact. In recent years, extreme weather has frequently appeared, and the growth of crops has been increasingly affected by the environment. As an important flavoring and Chinese herbal medicine crop, Zanthoxylum bungeanum is also facing the harm of low-temperature stress. Plant hormones play a vital role in the response of plants to low temperatures. In this study, ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the hormone components of cold-tolerant and cold-sensitive varieties of Z. bungeanum. Combined with chemometric analysis and weighted gene co-expression network analysis (WGCNA), the hormone component differences and hormone response strategies of Z. bungeanum under low-temperature stress were comprehensively studied. The results showed that 45 hormones were detected in Z. bungeanum. Among them, there were 7 kinds of components with high content and were detected in both two varieties. At the late stage of low-temperature stress, the contents of abscisic acid (ABA) and ABA-glucosyl ester (ABA-GE) in Fuguhuajiao (FG) were significantly increased, and the latter served as the storage of the former to supplement the active ABA. Orthogonal partial least squares discriminant analysis (OPLS-DA) found that indole-3-carboxylic acid (ICA), indole-3-carboxaldehyde (ICAld), meta-Topolin riboside (mTR), cis-Zeatin-O-glucoside riboside (cZROG), and N6-isopentenyladenosine (IPR) in FG were the upregulated important difference components, and IPR and 2-methylthio-cis-zeatin riboside (2MeScZR) in Fengxiandahongpao (FX) were the upregulated important difference components. There were common crossing points and independent response pathways in response to low temperature in two varieties. WGCNA analysis found that the main hormone components were associated with multiple metabolic pathways including carbon, fatty acid, amino acid, and sugar metabolism, indicating that hormone regulation plays an important role in the response of Z. bungeanum to low temperature. This study clarified the hormone response mechanism of Z. bungeanum under low-temperature stress and provided a reference and basis for further improving the cold resistance of Z. bungeanum and cultivating new varieties.
Collapse
Affiliation(s)
- Jieyun Tian
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Yao Ma
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yabing Chen
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Xue Chen
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Xianyang, China
| |
Collapse
|
185
|
Specific Changes in Arabidopsis thaliana Rosette Lipids during Freezing Can Be Associated with Freezing Tolerance. Metabolites 2022; 12:metabo12050385. [PMID: 35629889 PMCID: PMC9145600 DOI: 10.3390/metabo12050385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 01/21/2023] Open
Abstract
While the roles of a few specific lipids in plant freezing tolerance are understood, the effect of many plant lipids remains to be determined. Acclimation of plants to non-freezing cold before exposure to freezing temperatures improves the outcome of plants, compared to plants exposed to freezing without acclimation. Arabidopsis thaliana plants were subjected to one of three treatments: (1) "control", i.e., growth at 21 °C, (2) "non-acclimated", i.e., 3 days at 21 °C, 2 h at -8 °C, and 24 h recovery at 21 °C, and (3) "acclimated", i.e., 3 days at 4 °C, 2 h at -8 °C, and 24 h recovery at 21 °C. Plants were harvested at seven time points during the treatments, and lipid levels were measured by direct-infusion electrospray ionization tandem mass spectrometry. Ion leakage was measured at the same time points. To examine the function of lipid species in relation to freezing tolerance, the lipid levels in plants immediately following the freezing treatment were correlated with the outcome, i.e., ion leakage 24-h post-freezing. Based on the correlations, hypotheses about the functions of specific lipids were generated. Additionally, analysis of the lipid levels in plants with mutations in genes encoding patatin-like phospholipases, lipoxygenases, and 12-oxophytodienoic acid reductase 3 (opr3), under the same treatments as the wild-type plants, identified only the opr3-2 mutant as having major lipid compositional differences compared to wild-type plants.
