151
|
Qiao Y, Xia R, Zhai J, Hou Y, Feng L, Zhai Y, Ma W. Small RNAs in Plant Immunity and Virulence of Filamentous Pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:265-288. [PMID: 34077241 DOI: 10.1146/annurev-phyto-121520-023514] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gene silencing guided by small RNAs governs a broad range of cellular processes in eukaryotes. Small RNAs are important components of plant immunity because they contribute to pathogen-triggered transcription reprogramming and directly target pathogen RNAs. Recent research suggests that silencing of pathogen genes by plant small RNAs occurs not only during viral infection but also in nonviral pathogens through a process termed host-induced gene silencing, which involves trans-species small RNA trafficking. Similarly, small RNAs are also produced by eukaryotic pathogens and regulate virulence. This review summarizes the small RNA pathways in both plants and filamentous pathogens, including fungi and oomycetes, and discusses their role in host-pathogen interactions. We highlight secondarysmall interfering RNAs of plants as regulators of immune receptor gene expression and executors of host-induced gene silencing in invading pathogens. The current status and prospects of trans-species gene silencing at the host-pathogen interface are discussed.
Collapse
Affiliation(s)
- Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510640, China
| | - Jixian Zhai
- School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yingnan Hou
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA
| | - Li Feng
- School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Zhai
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA
| | - Wenbo Ma
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK;
| |
Collapse
|
152
|
Wang T, Zheng Y, Tang Q, Zhong S, Su W, Zheng B. Brassinosteroids inhibit miRNA-mediated translational repression by decreasing AGO1 on the endoplasmic reticulum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1475-1490. [PMID: 34020507 DOI: 10.1111/jipb.13139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/12/2021] [Indexed: 05/20/2023]
Abstract
Translational repression is a conserved mechanism in microRNA (miRNA)-guided gene silencing. In Arabidopsis, ARGONAUTE1 (AGO1), the major miRNA effector, localizes in the cytoplasm for mRNA cleavage and at the endoplasmic reticulum (ER) for translational repression of target genes. However, the mechanism underlying miRNA-mediated translational repression is poorly understood. In particular, how the subcellular partitioning of AGO1 is regulated is largely unexplored. Here, we show that the plant hormone brassinosteroids (BRs) inhibit miRNA-mediated translational repression by negatively regulating the distribution of AGO1 at the ER in Arabidopsis thaliana. We show that the protein levels rather than the transcript levels of miRNA target genes were reduced in BR-deficient mutants but increased under BR treatments. The localization of AGO1 at the ER was significantly decreased under BR treatments while it was increased in the BR-deficient mutants. Moreover, ROTUNDIFOLIA3 (ROT3), an enzyme involved in BR biosynthesis, co-localizes with AGO1 at the ER and interacts with AGO1 in a GW motif-dependent manner. Complementation analysis showed that the AGO1-ROT3 interaction is necessary for the function of ROT3. Our findings provide new clues to understand how miRNA-mediated gene silencing is regulated by plant endogenous hormones.
Collapse
Affiliation(s)
- Taiyun Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yanhua Zheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qi Tang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Songxiao Zhong
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wei Su
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
153
|
Šečić E, Kogel KH, Ladera-Carmona MJ. Biotic stress-associated microRNA families in plants. JOURNAL OF PLANT PHYSIOLOGY 2021; 263:153451. [PMID: 34119743 DOI: 10.1016/j.jplph.2021.153451] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Plants and animals utilize various regulatory mechanisms for control of gene expression during development in different tissues and cell types. About 30 years ago, a new mechanism of gene regulation, termed RNA interference (RNAi), was discovered and proved revolutionary for the mechanistic understanding of gene regulation. Noncoding RNAs, including short, 21-24 nucleotide (nt) long microRNAs (miRNAs), endogenously-generated from MIR genes, are key components of RNAi processes, by post-transcriptionally controlling transcripts with antisense complementarity through either translational repression or mRNA degradation. Since their discovery, important roles in regulation of ontogenetic development, cell differentiation, proliferation, and apoptosis in eukaryotes have been elucidated. In plants, miRNAs are known regulatory elements of basic endogenous functions and responses to the environmental stimuli. While the role of miRNAs in regulation of nutrient uptake, circadian clock and general response to abiotic stress is already well understood, a comprehensive understanding of their immune-regulatory roles in response to various biotic stress factors has not yet been achieved. This review summarizes the current understanding of the function of miRNAs and their targets in plants during interaction with microbial pathogens and symbionts. Additionally, we provide a consensus conclusion regarding the typical induction or repression response of conserved miRNA families to pathogenic and beneficial fungi, bacteria, and oomycetes, as well as an outlook of agronomic application of miRNAs in plants. Further investigation of plant miRNAs responsive to microbes, aided with novel sequencing and bioinformatics approaches for discovery and prediction in non-model organisms holds great potential for development of new forms of plant protection.
Collapse
Affiliation(s)
- Ena Šečić
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany.
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany.
| | - Maria Jose Ladera-Carmona
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany.
| |
Collapse
|
154
|
Zou H, Guo X, Yang R, Wang S, Li L, Niu J, Wang D, Cao X. MiR408- SmLAC3 Module Participates in Salvianolic Acid B Synthesis in Salvia miltiorrhiza. Int J Mol Sci 2021; 22:ijms22147541. [PMID: 34299156 PMCID: PMC8306038 DOI: 10.3390/ijms22147541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression involved in plant development and abiotic stress responses. Recently, miRNAs have also been reported to be engaged in the regulation of secondary plant metabolism. However, there are few functional studies of miRNAs in medicinal plants. For this study, we obtained Sm-miR408 interference lines to investigate the function of Sm-miR408 in a medicinal model plant (Salvia miltiorrhiza). It was found that inhibiting the expression of Sm-miR408 could increase the content of salvianolic acid B and rosmarinic acid in the roots. The SmLAC3 and Sm-miR408 expression patterns were analyzed by qRT-PCR. A 5’ RLM-RACE assay confirmed that Sm-miR408 targets and negatively regulates SmLAC3. Moreover, the overexpression of SmLAC3 in S. miltiorrhiza promoted the accumulation of salvianolic acids in the roots. Furthermore, the lignin content of the roots in overexpressed SmLAC3 lines was decreased. Taken together, these findings indicated that Sm-miR408 modulates the accumulation of phenolic acids in S. miltiorrhiza by targeting SmLAC3 expression levels.
Collapse
|
155
|
Erokhina TN, Ryazantsev DY, Samokhvalova LV, Mozhaev AA, Orsa AN, Zavriev SK, Morozov SY. Activity of Chemically Synthesized Peptide Encoded by the miR156A Precursor and Conserved in the Brassicaceae Family Plants. BIOCHEMISTRY (MOSCOW) 2021; 86:551-562. [PMID: 33993858 DOI: 10.1134/s0006297921050047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It was recently found that the primary transcripts of some microRNA genes (pri-miRNAs) are able to express peptides with 12 to 40 residues in length. These peptides, called miPEPs, participate in the transcriptional regulation of their own pri-miRNAs. In our previous studies, we used bioinformatic approach for comparative analysis of pri-miRNA sequences in plant genomes to identify a new group of miPEPs (miPEP-156a peptides) encoded by pri-miR156a in several dozen species of the Brassicaceae family. Exogenous miPEP-156a peptides could efficiently penetrate into the plant seedlings through the root system and spread systemically to the leaves. The peptides produced moderate morphological effect accelerating primary root growth. In parallel, the miPEP-156a peptides upregulated expression of their own pri-miR156a. Importantly, the observed effects at both morphological and molecular levels correlated with the peptide ability to quickly translocate into the cell nucleus and to bind chromatin. In this work, we established secondary structure of the miPEP-156a and demonstrated its changes induced by formation of the peptide complex with DNA.
Collapse
Affiliation(s)
- Tatiana N Erokhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Dmitry Yu Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Larisa V Samokhvalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Andrey A Mozhaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexander N Orsa
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Sergey K Zavriev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Sergey Yu Morozov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
156
|
Selvi A, Devi K, Manimekalai R, Prathima PT, Valiyaparambth R, Lakshmi K. High-throughput miRNA deep sequencing in response to drought stress in sugarcane. 3 Biotech 2021; 11:312. [PMID: 34109097 DOI: 10.1007/s13205-021-02857-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Drought is a major factor which reduces cane growth and productivity. In the present study, we sequenced drought susceptible (V1) and drought tolerant (V2) sugarcane varieties using high-throughput miRNA deep sequencing method to study the regulation of gene expression by miRNAs during drought stress in sugarcane. A total of 1224 conserved miRNAs which belong to 89 miRNA families were identified and 38% of the differentially regulated miRNAs were common for both varieties. Additionally 435 novel miRNAs were also identified from four small RNA libraries. We identified 145 miRNAs that were differentially expressed in susceptible variety (V1-31) and 143 miRNAs differentially expressed in the tolerant variety (V2-31). Target prediction revealed that the genes mainly encoded transcription factors, proteins, phosphatase and kinases involved in signal transduction pathways, integral component of membrane and inorganic ion transport metabolism, enzymes involved in carbohydrate transport and metabolism and drought-stress-related proteins involved in defense mechanisms. Pathway analysis of targets revealed that "General function prediction only" was the most significant pathway observed in both tolerant and susceptible genotypes followed by "signal transduction mechanisms". Functional annotation of the transcripts revealed genes like calcium-dependent protein kinase, respiratory burst oxidase, caffeic acid 3-O-methyltransferase, peroxidase, calmodulin, glutathione S-transferase and transcription factors like MYB, WRKY that are involved in drought tolerant pathways. qRT-PCR was used to verify the expression levels of miRNAs and their potential targets obtained from RNA sequencing results. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-021-02857-x.
