151
|
Sanyal SK, Rao S, Mishra LK, Sharma M, Pandey GK. Plant Stress Responses Mediated by CBL-CIPK Phosphorylation Network. Enzymes 2016; 40:31-64. [PMID: 27776782 DOI: 10.1016/bs.enz.2016.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
At any given time and location, plants encounter a flood of environmental stimuli. Diverse signal transduction pathways sense these stimuli and generate a diverse array of responses. Calcium (Ca2+) is generated as a second messenger due to these stimuli and is responsible for transducing the signals downstream in the pathway. A large number of Ca2+ sensor-responder components are responsible for Ca2+ signaling in plants. The sensor-responder complexes calcineurin B-like protein (CBL) and CBL-interacting protein kinases (CIPKs) are pivotal players in Ca2+-mediated signaling. The CIPKs are the protein kinases and hence mediate signal transduction mainly by the process of protein phosphorylation. Elaborate studies conducted in Arabidopsis have shown the involvement of CBL-CIPK complexes in abiotic and biotic stresses, and nutrient deficiency. Additionally, studies in crop plants have also indicated their role in the similar responses. In this chapter, we review the current literature on the CBL and CIPK network, shedding light into the enzymatic property and mechanism of action of CBL-CIPK complexes. We also summarize various reports on the functional modulation of the downstream targets by the CBL-CIPK modules across all plant species.
Collapse
Affiliation(s)
- S K Sanyal
- University of Delhi South Campus, New Delhi, India
| | - S Rao
- University of Delhi South Campus, New Delhi, India
| | - L K Mishra
- University of Delhi South Campus, New Delhi, India
| | - M Sharma
- University of Delhi South Campus, New Delhi, India
| | - G K Pandey
- University of Delhi South Campus, New Delhi, India.
| |
Collapse
|
152
|
14-3-3 proteins: Macro-regulators with great potential for improving abiotic stress tolerance in plants. Biochem Biophys Res Commun 2016; 477:9-13. [DOI: 10.1016/j.bbrc.2016.05.120] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 01/26/2023]
|
153
|
Zhang M, Smith JAC, Harberd NP, Jiang C. The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses. PLANT MOLECULAR BIOLOGY 2016; 91:651-9. [PMID: 27233644 DOI: 10.1007/s11103-016-0488-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 05/02/2016] [Indexed: 05/20/2023]
Abstract
Soil salinity is one of the most commonly encountered environmental stresses affecting plant growth and crop productivity. Accordingly, plants have evolved a variety of morphological, physiological and biochemical strategies that enable them to adapt to saline growth conditions. For example, it has long been known that salinity-stress increases both the production of the gaseous stress hormone ethylene and the in planta accumulation of reactive oxygen species (ROS). Recently, there has been significant progress in understanding how the fine-tuning of ethylene biosynthesis and signaling transduction can promote salinity tolerance, and how salinity-induced ROS accumulation also acts as a signal in the mediation of salinity tolerance. Furthermore, recent advances have indicated that ethylene signaling modulates salinity responses largely via regulation of ROS-generating and ROS-scavenging mechanisms. This review focuses on these recent advances in understanding the linked roles of ethylene and ROS in salt tolerance.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - J Andrew C Smith
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Nicholas P Harberd
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Caifu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China.
| |
Collapse
|
154
|
Sun X, Sun M, Jia B, Qin Z, Yang K, Chen C, Yu Q, Zhu Y. A Glycine soja methionine sulfoxide reductase B5a interacts with the Ca(2+) /CAM-binding kinase GsCBRLK and activates ROS signaling under carbonate alkaline stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:514-529. [PMID: 27121031 DOI: 10.1111/tpj.13187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
Although research has extensively illustrated the molecular basis of plant responses to salt and high-pH stresses, knowledge on carbonate alkaline stress is poor and the specific responsive mechanism remains elusive. We have previously characterized a Glycine soja Ca(2+) /CAM-dependent kinase GsCBRLK that could increase salt tolerance. Here, we characterize a methionine sulfoxide reductase (MSR) B protein GsMSRB5a as a GsCBRLK interactor by using Y2H and BiFc assays. Further analyses showed that the N-terminal variable domain of GsCBRLK contributed to the GsMSRB5a interaction. Y2H assays also revealed the interaction specificity of GsCBRLK with the wild soybean MSRB subfamily proteins, and determined that the BoxI/BoxII-containing regions within GsMSRBs were responsible for their interaction. Furthermore, we also illustrated that the N-terminal basic regions in GsMSRBs functioned as transit peptides, which targeted themselves into chloroplasts and thereby prevented their interaction with GsCBRLK. Nevertheless, deletion of these regions allowed them to localize on the plasma membrane (PM) and interact with GsCBRLK. In addition, we also showed that GsMSRB5a and GsCBRLK displayed overlapping tissue expression specificity and coincident expression patterns under carbonate alkaline stress. Phenotypic experiments demonstrated that GsMSRB5a and GsCBRLK overexpression in Arabidopsis enhanced carbonate alkaline stress tolerance. Further investigations elucidated that GsMSRB5a and GsCBRLK inhibited reactive oxygen species (ROS) accumulation by modifying the expression of ROS signaling, biosynthesis and scavenging genes. Summarily, our results demonstrated that GsCBRLK and GsMSRB5a interacted with each other, and activated ROS signaling under carbonate alkaline stress.
