151
|
Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S. Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. PLANT PHYSIOLOGY 2004; 134:1555-73. [PMID: 15047898 PMCID: PMC419831 DOI: 10.1104/pp.103.034736] [Citation(s) in RCA: 336] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 11/07/2003] [Accepted: 12/23/2003] [Indexed: 05/18/2023]
Abstract
Although numerous physiological studies have addressed the interactions between brassinosteroids and auxins, little is known about the underlying molecular mechanisms. Using an Affymetrix GeneChip representing approximately 8,300 Arabidopsis genes, we studied comprehensive transcript profiles over 24 h in response to indole-3-acetic acid (IAA) and brassinolide (BL). We identified 409 genes as BL inducible, 276 genes as IAA inducible, and 637 genes in total. These two hormones regulated only 48 genes in common, suggesting that most of the actions of each hormone are mediated by gene expression that is unique to each. IAA-up-regulated genes were enriched in genes regulated in common. They were induced quickly by IAA and more slowly by BL, suggesting divergent physiological roles. Many were early auxin-inducible genes and their homologs, namely SAUR, GH3, and IAA. The comprehensive comparison also identified IAA- and BL-specific genes, which should help to elucidate the specific actions of each hormone. The identified genes were classified using hierarchical clustering based on the similarity of their responses to the two hormones. Gene classification also allowed us to analyze the frequency of cis-elements. The TGTCTC element, a core element of the previously reported auxin response element, was not enriched in genes specifically regulated by IAA but was enriched in the 5'-flanking region of genes up-regulated by both IAA and BL. Such gene classification should be useful for predicting the functions of unknown genes, to understand the roles of these two hormones, and the promoter analysis should provide insight into the interaction of transcriptional regulation by the two hormones.
Collapse
Affiliation(s)
- Hideki Goda
- Plant Science Center, RIKEN, Suehirocho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
152
|
Takase T, Nakazawa M, Ishikawa A, Kawashima M, Ichikawa T, Takahashi N, Shimada H, Manabe K, Matsui M. ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:471-83. [PMID: 14756757 DOI: 10.1046/j.1365-313x.2003.01973.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To study the GH3 gene family of Arabidopsis, we investigated a flanking sequence database of Arabidopsis activation-tagged lines. We found a dwarf mutant, named yadokari 1-D (ydk1-D), that had a T-DNA insertion proximal to a GH3 gene. ydk1-D is dominant and has a short hypocotyl not only in light but also in darkness. Moreover, ydk1-D has a short primary root, a reduced lateral root number, and reduced apical dominance. A GH3 gene, named YDK1, was upregulated in ydk1-D, and YDK1 transgenic plants showed the ydk1-D phenotype. YDK1 gene expression was induced by exogenously applied auxin and regulated by auxin-response factor (ARF)7. In addition, YDK1 gene expression was downregulated by blue and far-red (FR) lights. Strong promoter activity of YDK1 was observed in roots and flowers. These results suggest that YDK1 may function as a negative component in auxin signaling by regulating auxin activity.
Collapse
Affiliation(s)
- Tomoyuki Takase
- Graduate School of Integrated Science, Yokohama City University, 22-2 Seto, Kanazawaku, Yokohama, Kanagawa 236-0027, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Tiwari SB, Hagen G, Guilfoyle TJ. Aux/IAA proteins contain a potent transcriptional repression domain. THE PLANT CELL 2004; 16:533-43. [PMID: 14742873 PMCID: PMC341922 DOI: 10.1105/tpc.017384] [Citation(s) in RCA: 395] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 11/24/2003] [Indexed: 05/18/2023]
Abstract
Aux/IAA proteins are short-lived nuclear proteins that repress expression of primary/early auxin response genes in protoplast transfection assays. Repression is thought to result from Aux/IAA proteins dimerizing with auxin response factor (ARF) transcriptional activators that reside on auxin-responsive promoter elements, referred to as AuxREs. Most Aux/IAA proteins contain four conserved domains, designated domains I, II, III, and IV. Domain II and domains III and IV play roles in protein stability and dimerization, respectively. A clear function for domain I had not been established. Results reported here indicate that domain I in Aux/IAA proteins is an active repression domain that is transferable and dominant over activation domains. An LxLxL motif within domain I is important for conferring repression. The dominance of Aux/IAA repression domains over activation domains in ARF transcriptional activators provides a plausible explanation for the repression of auxin response genes via ARF-Aux/IAA dimerization on auxin-responsive promoters.
Collapse
Affiliation(s)
- Shiv B Tiwari
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
154
|
Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki MK, Harper RM, Liscum E, Yamamoto KT. MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. THE PLANT CELL 2004; 16:379-93. [PMID: 14729917 PMCID: PMC341911 DOI: 10.1105/tpc.018630] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Accepted: 12/08/2003] [Indexed: 05/18/2023]
Abstract
We have isolated a dominant, auxin-insensitive mutant of Arabidopsis thaliana, massugu2 (msg2), that displays neither hypocotyl gravitropism nor phototropism, fails to maintain an apical hook as an etiolated seedling, and is defective in lateral root formation. Yet other aspects of growth and development of msg2 plants are almost normal. These characteristics of msg2 are similar to those of another auxin-insensitive mutant, non-phototropic hypocotyl4 (nph4), which is a loss-of-function mutant of AUXIN RESPONSE FACTOR7 (ARF7) (Harper et al., 2000). Map-based cloning of the MSG2 locus reveals that all four mutant alleles result in amino acid substitutions in the conserved domain II of an Auxin/Indole-3-Acetic Acid protein, IAA19. Interestingly, auxin inducibility of MSG2/IAA19 gene expression is reduced by 65% in nph4/arf7. Moreover, MSG2/IAA19 protein binds to the C-terminal domain of NPH4/ARF7 in a Saccharomyces cerevisiae (yeast) two-hybrid assay and to the whole latter protein in vitro by pull-down assay. These results suggest that MSG2/IAA19 and NPH4/ARF7 may constitute a negative feedback loop to regulate differential growth responses of hypocotyls and lateral root formation.
Collapse
Affiliation(s)
- Kiyoshi Tatematsu
- Division of Biological Sciences, Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Tian Q, Nagpal P, Reed JW. Regulation of Arabidopsis SHY2/IAA3 protein turnover. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:643-651. [PMID: 14617065 DOI: 10.1046/j.1365-313x.2003.01909.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Auxin/indole acetic acid (Aux/IAA) proteins regulate transcriptional responses to the plant hormone auxin. Gain-of-function mutations in the Arabidopsis SHORT HYPOCOTYL 2 (SHY2/IAA3) gene encoding an Aux/IAA protein increase steady-state levels of SHY2/IAA3 protein and decrease auxin responses, indicating that SHY2/IAA3 negatively regulates auxin signaling. These shy2 mutations also cause ectopic light responses, suggesting that SHY2/IAA3 may promote light signaling. Auxin regulates turnover of the related Auxin-resistant (AXR)2/IAA7 and AXR3/IAA17 proteins by increasing their interaction with the Skp1-Cdc53/cullin-F-box (SCFTIR1) E3 ubiquitin ligase complex. To investigate whether SHY2/IAA3 is regulated similarly, we have used a turnover assay to reveal that axr1 and transport inhibitor resistant (tir)1 mutations affecting SCFTIR1 decrease SHY2/IAA3 turnover. In pull-down assays, SHY2/IAA3 protein interacted with TIR1, the F-box component of SCFTIR1 and with the photoreceptor phytochrome B. Auxin stimulated SHY2/IAA3 interaction with TIR1, whereas the shy2-2 gain-of-function mutation decreased this interaction. Light did not affect the interaction, suggesting that light regulates some other aspect of Aux/IAA gene or protein function. The chemical juglone (5-hydroxy-1,4-naphthoquinone) inhibited the interaction, suggesting that peptidyl-prolyl isomerization may mediate auxin-induced SHY2/IAA3 protein turnover.