Collapse
Affiliation(s)
- Athiappan Selvi
- Biotechnology Section, Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641 007 India
| | - Kaliannan Devi
- Biotechnology Section, Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641 007 India
| | - Ramaswamy Manimekalai
- Biotechnology Section, Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641 007 India
| | | | - Rabisha Valiyaparambth
- Biotechnology Section, Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641 007 India
| | - Kasirajan Lakshmi
- Biotechnology Section, Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641 007 India
| |
Collapse
|
157
|
Hang N, Shi T, Liu Y, Ye W, Taier G, Sun Y, Wang K, Zhang W. Overexpression of Os-microRNA408 enhances drought tolerance in perennial ryegrass. PHYSIOLOGIA PLANTARUM 2021; 172:733-747. [PMID: 33215699 DOI: 10.1111/ppl.13276] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 05/29/2023]
Abstract
As a conserved microRNA (miRNA) family in plants, miR408 is known to be involved in different abiotic stress responses, including drought. Interestingly, some studies indicated a species- and/or cultivar-specific drought-responsive characteristic of miR408 in plant drought stress. Moreover, the functions of miR408 in perennial grass species are unknown. In this study, we investigated the role of miR408 in perennial ryegrass (Lolium perenne L.) by withholding water for 10 days for both wild type and transgenic plants with heterologous expression of rice (Oryza sativa L.) miR408 gene, Os-miR408. The results showed that transgenic perennial ryegrass plants displayed morphological changes under normal growth conditions, such as curl leaves and sunken stomata, which could be related to decreased leaf water loss. Moreover, transgenic perennial ryegrass exhibited improved drought tolerance, as demonstrated by maintaining higher leaf relative water content (RWC), lower electrolyte leakage (EL), and less lipid peroxidation compared to WT plants under drought stress. Furthermore, the transgenic plants showed higher antioxidative capacity under drought. These results showed that the improved drought tolerance in Os-miR408 transgenic plants could be due to leaf morphological changes favoring the maintenance of water status and to increased antioxidative capacity protecting against the reactive oxygen species damages under stress. These findings implied that miR408 could serve as a potential target for genetic manipulations to engineer perennial grass plants for improved water stress tolerance.
Collapse
Affiliation(s)
- Nan Hang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Tianran Shi
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yanrong Liu
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenxin Ye
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Huhehaote, China
| | - Geli Taier
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yan Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Kehua Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Wanjun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- National Energy R&D Center for Biomass, China Agricultural University, Beijing, China
| |
Collapse
|
158
|
Bhogireddy S, Mangrauthia SK, Kumar R, Pandey AK, Singh S, Jain A, Budak H, Varshney RK, Kudapa H. Regulatory non-coding RNAs: a new frontier in regulation of plant biology. Funct Integr Genomics 2021; 21:313-330. [PMID: 34013486 PMCID: PMC8298231 DOI: 10.1007/s10142-021-00787-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/27/2022]
Abstract
Beyond the most crucial roles of RNA molecules as a messenger, ribosomal, and transfer RNAs, the regulatory role of many non-coding RNAs (ncRNAs) in plant biology has been recognized. ncRNAs act as riboregulators by recognizing specific nucleic acid targets through homologous sequence interactions to regulate plant growth, development, and stress responses. Regulatory ncRNAs, ranging from small to long ncRNAs (lncRNAs), exert their control over a vast array of biological processes. Based on the mode of biogenesis and their function, ncRNAs evolved into different forms that include microRNAs (miRNAs), small interfering RNAs (siRNAs), miRNA variants (isomiRs), lncRNAs, circular RNAs (circRNAs), and derived ncRNAs. This article explains the different classes of ncRNAs and their role in plant development and stress responses. Furthermore, the applications of regulatory ncRNAs in crop improvement, targeting agriculturally important traits, have been discussed.
Collapse
Affiliation(s)
- Sailaja Bhogireddy
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| | | | - Rakesh Kumar
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Life Sciences, Central University of Karnataka, Karnataka, India
| | - Arun K Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Sadhana Singh
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Ankit Jain
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, Western Australia, Australia
| | - Himabindu Kudapa
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| |
Collapse
|
159
|
Esposito S, Aversano R, Tripodi P, Carputo D. Whole-Genome Doubling Affects Pre-miRNA Expression in Plants. PLANTS 2021; 10:plants10051004. [PMID: 34069771 PMCID: PMC8157229 DOI: 10.3390/plants10051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/09/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
Whole-genome doubling (polyploidy) is common in angiosperms. Several studies have indicated that it is often associated with molecular, physiological, and phenotypic changes. Mounting evidence has pointed out that micro-RNAs (miRNAs) may have an important role in whole-genome doubling. However, an integrative approach that compares miRNA expression in polyploids is still lacking. Here, a re-analysis of already published RNAseq datasets was performed to identify microRNAs’ precursors (pre-miRNAs) in diploids (2x) and tetraploids (4x) of five species (Arabidopsis thaliana L., Morus alba L., Brassica rapa L., Isatis indigotica Fort., and Solanum commersonii Dun). We found 3568 pre-miRNAs, three of which (pre-miR414, pre-miR5538, and pre-miR5141) were abundant in all 2x, and were absent/low in their 4x counterparts. They are predicted to target more than one mRNA transcript, many belonging to transcription factors (TFs), DNA repair mechanisms, and related to stress. Sixteen pre-miRNAs were found in common in all 2x and 4x. Among them, pre-miRNA482, pre-miRNA2916, and pre-miRNA167 changed their expression after polyploidization, being induced or repressed in 4x plants. Based on our results, a common ploidy-dependent response was triggered in all species under investigation, which involves DNA repair, ATP-synthesis, terpenoid biosynthesis, and several stress-responsive transcripts. In addition, an ad hoc pre-miRNA expression analysis carried out solely on 2x vs. 4x samples of S. commersonii indicated that ploidy-dependent pre-miRNAs seem to actively regulate the nucleotide metabolism, probably to cope with the increased requirement for DNA building blocks caused by the augmented DNA content. Overall, the results outline the critical role of microRNA-mediated responses following autopolyploidization in plants.
Collapse
Affiliation(s)
- Salvatore Esposito
- CREA Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy;
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Pasquale Tripodi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano, Italy;
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
- Correspondence: ; Tel.: +39-08-1252-9225
| |
Collapse
|
160
|
Zhang H, Guo Z, Zhuang Y, Suo Y, Du J, Gao Z, Pan J, Li L, Wang T, Xiao L, Qin G, Jiao Y, Cai H, Li L. MicroRNA775 regulates intrinsic leaf size and reduces cell wall pectin levels by targeting a galactosyltransferase gene in Arabidopsis. THE PLANT CELL 2021; 33:581-602. [PMID: 33955485 PMCID: PMC8136896 DOI: 10.1093/plcell/koaa049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/16/2020] [Indexed: 05/10/2023]
Abstract
Plants possess unique primary cell walls made of complex polysaccharides that play critical roles in determining intrinsic cell and organ size. How genes responsible for synthesizing and modifying the polysaccharides in the cell wall are regulated by microRNAs (miRNAs) to control plant size remains largely unexplored. Here we identified 23 putative cell wall-related miRNAs, termed as CW-miRNAs, in Arabidopsis thaliana and characterized miR775 as an example. We showed that miR775 post-transcriptionally silences GALT9, which encodes an endomembrane-located galactosyltransferase belonging to the glycosyltransferase 31 family. Over-expression of miR775 and deletion of GALT9 led to significantly enlarged leaf-related organs, primarily due to increased cell size. Monosaccharide quantification, confocal Raman imaging, and immunolabeling combined with atomic force microscopy revealed that the MIR775A-GALT9 circuit modulates pectin levels and the elastic modulus of the cell wall. We also showed that MIR775A is directly repressed by the transcription factor ELONGATED HYPOCOTYL5 (HY5). Genetic analysis confirmed that HY5 is a negative regulator of leaf size that acts through the HY5-MIR775A-GALT9 repression cascade to control pectin levels. These findings demonstrate that miR775-regulated cell wall remodeling is an integral determinant of intrinsic leaf size in A. thaliana. Studying other CW-miRNAs would provide more insights into cell wall biology.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Zhonglong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yan Zhuang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yuanzhen Suo
- Biomedical Pioneering Innovation Center, School of Life Sciences and Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China
| | - Jianmei Du
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhaoxu Gao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiawei Pan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Li Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Tianxin Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Liang Xiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, 100101 Beijing, China
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Author for correspondence:
| |
Collapse
|
161
|
Jodder J. Regulation of pri-MIRNA processing: mechanistic insights into the miRNA homeostasis in plant. PLANT CELL REPORTS 2021; 40:783-798. [PMID: 33454802 DOI: 10.1007/s00299-020-02660-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
miRNAs in plant plays crucial role in controlling proper growth, development and fitness by modulating the expression of their target genes. Therefore to modulate the expression of any stress/development related gene specifically, it is better to modulate expression of the miRNA that can target that gene. To modulate the expression level of miRNA, it is prerequisite to uncover the underlying molecular mechanism of its biogenesis. The biogenesis pathway consists of two major steps, transcription of MIR gene to pri-MIRNA and processing of pri-MIRNA into mature miRNA via sequential cleavage steps. Both of these pathways are tightly controlled by several different factors involving structural and functional molecules. This review is mainly focused on different aspects of pri-MIRNA processing mechanism to emphasize on the fact that to modulate the level of a miRNA in the cell only over-expression or knock-down of that MIR gene is not always sufficient rather it is also crucial to take processing regulation into consideration. The data collected from the recent and relevant literatures depicts that processing regulation is controlled by several aspects like structure and size of the pri-MIRNA, presence of introns in MIR gene and their location, interaction of processing factors with the core components of processing machinery etc. These detailed information can be utilized to figure out the particular point which can be utilized to modulate the expression of the miRNA which would ultimately be beneficial for the scientist and researcher working in this field to generate protocol for engineering plant with improved yield and stress tolerance.
Collapse
Affiliation(s)
- Jayanti Jodder
- School of Biotechnology, Presidency University (Rajarhat Campus), Canal Bank 7 Road, DG Block, Action Area 1D, Newtown, Kolkata, West Bengal, 700156, India.
| |
Collapse
|
162
|
Lunardon A, Kariuki SM, Axtell MJ. Expression and processing of polycistronic artificial microRNAs and trans-acting siRNAs from transiently introduced transgenes in Solanum lycopersicum and Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1087-1104. [PMID: 33655542 DOI: 10.1111/tpj.15221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Targeted gene silencing using small regulatory RNAs is a widely used technique for genetic studies in plants. Artificial microRNAs are one common approach, as they have the advantage of producing just a single functional small RNA, which can be designed for high target specificity and low off-target effects. Simultaneous silencing of multiple targets with artificial microRNAs can be achieved by producing polycistronic microRNA precursors. Alternatively, specialized trans-acting short interfering RNA (tasiRNA) precursors can be designed to produce several specific tasiRNAs at once. Here we tested several artificial microRNA- and tasiRNA-based methods for multiplexed gene silencing in Solanum lycopersicum (tomato) and Nicotiana benthamiana. All analyses used transiently expressed transgenes delivered by infiltration of leaves with Agrobacterium tumefacians. Small RNA sequencing analyses revealed that many previously described approaches resulted in poor small RNA processing. The 5'-most microRNA precursor hairpins on polycistronic artificial microRNA precursors were generally processed more accurately than precursors at the 3'-end. Polycistronic artificial microRNAs where the hairpin precursors were separated by transfer RNAs had the best processing precision. Strikingly, artificial tasiRNA precursors failed to be processed in the expected phased manner in our system. These results highlight the need for further development of multiplexed artificial microRNA and tasiRNA strategies. The importance of small RNA sequencing, as opposed to single-target assays such as RNA blots or real-time polymerase chain reaction, is also discussed.