Collapse
Affiliation(s)
- Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, China
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, China
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, China
| | - Zhiwei Qin
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, China
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, China
| | - Kejun Yang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chao Chen
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, China
| | - Qingyue Yu
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, China
| | - Yanming Zhu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, China
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, China
| |
Collapse
|
155
|
Quantitative proteomics and phosphoproteomics of sugar beet monosomic addition line M14 in response to salt stress. J Proteomics 2016; 143:286-297. [PMID: 27233743 DOI: 10.1016/j.jprot.2016.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/21/2016] [Accepted: 04/11/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED Salinity is a major abiotic stress affecting plant growth, development and agriculture productivity. Understanding the molecular mechanisms of salt stress tolerance will provide valuable information for effective crop engineering and breeding. Sugar beet monosomic addition line M14 obtained from the intercross between Beta vulgaris L. and Beta corolliflora Zoss exhibits tolerance to salt stress. In this study, the changes in the M14 proteome and phosphoproteome induced by salt stress were analyzed. We report the characteristics of the M14 plants under 0, 200, and 400mM NaCl using label-free quantitative proteomics approaches. Protein samples were subjected to total proteome profiling using LC-MS/MS and phosphopeptide enrichment to identify phosphopeptides and phosphoproteins. A total of 2182 proteins were identified and 114 proteins showed differential levels under salt stress. Interestingly, 189 phosphoproteins exhibited significant changes at the phosphorylation level under salt stress. Several signaling components associated with salt stress were found, e.g. 14-3-3 and mitogen-activated protein kinases (MAPK). Fifteen differential phosphoproteins and proteins involved in signal transduction were tested at the transcriptional level. The results revealed the short-term salt responsive mechanisms of the special sugar beet M14 line using label-free quantitative phosphoproteomics. BIOLOGICAL SIGNIFICANCE Sugar beet monosomic addition line M14 is a special germplasm with salt stress tolerance. Analysis of the M14 proteome and phosphoproteome under salt stress has provided insight into specific response mechanisms underlying salt stress tolerance. Reversible protein phosphorylation regulates a wide range of cellular processes such as transmembrane signaling, intracellular amplification of signals, and cell-cycle control. This study has identified significantly changed proteins and phosphoproteins, and determined their potential relevance to salt stress response. The knowledge gained can be potentially applied to improving crop salt tolerance.
Collapse
|
156
|
Hu DG, Sun CH, Sun MH, Hao YJ. MdSOS2L1 phosphorylates MdVHA-B1 to modulate malate accumulation in response to salinity in apple. PLANT CELL REPORTS 2016; 35:705-18. [PMID: 26687966 DOI: 10.1007/s00299-015-1914-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/26/2015] [Accepted: 11/26/2015] [Indexed: 05/22/2023]
Abstract
Salt-induced phosphorylation of MdVHA-B1 protein was mediated by MdSOS2L1 protein kinase, and thereby increasing malate content in apple. Salinity is an important environmental factor that influences malate accumulation in apple. However, the molecular mechanism by which salinity regulates this process is poorly understood. In this work, we found that MdSOS2L1, a novel AtSOS2-LIKE protein kinase, interacts with V-ATPase subunit MdVHA-B1. Furthermore, MdSOS2L1 directly phosphorylates MdVHA-B1 at Ser(396) site to modulate malate accumulation in response to salt stress. Meanwhile, a series of transgenic analyses in apple calli showed that the MdSOS2L1-MdVHAB1 pathway was involved in the regulation of malate accumulation. Finally, a viral vector-based transformation approach demonstrated that the MdSOS2L1-MdVHAB1 pathway also modulated malate accumulation in apple fruits with or without salt stress. Collectively, our findings provide a new insight into the mechanism by which MdSOS2L1 phosphorylates MdVHA-B1 to modulate malate accumulation in response to salinity in apple.
Collapse
Affiliation(s)
- Da-Gang Hu
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-an, 271018, Shandong, China
| | - Cui-Hui Sun
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-an, 271018, Shandong, China
| | - Mei-Hong Sun
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-an, 271018, Shandong, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-an, 271018, Shandong, China.
| |
Collapse
|
157
|
Chen Y, Chen C, Tan Z, Liu J, Zhuang L, Yang Z, Huang B. Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:102. [PMID: 26904068 PMCID: PMC4746305 DOI: 10.3389/fpls.2016.00102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/19/2016] [Indexed: 05/25/2023]
Abstract
Salinity-affected and heavy metal-contaminated soils limit the growth of glycophytic plants. Identifying genes responsible for superior tolerance to salinity and heavy metals in halophytes has great potential for use in developing salinity- and Cd-tolerant glycophytes. The objective of this study was to identify salinity- and Cd-tolerance related genes in seashore paspalum (Paspalum vaginatum), a halophytic perennial grass species, using yeast cDNA expression library screening method. Based on the Gateway-compatible vector system, a high-quality entry library was constructed, which contained 9.9 × 10(6) clones with an average inserted fragment length of 1.48 kb representing a 100% full-length rate. The yeast expression libraries were screened in a salinity-sensitive and a Cd-sensitive yeast mutant. The screening yielded 32 salinity-tolerant clones harboring 18 salinity-tolerance genes and 20 Cd-tolerant clones, including five Cd-tolerance genes. qPCR analysis confirmed that most of the 18 salinity-tolerance and five Cd-tolerance genes were up-regulated at the transcript level in response to salinity or Cd stress in seashore paspalum. Functional analysis indicated that salinity-tolerance genes from seashore paspalum could be involved mainly in photosynthetic metabolism, antioxidant systems, protein modification, iron transport, vesicle traffic, and phospholipid biosynthesis. Cd-tolerance genes could be associated with regulating pathways that are involved in phytochelatin synthesis, HSFA4-related stress protection, CYP450 complex, and sugar metabolism. The 18 salinity-tolerance genes and five Cd-tolerance genes could be potentially used as candidate genes for genetic modification of glycophytic grass species to improve salinity and Cd tolerance and for further analysis of molecular mechanisms regulating salinity and Cd tolerance.
