151
|
Li L, Aro EM, Millar AH. Mechanisms of Photodamage and Protein Turnover in Photoinhibition. TRENDS IN PLANT SCIENCE 2018; 23:667-676. [PMID: 29887276 DOI: 10.1016/j.tplants.2018.05.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 05/05/2023]
Abstract
Rapid protein degradation and replacement is an important response to photodamage and a means of photoprotection by recovering proteostasis. Protein turnover and translation efficiency studies have discovered fast turnover subunits in cytochrome b6f and the NAD(P)H dehydrogenase (NDH) complex, in addition to PSII subunit D1. Mutations of these complexes have been linked to enhanced photodamage at least partially via cyclic electron flow. Photodamage and photoprotection involving cytochrome b6f, NDH complex, cyclic electron flow, PSI, and nonphotochemical quenching proteins have been reported. Here, we propose that the rapid turnover of specific proteins in cytochrome b6f and the NDH complex need to be characterised and compared with the inhibition of PSII by excess excitation energy and PSI by excess electron flux to expand our understanding of photoinhibition mechanisms.
Collapse
Affiliation(s)
- Lei Li
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, 6009, Perth, WA, Australia
| | - Eva-Mari Aro
- Finnish Centre of Excellence in Molecular Biology of Primary Producers, Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, 6009, Perth, WA, Australia.
| |
Collapse
|
152
|
Plant mitochondrial protein import: the ins and outs. Biochem J 2018; 475:2191-2208. [PMID: 30018142 DOI: 10.1042/bcj20170521] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/29/2023]
Abstract
The majority of the mitochondrial proteome, required to fulfil its diverse range of functions, is cytosolically synthesised and translocated via specialised machinery. The dedicated translocases, receptors, and associated proteins have been characterised in great detail in yeast over the last several decades, yet many of the mechanisms that regulate these processes in higher eukaryotes are still unknown. In this review, we highlight the current knowledge of mitochondrial protein import in plants. Despite the fact that the mechanisms of mitochondrial protein import have remained conserved across species, many unique features have arisen in plants to encompass the developmental, tissue-specific, and stress-responsive regulation in planta. An understanding of unique features and mechanisms in plants provides us with a unique insight into the regulation of mitochondrial biogenesis in higher eukaryotes.
Collapse
|
153
|
Scheunemann M, Brady SM, Nikoloski Z. Integration of large-scale data for extraction of integrated Arabidopsis root cell-type specific models. Sci Rep 2018; 8:7919. [PMID: 29784955 PMCID: PMC5962614 DOI: 10.1038/s41598-018-26232-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/08/2018] [Indexed: 11/13/2022] Open
Abstract
Plant organs consist of multiple cell types that do not operate in isolation, but communicate with each other to maintain proper functions. Here, we extract models specific to three developmental stages of eight root cell types or tissue layers in Arabidopsis thaliana based on a state-of-the-art constraint-based modeling approach with all publicly available transcriptomics and metabolomics data from this system to date. We integrate these models into a multi-cell root model which we investigate with respect to network structure, distribution of fluxes, and concordance to transcriptomics and proteomics data. From a methodological point, we show that the coupling of tissue-specific models in a multi-tissue model yields a higher specificity of the interconnected models with respect to network structure and flux distributions. We use the extracted models to predict and investigate the flux of the growth hormone indole-3-actetate and its antagonist, trans-Zeatin, through the root. While some of predictions are in line with experimental evidence, constraints other than those coming from the metabolic level may be necessary to replicate the flow of indole-3-actetate from other simulation studies. Therefore, our work provides the means for data-driven multi-tissue metabolic model extraction of other Arabidopsis organs in the constraint-based modeling framework.
Collapse
Affiliation(s)
- Michael Scheunemann
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, CA, 95616, USA
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany. .,Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany.
| |
Collapse
|
154
|
Dissmeyer N, Rivas S, Graciet E. Life and death of proteins after protease cleavage: protein degradation by the N-end rule pathway. THE NEW PHYTOLOGIST 2018; 218:929-935. [PMID: 28581033 DOI: 10.1111/nph.14619] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED Contents Summary 929 I. INTRODUCTION conservation and diversity of N-end rule pathways 929 II. Defensive functions of the N-end rule pathway in plants 930 III. Proteases and degradation by the N-end rule pathway 930 IV. New proteomics approaches for the identification of N-end rule substrates 932 V. Concluding remarks 932 Acknowledgements 934 References 934 SUMMARY: The N-end rule relates the stability of a protein to the identity of its N-terminal residue and some of its modifications. Since its discovery in the 1980s, the repertoire of N-terminal degradation signals has expanded, leading to a diversity of N-end rule pathways. Although some of these newly discovered N-end rule pathways remain largely unexplored in plants, recent discoveries have highlighted roles of N-end rule-mediated protein degradation in plant defense against pathogens and in cell proliferation during organ growth. Despite this progress, a bottleneck remains the proteome-wide identification of N-end rule substrates due to the prerequisite for endoproteolytic cleavage and technical limitations. Here, we discuss the recent diversification of N-end rule pathways and their newly discovered functions in plant defenses, stressing the role of proteases. We expect that novel proteomics techniques (N-terminomics) will be essential for substrate identification. We review these methods, their limitations and future developments.