Collapse
|
186
|
Primo-Capella A, Forner-Giner MÁ, Martínez-Cuenca MR, Terol J. Comparative transcriptomic analyses of citrus cold-resistant vs. sensitive rootstocks might suggest a relevant role of ABA signaling in triggering cold scion adaption. BMC PLANT BIOLOGY 2022; 22:209. [PMID: 35448939 PMCID: PMC9027863 DOI: 10.1186/s12870-022-03578-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/04/2022] [Indexed: 05/24/2023]
Abstract
BACKGROUND The citrus genus comprises a number of sensitive tropical and subtropical species to cold stress, which limits global citrus distribution to certain latitudes and causes major economic loss. We used RNA-Seq technology to analyze changes in the transcriptome of Valencia delta seedless orange in response to long-term cold stress grafted on two frequently used citrus rootstocks: Carrizo citrange (CAR), considered one of the most cold-tolerant accessions; C. macrophylla (MAC), a very sensitive one. Our objectives were to identify the genetic mechanism that produce the tolerant or sensitive phenotypes in citrus, as well as to gain insights of the rootstock-scion interactions that induce the cold tolerance or sensitivity in the scion. RESULTS Plants were kept at 1 ºC for 30 days. Samples were taken at 0, 15 and 30 days. The metabolomic analysis showed a significant increase in the concentration of free sugars and proline, which was higher for the CAR plants. Hormone quantification in roots showed a substantially increased ABA concentration during cold exposure in the CAR roots, which was not observed in MAC. Different approaches were followed to analyze gene expression. During the stress treatment, the 0-15-day comparison yielded the most DEGs. The functional characterization of DEGs showed enrichment in GO terms and KEGG pathways related to abiotic stress responses previously described in plant cold adaption. The DEGs analysis revealed that several key genes promoting cold adaption were up-regulated in the CAR plants, and those repressing it had higher expression levels in the MAC samples. CONCLUSIONS The metabolomic and transcriptomic study herein performed indicates that the mechanisms activated in plants shortly after cold exposure remain active in the long term. Both the hormone quantification and differential expression analysis suggest that ABA signaling might play a relevant role in promoting the cold hardiness or sensitiveness of Valencia sweet orange grafted onto Carrizo citrange or Macrophylla rootstocks, respectively. Our work provides new insights into the mechanisms by which rootstocks modulate resistance to abiotic stress in the production variety grafted onto them.
Collapse
Affiliation(s)
- Amparo Primo-Capella
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain.
| | - María Ángeles Forner-Giner
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Mary-Rus Martínez-Cuenca
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| |
Collapse
|
187
|
Wan S, Xin XF. Regulation and integration of plant jasmonate signaling: a comparative view of monocot and dicot. J Genet Genomics 2022; 49:704-714. [PMID: 35452856 DOI: 10.1016/j.jgg.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
The phytohormone jasmonate plays a pivotal role in various aspects of plant life, including developmental programs and defense against pests and pathogens. A large body of knowledge on jasmonate biosynthesis, signal transduction as well as its functions in diverse plant processes has been gained in the past two decades. In addition, there exists extensive crosstalk between jasmonate pathway and other phytohormone pathways, such as salicylic acid (SA) and gibberellin (GA), in co-regulation of plant immune status, fine-tuning the balance of plant growth and defense, and so on, which were mostly learned from studies in the dicotyledonous model plants Arabidopsis thaliana and tomato but much less in monocot. Interestingly, existing evidence suggests both conservation and functional divergence in terms of core components of jasmonate pathway, its biological functions and signal integration with other phytohormones, between monocot and dicot. In this review, we summarize the current understanding on JA signal initiation, perception and regulation, and highlight the distinctive characteristics in different lineages of plants.