Collapse
Affiliation(s)
- Alice Lunardon
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Samwel Muiruri Kariuki
- International Institute of Tropical Agriculture, Nairobi, PO Box 30709-00100, Kenya
- Department of Plant Sciences, Kenyatta University, Nairobi, PO Box 43844-00100, Kenya
| | - Michael J Axtell
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
163
|
Zhang Q, Zhao YQ, Gao X, Jia GX. Analysis of miRNA-mediated regulation of flowering induction in Lilium × formolongi. BMC PLANT BIOLOGY 2021; 21:190. [PMID: 33879043 PMCID: PMC8058995 DOI: 10.1186/s12870-021-02961-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND MicroRNAs play pivotal roles in plant vegetative phase change and flowering induction via integrating into multiple flowering pathways. Lilium × formolongi is an important ornamental lily cultivar that can flower within one year after sowing. However, it remains unresolved how miRNA-mediated regulation networks contribute to the L. × formolongi characteristics of a short vegetative growth period and rapid flowering. RESULTS In this study, the small RNA libraries and one degradome library were constructed for L. × formolongi during vegetative growth and flowering initiation, and 366 conserved miRNAs and 32 novel miRNAs were identified. Additionally, 84 miRNAs were significantly differentially expressed during development. A total of 396 targets of 185 miRNAs were identified and validated through degradome sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that functions of the targets were top enriched in the cold and cadmium ion responses, pentose phosphate pathway and carbon fixation in photosynthetic organisms. Furthermore, among 23 differentially expressed miRNA-target pairs, the miR156s-LfSPL2, miR172a-LfAP2 and miR164a-LfNAC pairs as well as miR159a-LfSPL2 were found to be relevant to flowering based on the correlation analysis of expression profiles in the miRNA libraries, degradome and transcriptome. A coexpression regulatory network focused on differentially expressed pairs was also constructed by WGCNA, and 14 miRNAs were considered putative key miRNAs during vegetative development and flowering induction. miR156a/ d/ e showed particularly strong relationships with other miRNAs in the coexpression network. CONCLUSIONS This study provides cues for the further exploration of the regulatory mechanisms of short vegetative development and flowering in L. × formolongi.
Collapse
Affiliation(s)
- Qian Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yu-Qian Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xue Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Gui-Xia Jia
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China.
| |
Collapse
|
164
|
Persson Hodén K, Hu X, Martinez G, Dixelius C. smartPARE: An R Package for Efficient Identification of True mRNA Cleavage Sites. Int J Mol Sci 2021; 22:4267. [PMID: 33924042 PMCID: PMC8073297 DOI: 10.3390/ijms22084267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 11/30/2022] Open
Abstract
Degradome sequencing is commonly used to generate high-throughput information on mRNA cleavage sites mediated by small RNAs (sRNA). In our datasets of potato (Solanum tuberosum, St) and Phytophthora infestans (Pi), initial predictions generated high numbers of cleavage site predictions, which highlighted the need of improved analytic tools. Here, we present an R package based on a deep learning convolutional neural network (CNN) in a machine learning environment to optimize discrimination of false from true cleavage sites. When applying smartPARE to our datasets on potato during the infection process by the late blight pathogen, 7.3% of all cleavage windows represented true cleavages distributed on 214 sites in P. infestans and 444 sites in potato. The sRNA landscape of the two organisms is complex with uneven sRNA production and cleavage regions widespread in the two genomes. Multiple targets and several cases of complex regulatory cascades, particularly in potato, was revealed. We conclude that our new analytic approach is useful for anyone working on complex biological systems and with the interest of identifying cleavage sites particularly inferred by sRNA classes beyond miRNAs.
Collapse
Affiliation(s)
| | | | | | - Christina Dixelius
- The Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden; (K.P.H.); (X.H.); (G.M.)
| |
Collapse
|
165
|
Gan L, Yu B. Forkhead-associated domain 2 links light signal to miRNA biogenesis. MOLECULAR PLANT 2021; 14:541-543. [PMID: 33647479 PMCID: PMC8278648 DOI: 10.1016/j.molp.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 05/15/2023]
Affiliation(s)
- Lu Gan
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588-0666, USA
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588-0666, USA.
| |
Collapse
|
166
|
Pagano L, Rossi R, Paesano L, Marmiroli N, Marmiroli M. miRNA regulation and stress adaptation in plants. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2021. [PMID: 0 DOI: 10.1016/j.envexpbot.2020.104369] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
167
|
Meitha K, Esyanti RR, Iriawati, Hanisia RH, Rohyani. Green pesticide: Tapping to the promising roles of plant secreted small RNAs and responses towards extracellular DNA. Noncoding RNA Res 2021; 6:42-50. [PMID: 33778217 PMCID: PMC7970063 DOI: 10.1016/j.ncrna.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/19/2022] Open
Abstract
The diverse roles of non-coding RNA and DNA in cross-species communication is yet to be revealed. Once thought to only involve intra-specifically in regulating gene expression, the evidence that these genetic materials can also modulate gene expression between species that belong to different kingdoms is accumulating. Plants send small RNAs to the pathogen or parasite when they are being attacked, targeting essential mRNAs for infection or parasitism of the hosts. However, the same survival mechanism is also deployed by the pathogen or parasite to destabilize plant immune responses. In plants, it is suggested that exposure to extracellular self-DNA impedes growth, while to extracellular non-self-DNA induces the modulation of reactive oxygen species, expression of resistance related genes, epigenetic mechanism, or suppression of disease severity. Exploring the potential of secreted RNA and extracellular DNA as a green pesticide could be a promising alternative if we are to provide food for the future global population without further damaging the environment. Hence, some studies on plant secreted RNA and responses towards extracellular DNA are discussed in this review. The precise mode of action of entry and the following cascade of signaling once the plant cell is exposed to secreted RNA or extracellular DNA could be an interesting topic for future research.
Collapse
Affiliation(s)
- Karlia Meitha
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia
| | - Rizkita Rachmi Esyanti
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia
| | - Iriawati
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia
| | - Ristag Hamida Hanisia
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia
| | - Rohyani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia
| |
Collapse
|
168
|
The role of miRNA in plant-virus interaction: a review. Mol Biol Rep 2021; 48:2853-2861. [PMID: 33772417 DOI: 10.1007/s11033-021-06290-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/13/2021] [Indexed: 01/20/2023]
Abstract
Plant viruses affect crop production both quantitatively and qualitatively. The viral genome consists of either DNA or RNA. However, most plant viruses are positive single-strand RNA viruses. MicroRNAs are involved in gene regulation and affect development as well as host-virus interaction. They are non-coding short with 20-24 nucleotides long capable of regulating gene expression. The miRNA gene is transcribed by RNA polymerase II to form pri-miRNA which will later cleaved by Dicer-like 1 to produce pre-miRNA with the help of HYPONASTIC LEAVES1 and SERRATE which finally methylated and exported via nucleopore with the help of HASTY. The outcome of plant virus interaction depends on the effectiveness of host defense and the ability of a virus counter-defense mechanism. In plants, miRNAs are involved in the repression of gene expression through transcript cleavage. On the other hand, viruses use viral suppressors of RNA silencing (VSRs) which affect RISC assembly and subsequent mRNA degradation. Passenger strands, miRNA*, have a significant biological function in plant defense response as well as plant development.
Collapse
|
169
|
Oelmüller R. Threat at One End of the Plant: What Travels to Inform the Other Parts? Int J Mol Sci 2021; 22:3152. [PMID: 33808792 PMCID: PMC8003533 DOI: 10.3390/ijms22063152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Adaptation and response to environmental changes require dynamic and fast information distribution within the plant body. If one part of a plant is exposed to stress, attacked by other organisms or exposed to any other kind of threat, the information travels to neighboring organs and even neighboring plants and activates appropriate responses. The information flow is mediated by fast-traveling small metabolites, hormones, proteins/peptides, RNAs or volatiles. Electric and hydraulic waves also participate in signal propagation. The signaling molecules move from one cell to the neighboring cell, via the plasmodesmata, through the apoplast, within the vascular tissue or-as volatiles-through the air. A threat-specific response in a systemic tissue probably requires a combination of different traveling compounds. The propagating signals must travel over long distances and multiple barriers, and the signal intensity declines with increasing distance. This requires permanent amplification processes, feedback loops and cross-talks among the different traveling molecules and probably a short-term memory, to refresh the propagation process. Recent studies show that volatiles activate defense responses in systemic tissues but also play important roles in the maintenance of the propagation of traveling signals within the plant. The distal organs can respond immediately to the systemic signals or memorize the threat information and respond faster and stronger when they are exposed again to the same or even another threat. Transmission and storage of information is accompanied by loss of specificity about the threat that activated the process. I summarize our knowledge about the proposed long-distance traveling compounds and discuss their possible connections.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
170
|
|
171
|
Abstract
MicroRNAs (miRNAs) are essential non-coding riboregulators of gene expression in plants and animals. In plants, miRNAs guide their effector protein named ARGONAUTE (AGO) to find target RNAs for gene silencing through target RNA cleavage or translational inhibition. miRNAs are derived from primary miRNA transcripts (pri-miRNAs), most of which are transcribed by the DNA-dependent RNA polymerase II. In plants, an RNase III enzyme DICER-LIKE1-containing complex processes pri-miRNAs in the nucleus into miRNAs. To ensure proper function of miRNAs, plants use multiple mechanisms to control miRNA accumulation. On one hand, pri-miRNA levels are controlled through transcription and stability. On the other hand, the activities of the DCL1 complex are regulated by many protein factors at transcriptional, post-transcriptional and post-translational levels. Notably, recent studies reveal that pri-miRNA structure/sequence features and modifications also play important roles in miRNA biogenesis. In this review, we summarize recent progresses on the mechanisms regulating miRNA biogenesis.