Collapse
Affiliation(s)
- Yu Chen
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Chuanming Chen
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Zhiqun Tan
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Jun Liu
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Lili Zhuang
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Zhimin Yang
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers, The State University of New JerseyNew Brunswick, NJ, USA
| |
Collapse
|
158
|
Solis J, Baisakh N, Brandt SR, Villordon A, La Bonte D. Transcriptome Profiling of Beach Morning Glory (Ipomoea imperati) under Salinity and Its Comparative Analysis with Sweetpotato. PLoS One 2016; 11:e0147398. [PMID: 26848754 PMCID: PMC4743971 DOI: 10.1371/journal.pone.0147398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 01/04/2016] [Indexed: 01/23/2023] Open
Abstract
The response and adaption to salt remains poorly understood for beach morning glory [Ipomoea imperati (Vahl) Griseb], one of a few relatives of sweetpotato, known to thrive under salty and extreme drought conditions. In order to understand the genetic mechanisms underlying salt tolerance of a Convolvulaceae member, a genome-wide transcriptome study was carried out in beach morning glory by 454 pyrosequencing. A total of 286,584 filtered reads from both salt stressed and unstressed (control) root and shoot tissues were assembled into 95,790 unigenes with an average length of 667 base pairs (bp) and N50 of 706 bp. Putative differentially expressed genes (DEGs) were identified as transcripts overrepresented under salt stressed tissues compared to the control, and were placed into metabolic pathways. Most of these DEGs were involved in stress response, membrane transport, signal transduction, transcription activity and other cellular and molecular processes. We further analyzed the gene expression of 14 candidate genes of interest for salt tolerance through quantitative reverse transcription PCR (qRT-PCR) and confirmed their differential expression under salt stress in both beach morning glory and sweetpotato. The results comparing transcripts of I. imperati against the transcriptome of other Ipomoea species, including sweetpotato are also presented in this study. In addition, 6,233 SSR markers were identified, and an in silico analysis predicted that 434 primer pairs out of 4,897 target an identifiable homologous sequence in other Ipomoea transcriptomes, including sweetpotato. The data generated in this study will help in understanding the basics of salt tolerance of beach morning glory and the SSR resources generated will be useful for comparative genomics studies and further enhance the path to the marker-assisted breeding of sweetpotato for salt tolerance.
Collapse
Affiliation(s)
- Julio Solis
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States of America
| | - Niranjan Baisakh
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States of America
- * E-mail: (NB); (DL)
| | - Steven R. Brandt
- Louisiana Digital Media Center, Louisiana State University, Baton Rouge, LA, United States of America
| | - Arthur Villordon
- Sweet Potato Research Station, Louisiana State University Agricultural Center, Chase, LA, United States of America
| | - Don La Bonte
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States of America
- * E-mail: (NB); (DL)
| |
Collapse
|
159
|
Hu DG, Ma QJ, Sun CH, Sun MH, You CX, Hao YJ. Overexpression of MdSOS2L1, a CIPK protein kinase, increases the antioxidant metabolites to enhance salt tolerance in apple and tomato. PHYSIOLOGIA PLANTARUM 2016; 156:201-214. [PMID: 26096498 DOI: 10.1111/ppl.12354] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/04/2015] [Accepted: 05/18/2015] [Indexed: 05/05/2023]
Abstract
Soil salinity hinders the growth of most higher plants and becomes a gradually increasing threat to the agricultural production of such crops as the woody plant apple. In this study, a calcineurin B-like protein (CBL)-interacting protein kinase, MdCIPK24-LIKE1 (named as MdSOS2L1), was identified. Quantitative real-time polymerase chain reaction (qRT-PCR) assay revealed that the expression of MdSOS2L1 was upregulated by CaCl2 . Yeast two-hybrid (Y2H) assay and transiently transgenic analysis demonstrated that the MdSOS2L1 protein kinase physically interacted with MdCBL1, MdCBL4 and MdCBL10 proteins to increase salt tolerance in apple. Furthermore, iTRAQ proteome combined with liquid chromatography-tandem mass spectrometry (LC/MS) analysis found that several proteins, which are involved in reactive oxygen species (ROS) scavenging, procyanidin biosynthesis and malate metabolism, were induced in MdSOS2L1-overexpressing apple plants. Subsequent studies have shown that MdSOS2L1 increased antioxidant metabolites such as procyanidin and malate to improve salt tolerance in apple and tomato. In summary, our studies provide a mechanism in which SOS2L1 enhances the salt stress tolerance in apple and tomato.
Collapse
Affiliation(s)
- Da-Gang Hu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Qi-Jun Ma
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Cui-Hui Sun
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Mei-Hong Sun
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| |
Collapse
|
160
|
Wang X, Chang L, Tong Z, Wang D, Yin Q, Wang D, Jin X, Yang Q, Wang L, Sun Y, Huang Q, Guo A, Peng M. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization. Sci Rep 2016; 6:19643. [PMID: 26791570 PMCID: PMC4726164 DOI: 10.1038/srep19643] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023] Open
Abstract
Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement.
Collapse
Affiliation(s)
- Xuchu Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Lili Chang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Zheng Tong
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Dongyang Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Qi Yin
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Dan Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Xiang Jin
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Qian Yang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Liming Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Yong Sun
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Qixing Huang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Anping Guo
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
161
|
Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.). PLoS One 2016; 11:e0146242. [PMID: 26752408 PMCID: PMC4709063 DOI: 10.1371/journal.pone.0146242] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022] Open
Abstract
Dongxiang wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.), and is well known for its superior level of tolerance against cold, drought and diseases. To date, however, little is known about the salt-tolerant character of Dongxiang wild rice. To elucidate the molecular genetic mechanisms of salt-stress tolerance in Dongxiang wild rice, the Illumina HiSeq 2000 platform was used to analyze the transcriptome profiles of the leaves and roots at the seedling stage under salt stress compared with those under normal conditions. The analysis results for the sequencing data showed that 6,867 transcripts were differentially expressed in the leaves (2,216 up-regulated and 4,651 down-regulated) and 4,988 transcripts in the roots (3,105 up-regulated and 1,883 down-regulated). Among these differentially expressed genes, the detection of many transcription factor genes demonstrated that multiple regulatory pathways were involved in salt stress tolerance. In addition, the differentially expressed genes were compared with the previous RNA-Seq analysis of salt-stress responses in cultivated rice Nipponbare, indicating the possible specific molecular mechanisms of salt-stress responses for Dongxiang wild rice. A large number of the salt-inducible genes identified in this study were co-localized onto fine-mapped salt-tolerance-related quantitative trait loci, providing candidates for gene cloning and elucidation of molecular mechanisms responsible for salt-stress tolerance in rice.