Collapse
Affiliation(s)
- Shiwei Wan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
188
|
Association mapping of autumn-seeded rye (Secale cereale L.) reveals genetic linkages between genes controlling winter hardiness and plant development. Sci Rep 2022; 12:5793. [PMID: 35388069 PMCID: PMC8986816 DOI: 10.1038/s41598-022-09582-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/25/2022] [Indexed: 12/23/2022] Open
Abstract
Winter field survival (WFS) in autumn-seeded winter cereals is a complex trait associated with low temperature tolerance (LTT), prostrate growth habit (PGH), and final leaf number (FLN). WFS and the three sub-traits were analyzed by a genome-wide association study of 96 rye (Secale cereal L.) genotypes of different origins and winter-hardiness levels. A total of 10,244 single nucleotide polymorphism (SNP) markers were identified by genotyping by sequencing and 259 marker-trait-associations (MTAs; p < 0.01) were revealed by association mapping. The ten most significant SNPs (p < 1.49e−04) associated with WFS corresponded to nine strong candidate genes: Inducer of CBF Expression 1 (ICE1), Cold-regulated 413-Plasma Membrane Protein 1 (COR413-PM1), Ice Recrystallization Inhibition Protein 1 (IRIP1), Jasmonate-resistant 1 (JAR1), BIPP2C1-like protein phosphatase, Chloroplast Unusual Positioning Protein-1 (CHUP1), FRIGIDA-like 4 (FRL4-like) protein, Chalcone Synthase 2 (CHS2), and Phenylalanine Ammonia-lyase 8 (PAL8). Seven of the candidate genes were also significant for one or several of the sub-traits supporting the hypothesis that WFS, LTT, FLN, and PGH are genetically interlinked. The winter-hardy rye genotypes generally carried additional allele variants for the strong candidate genes, which suggested allele diversity was a major contributor to cold acclimation efficiency and consistent high WFS under varying field conditions.
Collapse
|
189
|
Ashraf MA, Rahman A. Cellular Protein Trafficking: A New Player in Low-Temperature Response Pathway. PLANTS (BASEL, SWITZERLAND) 2022; 11:933. [PMID: 35406913 PMCID: PMC9003145 DOI: 10.3390/plants11070933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Unlike animals, plants are unable to escape unfavorable conditions, such as extremities of temperature. Among abiotic variables, the temperature is notableas it affects plants from the molecular to the organismal level. Because of global warming, understanding temperature effects on plants is salient today and should be focused not only on rising temperature but also greater variability in temperature that is now besetting the world's natural and agricultural ecosystems. Among the temperature stresses, low-temperature stress is one of the major stresses that limits crop productivity worldwide. Over the years, although substantial progress has been made in understanding low-temperature response mechanisms in plants, the research is more focused on aerial parts of the plants rather than on the root or whole plant, and more efforts have been made in identifying and testing the major regulators of this pathway preferably in the model organism rather than in crop plants. For the low-temperature stress response mechanism, ICE-CBF regulatory pathway turned out to be the solely established pathway, and historically most of the low-temperature research is focused on this single pathway instead of exploring other alternative regulators. In this review, we tried to take an in-depth look at our current understanding of low temperature-mediated plant growth response mechanism and present the recent advancement in cell biological studies that have opened a new horizon for finding promising and potential alternative regulators of the cold stress response pathway.
Collapse
Affiliation(s)
- M Arif Ashraf
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
| | - Abidur Rahman
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
- Department of Plant Biosciences, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
190
|
Muthuramalingam P, Shin H, Adarshan S, Jeyasri R, Priya A, Chen JT, Ramesh M. Molecular Insights into Freezing Stress in Peach Based on Multi-Omics and Biotechnology: An Overview. PLANTS 2022; 11:plants11060812. [PMID: 35336695 PMCID: PMC8954506 DOI: 10.3390/plants11060812] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022]
Abstract
In nature or field conditions, plants are frequently exposed to diverse environmental stressors. Among abiotic stresses, the low temperature of freezing conditions is a critical factor that influences plants, including horticultural crops, decreasing their growth, development, and eventually quality and productivity. Fortunately, plants have developed a mechanism to improve the tolerance to freezing during exposure to a range of low temperatures. In this present review, current findings on freezing stress physiology and genetics in peach (Prunus persica) were refined with an emphasis on adaptive mechanisms for cold acclimation, deacclimation, and reacclimation. In addition, advancements using multi-omics and genetic engineering approaches unravel the molecular physiological mechanisms, including hormonal regulations and their general perceptions of freezing tolerance in peach were comprehensively described. This review might pave the way for future research to the horticulturalists and research scientists to overcome the challenges of freezing temperature and improvement of crop management in these conditions.