Collapse
Affiliation(s)
- Qing Tian
- Department of Biology, University of North Carolina at Chapel Hill, CB #3280, Coker Hall, Chapel Hill, NC 27599-3280, USA
| | | | | |
Collapse
|
156
|
Abstract
Signal transduction of the plant hormone auxin centres on the regulation of the abundance of members of the Aux/IAA family of transcriptional regulators, of which there are 29 in Arabidopsis. Auxin can influence Aux/IAA abundance by promoting the transcription of Aux/IAA genes and by reducing the half-life of Aux/IAA proteins. Stabilising mutations, which render Aux/IAA proteins resistant to auxin-mediated degradation, confer a wide range of phenotypes consistent with disruptions in auxin response. Interestingly, similar mutations in different family members can confer opposite phenotypic effects. To understand the molecular basis for this functional specificity in the Aux/IAA family, we have studied a pair of Aux/IAAs, which have contrasting roles in root hair development. We have found that stabilising mutations in AXR3/IAA17 blocks root hair initiation and elongation, whereas similar mutations in SHY2/IAA3 result in early initiation of root hair development and prolonged hair elongation, giving longer root hairs. The phenotypes resulting from double mutant combinations, the transient induction of expression of the proteins, and the pattern of transcription of the cognate genes suggest that root hair initiation is controlled by the relative abundance of SHY2 and AXR3 in a cell. These results suggest a general model for auxin signalling in which the modulation of the relative abundance of different Aux/IAA proteins can determine which down-stream responses are induced.
Collapse
Affiliation(s)
- Kirsten Knox
- Department of Biology, University of York, Box 373, York YO10 5YW, UK
| | | | | |
Collapse
|
157
|
Zenser N, Dreher KA, Edwards SR, Callis J. Acceleration of Aux/IAA proteolysis is specific for auxin and independent of AXR1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:285-294. [PMID: 12887580 DOI: 10.1046/j.1365-313x.2003.01801.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aux/IAA proteins are short-lived transcriptional regulators involved in auxin signaling. Using Aux/IAA luciferase (LUC) fusion proteins expressed in Arabidopsis thaliana, we previously showed that rapid degradation of these proteins requires conserved Aux/IAA domain II and that exogenous auxin accelerates their degradation. To further examine auxin-mediated increases in proteolysis, the degradation of two other LUC fusion proteins, a non-cleavable ubiquitin LUC fusion (UB1-72::LUC) and SAUR15::LUC was determined in vivo in seedlings. Their half-lives were 20 +/- 4 and 104 +/- 10 min, respectively. SAUR15::LUC half-life was not affected by pre-incubation with 2,4-D. Auxin did not have an equivalent effect on UB(1-72)::LUC steady-state levels as compared to PsIAA6:LUC. LUC fused to an Aux/IAA domain II degraded more rapidly following auxin application, demonstrating that this region is sufficient for auxin-mediated acceleration of proteolysis. Hormonal cross-talk at the level of Aux/IAA proteolysis was examined. 1-aminocyclopropane-1-carboxylic acid (ACC), benzyladenine (BA), abscisic acid (ABA), and brassinolide (BL) did not affect the degradation rate of IAA1::LUC, and gibberellic acid (GA3) and salicylic acid (SA) did not specifically affect the steady-state levels of Aux/IAA::LUC proteins. An Aux/IAA::LUC transgene was crossed into the auxin resistant-1 (axr1-12) background. In axr1-12, the half-life of PsIAA6(1-73)::LUC increased 4.5-fold, but proteolysis still accelerated in response to exogenous auxin. These data suggest that auxin is the only phytohormone that accelerates Aux/IAA proteolysis, and that this acceleration is specific for Aux/IAA proteins. In addition, AXR1 plays an important role in rapid basal proteolysis of Aux/IAA proteins, but is not required for auxin-mediated acceleration of their degradation.
Collapse
Affiliation(s)
- Nathan Zenser
- Section of Molecular and Cellular Biology and Plant Biology Graduate Group, University of California-Davis, 1 Shields Ave., Davis, CA 95616, USA
| | | | | | | |
Collapse
|
158
|
Hayashi KI, Jones AM, Ogino K, Yamazoe A, Oono Y, Inoguchi M, Kondo H, Nozaki H. Yokonolide B, a novel inhibitor of auxin action, blocks degradation of AUX/IAA factors. J Biol Chem 2003; 278:23797-806. [PMID: 12690101 DOI: 10.1074/jbc.m300299200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Yokonolide B (YkB; also known as A82548A), a spiroketal-macrolide, was isolated from Streptomyces diastatochromogenes B59 in a screen for inhibitors of beta-glucoronidase expression under the control of an auxin-responsive promoter in Arabidopsis. YkB inhibits the expression of auxin-inducible genes as shown using native and synthetic auxin promoters as well as using expression profiling of 8300 Arabidopsis gene probes but does not affect expression of an abscisic acid- and a gibberellin A3-inducible gene. The mechanism of action of YkB is to block AUX/IAA protein degradation; however, YkB is not a general proteasome inhibitor. YkB blocks auxin-dependent cell division and auxin-regulated epinastic growth mediated by auxin-binding protein 1. Gain of function mutants such as shy2-2, slr1, and axr2-1 encoding AUX/IAA transcriptional repressors and loss of function mutants encoding components of the ubiquitin-proteolytic pathway such as axr1-3 and tir1-1, which display increased AUX/IAAs protein stability, are less sensitive to YkB, although axr1 and tir1 mutants were sensitive to MG132, a general proteasome inhibitor, consistent with a site of action downstream of AXR1 and TIR. YkB-treated seedlings displayed similar phenotypes as dominant AUX/IAA mutants. Taken together, these results indicate that YkB acts to block AUX/IAA protein degradation upstream of AXR and TIR, links a shared element upstream of AUX/IAA protein stability to auxin-induced cell division/elongation and to auxin-binding protein 1, and provides a new tool to dissect auxin signal transduction.
Collapse
Affiliation(s)
- Ken-ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Gray WM, Muskett PR, Chuang HW, Parker JE. Arabidopsis SGT1b is required for SCF(TIR1)-mediated auxin response. THE PLANT CELL 2003; 15:1310-9. [PMID: 12782725 PMCID: PMC156368 DOI: 10.1105/tpc.010884] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2003] [Accepted: 03/26/2003] [Indexed: 05/18/2023]
Abstract
The SCF(TIR1) complex is a central regulator of the auxin response pathway in Arabidopsis. This complex functions as a ubiquitin protein ligase that targets members of the auxin/indoleacetic acid (Aux/IAA) family of transcriptional regulators for ubiquitin-mediated degradation in response to auxin. In an attempt to identify additional factors required for SCF(TIR1) activity, we conducted a genetic screen to isolate enhancers of the auxin response defect conferred by the tir1-1 mutation. Here, we report the identification and characterization of the eta3 mutant. The eta3 mutation interacts synergistically with tir1-1 to strongly enhance all aspects of the tir1 mutant phenotype, including auxin inhibition of root growth, lateral root development, hypocotyl elongation at high temperature, and apical dominance. We isolated the ETA3 gene using a map-based cloning strategy and determined that ETA3 encodes SGT1b. SGT1b was identified recently as a factor involved in plant disease resistance signaling, and SGT1 from barley and tobacco extracts was shown to interact with SCF ubiquitin ligases. We conclude that ETA3/SGT1b is required for the SCF(TIR1)-mediated degradation of Aux/IAA proteins.