Collapse
|
162
|
Chandna R, Augustine R, Kanchupati P, Kumar R, Kumar P, Arya GC, Bisht NC. Class-Specific Evolution and Transcriptional Differentiation of 14-3-3 Family Members in Mesohexaploid Brassica rapa. FRONTIERS IN PLANT SCIENCE 2016; 7:12. [PMID: 26858736 PMCID: PMC4726770 DOI: 10.3389/fpls.2016.00012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 01/07/2016] [Indexed: 05/22/2023]
Abstract
14-3-3s are highly conserved, multigene family proteins that have been implicated in modulating various biological processes. The presence of inherent polyploidy and genome complexity has limited the identification and characterization of 14-3-3 proteins from globally important Brassica crops. Through data mining of Brassica rapa, the model Brassica genome, we identified 21 members encoding 14-3-3 proteins namely, BraA.GRF14.a to BraA.GRF14.u. Phylogenetic analysis indicated that B. rapa contains both ε (epsilon) and non-ε 14-3-3 isoforms, having distinct intron-exon structural organization patterns. The non-ε isoforms showed lower divergence rate (Ks < 0.45) compared to ε protein isoforms (Ks > 0.48), suggesting class-specific divergence pattern. Synteny analysis revealed that mesohexaploid B. rapa genome has retained 1-5 orthologs of each Arabidopsis 14-3-3 gene, interspersed across its three fragmented sub-genomes. qRT-PCR analysis showed that 14 of the 21 BraA.GRF14 were expressed, wherein a higher abundance of non-ε transcripts was observed compared to the ε genes, indicating class-specific transcriptional bias. The BraA.GRF14 genes showed distinct expression pattern during plant developmental stages and in response to abiotic stress, phytohormone treatments, and nutrient deprivation conditions. Together, the distinct expression pattern and differential regulation of BraA.GRF14 genes indicated the occurrence of functional divergence of B. rapa 14-3-3 proteins during plant development and stress responses.
Collapse
|
163
|
Li M, Ren L, Xu B, Yang X, Xia Q, He P, Xiao S, Guo A, Hu W, Jin Z. Genome-Wide Identification, Phylogeny, and Expression Analyses of the 14-3-3 Family Reveal Their Involvement in the Development, Ripening, and Abiotic Stress Response in Banana. FRONTIERS IN PLANT SCIENCE 2016; 7:1442. [PMID: 27713761 PMCID: PMC5031707 DOI: 10.3389/fpls.2016.01442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/09/2016] [Indexed: 05/19/2023]
Abstract
Plant 14-3-3 proteins act as critical components of various cellular signaling processes and play an important role in regulating multiple physiological processes. However, less information is known about the 14-3-3 gene family in banana. In this study, 25 14-3-3 genes were identified from the banana genome. Based on the evolutionary analysis, banana 14-3-3 proteins were clustered into ε and non-ε groups. Conserved motif analysis showed that all identified banana 14-3-3 genes had the typical 14-3-3 motif. The gene structure of banana 14-3-3 genes showed distinct class-specific divergence between the ε group and the non-ε group. Most banana 14-3-3 genes showed strong transcript accumulation changes during fruit development and postharvest ripening in two banana varieties, indicating that they might be involved in regulating fruit development and ripening. Moreover, some 14-3-3 genes also showed great changes after osmotic, cold, and salt treatments in two banana varieties, suggested their potential role in regulating banana response to abiotic stress. Taken together, this systemic analysis reveals the involvement of banana 14-3-3 genes in fruit development, postharvest ripening, and response to abiotic stress and provides useful information for understanding the functions of 14-3-3 genes in banana.
Collapse
Affiliation(s)
- Meiying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Licheng Ren
- Department of Biology, Hainan Medical CollegeHaikou, China
| | - Biyu Xu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Xiaoliang Yang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Qiyu Xia
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Pingping He
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Susheng Xiao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Anping Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- *Correspondence: Anping Guo
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- Wei Hu
| | - Zhiqiang Jin
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- Key Laboratory of Genetic Improvement of Bananas, Hainan province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- Zhiqiang Jin
| |
Collapse
|
164
|
Ji W, Cong R, Li S, Li R, Qin Z, Li Y, Zhou X, Chen S, Li J. Comparative Proteomic Analysis of Soybean Leaves and Roots by iTRAQ Provides Insights into Response Mechanisms to Short-Term Salt Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:573. [PMID: 27200046 PMCID: PMC4850148 DOI: 10.3389/fpls.2016.00573] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/13/2016] [Indexed: 05/21/2023]
Abstract
Salinity severely threatens land use capability and crop yields worldwide. Understanding the mechanisms that protect soybeans from salt stress will help in the development of salt-stress tolerant leguminous plants. Here we initially analyzed the changes in malondialdehyde levels, the activities of superoxide dismutase and peroxidases, chlorophyll content, and Na(+)/K(+) ratios in leaves and roots from soybean seedlings treated with 200 mM NaCl at different time points. We found that the 200 mM NaCl treated for 12 h was optimal for undertaking a proteomic analysis on soybean seedlings. An iTRAQ-based proteomic approach was used to investigate the proteomes of soybean leaves and roots under salt treatment. These data are available via ProteomeXchange with the identifier PXD002851. In total, 278 and 440 proteins with significantly altered abundances were identified in leaves and roots of soybean, respectively. From these data, a total of 50 proteins were identified in the both tissues. These differentially expressed proteins (DEPs) were from 13 biological processes. Moreover, protein-protein interaction analysis revealed that proteins involved in metabolism, carbohydrate and energy metabolism, protein synthesis and redox homeostasis could be assigned to four high salt stress response networks. Furthermore, semi-quantitative RT-PCR analysis revealed that some of the proteins, such as a 14-3-3, MMK2, PP1, TRX-h, were also regulated by salt stress at the level of transcription. These results indicated that effective regulatory protein expression related to signaling, membrane and transport, stress defense and metabolism all played important roles in the short-term salt response of soybean seedlings.