Collapse
Affiliation(s)
- Pandiyan Muthuramalingam
- Department of Horticultural Science, Gyeongsang National University, Jinju 52725, Korea;
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India; (S.A.); (R.J.); (A.P.); (M.R.)
| | - Hyunsuk Shin
- Department of Horticultural Science, Gyeongsang National University, Jinju 52725, Korea;
- Correspondence:
| | - Sivakumar Adarshan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India; (S.A.); (R.J.); (A.P.); (M.R.)
| | - Rajendran Jeyasri
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India; (S.A.); (R.J.); (A.P.); (M.R.)
| | - Arumugam Priya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India; (S.A.); (R.J.); (A.P.); (M.R.)
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan;
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India; (S.A.); (R.J.); (A.P.); (M.R.)
| |
Collapse
|
191
|
Shu J, Ma X, Ma H, Huang Q, Zhang Y, Guan M, Guan C. Transcriptomic, proteomic, metabolomic, and functional genomic approaches of Brassica napus L. during salt stress. PLoS One 2022; 17:e0262587. [PMID: 35271582 PMCID: PMC8912142 DOI: 10.1371/journal.pone.0262587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/30/2021] [Indexed: 12/30/2022] Open
Abstract
Environmental abiotic stresses limit plant growth, development, and reproduction. This study aims to reveal the response of Brassica napus to salt stress. Here, transcriptomics, metabolomics, and proteomics analysis were performed on 15 Brassica napus leave samples treated with salt at different times. Through functional enrichment analyzing the differentially expressed genes (DEGs), differential metabolites (DMs) and differentially expressed proteins (DEPs), the key factors that dominate Brassica napus response to salt stress were identified. The results showed that the two key hormones responding to salt stress were Abscisic acid (ABA) and jasmonic acid (JA). Salt stress for 24h is an important milestone. Brassica napus adjusted multiple pathways at 24h to avoid over-response to salt stress and cause energy consumption. The increased expression in BnPP2C is tangible evidence. In response to salt stress, JA and ABA work together to reduce the damage caused by salt stress in Brassica napus. The increased expression of all BnJAZs after salt stress highlighted the function of JA that cannot be ignored responding to salt stress. In addition, some metabolites, such as N-acetyl-5-hydroxytryptamine, L-Cysteine and L-(+)-Arginine, play a critical role in maintaining the balance of ROS. Proteins like catalase-3, cysteine desulfurase, HSP90 and P450_97A3 were the most critical differential proteins in response to salt stress. These findings of this study provide data support for Brassica napus breeding.
Collapse
Affiliation(s)
- Jiabin Shu
- The Oilseed Crop Research Institute, National Oilseed Crop Improvement Center (Hunan), Hunan Agricultural University, Hunan, China
- Quzhou Academy of Agricultural and Forestry Sciences, Quzhou, Zhejiang, China
| | - Xiao Ma
- The Oilseed Crop Research Institute, National Oilseed Crop Improvement Center (Hunan), Hunan Agricultural University, Hunan, China
| | - Hua Ma
- The Oilseed Crop Research Institute, National Oilseed Crop Improvement Center (Hunan), Hunan Agricultural University, Hunan, China
| | - Qiurong Huang
- The Oilseed Crop Research Institute, National Oilseed Crop Improvement Center (Hunan), Hunan Agricultural University, Hunan, China
| | - Ye Zhang
- The Oilseed Crop Research Institute, National Oilseed Crop Improvement Center (Hunan), Hunan Agricultural University, Hunan, China
| | - Mei Guan
- The Oilseed Crop Research Institute, National Oilseed Crop Improvement Center (Hunan), Hunan Agricultural University, Hunan, China
| | - Chunyun Guan
- The Oilseed Crop Research Institute, National Oilseed Crop Improvement Center (Hunan), Hunan Agricultural University, Hunan, China
| |
Collapse
|
192
|
Wang X, Song Q, Liu Y, Brestic M, Yang X. The network centered on ICEs play roles in plant cold tolerance, growth and development. PLANTA 2022; 255:81. [PMID: 35249133 DOI: 10.1007/s00425-022-03858-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
ICEs are key transcription factors in response to cold in plant, they also balance plant growth and stress tolerance. Thus, we systematize the information about ICEs published to date. Low temperature is an important factor affecting plant growth and development. Exposing to cold condition results in a suit of effects on plants including reduction of plant growth and reproduction, and decrease in crop yield and quality. Plants have evolved a series of strategies to deal with cold stress such as reprogramming of the expression of genes and transcription factors. ICEs (Inducer of CBF Expression), as transcription factors regulating CBFs (C-repeat binding factor), play key roles in balancing plant growth and stress tolerance. Studies on ICEs focused on the function of ICEs on cold tolerance, growth and development; post-translational modifications of ICEs and crosstalk between the ICEs and phytohormones. In this review, we focus on systematizing the information published to date. We summarized the main advances of the functions of ICEs on the cold tolerance, growth and development. And we also elaborated the regulation of ICEs protein stability including phosphorylation, ubiquitination and SUMOylation of ICE. Finally, we described the function of ICEs in the crosstalk among different phytohormone signaling pathway and cold stress. This review provides perspectives for ongoing research about cold tolerance, growth and development in plant.