Collapse
Affiliation(s)
- William M Gray
- Department of Plant Biology, University of Minnesota--Twin Cities, St. Paul, Minnesota 55108, USA.
| | | | | | | |
Collapse
|
160
|
Zazimalova E, Napier RM. Points of regulation for auxin action. PLANT CELL REPORTS 2003; 21:625-634. [PMID: 12789411 DOI: 10.1007/s00299-002-0562-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2002] [Revised: 11/09/2002] [Accepted: 11/09/2002] [Indexed: 05/24/2023]
Abstract
There have been few examples of the application of our growing knowledge of hormone action to crop improvement. In this review we discuss what is known about the critical points regulating auxin action. We examine auxin metabolism, transport, perception and signalling and identify genes and proteins that might be keys to regulation, particularly the rate-limiting steps in various pathways. Certain mutants show that substrate flow in biosynthesis can be limiting. To date there is little information available on the genes and proteins of catabolism. There have been several auxin transport proteins and some elegant transport physiology described recently, and the potential for using transport proteins to manage free indole-3-acetic acid (IAA) concentrations is discussed. Free IAA is very mobile, and so while it may be more practical to control auxin action through managing the receptor and signalling pathways, the candidate genes and proteins through which this can be done remain largely unknown. From the available evidence, it is clear that the reason for so few commercial applications arising from the control of auxin action is that knowledge is still limited.
Collapse
Affiliation(s)
- E Zazimalova
- Institute of Experimental Botany, The Academy of Sciences of the Czech Republic, Rozvojová 135, 16502, Prague 6-Lysolaje, Czech Republic
| | | |
Collapse
|
161
|
Abstract
It has not been easy to make sense of the pleiotropic effects of plant hormones, especially of auxins; but now, it has become possible to study these effects within the framework of what we know about signal transduction in general. Changes in local auxin concentrations, perhaps even actively maintained auxin gradients, signal to networks of transcription factors, which in turn signal to downstream effectors. Transcription factors can also signal back to hormone biosynthetic pathways.
Collapse
Affiliation(s)
- Hannes Vogler
- Institute of Plant Sciences, University of Berne, Altenbergrain 21, Switzerland
| | | |
Collapse
|
162
|
Tiwari SB, Hagen G, Guilfoyle T. The roles of auxin response factor domains in auxin-responsive transcription. THE PLANT CELL 2003; 15:533-43. [PMID: 12566590 PMCID: PMC141219 DOI: 10.1105/tpc.008417] [Citation(s) in RCA: 636] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Accepted: 11/01/2002] [Indexed: 05/18/2023]
Abstract
Auxin response factors (ARFs) are transcription factors that bind to TGTCTC auxin response elements in promoters of early auxin response genes. ARFs have a conserved N-terminal DNA binding domain (DBD) and in most cases a conserved C-terminal dimerization domain (CTD). The ARF CTD is related in amino acid sequence to motifs III and IV found in Aux/IAA proteins. Just C terminal to the DBD, ARFs contain a nonconserved region referred to as the middle region (MR), which has been proposed to function as a transcriptional repression or activation domain. Results with transfected protoplasts reported here show that ARFs with Q-rich MRs function as activators, whereas most, if not all other ARFs, function as repressors. ARF DBDs alone are sufficient to recruit ARFs to their DNA target sites, and auxin does not influence this recruitment. ARF MRs alone function as activation or repression domains when targeted to reporter genes via a yeast Gal4 DBD, and auxin does not influence the potency of activation or repression. ARF CTDs, along with a Q-rich MR, are required for an auxin response whether the MRs plus CTDs are recruited to a promoter by an ARF DBD or by a Gal4 DBD. The auxin response is mediated by the recruitment of Aux/IAA proteins to promoters that contain a DNA binding protein with a Q-rich MR and an attached CTD.
Collapse
Affiliation(s)
- Shiv B Tiwari
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
163
|
Tiwari SB, Hagen G, Guilfoyle T. The roles of auxin response factor domains in auxin-responsive transcription. THE PLANT CELL 2003; 15:533-543. [PMID: 12566590 DOI: 10.2307/3871883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Auxin response factors (ARFs) are transcription factors that bind to TGTCTC auxin response elements in promoters of early auxin response genes. ARFs have a conserved N-terminal DNA binding domain (DBD) and in most cases a conserved C-terminal dimerization domain (CTD). The ARF CTD is related in amino acid sequence to motifs III and IV found in Aux/IAA proteins. Just C terminal to the DBD, ARFs contain a nonconserved region referred to as the middle region (MR), which has been proposed to function as a transcriptional repression or activation domain. Results with transfected protoplasts reported here show that ARFs with Q-rich MRs function as activators, whereas most, if not all other ARFs, function as repressors. ARF DBDs alone are sufficient to recruit ARFs to their DNA target sites, and auxin does not influence this recruitment. ARF MRs alone function as activation or repression domains when targeted to reporter genes via a yeast Gal4 DBD, and auxin does not influence the potency of activation or repression. ARF CTDs, along with a Q-rich MR, are required for an auxin response whether the MRs plus CTDs are recruited to a promoter by an ARF DBD or by a Gal4 DBD. The auxin response is mediated by the recruitment of Aux/IAA proteins to promoters that contain a DNA binding protein with a Q-rich MR and an attached CTD.
Collapse
Affiliation(s)
- Shiv B Tiwari
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
164
|
Park JY, Kim HJ, Kim J. Mutation in domain II of IAA1 confers diverse auxin-related phenotypes and represses auxin-activated expression of Aux/IAA genes in steroid regulator-inducible system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:669-83. [PMID: 12472684 DOI: 10.1046/j.1365-313x.2002.01459.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Most of Aux/IAA genes are rapidly induced by auxin. The Aux/IAA proteins are short-lived nuclear proteins sharing the four conserved domains. Domain II is critical for rapid degradation of Aux/IAA proteins. Among these gene family members, IAA1 is one of the earliest auxin-inducible genes. We used a steroid hormone-inducible system to reveal putative roles and downstream signaling of IAA1 in auxin response. Arabidopsis transgenic plants were generated expressing fusion protein of IAA1 (IAA1-GR) or IAA1 with a mutation in domain II (iaa1-GR) and the glucocorticoid hormone-binding domain (GR). IAA1-GR transgenic plants did not exhibit any discernable phenotypic differences by DEX treatment that allows nuclear translocation of the fusion protein. In contrast, diverse auxin-related physiological processes including gravitropism and phototropism were impaired by DEX treatment in roots, hypocotyls, stems, and leaves in iaa1-GR transgenic plants. Auxin induction of seven Aux/IAA mRNAs including IAA1 itself was repressed by DEX treatment, suggesting that IAA1 functions in the nucleus by mediating auxin response and might act as a negative feedback regulator for the expression of Aux/IAA genes including IAA1 itself. Auxin induction of Aux/IAA genes in the presence of cycloheximide can be repressed by DEX treatment, showing that the repression of transcription of the Aux/IAAs by the iaa1 mutant protein is primary. Wild-type IAA1-GR could not suppress auxin induction of IAA1 and IAA2. These results indicate that inhibition of auxin-activated transcription of Aux/IAA genes by the iaa1 mutant protein might be responsible for alteration of various auxin responses.