Collapse
Affiliation(s)
- Wei Ji
- Department of Plant Biotechnology, College of Life Science, Northeast Agricultural UniversityHarbin, China
| | - Ru Cong
- Department of Plant Biotechnology, College of Life Science, Northeast Agricultural UniversityHarbin, China
| | - Sheng Li
- Department of Plant Biotechnology, College of Life Science, Northeast Agricultural UniversityHarbin, China
| | - Rui Li
- Department of Plant Biotechnology, College of Life Science, Northeast Agricultural UniversityHarbin, China
| | - Zhiwei Qin
- Department of Vegetables, College of Horticulture, Northeast Agricultural UniversityHarbin, China
| | - Yanjun Li
- Department of Plant Biotechnology, College of Life Science, Northeast Agricultural UniversityHarbin, China
| | - Xiaolin Zhou
- Department of Plant Biotechnology, College of Life Science, Northeast Agricultural UniversityHarbin, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of FloridaGainesville, FL, USA
- Department of Proteomics, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
| | - Jing Li
- Department of Plant Biotechnology, College of Life Science, Northeast Agricultural UniversityHarbin, China
- *Correspondence: Jing Li
| |
Collapse
|
165
|
Li R, Jiang X, Jin D, Dhaubhadel S, Bian S, Li X. Identification of 14-3-3 Family in Common Bean and Their Response to Abiotic Stress. PLoS One 2015; 10:e0143280. [PMID: 26599110 PMCID: PMC4658069 DOI: 10.1371/journal.pone.0143280] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/03/2015] [Indexed: 11/18/2022] Open
Abstract
14-3-3s are a class of conserved regulatory proteins ubiquitously found in eukaryotes, which play important roles in a variety of cellular processes including response to diverse stresses. Although much has been learned about 14-3-3s in several plant species, it remains unknown in common bean. In this study, 9 common bean 14-3-3s (PvGF14s) were identified by exhaustive data mining against the publicly available common bean genomic database. A phylogenetic analysis revealed that each predicted PvGF14 was clustered with two GmSGF14 paralogs from soybean. Both epsilon-like and non-epsilon classes of PvGF14s were found in common bean, and the PvGF14s belonging to each class exhibited similar gene structure. Among 9 PvGF14s, only 8 are transcribed in common bean. Expression patterns of PvGF14s varied depending on tissue type, developmental stage and exposure of plants to stress. A protein-protein interaction study revealed that PvGF14a forms dimer with itself and with other PvGF14 isoforms. This study provides a first comprehensive look at common bean 14-3-3 proteins, a family of proteins with diverse functions in many cellular processes, especially in response to stresses.
Collapse
Affiliation(s)
- Ruihua Li
- College of Plant Science, Jilin University, Changchun, China
| | - Xiaotong Jiang
- College of Plant Science, Jilin University, Changchun, China
| | - Donghao Jin
- College of Plant Science, Jilin University, Changchun, China
| | - Sangeeta Dhaubhadel
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario, Canada
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, China
| | - Xuyan Li
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
166
|
Julkowska MM, Testerink C. Tuning plant signaling and growth to survive salt. TRENDS IN PLANT SCIENCE 2015; 20:586-594. [PMID: 26205171 DOI: 10.1016/j.tplants.2015.06.008] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/16/2015] [Accepted: 06/25/2015] [Indexed: 05/20/2023]
Abstract
Salinity is one of the major abiotic factors threatening food security worldwide. Recently, our understanding of early processes underlying salinity tolerance has expanded. In this review, early signaling events, such as phospholipid signaling, calcium ion (Ca(2+)) responses, and reactive oxygen species (ROS) production, together with salt stress-induced abscisic acid (ABA) accumulation, are brought into the context of long-term salt stress-specific responses and alteration of plant growth. Salt-induced quiescent and recovery growth phases rely on modification of cell cycle activity, cell expansion, and cell wall extensibility. The period of initial growth arrest varies among different organs, leading to altered plant morphology. Studying stress-induced changes in growth dynamics can be used for screening to discover novel genes contributing to salt stress tolerance in model species and crops.
Collapse
Affiliation(s)
- Magdalena M Julkowska
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Christa Testerink
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands.
| |
Collapse
|
167
|
Uncovering the differential molecular basis of adaptive diversity in three Echinochloa leaf transcriptomes. PLoS One 2015; 10:e0134419. [PMID: 26266806 PMCID: PMC4534374 DOI: 10.1371/journal.pone.0134419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/08/2015] [Indexed: 12/04/2022] Open
Abstract
Echinochloa is a major weed that grows almost everywhere in farmed land. This high prevalence results from its high adaptability to various water conditions, including upland and paddy fields, and its ability to grow in a wide range of climates, ranging from tropical to temperate regions. Three Echinochloa crus-galli accessions (EC-SNU1, EC-SNU2, and EC-SNU3) collected in Korea have shown diversity in their responses to flooding, with EC-SNU1 exhibiting the greatest growth among three accessions. In the search for molecular components underlying adaptive diversity among the three Echinochloa crus-galli accessions, we performed de novo assembly of leaf transcriptomes and investigated the pattern of differentially expressed genes (DEGs). Although the overall composition of the three leaf transcriptomes was well-conserved, the gene expression patterns of particular gene ontology (GO) categories were notably different among the three accessions. Under non-submergence growing conditions, five protein categories (serine/threonine kinase, leucine-rich repeat kinase, signaling-related, glycoprotein, and glycosidase) were significantly (FDR, q < 0.05) enriched in up-regulated DEGs from EC-SNU1. These up-regulated DEGs include major components of signal transduction pathways, such as receptor-like kinase (RLK) and calcium-dependent protein kinase (CDPK) genes, as well as previously known abiotic stress-responsive genes. Our results therefore suggest that diversified gene expression regulation of upstream signaling components conferred the molecular basis of adaptive diversity in Echinochloa crus-galli.