Collapse
Affiliation(s)
- Xipan Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Qiping Song
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, Nitra, 94976, Slovak Republic
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
193
|
Li W, Gao S, Lei T, Jiang L, Duan Y, Zhao Z, Li J, Shi L, Yang L. Transcriptome Analysis Revealed a Cold Stress-Responsive Transcription Factor, PaDREB1A, in Plumbago auriculata That Can Confer Cold Tolerance in Transgenic Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:760460. [PMID: 35310656 PMCID: PMC8931719 DOI: 10.3389/fpls.2022.760460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The tropical plant Plumbago auriculata can tolerate subzero temperatures without induction of apoptosis after cold acclimation in autumn, making it more cold tolerant than conventional tropical plants. In this study, we found that low temperatures significantly affected the photosynthetic system of P. auriculata. Using transcriptome sequencing, PaDREB1A was identified as a key transcription factor involved in the response to cold stress in P. auriculata. This transcription factor may be regulated by upstream JA signaling and regulates downstream ERD4 and ERD7 expression to resist cold stress. Overexpression of PaDREB1A significantly enhanced freezing resistance, protected the photosynthetic system, and enhanced the ROS scavenging mechanism under cold stress in Arabidopsis thaliana. Additionally, PaDREB1A significantly enhanced the expression of CORs and CAT1 in A. thaliana, which further activated the downstream pathway to enhance plant cold tolerance. This study explored the possible different regulatory modes of CBFs in tropical plants and can serve as an important reference for the introduction of tropical plants to low-temperature regions.
Collapse
Affiliation(s)
- Wenji Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Liqiong Jiang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Yifan Duan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zian Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jiani Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Lisha Shi
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Lijuan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
194
|
Jasmonate resistant 1 and ethylene responsive factor 11 are involved in chilling sensitivity in pepper fruit (Capsicum annuum L.). Sci Rep 2022; 12:3141. [PMID: 35210544 PMCID: PMC8873250 DOI: 10.1038/s41598-022-07268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/15/2022] [Indexed: 12/03/2022] Open
Abstract
Pepper fruit (Capsicum annuum L.) is sensitive to chilling stress with chilling injuries occurring below 7 °C; however, chilling injuries occur at different temperatures depending on the genotype. The present study aimed to identify the factors that affect chilling sensitivity in pepper fruits. A total of 112 F2 pepper fruits crossed between chilling-insensitive 'UZB-GJG-1999–51' and chilling-sensitive 'C00562' pepper were grouped according to the seed browning rate, which is a typical chilling symptom of pepper fruit under chilling conditions. Physiological traits, amino acids, fatty acids, as well as ethylene responsive factor (ERF) and jasmonate resistant 1 (JAR1) expression levels were analyzed, and their correlations with the seed browning rate were confirmed. The expression level of JAR1 showed a strong negative correlation with the seed browning rate (r = − 0.7996). The expression level of ERF11 and content of hydrogen peroxide showed strong positive correlation with the seed browning rate (r = 0.7622 and 0.6607, respectively). From these results, we inferred that JAR1 and ERF11 are important factors influencing the chilling sensitivity of pepper fruit.