Collapse
Affiliation(s)
- Mu Li
- School of Biological Sciences & Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska USA
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska USA
| |
Collapse
|
172
|
Roudaire T, Héloir MC, Wendehenne D, Zadoroznyj A, Dubrez L, Poinssot B. Cross Kingdom Immunity: The Role of Immune Receptors and Downstream Signaling in Animal and Plant Cell Death. Front Immunol 2021; 11:612452. [PMID: 33763054 PMCID: PMC7982415 DOI: 10.3389/fimmu.2020.612452] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
Both plants and animals are endowed with sophisticated innate immune systems to combat microbial attack. In these multicellular eukaryotes, innate immunity implies the presence of cell surface receptors and intracellular receptors able to detect danger signal referred as damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). Membrane-associated pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), C-type lectin receptors (CLRs), receptor-like kinases (RLKs), and receptor-like proteins (RLPs) are employed by these organisms for sensing different invasion patterns before triggering antimicrobial defenses that can be associated with a form of regulated cell death. Intracellularly, animals nucleotide-binding and oligomerization domain (NOD)-like receptors or plants nucleotide-binding domain (NBD)-containing leucine rich repeats (NLRs) immune receptors likely detect effectors injected into the host cell by the pathogen to hijack the immune signaling cascade. Interestingly, during the co-evolution between the hosts and their invaders, key cross-kingdom cell death-signaling macromolecular NLR-complexes have been selected, such as the inflammasome in mammals and the recently discovered resistosome in plants. In both cases, a regulated cell death located at the site of infection constitutes a very effective mean for blocking the pathogen spread and protecting the whole organism from invasion. This review aims to describe the immune mechanisms in animals and plants, mainly focusing on cell death signaling pathways, in order to highlight recent advances that could be used on one side or the other to identify the missing signaling elements between the perception of the invasion pattern by immune receptors, the induction of defenses or the transmission of danger signals to other cells. Although knowledge of plant immunity is less advanced, these organisms have certain advantages allowing easier identification of signaling events, regulators and executors of cell death, which could then be exploited directly for crop protection purposes or by analogy for medical research.
Collapse
Affiliation(s)
- Thibault Roudaire
- Agroécologie, Agrosup Dijon, CNRS, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Marie-Claire Héloir
- Agroécologie, Agrosup Dijon, CNRS, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - David Wendehenne
- Agroécologie, Agrosup Dijon, CNRS, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Aymeric Zadoroznyj
- Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France.,LNC UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Laurence Dubrez
- Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France.,LNC UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Benoit Poinssot
- Agroécologie, Agrosup Dijon, CNRS, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
173
|
Khemka N, Singh Rajkumar M, Garg R, Jain M. Genome-wide profiling of miRNAs during seed development reveals their functional relevance in seed size/weight determination in chickpea. PLANT DIRECT 2021; 5:e00299. [PMID: 33738384 PMCID: PMC7954459 DOI: 10.1002/pld3.299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs) are non-coding small RNAs that regulate gene expression at transcriptional and post-transcriptional levels. The role of miRNAs in seed development and seed size/weight determination is poorly understood in legumes. In this study, we profiled miRNAs at seven successive stages of seed development in a small-seeded and a large-seeded chickpea cultivar via small RNA sequencing. In total, 113 known and 243 novel miRNAs were identified. Gene ontology analysis revealed the enrichment of seed/reproductive/post-embryonic development and signaling pathways processes among the miRNA target genes. A large fraction of the target genes exhibited antagonistic correlation with miRNA expression. The sets of co-expressed miRNAs showing differential expression between the two cultivars were recognized. Known transcription factor (TF) encoding genes involved in seed size/weight determination, including SPL, GRF, MYB, ARF, HAIKU1, SHB1, KLUH/CYP78A5, and E2Fb along with novel genes were found to be targeted by the predicted miRNAs. Differential expression analysis revealed higher transcript levels of members of SPL and REVOLUTA TF families and lower expression of their corresponding miRNAs in the large-seeded cultivar. At least 19 miRNAs known to be involved in seed development or differentially expressed between small-seeded and large-seeded cultivars at late-embryogenesis and/or mid-maturation stages were located within known quantitative trait loci (QTLs) associated with seed size/weight determination. Moreover, 41 target genes of these miRNAs were also located within these QTLs. Altogether, we revealed important roles of miRNAs in seed development and identified candidate miRNAs and their target genes that have functional relevance in determining seed size/weight in chickpea.
Collapse
Affiliation(s)
- Niraj Khemka
- School of Computational & Integrative SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Mohan Singh Rajkumar
- School of Computational & Integrative SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Rohini Garg
- Department of Life SciencesSchool of Natural SciencesShiv Nadar UniversityGautam Buddha NagarUttar PradeshIndia
| | - Mukesh Jain
- School of Computational & Integrative SciencesJawaharlal Nehru UniversityNew DelhiIndia
- National Institute of Plant Genome Research (NIPGR)New DelhiIndia
| |
Collapse
|
174
|
Cambiagno DA, Giudicatti AJ, Arce AL, Gagliardi D, Li L, Yuan W, Lundberg DS, Weigel D, Manavella PA. HASTY modulates miRNA biogenesis by linking pri-miRNA transcription and processing. MOLECULAR PLANT 2021; 14:426-439. [PMID: 33385584 DOI: 10.1016/j.molp.2020.12.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/29/2020] [Accepted: 12/28/2020] [Indexed: 05/23/2023]
Abstract
Post-transcriptional gene silencing mediated by microRNAs (miRNAs) modulates numerous developmental and stress response pathways. For the last two decades, HASTY (HST), the ortholog of human EXPORTIN 5, was considered to be a candidate protein that exports plant miRNAs from the nucleus to the cytoplasm. Here, we report that HST functions in the miRNA pathway independent of its cargo-exporting activity in Arabidopsis. We found that Arabidopsis mutants with impaired HST shuttling exhibit normal subcellular distribution of miRNAs. Interestingly, protein-protein interaction and microscopy assays showed that HST directly interacts with the microprocessor core component DCL1 through its N-terminal domain. Moreover, mass spectrometry analysis revealed that HST also interacts independently of its N-terminal domain with the mediator complex subunit MED37. Further experiments revealed that HST could act as a scaffold to facilitate the recruitment of DCL1 to genomic MIRNA loci by stabilizing the DCL1-MED37 complex, which in turn promotes the transcription and proper processing of primary miRNA transcripts (pri-miRNAs). Taken together, these results suggest that HST is likely associated with the formation of the miRNA biogenesis complex at MIRNA genes, promoting the transcription and processing of pri-miRNAs rather than the direct export of processed miRNAs from the nucleus.
Collapse
Affiliation(s)
- Damian A Cambiagno
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Axel J Giudicatti
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Agustin L Arce
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Delfina Gagliardi
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Wei Yuan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Derek S Lundberg
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| |
Collapse
|
175
|
Ángel Martín-Rodríguez J, Ariani A, Leija A, Elizondo A, Fuentes SI, Ramirez M, Gepts P, Hernández G, Formey D. Phaseolus vulgaris MIR1511 genotypic variations differentially regulate plant tolerance to aluminum toxicity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1521-1533. [PMID: 33300202 DOI: 10.1111/tpj.15129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/20/2020] [Accepted: 12/03/2020] [Indexed: 05/28/2023]
Abstract
The common-bean (Phaseolus vulgaris), a widely consumed legume, originated in Mesoamerica and expanded to South America, resulting in the development of two geographically distinct gene pools. Poor soil condition, including metal toxicity, are often constraints to common-bean crop production. Several P. vulgaris miRNAs, including miR1511, respond to metal toxicity. The MIR1511 gene sequence from the two P. vulgaris model sequenced genotypes revealed that, as opposed to BAT93 (Mesoamerican), the G19833 (Andean) accession displays a 58-bp deletion, comprising the mature and star miR1511 sequences. Genotyping-By-Sequencing data analysis from 87 non-admixed Phaseolus genotypes, comprising different Phaseolus species and P. vulgaris populations, revealed that all the P. vulgaris Andean genotypes and part of the Mesoamerican (MW1) genotypes analyzed displayed a truncated MIR1511 gene. The geographic origin of genotypes with a complete versus truncated MIR1511 showed a distinct distribution. The P. vulgaris ALS3 (Aluminum Sensitive Protein 3) gene, known to be important for aluminum detoxification in several plants, was experimentally validated as the miR1511 target. Roots from BAT93 plants showed decreased miR1511 and increased ALS3 transcript levels at early stages under aluminum toxicity (AlT), while G19833 plants, lacking mature miR1511, showed higher and earlier ALS3 response. Root architecture analyses evidenced higher tolerance of G19833 plants to AlT. However, G19833 plants engineered for miR1511 overexpression showed lower ALS3 transcript level and increased sensitivity to AlT. Absence of miR1511 in Andean genotypes, resulting in a diminished ALS3 transcript degradation, appears to be an evolutionary advantage to high Al levels in soils with increased drought conditions.
Collapse
Affiliation(s)
| | - Andrea Ariani
- Department of Plant Sciences, Section of Crop and Ecosystem Sciences, University of California, Davis, CA, USA
| | - Alfonso Leija
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Armando Elizondo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sara I Fuentes
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mario Ramirez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Paul Gepts
- Department of Plant Sciences, Section of Crop and Ecosystem Sciences, University of California, Davis, CA, USA
| | - Georgina Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Damien Formey
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
176
|
Dukowic-Schulze S, van der Linde K. Oxygen, secreted proteins and small RNAs: mobile elements that govern anther development. PLANT REPRODUCTION 2021; 34:1-19. [PMID: 33492519 PMCID: PMC7902584 DOI: 10.1007/s00497-020-00401-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/24/2020] [Indexed: 05/24/2023]
Abstract
Correct anther development is essential for male fertility and subsequently agricultural yield. Defects in anther development range from the early stage of stamen formation until the late stage of tapetum degeneration. In particular, the specification of the four distinct somatic layers and the inner sporogenous cells need perfect orchestration relying on precise cell-cell communication. Up to now, several signals, which coordinate the anther´s developmental program, have been identified. Among the known signals are phytohormones, environmental conditions sensed via glutaredoxins, several receptor-like kinases triggered by ligands like MAC1, and small RNAs such as miRNAs and the monocot-prevalent reproductive phasiRNAs. Rather than giving a full review on anther development, here we discuss anther development with an emphasis on mobile elements like ROS/oxygen, secreted proteins and small RNAs (only briefly touching on phytohormones), how they might act and interact, and what the future of this research area might reveal.