Collapse
|
168
|
14-3-3 λ protein interacts with ADF1 to regulate actin cytoskeleton dynamics in Arabidopsis. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1142-50. [DOI: 10.1007/s11427-015-4897-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/28/2015] [Indexed: 01/15/2023]
|
169
|
Feng J, Li J, Gao Z, Lu Y, Yu J, Zheng Q, Yan S, Zhang W, He H, Ma L, Zhu Z. SKIP Confers Osmotic Tolerance during Salt Stress by Controlling Alternative Gene Splicing in Arabidopsis. MOLECULAR PLANT 2015; 8:1038-52. [PMID: 25617718 DOI: 10.1016/j.molp.2015.01.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 05/18/2023]
Abstract
Deciphering the mechanisms underlying plant responses to abiotic stress is key for improving plant stress resistance. Much is known about the regulation of gene expression in response to salt stress at the transcriptional level; however, little is known about this process at the posttranscriptional level. Recently, we demonstrated that SKIP is a component of spliceosome that interacts with clock gene pre-mRNAs and is essential for regulating their alternative splicing and mRNA maturation. In this study, we found that skip-1 plants are hypersensitive to both salt and osmotic stresses, and that SKIP is required for the alternative splicing and mRNA maturation of several salt-tolerance genes, including NHX1, CBL1, P5CS1, RCI2A, and PAT10. A genome-wide analysis revealed that SKIP mediates the alternative splicing of many genes under salt-stress conditions, and that most of the alternative splicing events in skip-1 involve intron retention and can generate a premature termination codon in the transcribed mRNA. SKIP also controls alternative splicing by modulating the recognition or cleavage of 5' and 3' splice donor and acceptor sites under salt-stress conditions. Therefore, this study addresses the fundamental question of how the mRNA splicing machinery in plants contributes to salt-stress responses at the posttranscriptional level, and provides a link between alternative splicing and salt tolerance.
Collapse
Affiliation(s)
- Jinlin Feng
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China; College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jingjing Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China
| | - Zhaoxu Gao
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China; College of Life Sciences, Peking University, Beijing 100871, China
| | - Yaru Lu
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China
| | - Junya Yu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Qian Zheng
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China
| | - Shuning Yan
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China
| | - Wenjiao Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China
| | - Hang He
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Zhengge Zhu
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China.
| |
Collapse
|
170
|
Zhang A, Xu T, Zou H, Pang Q. Comparative proteomic analysis provides insight into cadmium stress responses in brown algae Sargassum fusiforme. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 163:1-15. [PMID: 25827747 DOI: 10.1016/j.aquatox.2015.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/19/2015] [Accepted: 03/21/2015] [Indexed: 06/04/2023]
Abstract
Sargassum fusiforme is one of the most widely consumed seaweeds in China, Korea and Japan. In this work, we performed growth analysis and comparative proteomics to investigate the molecular mechanisms of the response to 1 day and 5 days Cd stress in S. fusiforme. Our results showed a significant decrease in growth rate and an increase in Cd ion content in S. fusiforme in response to Cd treatment. Comparative proteomic analysis revealed 25 and 51 differentially expressed protein spots in S. fusiforme under 1 day and 5 days Cd stress, respectively. A great number of these proteins was metabolic enzymes involved in carbohydrate metabolism and energy metabolism. Many proteins involved in the processing of genetic information showed a decrease in abundance under 1 day Cd stress. In contrast, 9 of the identified protein spots primarily involved in genetic information processing and carbohydrate metabolism were greatly enriched under 5 days Cd stress. Overall, our investigation indicated that Cd stress negatively affects the metabolic activity of S. fusiforme through the down-regulation of key metabolic enzymes. In addition, S. fusiforme may adapt to 5 days Cd stress by promoting consumption of photoassimilates through the up-regulation of glycolysis and the citrate cycle to supply energy for survival.
Collapse
Affiliation(s)
- Aiqin Zhang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, PR China
| | - Tao Xu
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, PR China
| | - Huixi Zou
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China
| | - Qiuying Pang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, PR China.
| |
Collapse
|
171
|
Proteomic analysis of seedling roots of two maize inbred lines that differ significantly in the salt stress response. PLoS One 2015; 10:e0116697. [PMID: 25659111 PMCID: PMC4320067 DOI: 10.1371/journal.pone.0116697] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 12/14/2014] [Indexed: 11/19/2022] Open
Abstract
Salinity is a major abiotic stress that limits plant productivity and quality throughout the world. Roots are the sites of salt uptake. To better understand salt stress responses in maize, we performed a comparative proteomic analysis of seedling roots from the salt-tolerant genotype F63 and the salt-sensitive genotype F35 under 160 mM NaCl treatment for 2 days. Under salinity conditions, the shoot fresh weight and relative water content were significantly higher in F63 than in F35, while the osmotic potential was significantly lower and the reduction of the K+/Na+ ratio was significantly less pronounced in F63 than in F35. Using an iTRAQ approach, twenty-eight proteins showed more than 2.0- fold changes in abundance and were regarded as salt-responsive proteins. Among them, twenty-two were specifically regulated in F63 but remained constant in F35. These proteins were mainly involved in signal processing, water conservation, protein synthesis and biotic cross-tolerance, and could be the major contributors to the tolerant genotype of F63. Functional analysis of a salt-responsive protein was performed in yeast as a case study to confirm the salt-related functions of detected proteins. Taken together, the results of this study may be helpful for further elucidating salt tolerance mechanisms in maize.