Collapse
|
195
|
Wang C, Zhang M, Zhou J, Gao X, Zhu S, Yuan L, Hou X, Liu T, Chen G, Tang X, Shan G, Hou J. Transcriptome analysis and differential gene expression profiling of wucai (Brassica campestris L.) in response to cold stress. BMC Genomics 2022; 23:137. [PMID: 35168556 PMCID: PMC8848729 DOI: 10.1186/s12864-022-08311-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/12/2022] [Indexed: 01/04/2023] Open
Abstract
Background Wucai suffers from low temperature during the growth period, resulting in a decline in yield and poor quality. But the molecular mechanisms of cold tolerance in wucai are still unclear. Results According to the phenotypes and physiological indexes, we screened out the cold-tolerant genotype “W18” (named CT) and cold-sensitive genotype “Sw-1” (named CS) in six wucai genotypes. We performed transcriptomic analysis using seedling leaves after 24 h of cold treatment. A total of 3536 and 3887 differentially expressed genes (DEGs) were identified between the low temperature (LT) and control (NT) comparative transcriptome in CT and CS, respectively, with 1690 DEGs specific to CT. The gene ontology (GO) analysis showed that the response to cadmium ion (GO:0,046,686), response to jasmonic acid (GO:0,009,753), and response to wounding (GO:0,009,611) were enriched in CT (LT vs NT). The DEGs were enriched in starch and sucrose metabolism and glutathione metabolism in both groups, and α-linolenic acid metabolism was enriched only in CT (LT vs NT). DEGs in these processes, including glutathione S-transferases (GSTs), 13S lipoxygenase (LOX), and jasmonate ZIM-domain (JAZ), as well as transcription factors (TFs), such as the ethylene-responsive transcription factor 53 (ERF53), basic helix-loop-helix 92 (bHLH92), WRKY53, and WRKY54.We hypothesize that these genes play important roles in the response to cold stress in this species. Conclusions Our data for wucai is consistent with previous studies that suggest starch and sucrose metabolism increased the content of osmotic substances, and the glutathione metabolism pathway enhance the active oxygen scavenging. These two pathways may participated in response to cold stress. In addition, the activation of α-linolenic acid metabolism may promote the synthesis of methyl jasmonate (MeJA), which might also play a role in the cold tolerance of wucai. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08311-3.
Collapse
Affiliation(s)
- Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui, 230036, China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, Anhui, 230036, China.,Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Mengyun Zhang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui, 230036, China
| | - Jiajie Zhou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui, 230036, China
| | - Xun Gao
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui, 230036, China
| | - Shidong Zhu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui, 230036, China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, Anhui, 230036, China.,Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui, 230036, China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, Anhui, 230036, China.,Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Xilin Hou
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tongkun Liu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui, 230036, China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, Anhui, 230036, China.,Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Xiaoyan Tang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui, 230036, China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, Anhui, 230036, China.,Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Guolei Shan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui, 230036, China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, Anhui, 230036, China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui, 230036, China. .,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, Anhui, 230036, China. .,Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China.
| |
Collapse
|
196
|
Hwarari D, Guan Y, Ahmad B, Movahedi A, Min T, Hao Z, Lu Y, Chen J, Yang L. ICE-CBF-COR Signaling Cascade and Its Regulation in Plants Responding to Cold Stress. Int J Mol Sci 2022; 23:ijms23031549. [PMID: 35163471 PMCID: PMC8835792 DOI: 10.3390/ijms23031549] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022] Open
Abstract
Cold stress limits plant geographical distribution and influences plant growth, development, and yields. Plants as sessile organisms have evolved complex biochemical and physiological mechanisms to adapt to cold stress. These mechanisms are regulated by a series of transcription factors and proteins for efficient cold stress acclimation. It has been established that the ICE-CBF-COR signaling pathway in plants regulates how plants acclimatize to cold stress. Cold stress is perceived by receptor proteins, triggering signal transduction, and Inducer of CBF Expression (ICE) genes are activated and regulated, consequently upregulating the transcription and expression of the C-repeat Binding Factor (CBF) genes. The CBF protein binds to the C-repeat/Dehydration Responsive Element (CRT/DRE), a homeopathic element of the Cold Regulated genes (COR gene) promoter, activating their transcription. Transcriptional regulations and post-translational modifications regulate and modify these entities at different response levels by altering their expression or activities in the signaling cascade. These activities then lead to efficient cold stress tolerance. This paper contains a concise summary of the ICE-CBF-COR pathway elucidating on the cross interconnections with other repressors, inhibitors, and activators to induce cold stress acclimation in plants.