Collapse
Affiliation(s)
- Stefanie Dukowic-Schulze
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| | - Karina van der Linde
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
177
|
Pradhan S, Verma S, Chakraborty A, Bhatia S. Identification and molecular characterization of miRNAs and their target genes associated with seed development through small RNA sequencing in chickpea. Funct Integr Genomics 2021; 21:283-298. [PMID: 33630193 DOI: 10.1007/s10142-021-00777-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/12/2021] [Accepted: 02/09/2021] [Indexed: 11/30/2022]
Abstract
Multiple studies have attempted to dissect the molecular mechanism underlying seed development in chickpea (Cicer arietinum L.). These studies highlight the need to focus on the role of miRNAs in regulating storage protein accumulation in seeds. Therefore, a total of 8,856,691 short-read sequences were generated from a small RNA library of developing chickpea seeds and were analyzed using miRDeep-P to identify 74 known and 26 novel miRNA sequences. Known miRNAs were classified into 22 miRNA families with miRNA156 family being most abundant. Of the 26 putative novel miRNAs identified, only 22 could be experimentally validated using stem loop end point PCR. Differential expression analyses led to the identification of known as well as novel miRNAs that could regulate various stages of chickpea seed development. In silico target prediction revealed several important target genes and transcription factors like SPL, mediator of RNA Polymerase II transcription subunit 12, aspartic proteinase and NACs, which were further validated by real-time PCR analysis. A comparative expression analysis in chickpea genotypes with contrasting seed protein content revealed one known (Car-miR156h) and two novel miRNA (Car-novmiR7 and Car-novmiR23) candidates to be highly expressed in the LPC (low protein content) chickpea genotypes, targets of which are known to regulate seed storage protein accumulation. Therefore, this study provides a useful resource in the form of miRNA and their targets which can be further utilized to understand and manipulate various regulatory mechanisms involved in seed development with the overall aim of improving yield and nutrition attributes in chickpea.
Collapse
Affiliation(s)
- Seema Pradhan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subodh Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anirban Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
178
|
Li Z, Wang P, Zhang J, Zhao D. MicroRNA-497-5p downregulation inhibits cell viability, reduces extracellular matrix deposition and induces apoptosis in human hyperplastic scar fibroblasts by regulating Smad7. Exp Ther Med 2021; 21:384. [PMID: 33680106 PMCID: PMC7918061 DOI: 10.3892/etm.2021.9815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Hypertrophic scars (HSs) are characterized by excessive extracellular matrix deposition and excessive growth of dense fibrous tissues. MicroRNAs (miRNAs/miRs) serve key roles in HS formation. The present study investigated the expression, role and mechanism underlying the effects of miR-497-5p in HS formation. miR-497-5p expression was detected via reverse transcription-quantitative PCR. The association between miR-497-5p and Smad7 was analyzed using TargetScan and luciferase reporter assays. Protein expression levels of extracellular matrix markers were measured via western blotting. Cell viability and apoptosis were determined using the Cell Counting Kit-8 assay and flow cytometry, respectively. The results suggested that miR-497-5p expression was upregulated in HS tissues and human HS fibroblasts (hHSFs) compared with healthy control skin tissues and CCC-ESF-1 cells, respectively. Smad7 was directly targeted by miR-497-5p, and was downregulated in HS tissues and hHSFs compared with healthy control skin tissues and CCC-ESF-1 cells, respectively. Moreover, Smad7 upregulation significantly inhibited cell viability, decreased extracellular matrix deposition and induced apoptosis in hHSFs compared with the control-plasmid group. Moreover, the results indicated that, compared with the inhibitor control group, miR-497-5p inhibitor inhibited cell viability, decreased extracellular matrix deposition and induced apoptosis in hHSFs, which were significantly reversed by Smad7 knockdown. In conclusion, the results indicated that miR-497-5p downregulation repressed HS formation by inhibiting extracellular matrix deposition and hHSF proliferation at least partly by targeting Smad7.
Collapse
Affiliation(s)
- Zhiqiang Li
- Shanghai Meizhizhen Medical Cosmetology Clinic, Shanghai 200122, P.R. China
| | - Pengtao Wang
- Shanghai Meizhizhen Medical Cosmetology Clinic, Shanghai 200122, P.R. China
| | - Jie Zhang
- Shanghai Meizhizhen Medical Cosmetology Clinic, Shanghai 200122, P.R. China
| | - Dongkui Zhao
- Shanghai Meizhizhen Medical Cosmetology Clinic, Shanghai 200122, P.R. China
| |
Collapse
|
179
|
Lian H, Wang L, Ma N, Zhou CM, Han L, Zhang TQ, Wang JW. Redundant and specific roles of individual MIR172 genes in plant development. PLoS Biol 2021; 19:e3001044. [PMID: 33529193 PMCID: PMC7853526 DOI: 10.1371/journal.pbio.3001044] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/10/2020] [Indexed: 02/04/2023] Open
Abstract
Evolutionarily conserved microRNAs (miRNAs) usually have high copy numbers in the genome. The redundant and specific roles of each member of a multimember miRNA gene family are poorly understood. Previous studies have shown that the miR156-SPL-miR172 axis constitutes a signaling cascade in regulating plant developmental transitions. Here, we report the feasibility and utility of CRISPR-Cas9 technology to investigate the functions of all 5 MIR172 family members in Arabidopsis. We show that an Arabidopsis plant devoid of miR172 is viable, although it displays pleiotropic morphological defects. MIR172 family members exhibit distinct expression pattern and exert functional specificity in regulating meristem size, trichome initiation, stem elongation, shoot branching, and floral competence. In particular, we find that the miR156-SPL-miR172 cascade is bifurcated into specific flowering responses by matching pairs of coexpressed SPL and MIR172 genes in different tissues. Our results thus highlight the spatiotemporal changes in gene expression that underlie evolutionary novelties of a miRNA gene family in nature. The expansion of MIR172 genes in the Arabidopsis genome provides molecular substrates for the integration of diverse floral inductive cues, which ensures that plants flower at the optimal time to maximize seed yields. This study uses CRISPR-Cas9 technology to investigate the functions of all five miR172 genes in Arabidopsis, finding that miRNA172 family members exhibit distinct expression pattern and exert functional specificity in regulating meristem size, trichome initiation, stem elongation, shoot branching and floral competence.
Collapse
Affiliation(s)
- Heng Lian
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Long Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ning Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- School of Life Science, Henan University, Kaifeng, China
| | - Chuan-Miao Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lin Han
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- ShanghaiTech University, Shanghai, China
- * E-mail:
| |
Collapse
|
180
|
Giudicatti AJ, Tomassi AH, Manavella PA, Arce AL. Extensive Analysis of miRNA Trimming and Tailing Indicates that AGO1 Has a Complex Role in miRNA Turnover. PLANTS 2021; 10:plants10020267. [PMID: 33573197 PMCID: PMC7911489 DOI: 10.3390/plants10020267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
MicroRNAs are small regulatory RNAs involved in several processes in plants ranging from development and stress responses to defense against pathogens. In order to accomplish their molecular functions, miRNAs are methylated and loaded into one ARGONAUTE (AGO) protein, commonly known as AGO1, to stabilize and protect the molecule and to assemble a functional RNA-induced silencing complex (RISC). A specific machinery controls miRNA turnover to ensure the silencing release of targeted-genes in given circumstances. The trimming and tailing of miRNAs are fundamental modifications related to their turnover and, hence, to their action. In order to gain a better understanding of these modifications, we analyzed Arabidopsis thaliana small RNA sequencing data from a diversity of mutants, related to miRNA biogenesis, action, and turnover, and from different cellular fractions and immunoprecipitations. Besides confirming the effects of known players in these pathways, we found increased trimming and tailing in miRNA biogenesis mutants. More importantly, our analysis allowed us to reveal the importance of ARGONAUTE 1 (AGO1) loading, slicing activity, and cellular localization in trimming and tailing of miRNAs.
Collapse
|
181
|
Genetic Insight into the Domain Structure and Functions of Dicer-Type Ribonucleases. Int J Mol Sci 2021; 22:ijms22020616. [PMID: 33435485 PMCID: PMC7827160 DOI: 10.3390/ijms22020616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Ribonuclease Dicer belongs to the family of RNase III endoribonucleases, the enzymes that specifically hydrolyze phosphodiester bonds found in double-stranded regions of RNAs. Dicer enzymes are mostly known for their essential role in the biogenesis of small regulatory RNAs. A typical Dicer-type RNase consists of a helicase domain, a domain of unknown function (DUF283), a PAZ (Piwi-Argonaute-Zwille) domain, two RNase III domains, and a double-stranded RNA binding domain; however, the domain composition of Dicers varies among species. Dicer and its homologues developed only in eukaryotes; nevertheless, the two enzymatic domains of Dicer, helicase and RNase III, display high sequence similarity to their prokaryotic orthologs. Evolutionary studies indicate that a combination of the helicase and RNase III domains in a single protein is a eukaryotic signature and is supposed to be one of the critical events that triggered the consolidation of the eukaryotic RNA interference. In this review, we provide the genetic insight into the domain organization and structure of Dicer proteins found in vertebrate and invertebrate animals, plants and fungi. We also discuss, in the context of the individual domains, domain deletion variants and partner proteins, a variety of Dicers’ functions not only related to small RNA biogenesis pathways.
Collapse
|
182
|
Ren Y, Song Y, Zhang L, Guo D, He J, Wang L, Song S, Xu W, Zhang C, Lers A, Ma C, Wang S. Coding of Non-coding RNA: Insights Into the Regulatory Functions of Pri-MicroRNA-Encoded Peptides in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:641351. [PMID: 33719320 PMCID: PMC7947200 DOI: 10.3389/fpls.2021.641351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/25/2021] [Indexed: 05/06/2023]
Abstract
Peptides composed of a short chain of amino acids can play significant roles in plant growth, development, and stress responses. Most of these functional peptides are derived by either processing precursor proteins or direct translation of small open reading frames present in the genome and sometimes located in the untranslated region sequence of a messenger RNA. Generally, canonical peptides serve as local signal molecules mediating short- or long-distance intercellular communication. Also, they are commonly used as ligands perceived by an associated receptor, triggering cellular signaling transduction. In recent years, increasing pieces of evidence from studies in both plants and animals have revealed that peptides are also encoded by RNAs currently defined as non-coding RNAs (ncRNAs), including long ncRNAs, circular RNAs, and primary microRNAs. Primary microRNAs (miRNAs) have been reported to encode regulatory peptides in Arabidopsis, grapevine, soybean, and Medicago, called miRNA-encoded peptides (miPEPs). Remarkably, overexpression or exogenous applications of miPEPs specifically increase the expression level of their corresponding miRNAs by enhancing the transcription of the MIRNA (MIR) genes. Here, we first outline the current knowledge regarding the coding of putative ncRNAs. Notably, we review in detail the limited studies available regarding the translation of miPEPs and their relevant regulatory mechanisms. Furthermore, we discuss the potential cellular and molecular mechanisms in which miPEPs might be involved in plants and raise problems that needed to be solved.