Collapse
|
172
|
Cotelle V, Leonhardt N. 14-3-3 Proteins in Guard Cell Signaling. FRONTIERS IN PLANT SCIENCE 2015; 6:1210. [PMID: 26858725 PMCID: PMC4729941 DOI: 10.3389/fpls.2015.01210] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/15/2015] [Indexed: 05/19/2023]
Abstract
Guard cells are specialized cells located at the leaf surface delimiting pores which control gas exchanges between the plant and the atmosphere. To optimize the CO2 uptake necessary for photosynthesis while minimizing water loss, guard cells integrate environmental signals to adjust stomatal aperture. The size of the stomatal pore is regulated by movements of the guard cells driven by variations in their volume and turgor. As guard cells perceive and transduce a wide array of environmental cues, they provide an ideal system to elucidate early events of plant signaling. Reversible protein phosphorylation events are known to play a crucial role in the regulation of stomatal movements. However, in some cases, phosphorylation alone is not sufficient to achieve complete protein regulation, but is necessary to mediate the binding of interactors that modulate protein function. Among the phosphopeptide-binding proteins, the 14-3-3 proteins are the best characterized in plants. The 14-3-3s are found as multiple isoforms in eukaryotes and have been shown to be involved in the regulation of stomatal movements. In this review, we describe the current knowledge about 14-3-3 roles in the regulation of their binding partners in guard cells: receptors, ion pumps, channels, protein kinases, and some of their substrates. Regulation of these targets by 14-3-3 proteins is discussed and related to their function in guard cells during stomatal movements in response to abiotic or biotic stresses.
Collapse
Affiliation(s)
- Valérie Cotelle
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPSCastanet-Tolosan, France
- *Correspondence: Valérie Cotelle,
| | - Nathalie Leonhardt
- UMR7265, Laboratoire de Biologie du Développement des Plantes, Service de Biologie Végétale et de Microbiologie Environnementales, Institut de Biologie Environnementale et Biotechnologie, CNRS–CEA–Université Aix-MarseilleSaint-Paul-lez-Durance, France
| |
Collapse
|
173
|
Cotelle V, Leonhardt N. 14-3-3 Proteins in Guard Cell Signaling. FRONTIERS IN PLANT SCIENCE 2015. [PMID: 26858725 DOI: 10.3389/fpis.2015.01210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Guard cells are specialized cells located at the leaf surface delimiting pores which control gas exchanges between the plant and the atmosphere. To optimize the CO2 uptake necessary for photosynthesis while minimizing water loss, guard cells integrate environmental signals to adjust stomatal aperture. The size of the stomatal pore is regulated by movements of the guard cells driven by variations in their volume and turgor. As guard cells perceive and transduce a wide array of environmental cues, they provide an ideal system to elucidate early events of plant signaling. Reversible protein phosphorylation events are known to play a crucial role in the regulation of stomatal movements. However, in some cases, phosphorylation alone is not sufficient to achieve complete protein regulation, but is necessary to mediate the binding of interactors that modulate protein function. Among the phosphopeptide-binding proteins, the 14-3-3 proteins are the best characterized in plants. The 14-3-3s are found as multiple isoforms in eukaryotes and have been shown to be involved in the regulation of stomatal movements. In this review, we describe the current knowledge about 14-3-3 roles in the regulation of their binding partners in guard cells: receptors, ion pumps, channels, protein kinases, and some of their substrates. Regulation of these targets by 14-3-3 proteins is discussed and related to their function in guard cells during stomatal movements in response to abiotic or biotic stresses.
Collapse
Affiliation(s)
- Valérie Cotelle
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS Castanet-Tolosan, France
| | - Nathalie Leonhardt
- UMR7265, Laboratoire de Biologie du Développement des Plantes, Service de Biologie Végétale et de Microbiologie Environnementales, Institut de Biologie Environnementale et Biotechnologie, CNRS-CEA-Université Aix-Marseille Saint-Paul-lez-Durance, France
| |
Collapse
|
174
|
Nakahara Y, Sawabe S, Kainuma K, Katsuhara M, Shibasaka M, Suzuki M, Yamamoto K, Oguri S, Sakamoto H. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea. FRONTIERS IN PLANT SCIENCE 2015; 6:920. [PMID: 26579166 PMCID: PMC4623525 DOI: 10.3389/fpls.2015.00920] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/12/2015] [Indexed: 05/13/2023]
Abstract
Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1) a novel protein highly homologous to thaumatin-like proteins, (2) a novel coiled-coil protein of unknown function, and (3) a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation.