Collapse
Affiliation(s)
- Delight Hwarari
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
| | - Yuanlin Guan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
| | - Baseer Ahmad
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
| | - Ali Movahedi
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
| | - Tian Min
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
| | - Zhaodong Hao
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Z.H.); (Y.L.)
| | - Ye Lu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Z.H.); (Y.L.)
| | - Jinhui Chen
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Z.H.); (Y.L.)
- Correspondence: (J.C.); (L.Y.)
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
- Correspondence: (J.C.); (L.Y.)
| |
Collapse
|
197
|
An JP, Xu RR, Liu X, Su L, Yang K, Wang XF, Wang GL, You CX. Abscisic acid insensitive 4 interacts with ICE1 and JAZ proteins to regulate ABA signaling-mediated cold tolerance in apple. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:980-997. [PMID: 34555166 DOI: 10.1093/jxb/erab433] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Abscisic acid is involved in the regulation of cold stress response, but its molecular mechanism remains to be elucidated. In this study, we demonstrated that the APETALA2/ethylene responsive factor (AP2/ERF) family protein MdABI4 positively regulates abscisic acid-mediated cold tolerance in apple. We found that MdABI4 interacts with MdICE1, a key regulatory protein involved in the cold stress response, and enhances the transcriptional regulatory function of MdICE1 on its downstream target gene MdCBF1, thus improving abscisic acid-mediated cold tolerance. The jasmonate-ZIM domain (JAZ) proteins MdJAZ1 and MdJAZ2 negatively modulate MdABI4-improved cold tolerance in apple by interacting with the MdABI4 protein. Further investigation showed that MdJAZ1 and MdJAZ2 interfere with the interaction between the MdABI4 and MdICE1 proteins. Together, our data revealed that MdABI4 integrates jasmonic acid and abscisic acid signals to precisely modulate cold tolerance in apple through the JAZ-ABI4-ICE1-CBF regulatory cascade. These findings provide insights into the crosstalk between jasmonic acid and abscisic acid signals in response to cold stress.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Rui-Rui Xu
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong, College of Biological and Agricultural Engineering, Weifang University, Weifang, Shandong, China
| | - Xin Liu
- Beijing Academy of Forestry and Pomology Sciences, Beijing, China
| | - Ling Su
- Shandong Academy of Grape, Jinan, Shandong, China
| | - Kuo Yang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Gui-Luan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
198
|
Cold Response Transcriptome Analysis of the Alternative Splicing Events Induced by the Cold Stress in D. catenatum. Int J Mol Sci 2022; 23:ijms23020981. [PMID: 35055168 PMCID: PMC8778272 DOI: 10.3390/ijms23020981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 01/08/2022] [Indexed: 02/07/2023] Open
Abstract
Dendrobium catenatum Lindl is a valuable medicinal herb and gardening plant due to its ornamental value and special medical value. Low temperature is a major bottleneck restricting D. catenatum expansion towards the north, which influences the quality and yield of D. catenatum. In this study, we analysed the cold response of D. catenatum by RNA-Seq. A total of 4302 differentially expressed genes were detected under cold stress, which were mainly linked to protein kinase activity, membrane transport and the glycan biosynthesis and metabolism pathway. We also identified 4005 differential alternative events in 2319 genes significantly regulated by cold stress. Exon skipping and intron retention were the most common alternative splicing isoforms. Numerous genes were identified that differentially modulated under cold stress, including cold-induced transcription factors and splicing factors mediated by AS (alternative splicing). GO enrichment analysis found that differentially alternatively spliced genes without differential expression levels were related to RNA/mRNA processing and spliceosomes. DAS (differentially alternative splicing) genes with different expression levels were mainly enriched in protein kinase activity, plasma membrane and cellular response to stimulus. We further identified and cloned DcCBP20 in D. catenatum; we found that DcCBP20 promotes the generation of alternative splicing variants in cold-induced genes under cold stress via genetic experiments and RT–PCR. Taken together, our results identify the main cold-response pathways and alternative splicing events in D. catenatum responding to cold treatment and that DcCBP20 of D. catenatum get involved in regulating the AS and gene expression of cold-induced genes during this process. Our study will contribute to understanding the role of AS genes in regulating the cold stress response in D. catenatum.