Collapse
Affiliation(s)
- Yi Ren
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lipeng Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
| | - Dinghan Guo
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
| | - Juan He
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiren Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Amnon Lers
- Department of Postharvest Science of Fresh Produce, Volcani Center, Agricultural Research Organization, Bet Dagan, Israel
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Chao Ma,
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Agro-products Processing Technology of Shandong, Institute of Agro-food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
183
|
Pachamuthu K, Swetha C, Basu D, Das S, Singh I, Sundar VH, Sujith TN, Shivaprasad PV. Rice-specific Argonaute 17 controls reproductive growth and yield-associated phenotypes. PLANT MOLECULAR BIOLOGY 2021; 105:99-114. [PMID: 32964370 DOI: 10.1007/s11103-020-01071-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/08/2020] [Indexed: 05/27/2023]
Abstract
This manuscript describes the functions of an Argonaute protein named AGO17 in rice. AGO17 is required for the development of rice reproductive tissues. Argonaute (AGO) proteins are a well-conserved multigene family of regulators mediating gene silencing across eukaryotes. Monocot plants have additional members of AGO, the functions of which are poorly understood. Among the non-dicot AGO1 clade members in monocots, AGO17 expresses highly in reproductive tissues. Here we show that overexpression of Oryza sativa indica AGO17 in rice resulted in robust growth and increased yield, whereas its silencing resulted in reduced panicle length, less fertility, and poor growth. Small (s)RNA transcriptome analysis revealed misregulation of several miRNAs and other categories of sRNAs in silenced and overexpression lines, in agreement with its likely competition with other AGO1 clade members. Targets of differentially expressed miRNAs included previously unreported target RNAs coding for proteins involved in development, phase transition, and transport. Our results indicate a distinctive role for OsAGO17 in rice reproductive development that could be harnessed to improve yield.
Collapse
Affiliation(s)
- Kannan Pachamuthu
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Chenna Swetha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Debjani Basu
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Soumita Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Indira Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Vivek Hari Sundar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - T N Sujith
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India.
| |
Collapse
|
184
|
Plant Responses to Heat Stress: Physiology, Transcription, Noncoding RNAs, and Epigenetics. Int J Mol Sci 2020; 22:ijms22010117. [PMID: 33374376 PMCID: PMC7795586 DOI: 10.3390/ijms22010117] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 01/05/2023] Open
Abstract
Global warming has increased the frequency of extreme high temperature events. High temperature is a major abiotic stress that limits the growth and production of plants. Therefore, the plant response to heat stress (HS) has been a focus of research. However, the plant response to HS involves complex physiological traits and molecular or gene networks that are not fully understood. Here, we review recent progress in the physiological (photosynthesis, cell membrane thermostability, oxidative damage, and others), transcriptional, and post-transcriptional (noncoding RNAs) regulation of the plant response to HS. We also summarize advances in understanding of the epigenetic regulation (DNA methylation, histone modification, and chromatin remodeling) and epigenetic memory underlying plant–heat interactions. Finally, we discuss the challenges and opportunities of future research in the plant response to HS.
Collapse
|
185
|
Yu S, Wang JW. The Crosstalk between MicroRNAs and Gibberellin Signaling in Plants. PLANT & CELL PHYSIOLOGY 2020; 61:1880-1890. [PMID: 32845336 DOI: 10.1093/pcp/pcaa079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/05/2020] [Indexed: 05/14/2023]
Abstract
Gibberellin (GA) is an integral phytohormone that plays prominent roles in controlling seed germination, stem elongation, leaf development and floral induction. It has been shown that GA regulates these diverse biological processes mainly through overcoming the suppressive effects of the DELLA proteins, a family of nuclear repressors of GA response. MicroRNAs (miRNAs), which have been identified as master regulators of gene expression in eukaryotes, are also involved in a wide range of plant developmental events through the repression of their target genes. The pathways of GA biosynthesis and signaling, as well as the pathways of miRNA biogenesis and regulation, have been profoundly delineated in the past several decades. Growing evidence has shown that miRNAs and GAs are coordinated in regulating plant development, as several components in GA pathways are targeted by miRNAs, and GAs also regulate the expression of miRNAs or their target genes vice versa. Here, we review the recent advances in our understanding of the molecular connections between miRNAs and GA, with an emphasis on the two miRNAs, miR156 and miR159.
Collapse
Affiliation(s)
- Sha Yu
- Center for RNA research, Institute for Basic Science, Seoul 00826, South Korea
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
186
|
Xu B, Mei J, Ji W, Huo Z, Bian Z, Jiao J, Li X, Sun J, Shao J. MicroRNAs involved in the EGFR pathway in glioblastoma. Biomed Pharmacother 2020; 134:111115. [PMID: 33341046 DOI: 10.1016/j.biopha.2020.111115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant tumor in adults, and its morbidity and mortality are very high. Although progress has been achieved in the treatment of GBM, such as surgery, chemotherapy and radiotherapy, in recent years, the prognosis of patients with GBM has not improved significantly. MicroRNAs (miRNAs) are endogenous noncoding single-stranded RNAs consisting of approximately 20-22 nucleotides that regulate gene expression at the posttranscriptional level by binding to target protein-encoding mRNAs. Notably, miRNAs regulate various carcinogenic pathways, one of which is the epidermal growth factor receptor (EGFR) signaling pathway, which controls cell proliferation, invasion, migration, angiogenesis and apoptosis. In this review, we summarize the novel discoveries of roles for miRNAs targeting the factors in the EGFR signaling pathway in the occurrence and development of GBM. In addition, we describe their potential roles as biomarkers for the diagnosis and prognosis of GBM and for determining the treatment resistance of GBM and the efficacy of therapeutic drugs.
Collapse
Affiliation(s)
- Bin Xu
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, PR China.
| | - Jie Mei
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, PR China.
| | - Wei Ji
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, PR China.
| | - Zhengyuan Huo
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, PR China.
| | - Zheng Bian
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, PR China.
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, PR China.
| | - Xiaoqing Li
- Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Jun Sun
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, PR China.
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, PR China.
| |
Collapse
|
187
|
Betti F, Ladera-Carmona MJ, Perata P, Loreti E. RNAi Mediated Hypoxia Stress Tolerance in Plants. Int J Mol Sci 2020; 21:E9394. [PMID: 33321742 PMCID: PMC7764064 DOI: 10.3390/ijms21249394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022] Open
Abstract
Small RNAs regulate various biological process involved in genome stability, development, and adaptive responses to biotic or abiotic stresses. Small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs). MicroRNAs (miRNAs) are regulators of gene expression that affect the transcriptional and post-transcriptional regulation in plants and animals through RNA interference (RNAi). miRNAs are endogenous small RNAs that originate from the processing of non-coding primary miRNA transcripts folding into hairpin-like structures. The mature miRNAs are incorporated into the RNA-induced silencing complex (RISC) and drive the Argonaute (AGO) proteins towards their mRNA targets. siRNAs are generated from a double-stranded RNA (dsRNA) of cellular or exogenous origin. siRNAs are also involved in the adaptive response to biotic or abiotic stresses. The response of plants to hypoxia includes a genome-wide transcription reprogramming. However, little is known about the involvement of RNA signaling in gene regulation under low oxygen availability. Interestingly, miRNAs have been shown to play a role in the responses to hypoxia in animals, and recent evidence suggests that hypoxia modulates the expression of various miRNAs in plant systems. In this review, we describe recent discoveries on the impact of RNAi on plant responses to hypoxic stress in plants.
Collapse
Affiliation(s)
- Federico Betti
- PlantLab, Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56010 Pisa, Italy; (F.B.); (M.J.L.-C.); (P.P.)
| | - Maria José Ladera-Carmona
- PlantLab, Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56010 Pisa, Italy; (F.B.); (M.J.L.-C.); (P.P.)
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56010 Pisa, Italy; (F.B.); (M.J.L.-C.); (P.P.)
| | - Elena Loreti
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
188
|
Geng Y, Jian C, Xu W, Liu H, Hao C, Hou J, Liu H, Zhang X, Li T. miR164-targeted TaPSK5 encodes a phytosulfokine precursor that regulates root growth and yield traits in common wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2020; 104:615-628. [PMID: 32968950 DOI: 10.1007/s11103-020-01064-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
TaPSK5 is a less conserved target of miR164 in wheat encoding a positive regulator of root growth and yield traits that could be used for crop improvement. MicroRNAs (miRNAs) play key roles in regulating plant growth and development by targeting the mRNAs of conserved genes. However, little is known about the roles of less conserved miRNA-targeted genes in plants. In the current study, we identified TaPSK5, encoding a phytosulfokine precursor, as a novel target of miR164. Compared with miR164-targeted NAC transcription factor genes, TaPSK5 is less conserved between monocots and dicots. Expression analysis indicated that TaPSK5 homoeologs were constitutively expressed in wheat tissues, especially young spikes. Overexpression of TaPSK5-D and miR164-resistant TaPSK5-D (r-TaPSK5-D) led to increased primary root growth and grain yield in rice, with the latter having more significant effects. Comparison of the transcriptome between wild-type and r-TaPSK5-D overexpression plants revealed multiple differentially expressed genes involved in hormone signaling, transcription regulation, and reactive oxygen species (ROS) homeostasis. Moreover, we identified three TaPSK5-A haplotypes (TaPSK5-A-Hap1/2/3) and two TaPSK5-B haplotypes (TaPSK5-B-Hap1/2) in core collections of Chinese wheat. Both TaPSK5-A-Hap1 and TaPSK5-B-Hap2 are favorable haplotypes associated with superior yield traits that were under positive selection during wheat breeding. Together, our findings identify miR164-targeted TaPSK5 as a regulator of root growth and yield traits in common wheat with potential applications for the genetic improvement of crops.