Collapse
Affiliation(s)
- Yoshiki Nakahara
- Institute of Plant Science and Resources, Okayama UniversityKurashiki, Japan
| | - Shogo Sawabe
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
| | - Kenta Kainuma
- Faculty of Bioindustry, Tokyo University of AgricultureAbashiri, Japan
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama UniversityKurashiki, Japan
| | - Mineo Shibasaka
- Institute of Plant Science and Resources, Okayama UniversityKurashiki, Japan
| | - Masanori Suzuki
- Faculty of Bioindustry, Tokyo University of AgricultureAbashiri, Japan
| | | | - Suguru Oguri
- Faculty of Bioindustry, Tokyo University of AgricultureAbashiri, Japan
| | - Hikaru Sakamoto
- Faculty of Bioindustry, Tokyo University of AgricultureAbashiri, Japan
- *Correspondence: Hikaru Sakamoto,
| |
Collapse
|
175
|
Edel KH, Kudla J. Increasing complexity and versatility: how the calcium signaling toolkit was shaped during plant land colonization. Cell Calcium 2014; 57:231-46. [PMID: 25477139 DOI: 10.1016/j.ceca.2014.10.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/27/2014] [Indexed: 12/22/2022]
Abstract
Calcium serves as a versatile messenger in adaptation reactions and developmental processes in plants and animals. Eukaryotic cells generate cytosolic Ca(2+) signals via Ca(2+) conducting channels. Ca(2+) signals are represented in form of stimulus-specific spatially and temporally defined Ca(2+) signatures. These Ca(2+) signatures are detected, decoded and transmitted to downstream responses by an elaborate toolkit of Ca(2+) binding proteins that function as Ca(2+) sensors. In this article, we examine the distribution and evolution of Ca(2+)-conducting channels and Ca(2+) decoding proteins in the plant lineage. To this end, we have in addition to previously studied genomes of plant species, identified and analyzed the Ca(2+)-signaling components from species that hold key evolutionary positions like the filamentous terrestrial algae Klebsormidium flaccidum and Amborella trichopoda, the single living representative of the sister lineage to all other extant flowering plants. Plants and animals exhibit substantial differences in their complements of Ca(2+) channels and Ca(2+) binding proteins. Within the plant lineage, remarkable differences in the evolution of complexity between different families of Ca(2+) signaling proteins are observable. Using the CBL/CIPK Ca(2+) sensor/kinase signaling network as model, we attempt to link evolutionary tendencies to functional predictions. Our analyses, for example, suggest Ca(2+) dependent regulation of Na(+) homeostasis as an evolutionary most ancient function of this signaling network. Overall, gene families of Ca(2+) signaling proteins have significantly increased in their size during plant evolution reaching an extraordinary complexity in angiosperms.
Collapse
Affiliation(s)
- Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 4, 48149 Münster, Germany.
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 4, 48149 Münster, Germany; College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia.
| |
Collapse
|
176
|
Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress. Proc Natl Acad Sci U S A 2014; 111:E4532-41. [PMID: 25288725 DOI: 10.1073/pnas.1407610111] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Plant cells have developed specific protective molecular machinery against environmental stresses. The family of CBL-interacting protein kinases (CIPK) and their interacting activators, the calcium sensors calcineurin B-like (CBLs), work together to decode calcium signals elicited by stress situations. The molecular basis of biological activation of CIPKs relies on the calcium-dependent interaction of a self-inhibitory NAF motif with a particular CBL, the phosphorylation of the activation loop by upstream kinases, and the subsequent phosphorylation of the CBL by the CIPK. We present the crystal structures of the NAF-truncated and pseudophosphorylated kinase domains of CIPK23 and CIPK24/SOS2. In addition, we provide biochemical data showing that although CIPK23 is intrinsically inactive and requires an external stimulation, CIPK24/SOS2 displays basal activity. This data correlates well with the observed conformation of the respective activation loops: Although the loop of CIPK23 is folded into a well-ordered structure that blocks the active site access to substrates, the loop of CIPK24/SOS2 protrudes out of the active site and allows catalysis. These structures together with biochemical and biophysical data show that CIPK kinase activity necessarily requires the coordinated releases of the activation loop from the active site and of the NAF motif from the nucleotide-binding site. Taken all together, we postulate the basis for a conserved calcium-dependent NAF-mediated regulation of CIPKs and a variable regulation by upstream kinases.
Collapse
|
177
|
Catalá R, López-Cobollo R, Mar Castellano M, Angosto T, Alonso JM, Ecker JR, Salinas J. The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation. THE PLANT CELL 2014; 26:3326-42. [PMID: 25122152 PMCID: PMC4371832 DOI: 10.1105/tpc.114.127605] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/12/2014] [Accepted: 07/22/2014] [Indexed: 05/18/2023]
Abstract
In plants, the expression of 14-3-3 genes reacts to various adverse environmental conditions, including cold, high salt, and drought. Although these results suggest that 14-3-3 proteins have the potential to regulate plant responses to abiotic stresses, their role in such responses remains poorly understood. Previously, we showed that the RARE COLD INDUCIBLE 1A (RCI1A) gene encodes the 14-3-3 psi isoform. Here, we present genetic and molecular evidence implicating RCI1A in the response to low temperature. Our results demonstrate that RCI1A functions as a negative regulator of constitutive freezing tolerance and cold acclimation in Arabidopsis thaliana by controlling cold-induced gene expression. Interestingly, this control is partially performed through an ethylene (ET)-dependent pathway involving physical interaction with different ACC SYNTHASE (ACS) isoforms and a decreased ACS stability. We show that, consequently, RCI1A restrains ET biosynthesis, contributing to establish adequate levels of this hormone in Arabidopsis under both standard and low-temperature conditions. We further show that these levels are required to promote proper cold-induced gene expression and freezing tolerance before and after cold acclimation. All these data indicate that RCI1A connects the low-temperature response with ET biosynthesis to modulate constitutive freezing tolerance and cold acclimation in Arabidopsis.
Collapse
Affiliation(s)
- Rafael Catalá
- Departamento de Biología Medioambiental, Centro Investigaciones Biológicas, 28040 Madrid, Spain
| | - Rosa López-Cobollo
- Departamento de Biología Medioambiental, Centro Investigaciones Biológicas, 28040 Madrid, Spain
| | - M Mar Castellano
- Departamento de Biología Medioambiental, Centro Investigaciones Biológicas, 28040 Madrid, Spain
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria, Campus de Excelencia Internacional Agroalimentaria ceiA3, Departamento de Biología y Geología, Universidad de Almería, 04120 Almería, Spain
| | - José M Alonso
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Joseph R Ecker
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Julio Salinas
- Departamento de Biología Medioambiental, Centro Investigaciones Biológicas, 28040 Madrid, Spain
| |
Collapse
|