Collapse
Affiliation(s)
- Jin-Young Park
- Kumho Life and Environmental Science Laboratory, 1 Oryong-dong, Puk-Gu, Gwangju, Korea 500-712
| | | | | |
Collapse
|
165
|
Causier B, Davies B. Analysing protein-protein interactions with the yeast two-hybrid system. PLANT MOLECULAR BIOLOGY 2002; 50:855-870. [PMID: 12516858 DOI: 10.1023/a:1021214007897] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant research is moving into the post-genomic era. Proteomic-based strategies are now being developed to study functional aspects of the genes predicted from the various genome-sequencing initiatives. All biological processes depend on interactions formed between proteins and the mapping of such interactions on a global scale is providing interesting functional insights. One of the techniques that has proved itself invaluable in the mapping of protein-protein interactions is the yeast two-hybrid system. This system is a sensitive molecular genetic approach for studying protein-protein interactions in vivo. In this review we will introduce the yeast two-hybrid system, discuss modifications of the system that may be of interest to the plant science community and suggest potential applications of the technology.
Collapse
Affiliation(s)
- Barry Causier
- School of Biology, University of Leeds, Leeds LS2 9J7, UK.
| | | |
Collapse
|
166
|
Che P, Gingerich DJ, Lall S, Howell SH. Global and hormone-induced gene expression changes during shoot development in Arabidopsis. THE PLANT CELL 2002; 14:2771-85. [PMID: 12417700 PMCID: PMC152726 DOI: 10.1105/tpc.006668] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2002] [Accepted: 08/19/2002] [Indexed: 05/18/2023]
Abstract
A global analysis of gene expression events during shoot development in Arabidopsis was conducted using oligonucleotide array analysis. Shoots can be induced in tissue culture by preincubating root explants on an auxin-rich callus induction medium (CIM) and by transferring explants to a cytokinin-rich shoot induction medium (SIM), during which time explants become committed to shoot formation and ultimately form shoots. Oligonucleotide array data obtained during shoot development from approximately 8000 Arabidopsis genes were subjected to principal component analysis, which demonstrated that the major components of variation in gene expression during shoot development can be represented by groups of genes, each group of which is upregulated at only one developmental stage. Two percent to three percent of the approximately 8000 Arabidopsis genes monitored in this study were upregulated by fourfold or more at any one stage during shoot development. When upregulated and downregulated genes were categorized by function, it was observed that numerous hormone response genes were upregulated during preincubation on CIM. Groups of genes involved in signaling and/or transcription were induced at or before the time of shoot commitment, and genes that encode components of the photosynthetic apparatus were upregulated later in development before shoot emergence. Primary hormone response genes, such as Aux/IAA genes, were upregulated during preincubation on auxin-rich CIM, and cytokinin-responsive response regulator genes were upregulated during incubation on cytokinin-rich SIM. The expression of ARABIDOPSIS RESPONSE REGULATOR5, a type-A response regulator gene, was upregulated at the time of shoot commitment, and its expression was localized to sites of presumptive shoot formation. Two "hybrid" His kinases involved in cytokinin responses, CRE1, which encodes a cytokinin receptor, and CKI1, a gene that is capable of conferring cytokinin-independent shoot development, were upregulated during incubation on SIM.
Collapse
Affiliation(s)
- Ping Che
- Plant Sciences Institute, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
167
|
Milioni D, Sado PE, Stacey NJ, Roberts K, McCann MC. Early gene expression associated with the commitment and differentiation of a plant tracheary element is revealed by cDNA-amplified fragment length polymorphism analysis. THE PLANT CELL 2002; 14:2813-24. [PMID: 12417703 PMCID: PMC152729 DOI: 10.1105/tpc.005231] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2002] [Accepted: 08/05/2002] [Indexed: 05/18/2023]
Abstract
Isolated mesophyll cells from Zinnia elegans are induced by auxin and cytokinin to form tracheary elements (TEs) in vitro with high synchrony. To reveal the changing patterns of gene expression during the 48 h of transdifferentiation from mesophyll to TE cell fate, we used a cDNA-amplified fragment length polymorphism approach to generate expression profiles of >30,000 cDNA fragments. Transcriptional changes of 652 cDNA fragments were observed, of which 304 have no previously described function or sequence identity. Sixty-eight genes were upregulated within 30 min of induction and represent key candidates for the processes that underlie the early stages of commitment and differentiation to a TE cell fate.
Collapse
Affiliation(s)
- Dimitra Milioni
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | | | | | | | | |
Collapse
|
168
|
Menges M, Hennig L, Gruissem W, Murray JAH. Cell cycle-regulated gene expression in Arabidopsis. J Biol Chem 2002; 277:41987-2002. [PMID: 12169696 DOI: 10.1074/jbc.m207570200] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulated gene expression is an important mechanism for controlling cell cycle progression in yeast and mammals, and genes involved in cell division-related processes often show transcriptional regulation dependent on cell cycle position. Analysis of cell cycle processes in plants has been hampered by the lack of synchronizable cell suspensions for Arabidopsis, and few cell cycle-regulated genes are known. Using a recently described synchrony system, we have analyzed RNA from sequential samples of Arabidopsis cells progressing through the cell cycle using Affymetrix Genearrays. We identify nearly 500 genes that robustly display significant fluctuation in expression, representing the first genomic analysis of cell cycle-regulated gene expression in any plant. In addition to the limited number of genes previously identified as cell cycle-regulated in plants, we also find specific patterns of regulation for genes known or suspected to be involved in signal transduction, transcriptional regulation, and hormonal regulation, including key genes of cytokinin response. Genes identified represent pathways that are cell cycle-regulated in other organisms and those involved in plant-specific processes. The range and number of cell cycle-regulated genes show the close integration of the plant cell cycle into a variety of cellular control and response pathways.
Collapse
Affiliation(s)
- Margit Menges
- Institute of Biotechnology, University of Cambridge, United Kingdom
| | | | | | | |
Collapse
|
169
|
Blilou I, Frugier F, Folmer S, Serralbo O, Willemsen V, Wolkenfelt H, Eloy NB, Ferreira PCG, Weisbeek P, Scheres B. The Arabidopsis HOBBIT gene encodes a CDC27 homolog that links the plant cell cycle to progression of cell differentiation. Genes Dev 2002; 16:2566-75. [PMID: 12368267 PMCID: PMC187454 DOI: 10.1101/gad.237302] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In plant meristems, dividing cells interpret positional information and translate it into patterned cell differentiation. Here we report the molecular identification of the Arabidopsis HOBBIT gene that is required for cell division and cell differentiation in meristems. We show that it encodes a homolog of the CDC27 subunit of the anaphase-promoting complex (APC). HOBBIT partially complements a yeast nuc2/cdc27 mutant. Unlike other CDC27 homologs in Arabidopsis, its transcription is cell cycle regulated. Furthermore, hobbit mutants show a reduction in DR5 :: GUS auxin reporter gene expression and accumulate the AXR3/IAA17 repressor of auxin responses. HOBBIT activity may thus couple cell division to cell differentiation by regulating cell cycle progression in the meristem or by restricting the response to differentiation cues, such as auxin, to dividing cells.
Collapse
Affiliation(s)
- Ikram Blilou
- Department of Molecular Cell Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Xie Q, Guo HS, Dallman G, Fang S, Weissman AM, Chua NH. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 2002; 419:167-70. [PMID: 12226665 DOI: 10.1038/nature00998] [Citation(s) in RCA: 306] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The plant hormone indole-3 acetic acid (IAA or auxin) controls many aspects of plant development, including the production of lateral roots. Ubiquitin-mediated proteolysis has a central role in this process. The genes AXR1 and TIR1 aid the assembly of an active SCF (Skp1/Cullin/F-box) complex that probably promotes degradation of the AUX/IAA transcriptional repressors in response to auxin. The transcription activator NAC1, a member of the NAM/CUC family of transcription factors, functions downstream of TIR1 to transduce the auxin signal for lateral root development. Here we show that SINAT5, an Arabidopsis homologue of the RING-finger Drosophila protein SINA, has ubiquitin protein ligase activity and can ubiquitinate NAC1. This activity is abolished by mutations in the RING motif of SINAT5. Overexpressing SINAT5 produces fewer lateral roots, whereas overexpression of a dominant-negative Cys49 --> Ser mutant of SINAT5 develops more lateral roots. These lateral root phenotypes correlate with the expression of NAC1 observed in vivo. Low expression of NAC1 in roots can be increased by treatment with a proteasome inhibitor, which indicates that SINAT5 targets NAC1 for ubiquitin-mediated proteolysis to downregulate auxin signals in plant cells.