Collapse
Affiliation(s)
- Yuke Geng
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Life and Environmental Science, Minzu University of China, Beijing, 10081, China
| | - Chao Jian
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wu Xu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hong Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Hou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongxia Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
189
|
Jia J, Ji R, Li Z, Yu Y, Nakano M, Long Y, Feng L, Qin C, Lu D, Zhan J, Xia R, Meyers BC, Liu B, Zhai J. Soybean DICER-LIKE2 Regulates Seed Coat Color via Production of Primary 22-Nucleotide Small Interfering RNAs from Long Inverted Repeats. THE PLANT CELL 2020; 32:3662-3673. [PMID: 33077493 PMCID: PMC7721327 DOI: 10.1105/tpc.20.00562] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/16/2020] [Accepted: 10/15/2020] [Indexed: 05/02/2023]
Abstract
In plants, 22-nucleotide small RNAs trigger the production of secondary small interfering RNAs (siRNAs) and enhance silencing. DICER-LIKE2 (DCL2)-dependent 22-nucleotide siRNAs are rare in Arabidopsis (Arabidopsis thaliana) and are thought to function mainly during viral infection; by contrast, these siRNAs are abundant in many crops such as soybean (Glycine max) and maize (Zea mays). Here, we studied soybean 22-nucleotide siRNAs by applying CRISPR-Cas9 to simultaneously knock out the two copies of soybean DCL2, GmDCL2a and GmDCL2b, in the Tianlong1 cultivar. Small RNA sequencing revealed that most 22-nucleotide siRNAs are derived from long inverted repeats (LIRs) and disappeared in the Gmdcl2a/2b double mutant. De novo assembly of a Tianlong1 reference genome and transcriptome profiling identified an intronic LIR formed by the chalcone synthase (CHS) genes CHS1 and CHS3 This LIR is the source of primary 22-nucleotide siRNAs that target other CHS genes and trigger the production of secondary 21-nucleotide siRNAs. Disruption of this process in Gmdcl2a/2b mutants substantially increased CHS mRNA levels in the seed coat, thus changing the coat color from yellow to brown. Our results demonstrated that endogenous LIR-derived transcripts in soybean are predominantly processed by GmDCL2 into 22-nucleotide siRNAs and uncovered a role for DCL2 in regulating natural traits.
Collapse
Affiliation(s)
- Jinbu Jia
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ronghuan Ji
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhuowen Li
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiming Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mayumi Nakano
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Yanping Long
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li Feng
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chao Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dongdong Lu
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junpeng Zhan
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Rui Xia
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jixian Zhai
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
190
|
|
191
|
Gaafar YZA, Ziebell H. Novel targets for engineering Physostegia chlorotic mottle and tomato brown rugose fruit virus-resistant tomatoes: in silico prediction of tomato microRNA targets. PeerJ 2020; 8:e10096. [PMID: 33194382 PMCID: PMC7597636 DOI: 10.7717/peerj.10096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/14/2020] [Indexed: 11/20/2022] Open
Abstract
Background Physostegia chlorotic mottle virus (PhCMoV; genus: Alphanucleorhabdovirus, family: Rhabdoviridae) and tomato brown rugose fruit virus (ToBRFV; genus: Tobamovirus, family: Virgaviridae) are newly emerging plant viruses that have a dramatic effect on tomato production. Among various known virus-control strategies, RNAi-mediated defence has shown the potential to protect plants against various pathogens including viral infections. Micro(mi)RNAs play a major role in RNAi-mediated defence. Methods Using in silico analyses, we investigated the possibility of tomato-encoded miRNAs (TomiRNA) to target PhCMoV and ToBRFV genomes using five different algorithms, i.e., miRanda, RNAhybrid, RNA22, Tapirhybrid and psRNATarget. Results The results revealed that 14 loci on PhCMoV and 10 loci on ToBRFV can be targeted by the TomiRNAs based on the prediction of at least three algorithms. Interestingly, one TomiRNA, miR6026, can target open reading frames from both viruses, i.e., the phosphoprotein encoding gene of PhCMoV, and the two replicase components of ToBRFV. There are currently no commercially available PhCMoV- or ToBRFV-resistant tomato varieties, therefore the predicted data provide useful information for the development of PhCMoV- and ToBFRV-resistant tomato plants.
Collapse
Affiliation(s)
- Yahya Zakaria Abdou Gaafar
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) -Federal Research Centre for Cultivated Plants, Braunschweig, Lower Saxony, Germany
| | - Heiko Ziebell
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) -Federal Research Centre for Cultivated Plants, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
192
|
Waititu JK, Zhang C, Liu J, Wang H. Plant Non-Coding RNAs: Origin, Biogenesis, Mode of Action and Their Roles in Abiotic Stress. Int J Mol Sci 2020; 21:E8401. [PMID: 33182372 PMCID: PMC7664903 DOI: 10.3390/ijms21218401] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 01/21/2023] Open
Abstract
As sessile species, plants have to deal with the rapidly changing environment. In response to these environmental conditions, plants employ a plethora of response mechanisms that provide broad phenotypic plasticity to allow the fine-tuning of the external cues related reactions. Molecular biology has been transformed by the major breakthroughs in high-throughput transcriptome sequencing and expression analysis using next-generation sequencing (NGS) technologies. These innovations have provided substantial progress in the identification of genomic regions as well as underlying basis influencing transcriptional and post-transcriptional regulation of abiotic stress response. Non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), short interfering RNAs (siRNAs), and long non-coding RNAs (lncRNAs), have emerged as essential regulators of plants abiotic stress response. However, shared traits in the biogenesis of ncRNAs and the coordinated cross-talk among ncRNAs mechanisms contribute to the complexity of these molecules and might play an essential part in regulating stress responses. Herein, we highlight the current knowledge of plant microRNAs, siRNAs, and lncRNAs, focusing on their origin, biogenesis, modes of action, and fundamental roles in plant response to abiotic stresses.
Collapse
Affiliation(s)
- Joram Kiriga Waititu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.K.W.); (C.Z.)
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.K.W.); (C.Z.)
| | - Jun Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.K.W.); (C.Z.)
| |
Collapse
|
193
|
Rambani A, Hu Y, Piya S, Long M, Rice JH, Pantalone V, Hewezi T. Identification of Differentially Methylated miRNA Genes During Compatible and Incompatible Interactions Between Soybean and Soybean Cyst Nematode. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1340-1352. [PMID: 32757880 DOI: 10.1094/mpmi-07-20-0196-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
DNA methylation is a widespread epigenetic mark that affects gene expression and transposon mobility during plant development and stress responses. However, the role of DNA methylation in regulating the expression of microRNA (miRNA) genes remains largely unexplored. Here, we analyzed DNA methylation changes of miRNA genes using a pair of soybean (Glycine max) near-isogenic lines (NILs) differing in their response to soybean cyst nematode (SCN; Heterodera glycines). Differences in global DNA methylation levels over miRNA genes in response to SCN infection were observed between the isogenic lines. miRNA genes with significant changes in DNA methylation levels in the promoter and primary transcript-coding regions were detected in both lines. In the susceptible isogenic line (NIL-S), 82 differentially methylated miRNAs were identified in response to SCN infection whereas, in the resistant isogenic line (NIL-R), only 16 differentially methylated miRNAs were identified. Interestingly, gma-miR5032, gma-miR5043, gma-miR1520b, and gma-2107-ch16 showed opposite methylation patterns in the isogenic lines. In addition, the miRNA paralogs gma-miR5770a and gma-miR5770b showed hypermethylation and hypomethylation in NIL-S and NIL-R, respectively. Gene expression quantification of gma-miR5032, gma-miR5043, gma-miR1520b, and gma-miR5770a/b and their confirmed targets indicated a role of DNA methylation in regulating miRNA expression and, thus, their targets upon SCN infection. Furthermore, overexpression of these four miRNAs in NIL-S using transgenic hairy root system enhanced plant resistance to SCN to various degrees with a key role observed for miR5032. Together, our results provide new insights into the role of epigenetic mechanisms in controlling miRNA regulatory function during SCN-soybean interactions.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Aditi Rambani
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Yanfeng Hu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Miao Long
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - J Hollis Rice
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Vince Pantalone
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| |
Collapse
|
194
|
Ponnu J, Schlereth A, Zacharaki V, Działo MA, Abel C, Feil R, Schmid M, Wahl V. The trehalose 6-phosphate pathway impacts vegetative phase change in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:768-780. [PMID: 32799402 DOI: 10.1111/tpj.14965] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/12/2020] [Accepted: 07/13/2020] [Indexed: 05/16/2023]
Abstract
The vegetative phase change marks the beginning of the adult phase in the life cycle of plants and is associated with a gradual decline in the microRNA miR156, in response to sucrose status. Trehalose 6-phosphate (T6P) is a sugar molecule with signaling function reporting the current sucrose state. To elucidate the role of T6P signaling in vegetative phase change, molecular, genetic, and metabolic analyses were performed using Arabidopsis thaliana loss-of-function lines in TREHALOSE PHOSPHATE SYNTHASE1 (TPS1), a gene coding for an enzyme that catalyzes the production of T6P. These lines show a significant delay in vegetative phase change, under both short and long day conditions. Induced expression of TPS1 complements this delay in the TPS1 knockout mutant (tps1-2 GVG::TPS1). Further analyses indicate that the T6P pathway promotes vegetative phase transition by suppressing miR156 expression and thereby modulating the levels of its target transcripts, the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes. TPS1 knockdown plants, with a delayed vegetative phase change phenotype, accumulate significantly more sucrose than wild-type plants as a result of a feedback mechanism. In summary, we conclude that the T6P pathway forms an integral part of an endogenous mechanism that influences phase transitions dependent on the metabolic state.