Collapse
|
199
|
Ding F, Ren L, Xie F, Wang M, Zhang S. Jasmonate and Melatonin Act Synergistically to Potentiate Cold Tolerance in Tomato Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:763284. [PMID: 35069620 PMCID: PMC8776829 DOI: 10.3389/fpls.2021.763284] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/10/2021] [Indexed: 05/25/2023]
Abstract
Both jasmonic acid (JA) and melatonin (MT) have been demonstrated to play positive roles in cold tolerance, however, whether and how they crosstalk in the cold responses in plants remain elusive. Here, we report that JA and MT act synergistically in the cold tolerance in tomato plants (Solanum lycopersicum). It was found that JA and MT were both substantially accumulated in response to cold stress and foliar applications of methyl jasmonate (MeJA) and MT promoted cold tolerance as evidenced by increased Fv/Fm, decreased relative electrolyte leakage (EL) and declined H2O2 accumulation in tomato plants. Inhibition of MT biosynthesis attenuated MeJA-induced cold tolerance, while inhibition of JA biosynthesis reduced MT accumulation in tomato plants under cold conditions. Furthermore, qRT-PCR analysis showed that the expressions of two MT biosynthetic genes, SlSNAT and SlAMST, were strongly induced by MeJA, whereas suppression of SlMYC2, a master JA signaling regulator, abated the expressions of SlSNAT and SlAMST under cold stress. Additionally, suppression of SlMYC2 reduced MT accumulation, decreased Fv/Fm and increased EL in cold-stressed tomato plants. Interestingly, exogenous MT promoted JA accumulation, while inhibition of MT biosynthesis significantly reduced JA accumulation in tomato plants under the cold condition. Taken together, these results suggest that JA and MT act cooperatively in cold tolerance and form a positive feedback loop, amplifying the cold responses of tomato plants. Our findings might be translated into the development of cold-resistant tomato cultivars by genetically manipulating JA and MT pathways.
Collapse
Affiliation(s)
- Fei Ding
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Liming Ren
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Fang Xie
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Meiling Wang
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shuoxin Zhang
- College of Forestry, Northwest A&F University, Xianyang, China
| |
Collapse
|
200
|
Zhao L, Li X, Chen W, Xu Z, Chen M, Wang H, Yu D. The emerging role of jasmonate in the control of flowering time. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:11-21. [PMID: 34599804 DOI: 10.1093/jxb/erab418] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Plants dynamically synchronize their flowering time with changes in the internal and external environments through a variety of signaling pathways to maximize fitness. In the last two decades, the major pathways associated with flowering, including the photoperiod, vernalization, age, autonomous, gibberellin, and ambient temperature pathways, have been extensively analyzed. In recent years, an increasing number of signals, such as sugar, thermosensory, stress, and certain hormones, have been shown to be involved in fine-tuning flowering time. Among these signals, the jasmonate signaling pathway has a function in the determination of flowering time that has not been systematically summarized. In this review, we present an overview of current knowledge of jasmonate control of flowering and discuss jasmonate crosstalk with other signals (such as gibberellin, defense, and touch) during floral transition.
Collapse
Affiliation(s)
- Lirong Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Wanqin Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Zhiyu Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Mifen Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|