Collapse
Affiliation(s)
- Qi Xie
- Laboratory of Molecular Cell Biology, Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604 Singapore
| | | | | | | | | | | |
Collapse
|
171
|
Moyle R, Schrader J, Stenberg A, Olsson O, Saxena S, Sandberg G, Bhalerao RP. Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 31:675-685. [PMID: 12220260 DOI: 10.1046/j.1365-313x.2002.01386.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Indole acetic acid (IAA/auxin) profoundly affects wood formation but the molecular mechanism of auxin action in this process remains poorly understood. We have cloned cDNAs for eight members of the Aux/IAA gene family from hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) that encode potential mediators of the auxin signal transduction pathway. These genes designated as PttIAA1-PttIAA8 are auxin inducible but differ in their requirement of de novo protein synthesis for auxin induction. The auxin induction of the PttIAA genes is also developmentally controlled as evidenced by the loss of their auxin inducibility during leaf maturation. The PttIAA genes are differentially expressed in the cell types of a developmental gradient comprising the wood-forming tissues. Interestingly, the expression of the PttIAA genes is downregulated during transition of the active cambium into dormancy, a process in which meristematic cells of the cambium lose their sensitivity to auxin. Auxin-regulated developmental reprogramming of wood formation during the induction of tension wood is accompanied by changes in the expression of PttIAA genes. The distinct tissue-specific expression patterns of the auxin inducible PttIAA genes in the cambial region together with the change in expression during dormancy transition and tension wood formation suggest a role for these genes in mediating cambial responses to auxin and xylem development.
Collapse
Affiliation(s)
- Richard Moyle
- Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Department of Forest Genetics and Plant Physiology, 90183 Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
172
|
Abstract
Many aspects of eukaryotic development depend on regulated protein degradation by the ubiquitin-proteasome pathway. This highly conserved pathway promotes covalent attachment of ubiquitin to protein substrates through the sequential action of three enzymes called a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and a ubiquitin-protein ligase (E3). Most ubiquitinated proteins are then targeted for degradation by the 26S proteasome. Recent studies have also shown that the ubiquitin-related protein RUB/Nedd8 and the proteasome-related COP9 signalosome complex cooperate with the ubiquitin-proteasome pathway to promote protein degradation. Most of these components are conserved in all three eukaryotic kingdoms. However, the known targets of the pathway in plants, and the developmental processes they regulate, are specific to the plant kingdom.
Collapse
Affiliation(s)
- Hanjo Hellmann
- Molecular Cell and Developmental Biology, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
173
|
Fedoroff NV. Cross-talk in abscisic acid signaling. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:re10. [PMID: 12107340 DOI: 10.1126/stke.2002.140.re10] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
"Cross-talk" in hormone signaling reflects an organism's ability to integrate different inputs and respond appropriately, a crucial function at the heart of signaling network operation. Abscisic acid (ABA) is a plant hormone involved in bud and seed dormancy, growth regulation, leaf senescence and abscission, stomatal opening, and a variety of plant stress responses. This review summarizes what is known about ABA signaling in the control of stomatal opening and seed dormancy and provides an overview of emerging knowledge about connections between ABA, ethylene, sugar, and auxin synthesis and signaling.
Collapse
Affiliation(s)
- Nina V Fedoroff
- Biotechnology Institute, Life Sciences Consortium, and Biology Department, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
174
|
|
175
|
Hamann T, Benkova E, Bäurle I, Kientz M, Jürgens G. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 2002; 16:1610-5. [PMID: 12101120 PMCID: PMC186366 DOI: 10.1101/gad.229402] [Citation(s) in RCA: 388] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Developmental responses to the plant hormone auxin are thought to be mediated by interacting pairs from two protein families: short-lived inhibitory IAA proteins and ARF transcription factors binding to auxin-response elements. monopteros mutants lacking activating ARF5 and the auxin-insensitive mutant bodenlos fail to initiate the root meristem during early embryogenesis. Here we show that the bodenlos phenotype results from an amino-acid exchange in the conserved degradation domain of IAA12. BODENLOS and MONOPTEROS interact in the yeast two-hybrid assay and the two genes are coexpressed in early embryogenesis, suggesting that BODENLOS inhibits MONOPTEROS action in root meristem initiation.
Collapse
Affiliation(s)
- Thorsten Hamann
- ZMBP, Entwicklungsgenetik, Universität Tübingen, D-72076 Tübingen, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
176
|
Hagen G, Guilfoyle T. Auxin-responsive gene expression: genes, promoters and regulatory factors. PLANT MOLECULAR BIOLOGY 2002; 49:373-385. [PMID: 12036261 DOI: 10.1023/a:1015207114117] [Citation(s) in RCA: 723] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A molecular approach to investigate auxin signaling in plants has led to the identification of several classes of early/primary auxin response genes. Within the promoters of these genes, cis elements that confer auxin responsiveness (referred to as auxin-response elements or AuxREs) have been defined, and a family of trans-acting transcription factors (auxin-response factors or ARFs) that bind with specificity to AuxREs has been characterized. A family of auxin regulated proteins referred to as Aux/IAA proteins also play a key role in regulating these auxin-response genes. Auxin may regulate transcription on early response genes by influencing the types of interactions between ARFs and Aux/IAAs.
Collapse
Affiliation(s)
- Gretchen Hagen
- Department of Biochemistry, University of Missouri, Columbia 65211, USA.
| | | |
Collapse
|
177
|
Møller SG, Ingles PJ, Whitelam GC. The cell biology of phytochrome signalling. THE NEW PHYTOLOGIST 2002; 154:553-590. [PMID: 33873456 DOI: 10.1046/j.1469-8137.2002.00419.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Phytochrome signal transduction has in the past often been viewed as being a nonspatially separated linear chain of events. However, through a combination of molecular, genetic and cell biological approaches, it is becoming increasingly evident that phytochrome signalling constitutes a highly ordered multidimensional network of events. The discovery that some phytochromes and signalling intermediates show light-dependent nucleo-cytoplasmic partitioning has not only led to the suggestion that early signalling events take place in the nucleus, but also that subcellular localization patterns most probably represent an important signalling control point. Moreover, detailed characterization of signalling intermediates has demonstrated that various branches of the signalling network are spatially separated and take place in different cellular compartments including the nucleus, cytosol, and chloroplasts. In addition, proteasome-mediated degradation of signalling intermediates most probably act in concert with subcellular partitioning events as an integrated checkpoint. An emerging view from this is that phytochrome signalling is separated into several subcellular organelles and that these are interconnected in order to execute accurate responses to changes in the light environment. By integrating the available data, both at the cellular and subcellular level, we should be able to construct a solid foundation for further dissection of phytochrome signal transduction in plants. Contents Summary 553 I. Introduction 554 II. Nucleus vs cytoplasm 556 III. The nucleus 562 IV. The cytoplasm 571 V. Interactions with other signalling pathways 577 VI. Conclusions and the future 582 Acknowledgements 583 References 583.