Collapse
Affiliation(s)
- Jathish Ponnu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstraße 35, Tübingen, 72076, Germany
| | - Armin Schlereth
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | | | - Magdalena A Działo
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Christin Abel
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Regina Feil
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Markus Schmid
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstraße 35, Tübingen, 72076, Germany
| | - Vanessa Wahl
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| |
Collapse
|
195
|
Sharma N, Prasad M. Silencing AC1 of Tomato leaf curl virus using artificial microRNA confers resistance to leaf curl disease in transgenic tomato. PLANT CELL REPORTS 2020; 39:1565-1579. [PMID: 32860518 DOI: 10.1007/s00299-020-02584-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/20/2020] [Indexed: 05/25/2023]
Abstract
Expression of artificial microRNA targeting ATP binding domain of AC1 in transgenic tomato confers resistance to Tomato leaf curl disease without impacting the yield of tomato. Tomato curl leaf disease caused by Tomato leaf curl virus (ToLCV) is a key constraint to tomato cultivation worldwide. Engineering transgenic plants expressing artificial microRNAs (amiRNAs) against the AC1 gene of Tomato leaf curl New Delhi virus (ToLCNDV), which is important for virus replication and pathogenicity, would consequently confer virus resistance and reduce crop loss in the economically important crops. This study relates to an amiRNA developed on the sequence of Arabidopsis miRNA319a, targeting the ATP/GTP binding domain of AC1 gene of ToLCNDV. The AC1-amiR was found to regulate the abundance of AC1, providing an excellent strategy in providing defense against ToLCNDV. Transgenic lines over-expressing AC1-amiR, when challenged with ToLCNDV, showed reduced disease symptoms and high percentage resistance ranging between ∼ 40 and 80%. The yield of transgenic plants was significantly higher upon ToLCNDV infection as compared to the non-transgenic plants. Although the natural resistance resources against ToLCNDV are not available, this work streamlines a novel amiRNA-based mechanism that may have the potential to develop viral resistance strategies in tomato, apart from its normal symptom development properties as it is targeting the conserved region against which higher accumulation of small interfering RNAs (siRNA) occurred in a naturally tolerant tomato cultivar.
Collapse
Affiliation(s)
- Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
196
|
Silva-Martins G, Bolaji A, Moffett P. What does it take to be antiviral? An Argonaute-centered perspective on plant antiviral defense. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6197-6210. [PMID: 32835379 DOI: 10.1093/jxb/eraa377] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
RNA silencing is a major mechanism of constitutive antiviral defense in plants, mediated by a number of proteins, including the Dicer-like (DCL) and Argonaute (AGO) endoribonucleases. Both DCL and AGO protein families comprise multiple members. In particular, the AGO protein family has expanded considerably in different plant lineages, with different family members having specialized functions. Although the general mode of action of AGO proteins is well established, the properties that make different AGO proteins more or less efficient at targeting viruses are less well understood. In this report, we review methodologies used to study AGO antiviral activity and current knowledge about which AGO family members are involved in antiviral defense. In addition, we discuss what is known about the different properties of AGO proteins thought to be associated with this function.
Collapse
Affiliation(s)
| | - Ayooluwa Bolaji
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
197
|
21-nt phasiRNAs direct target mRNA cleavage in rice male germ cells. Nat Commun 2020; 11:5191. [PMID: 33060587 PMCID: PMC7562718 DOI: 10.1038/s41467-020-19034-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
In grasses, phased small interfering RNAs (phasiRNAs), 21- or 24-nucleotide (nt) in length, are predominantly expressed in anthers and play a role in regulating male fertility. However, their targets and mode of action on the targets remain unknown. Here we profile phasiRNA expression in premeiotic and meiotic spikelets as well as in purified male meiocytes at early prophase I, tetrads and microspores in rice. We show that 21-nt phasiRNAs are most abundant in meiocytes at early prophase I while 24-nt phasiRNAs are more abundant in tetrads and microspores. By performing highly sensitive degradome sequencing, we find that 21-nt phasiRNAs direct target mRNA cleavage in male germ cells, especially in meiocytes at early prophase I. These targets include 435 protein-coding genes and 71 transposons that show an enrichment for carbohydrate biosynthetic and metabolic pathways. Our study provides strong evidence that 21-nt phasiRNAs act in a target-cleavage mode and may facilitate the progression of meiosis by fine-tuning carbohydrate biosynthesis and metabolism in male germ cells. Phased small interfering RNA (phasiRNAs) are abundantly expressed in the anthers of grasses. Here, the authors profile 21-nt and 24-nt phasiRNA expression at different stages of meiocyte development in rice and provide evidence that 21-nt phasiRNAs direct cleavage of hundreds of target mRNAs.
Collapse
|
198
|
Yasin JK, Mishra BK, Pillai MA, Verma N, Wani SH, Elansary HO, El-Ansary DO, Pandey PS, Chinnusamy V. Genome wide in-silico miRNA and target network prediction from stress responsive Horsegram (Macrotyloma uniflorum) accessions. Sci Rep 2020; 10:17203. [PMID: 33057204 PMCID: PMC7560861 DOI: 10.1038/s41598-020-73140-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022] Open
Abstract
Horsegram (Macrotyloma uniflorum (Lam.) Verdc.) is a drought hardy food and fodder legume of Indo-African continents with diverse germplasm sources demonstrating alternating mechanisms depicting contrasting adaptations to different climatic zones. Tissue specific expression of genes contributes substantially to location specific adaptations. Regulatory networks of such adaptive genes are elucidated for downstream translational research. MicroRNAs are small endogenous regulatory RNAs which alters the gene expression profiles at a particular time and type of tissue. Identification of such small regulatory RNAs in low moisture stress hardy crops can help in cross species transfer and validation confirming stress tolerance ability. This study outlined prediction of conserved miRNAs from transcriptome shotgun assembled sequences and EST sequences of horsegram. We could validate eight out of 15 of the identified miRNAs to demonstrate their role in deficit moisture stress tolerance mechanism of horsegram variety Paiyur1 with their target networks. The putative mumiRs were related to other food legumes indicating the presence of gene regulatory networks. Differential miRNA expression among drought specific tissues indicted the probable energy conservation mechanism. Targets were identified for functional characterization and regulatory network was constructed to find out the probable pathways of post-transcriptional regulation. The functional network revealed mechanism of biotic and abiotic stress tolerance, energy conservation and photoperiod responsiveness.
Collapse
Affiliation(s)
- Jeshima Khan Yasin
- Division of Genomic Resources, ICAR-National Bureau Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India.
| | - Bharat Kumar Mishra
- Division of Genomic Resources, ICAR-National Bureau Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India.,Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35294-1170, USA
| | - M Arumugam Pillai
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, Vallanadu, Tamil Nadu, 628252, India
| | - Nidhi Verma
- Principal Scientist (Education Planning and Home Science), Agricultural Education Division Krishi Anusandhan Bhawan I, Indian Council of Agricultural Research, PUSA Campus, New Delhi, 110 012, India
| | - Shabir H Wani
- Mountain Research Centre For Field Crops, Khudwani Anantnag-192101, Sher-E-KashmiR University of Agricultural Sciences and Technology of Kashmir, Badgam, J&K, India
| | - Hosam O Elansary
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,Floriculture, Ornamental Horticulture, and Garden Design Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Diaa O El-Ansary
- Precision Agriculture Laboratory, Department of Pomology, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | - P S Pandey
- Indian Council of Agricultural Research (ICAR), PUSA, New Delhi, 110 012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
199
|
Chen SY, Su MH, Kremling KA, Lepak NK, Romay MC, Sun Q, Bradbury PJ, Buckler ES, Ku HM. Identification of miRNA-eQTLs in maize mature leaf by GWAS. BMC Genomics 2020; 21:689. [PMID: 33023467 PMCID: PMC7541240 DOI: 10.1186/s12864-020-07073-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/14/2020] [Indexed: 11/28/2022] Open
Abstract
Background MiRNAs play essential roles in plant development and response to biotic and abiotic stresses through interaction with their target genes. The expression level of miRNAs shows great variations among different plant accessions, developmental stages, and tissues. Little is known about the content within the plant genome contributing to the variations in plants. This study aims to identify miRNA expression-related quantitative trait loci (miR-QTLs) in the maize genome. Results The miRNA expression level from next generation sequencing (NGS) small RNA libraries derived from mature leaf samples of the maize panel (200 maize lines) was estimated as phenotypes, and maize Hapmap v3.2.1 was chosen as the genotype for the genome-wide association study (GWAS). A total of four significant miR-eQTLs were identified contributing to miR156k-5p, miR159a-3p, miR390a-5p and miR396e-5p, and all of them are trans-eQTLs. In addition, a strong positive coexpression of miRNA was found among five miRNA families. Investigation of the effects of these miRNAs on the expression levels and target genes provided evidence that miRNAs control the expression of their targets by suppression and enhancement. Conclusions These identified significant miR-eQTLs contribute to the diversity of miRNA expression in the maize penal at the developmental stages of mature leaves in maize, and the positive and negative regulation between miRNA and its target genes has also been uncovered.
Collapse
Affiliation(s)
- Shu-Yun Chen
- Department of Life Science, National Cheng Kung University, Tainan, 701, Taiwan
| | - Mei-Hsiu Su
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Karl A Kremling
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, 14850, NY, USA
| | - Nicholas K Lepak
- United States Department of Agriculture-Agricultural Research Service, Ithaca, NY, USA
| | - M Cinta Romay
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA
| | - Qi Sun
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA
| | - Peter J Bradbury
- United States Department of Agriculture-Agricultural Research Service, Ithaca, NY, USA
| | - Edward S Buckler
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, 14850, NY, USA.,United States Department of Agriculture-Agricultural Research Service, Ithaca, NY, USA.,Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA
| | - Hsin-Mei Ku
- Advanced Plant Biotechnology Center, National Chung Hsing University, No 145 Xingda Rd, South Dist, Taichung, 402, Taiwan.
| |
Collapse
|
200
|
Liu Y, Teng C, Xia R, Meyers BC. PhasiRNAs in Plants: Their Biogenesis, Genic Sources, and Roles in Stress Responses, Development, and Reproduction. THE PLANT CELL 2020; 32:3059-3080. [PMID: 32817252 PMCID: PMC7534485 DOI: 10.1105/tpc.20.00335] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 05/08/2023]
Abstract
Phased secondary small interfering RNAs (phasiRNAs) constitute a major category of small RNAs in plants, but most of their functions are still poorly defined. Some phasiRNAs, known as trans-acting siRNAs, are known to target complementary mRNAs for degradation and to function in development. However, the targets or biological roles of other phasiRNAs remain speculative. New insights into phasiRNA biogenesis, their conservation, and their variation across the flowering plants continue to emerge due to the increased availability of plant genomic sequences, deeper and more sophisticated sequencing approaches, and improvements in computational biology and biochemical/molecular/genetic analyses. In this review, we survey recent progress in phasiRNA biology, with a particular focus on two classes associated with male reproduction: 21-nucleotide (accumulate early in anther ontogeny) and 24-nucloetide (produced in somatic cells during meiosis) phasiRNAs. We describe phasiRNA biogenesis, function, and evolution and define the unanswered questions that represent topics for future research.
Collapse
Affiliation(s)
- Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510640, China
- College of Horticulture, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Chong Teng
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510640, China
- College of Horticulture, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, Missouri 65211
| |
Collapse
|