Collapse
Affiliation(s)
- Simon G Møller
- Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Patricia J Ingles
- Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Garry C Whitelam
- Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| |
Collapse
|
178
|
Hagen G, Guilfoyle T. Auxin-responsive gene expression: genes, promoters and regulatory factors. PLANT MOLECULAR BIOLOGY 2002. [PMID: 12036261 DOI: 10.1007/978-94-010-0377-3_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A molecular approach to investigate auxin signaling in plants has led to the identification of several classes of early/primary auxin response genes. Within the promoters of these genes, cis elements that confer auxin responsiveness (referred to as auxin-response elements or AuxREs) have been defined, and a family of trans-acting transcription factors (auxin-response factors or ARFs) that bind with specificity to AuxREs has been characterized. A family of auxin regulated proteins referred to as Aux/IAA proteins also play a key role in regulating these auxin-response genes. Auxin may regulate transcription on early response genes by influencing the types of interactions between ARFs and Aux/IAAs.
Collapse
Affiliation(s)
- Gretchen Hagen
- Department of Biochemistry, University of Missouri, Columbia 65211, USA.
| | | |
Collapse
|
179
|
Liscum E, Reed JW. Genetics of Aux/IAA and ARF action in plant growth and development. PLANT MOLECULAR BIOLOGY 2002; 49:387-400. [PMID: 12036262 DOI: 10.1023/a:1015255030047] [Citation(s) in RCA: 467] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Dramatic advances in our understanding of auxin signal-response pathways have been made in recent years. Much of this new knowledge has come through the study of mutants in Arabidopsis thaliana. Mutations have been identified in a wide variety of auxin-response components, including auxin transporters, protein kinases and phosphatases, components of a ubiquitin-proteosome pathway, and transcriptional regulators. This review focuses on mutations that affect auxin-modulated transcription factors, in particular those in the Aux/IAA and AUXIN RESPONSE FACTOR (ARF) genes. Mutants in members of these related gene families exhibit phenotypes that indicate both unique localized functions, as well as overlapping redundant functions, throughout plant development - from embryogenesis to flowering. Effects of specific mutations on Aux/IAA and ARF protein functions at the biochemical and physiological levels will be discussed. We will also discuss potential mechanisms for interactions between auxin and light response pathways that are suggested by these mutants.
Collapse
Affiliation(s)
- E Liscum
- Division of Biological Sciences, University of Missouri, Columbia 65211, USA
| | | |
Collapse
|
180
|
Ungerer MC, Halldorsdottir SS, Modliszewski JL, Mackay TFC, Purugganan MD. Quantitative trait loci for inflorescence development in Arabidopsis thaliana. Genetics 2002; 160:1133-51. [PMID: 11901129 PMCID: PMC1462026 DOI: 10.1093/genetics/160.3.1133] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Variation in inflorescence development patterns is a central factor in the evolutionary ecology of plants. The genetic architectures of 13 traits associated with inflorescence developmental timing, architecture, rosette morphology, and fitness were investigated in Arabidopsis thaliana, a model plant system. There is substantial naturally occurring genetic variation for inflorescence development traits, with broad sense heritabilities computed from 21 Arabidopsis ecotypes ranging from 0.134 to 0.772. Genetic correlations are significant for most (64/78) pairs of traits, suggesting either pleiotropy or tight linkage among loci. Quantitative trait locus (QTL) mapping indicates 47 and 63 QTL for inflorescence developmental traits in Ler x Col and Cvi x Ler recombinant inbred mapping populations, respectively. Several QTL associated with different developmental traits map to the same Arabidopsis chromosomal regions, in agreement with the strong genetic correlations observed. Epistasis among QTL was observed only in the Cvi x Ler population, and only between regions on chromosomes 1 and 5. Examination of the completed Arabidopsis genome sequence in three QTL regions revealed between 375 and 783 genes per region. Previously identified flowering time, inflorescence architecture, floral meristem identity, and hormone signaling genes represent some of the many candidate genes in these regions.
Collapse
Affiliation(s)
- Mark C Ungerer
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | |
Collapse
|
181
|
Pérez-Pérez JM, Ponce MR, Micol JL. The UCU1 Arabidopsis gene encodes a SHAGGY/GSK3-like kinase required for cell expansion along the proximodistal axis. Dev Biol 2002; 242:161-73. [PMID: 11820813 DOI: 10.1006/dbio.2001.0543] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most signal transduction pathways central to development are not shared by plants and animals. Such is the case of the Wingless/Wnt signaling pathway, whose components play key roles in metazoan pattern formation and tumorigenesis, but are absent in plants, with the exception of SHAGGY/GSK3, a cytoplasmic protein kinase represented in the genome of Arabidopsis thaliana by a family of 10 AtSK genes for which mutational evidence is scarce. Here, we describe the characterization of mutant alleles of the Arabidopsis ULTRACURVATA1 (UCU1) gene, the two strongest of which dramatically reduce cell expansion along the proximodistal axis, dwarfing the mutant plants, whose cells expand properly across but not along most organs. Proximodistal expansion of adaxial (dorsal) and abaxial (ventral) leaf cells exhibits a differential dependence on UCU1 function, as suggested by the leaves of ucu1 mutants, which are rolled spirally downward in a circinate manner. We have positionally cloned the UCU1 gene, which encodes an AtSK protein involved in the cross-talk between auxin and brassinosteroid signaling pathways, as indicated by the responses of ucu1 mutants to plant hormones and the phenotypes of double mutants involving ucu1 alleles.
Collapse
Affiliation(s)
- José Manuel Pérez-Pérez
- División de Genética and Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | | | | |
Collapse
|
182
|
Tian Q, Uhlir NJ, Reed JW. Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression. THE PLANT CELL 2002; 14:301-19. [PMID: 11884676 PMCID: PMC152914 DOI: 10.1105/tpc.010283] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In Arabidopsis, SHY2 encodes IAA3, a member of the auxin-induced Aux/IAA family. Gain-of-function mutations in SHY2/IAA3 cause enlarged cotyledons, short hypocotyls, and altered auxin-regulated root development. Here we show that the gain-of-function mutation shy2-2 decreases both the induction and repression of auxin-regulated genes, suggesting that SHY2/IAA3 acts as a negative regulator in auxin signaling. shy2-2 affects auxin induction of many previously characterized primary response genes, implying that it might repress primary auxin responses. In addition, shy2-2 also affects expression of multiple auxin-nonresponsive genes. Light regulates expression of SHY2/IAA3, suggesting a possible link between light and auxin response pathways.
Collapse
Affiliation(s)
- Qing Tian
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599-3280, USA
| | | | | |
Collapse
|
183
|
del Pozo JC, Dharmasiri S, Hellmann H, Walker L, Gray WM, Estelle M. AXR1-ECR1-dependent conjugation of RUB1 to the Arabidopsis Cullin AtCUL1 is required for auxin response. THE PLANT CELL 2002; 14:421-33. [PMID: 11884684 PMCID: PMC152922 DOI: 10.1105/tpc.010282] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Mutations in the AXR1 gene result in a reduction in auxin response and diverse defects in auxin-regulated growth and development. In a previous study, we showed that AXR1 forms a heterodimer with the ECR1 protein. This enzyme activates the ubiquitin-related protein RUB1 in vitro. Furthermore, we showed that the Skp1-Cul1/Cdc53-F-box (SCF) subunit AtCUL1 is modified by RUB1 in vivo. In this report, we demonstrate that the formation of RUB-AtCUL1 is dependent on AXR1 and ECR1 in vivo. The expression of AXR1 and ECR1 is restricted to zones of active cell division and cell elongation, consistent with their role in growth regulation. These results provide strong support for a model in which RUB conjugation of AtCUL1 affects the function of SCF E3s that are required for auxin response.
Collapse
Affiliation(s)
- Juan C del Pozo
- Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Texas 78712, USA
| | | | | | | | | | | |
Collapse
|
184
|
|
185
|
Abstract
The plant hormone auxin is a simple molecule similar to tryptophan, yet it elicits a diverse array of responses and is involved in the regulation of growth and development throughout the plant life cycle. The ability of auxin to bring about such diverse responses appears to result partly from the existence of several independent mechanisms for auxin perception. Furthermore, one prominent mechanism for auxin signal transduction involves the targeted degradation of members of a large family of transcriptional regulators that appear to participate in complex and competing dimerization networks to modulate the expression of a wide range of genes. These models for auxin signaling now offer a framework in which to test how each specific response to auxin is brought about.
Collapse
Affiliation(s)
- Ottoline Leyser
- Department of Biology, University of York, York YO10 5YW, United Kingdom.
| |
Collapse
|
186
|
Kepinski S, Leyser O. Ubiquitination and auxin signaling: a degrading story. THE PLANT CELL 2002; 14 Suppl:S81-S95. [PMID: 12782723 PMCID: PMC151249 DOI: 10.1105/tpc.010447] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2001] [Accepted: 02/05/2002] [Indexed: 05/17/2023]
Affiliation(s)
| | - Ottoline Leyser
- To whom correspondence should be addressed. E-mail ; fax 44-1904-434312
| |
Collapse
|
187
|
Fukaki H, Tameda S, Masuda H, Tasaka M. Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:153-68. [PMID: 11862947 DOI: 10.1046/j.0960-7412.2001.01201.x] [Citation(s) in RCA: 493] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lateral root development is a post-embryonic organogenesis event that gives rise to most of the underground parts of higher plants. Auxin promotes lateral root formation, but the molecular mechanisms involved are still unknown. We have isolated a novel Arabidopsis mutant, solitary-root (slr), which has reduced sensitivity to auxin. This dominant slr-1 mutant completely lacks lateral roots, and this phenotype cannot be rescued by the application of exogenous auxin. Analysis with cell-cycle and cell-differentiation markers revealed that the slr-1 mutation blocks cell divisions of pericycle cells in lateral root initiation. The slr-1 mutant is also defective in root hair formation and in the gravitropic responses of its roots and hypocotyls. Map-based positional cloning and isolation of an intragenic suppressor mutant revealed that SLR encodes IAA14, a member of the Aux/IAA protein family. Green fluorescent protein-tagged mutant IAA14 protein was localized in the nucleus, and the gain-of-function slr-1/iaa14 mutation decreased auxin-inducible BA-GUS gene expression in the root, suggesting that SLR/IAA14 acts as a transcriptional repressor. These observations indicate that SLR/IAA14 is a key regulator in auxin-regulated growth and development, particularly in lateral root formation.
Collapse
Affiliation(s)
- Hidehiro Fukaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | | | |
Collapse
|
188
|
Kersten B, Bürkle L, Kuhn EJ, Giavalisco P, Konthur Z, Lueking A, Walter G, Eickhoff H, Schneider U. Large-scale plant proteomics. PLANT MOLECULAR BIOLOGY 2002. [PMID: 11860206 DOI: 10.1023/a:1013784205292] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Large-scale and high throughput approaches increasingly play an essential role in the study of biological systems, which are per se highly complex. Therefore, they need to be examined by these extensive methods to receive information about the large genomic and proteomic networks. In plant biology, this purpose has a strong support through the accessability of the complete genome sequence of the model plant Arabidopsis thaliana. This brief review intends to focus on the basics and the state-of-the-art of these high-throughput technologies and their application to plant proteomics. It describes protein microarrays, the use of antibodies, 2-DE and MS methods and the yeast two hybrid system, which are emerging as the major technologies for plant proteomics.
Collapse
Affiliation(s)
- Birgit Kersten
- Max Planck Institute of Molecular Genetics, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ. AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. THE PLANT CELL 2001; 13:2809-2822. [PMID: 11752389 DOI: 10.1105/tpc.13.12.2809] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Aux/IAA genes are early auxin response genes that encode short-lived nuclear proteins with four conserved domains, referred to as I, II, III, and IV. Arabidopsis Aux/IAA proteins repressed transcription on auxin-responsive reporter genes in protoplast transfection assays. Mutations in domain II resulted in increased repression, whereas mutations in domains I and III partially relieved repression. Aux/IAA proteins fused to a heterologous DNA binding domain were targeted to promoters of constitutively expressed reporter genes and actively repressed transcription in an auxin-responsive and dose-dependent manner. In comparison with an unfused luciferase protein, luciferase fused to Aux/IAA proteins displayed less luciferase activity, which further decreased in the presence of auxin in transfected protoplasts. Domain II mutations increased and domain I mutations decreased luciferase activity with the fusion proteins. These results suggested that Aux/IAA proteins function as active repressors by dimerizing with auxin response factors bound to auxin response elements and that early auxin response genes are regulated by auxin-modulated stabilities of Aux/IAA proteins.
Collapse
Affiliation(s)
- S B Tiwari
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
190
|
Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ. AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. THE PLANT CELL 2001; 13:2809-22. [PMID: 11752389 PMCID: PMC139490 DOI: 10.1105/tpc.010289] [Citation(s) in RCA: 263] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2001] [Accepted: 09/13/2001] [Indexed: 05/18/2023]
Abstract
Aux/IAA genes are early auxin response genes that encode short-lived nuclear proteins with four conserved domains, referred to as I, II, III, and IV. Arabidopsis Aux/IAA proteins repressed transcription on auxin-responsive reporter genes in protoplast transfection assays. Mutations in domain II resulted in increased repression, whereas mutations in domains I and III partially relieved repression. Aux/IAA proteins fused to a heterologous DNA binding domain were targeted to promoters of constitutively expressed reporter genes and actively repressed transcription in an auxin-responsive and dose-dependent manner. In comparison with an unfused luciferase protein, luciferase fused to Aux/IAA proteins displayed less luciferase activity, which further decreased in the presence of auxin in transfected protoplasts. Domain II mutations increased and domain I mutations decreased luciferase activity with the fusion proteins. These results suggested that Aux/IAA proteins function as active repressors by dimerizing with auxin response factors bound to auxin response elements and that early auxin response genes are regulated by auxin-modulated stabilities of Aux/IAA proteins.
Collapse
Affiliation(s)
- S B Tiwari
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
191
|
Dill A, Jung HS, Sun TP. The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci U S A 2001; 98:14162-7. [PMID: 11717468 PMCID: PMC61185 DOI: 10.1073/pnas.251534098] [Citation(s) in RCA: 318] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RGA and GAI are homologous genes that encode putative transcriptional regulators that repress gibberellin (GA) signaling in Arabidopsis. Previously we showed that the green fluorescent protein (GFP)-RGA fusion protein is localized to the nucleus in transgenic Arabidopsis, and expression of this fusion protein rescues the rga null mutation. The GA signal seems to derepress the GA response pathway by degrading the repressor protein RGA. The GA-insensitive, semidominant, semidwarf gai-1 mutant encodes a mutant protein with a 17-amino acid deletion within the DELLA domain of GAI. It was hypothesized that this mutation turns the gai protein into a constitutive repressor of GA signaling. Because the sequences missing in gai-1 are identical between GAI and RGA, we tested whether an identical mutation (rga-Delta 17) in the RGA gene would confer a phenotype similar to gai-1. We demonstrated that expression of rga-Delta 17 or GFP-(rga-Delta 17) under the control of the RGA promoter caused a GA-unresponsive severe dwarf phenotype in transgenic Arabidopsis. Analysis of the mRNA levels of a GA biosynthetic gene, GA4, showed that the feedback control of GA biosynthesis in these transgenic plants was less responsive to GA than that in wild type. Immunoblot and confocal microscopy analyses indicated that rga-Delta17 and GFP-(rga-Delta 17) proteins were resistant to degradation after GA application. Our results illustrate that the DELLA domain in RGA plays a regulatory role in GA-induced degradation of RGA. Deletion of this region stabilizes the rga-Delta 17 mutant protein, and regardless of the endogenous GA status rga-Delta 17 becomes a constitutively active repressor of GA signaling.
Collapse
Affiliation(s)
- A Dill
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
192
|
Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M. Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature 2001; 414:271-6. [PMID: 11713520 DOI: 10.1038/35104500] [Citation(s) in RCA: 896] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The plant hormone auxin is central in many aspects of plant development. Previous studies have implicated the ubiquitin-ligase SCF(TIR1) and the AUX/IAA proteins in auxin response. Dominant mutations in several AUX/IAA genes confer pleiotropic auxin-related phenotypes, whereas recessive mutations affecting the function of SCF(TIR1) decrease auxin response. Here we show that SCF(TIR1) is required for AUX/IAA degradation. We demonstrate that SCF(TIR1) interacts with AXR2/IAA7 and AXR3/IAA17, and that domain II of these proteins is necessary and sufficient for this interaction. Further, auxin stimulates binding of SCF(TIR1) to the AUX/IAA proteins, and their degradation. Because domain II is conserved in nearly all AUX/IAA proteins in Arabidopsis, we propose that auxin promotes the degradation of this large family of transcriptional regulators, leading to diverse downstream effects.
Collapse
Affiliation(s)
- W M Gray
- The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
193
|
Abstract
Auxins are a class of phytohormones implicated in virtually every aspect of plant growth and development. Many early plant responses to auxin are apparently mediated by members of a family of Aux/IAA proteins that dimerize with and inhibit members of the auxin response factor (ARF) family of transcription factors. Aux/IAA proteins are unstable, and their degradation is triggered by a ubiquitin-protein ligase that is regulated by modification with a ubiquitin-related protein. Recent genetic and biochemical evidence indicates that auxin accelerates the degradation of the already short-lived Aux/IAA proteins to derepress transcription by ARF proteins. Several pieces of the auxin-signaling puzzle remain to be assembled, including the proteins that initially bind auxin, the proteins that convey this signal to the protein degradation machinery, and the targets of the transcriptional derepression.
Collapse
Affiliation(s)
- L E Rogg
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
194
|
Ramos JA, Zenser N, Leyser O, Callis J. Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent. THE PLANT CELL 2001; 13:2349-2360. [PMID: 11595806 DOI: 10.1105/tpc.13.10.2349] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Auxin rapidly induces auxin/indoleacetic acid (Aux/IAA) transcription. The proteins encoded are short-lived nucleus-localized transcriptional regulators that share four conserved domains. In a transient assay measuring protein accumulation, an Aux/IAA 13-amino acid domain II consensus sequence was sufficient to target firefly luciferase (LUC) for low protein accumulation equivalent to that observed previously for full-length PSIAA6. Single amino acid substitutions in these 13 amino acids, corresponding to known auxin response mutants, resulted in a sixfold to 20-fold increase in protein accumulation. Naturally occurring variant amino acids had no effect. Residues identified as essential by single alanine substitutions were not sufficient when all flanking amino acids were alanine, indicating the importance of flanking regions. Using direct protein degradation measurements in transgenic Arabidopsis seedlings, full-length IAA1, PSIAA6, and the N-terminal 73 PSIAA6 amino acids targeted LUC for rapid degradation with 8-min half-lives. The C-terminal 109 amino acids did not affect LUC half-life. Smaller regions containing domain II also targeted LUC for rapid degradation, but the rates were not equivalent to those of the full-length protein. A single domain II substitution in the context of full-length PSIAA6 increased half-life 30-fold. Proteasome inhibitors affected Aux/IAA::LUC fusion protein accumulation, demonstrating the involvement of the proteasome.
Collapse
Affiliation(s)
- J A Ramos
- Biochemistry and Molecular Biology Graduate Group, Section of Molecular and Cellular Biology, University of California, 1 Shields Avenue, Davis, California 95616, USA
| | | | | | | |
Collapse
|
195
|
Ramos JA, Zenser N, Leyser O, Callis J. Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent. THE PLANT CELL 2001; 13:2349-60. [PMID: 11595806 PMCID: PMC139163 DOI: 10.1105/tpc.010244] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2001] [Accepted: 08/03/2001] [Indexed: 05/19/2023]
Abstract
Auxin rapidly induces auxin/indoleacetic acid (Aux/IAA) transcription. The proteins encoded are short-lived nucleus-localized transcriptional regulators that share four conserved domains. In a transient assay measuring protein accumulation, an Aux/IAA 13-amino acid domain II consensus sequence was sufficient to target firefly luciferase (LUC) for low protein accumulation equivalent to that observed previously for full-length PSIAA6. Single amino acid substitutions in these 13 amino acids, corresponding to known auxin response mutants, resulted in a sixfold to 20-fold increase in protein accumulation. Naturally occurring variant amino acids had no effect. Residues identified as essential by single alanine substitutions were not sufficient when all flanking amino acids were alanine, indicating the importance of flanking regions. Using direct protein degradation measurements in transgenic Arabidopsis seedlings, full-length IAA1, PSIAA6, and the N-terminal 73 PSIAA6 amino acids targeted LUC for rapid degradation with 8-min half-lives. The C-terminal 109 amino acids did not affect LUC half-life. Smaller regions containing domain II also targeted LUC for rapid degradation, but the rates were not equivalent to those of the full-length protein. A single domain II substitution in the context of full-length PSIAA6 increased half-life 30-fold. Proteasome inhibitors affected Aux/IAA::LUC fusion protein accumulation, demonstrating the involvement of the proteasome.
Collapse
Affiliation(s)
- J A Ramos
- Biochemistry and Molecular Biology Graduate Group, Section of Molecular and Cellular Biology, University of California, 1 Shields Avenue, Davis, California 95616, USA
| | | | | | | |
Collapse
|
196
|
Leyser O. Auxin signalling: the beginning, the middle and the end. CURRENT OPINION IN PLANT BIOLOGY 2001; 4:382-386. [PMID: 11597494 DOI: 10.1016/s1369-5266(00)00189-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The plant hormone auxin is central to the regulation of growth and development. Recent work has demonstrated that auxin signalling depends on targeted protein degradation, and in the past year this model has been strengthened. The focus is now on identifying the targets of this degradative pathway, determining how auxin influences the degradative process and linking the turnover of specific proteins to the numerous downstream responses to auxin.
Collapse
Affiliation(s)
- O Leyser
- Department of Biology, University of York, Heslington, YO10 5YW, York, UK.
| |
Collapse
|
197
|
Abstract
Auxin induces various distinct developmental responses, partly by regulating gene expression. The Aux/IAA genes are a large gene family, many of which are induced by auxin. Work on Arabidopsis Aux/IAA genes has begun to reveal that they can regulate development and auxin-induced gene expression. Furthermore, auxin responses require Aux/IAA protein turnover. Finally, recent evidence suggests that Aux/IAA proteins can mediate light responses. Work in the near future should test whether Aux/IAA proteins are antennae that connect auxin and light signals to endogenous developmental responses.
Collapse
Affiliation(s)
- J W Reed
- Dept Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|