Collapse
Affiliation(s)
- Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, Halle (Saale), D-06120, Germany
- ScienceCampus Halle - Plant-based Bioeconomy, Betty-Heimann-Strasse 3, Halle (Saale), D-06120, Germany
| | - Susana Rivas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31 326, France
| | - Emmanuelle Graciet
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
155
|
Broda M, Millar AH, Van Aken O. Mitophagy: A Mechanism for Plant Growth and Survival. TRENDS IN PLANT SCIENCE 2018; 23:434-450. [PMID: 29576328 DOI: 10.1016/j.tplants.2018.02.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 05/17/2023]
Abstract
Mitophagy is a conserved cellular process that is important for autophagic removal of damaged mitochondria to maintain a healthy mitochondrial population. Mitophagy also appears to occur in plants and has roles in development, stress response, senescence, and programmed cell death. However, many of the genes that control mitophagy in yeast and animal cells are absent from plants, and no plant proteins marking defunct mitochondria for autophagic degradation are yet known. New insights implicate general autophagy-related proteins in mitophagy, affecting the senescence of plant tissues. Mitophagy control and its importance for energy metabolism, survival, signaling, and cell death in plants are discussed. Furthermore, we suggest mitochondrial membrane proteins containing ATG8-interacting motifs, which might serve as mitophagy receptor proteins in plant mitochondria.
Collapse
Affiliation(s)
- Martyna Broda
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia, Australia
| | - A Harvey Millar
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia, Australia
| | - Olivier Van Aken
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden.
| |
Collapse
|
156
|
Demir F, Niedermaier S, Villamor JG, Huesgen PF. Quantitative proteomics in plant protease substrate identification. THE NEW PHYTOLOGIST 2018; 218:936-943. [PMID: 28493421 DOI: 10.1111/nph.14587] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/07/2017] [Indexed: 05/17/2023]
Abstract
Contents Summary 936 I. Introduction 936 II. The quest for plant protease substrates - proteomics to the rescue? 937 III. Quantitative proteome comparison reveals candidate substrates 938 IV. Dynamic metabolic stable isotope labeling to measure protein turnover in vivo 938 V. Terminomics - large-scale identification of protease cleavage sites 939 VI. Substrate or not substrate, that is the question 940 VII. Concluding remarks 941 Acknowledgements 941 References 941 SUMMARY: Proteolysis is a central regulatory mechanism of protein homeostasis and protein function that affects all aspects of plant life. Higher plants encode for hundreds of proteases, but their physiological substrates and hence their molecular functions remain mostly unknown. Current quantitative mass spectrometry-based proteomics enables unbiased large-scale interrogation of the proteome and its modifications. Here we provide an overview of proteomics techniques that allow profiling of changes in protein abundance, measurement of proteome turnover rates, identification of protease cleavage sites in vivo and in vitro and determination of protease sequence specificity. We discuss how these techniques can help to reveal protease substrates and determine plant protease function, illustrated by recent studies on selected plant proteases.
Collapse
Affiliation(s)
- Fatih Demir
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| | - Stefan Niedermaier
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| | - Joji Grace Villamor
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| | - Pitter Florian Huesgen
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| |
Collapse
|
157
|
Zhang H, Gannon L, Hassall KL, Deery MJ, Gibbs DJ, Holdsworth MJ, van der Hoorn RAL, Lilley KS, Theodoulou FL. N-terminomics reveals control of Arabidopsis seed storage proteins and proteases by the Arg/N-end rule pathway. THE NEW PHYTOLOGIST 2018; 218:1106-1126. [PMID: 29168982 PMCID: PMC5947142 DOI: 10.1111/nph.14909] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/23/2017] [Indexed: 05/04/2023]
Abstract
The N-end rule pathway of targeted protein degradation is an important regulator of diverse processes in plants but detailed knowledge regarding its influence on the proteome is lacking. To investigate the impact of the Arg/N-end rule pathway on the proteome of etiolated seedlings, we used terminal amine isotopic labelling of substrates with tandem mass tags (TMT-TAILS) for relative quantification of N-terminal peptides in prt6, an Arabidopsis thaliana N-end rule mutant lacking the E3 ligase PROTEOLYSIS6 (PRT6). TMT-TAILS identified over 4000 unique N-terminal peptides representing c. 2000 protein groups. Forty-five protein groups exhibited significantly increased N-terminal peptide abundance in prt6 seedlings, including cruciferins, major seed storage proteins, which were regulated by Group VII Ethylene Response Factor (ERFVII) transcription factors, known substrates of PRT6. Mobilisation of endosperm α-cruciferin was delayed in prt6 seedlings. N-termini of several proteases were downregulated in prt6, including RD21A. RD21A transcript, protein and activity levels were downregulated in a largely ERFVII-dependent manner. By contrast, cathepsin B3 protein and activity were upregulated by ERFVIIs independent of transcript. We propose that the PRT6 branch of the pathway regulates protease activities in a complex manner and optimises storage reserve mobilisation in the transition from seed to seedling via control of ERFVII action.
Collapse
Affiliation(s)
- Hongtao Zhang
- Plant Sciences DepartmentRothamsted ResearchHarpendenAL5 2JQUK
- Cambridge Centre for ProteomicsDepartment of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridge, CB2 1QRUK
| | - Lucy Gannon
- Plant Sciences DepartmentRothamsted ResearchHarpendenAL5 2JQUK
| | - Kirsty L. Hassall
- Computational and Analytical Sciences DepartmentRothamsted ResearchHarpendenAL5 2JQUK
| | - Michael J. Deery
- Cambridge Centre for ProteomicsDepartment of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridge, CB2 1QRUK
| | - Daniel J. Gibbs
- School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
| | | | | | - Kathryn S. Lilley
- Cambridge Centre for ProteomicsDepartment of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridge, CB2 1QRUK
| | | |
Collapse
|
158
|
Zoschke R, Bock R. Chloroplast Translation: Structural and Functional Organization, Operational Control, and Regulation. THE PLANT CELL 2018; 30:745-770. [PMID: 29610211 PMCID: PMC5969280 DOI: 10.1105/tpc.18.00016] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/26/2018] [Accepted: 04/01/2018] [Indexed: 05/20/2023]
Abstract
Chloroplast translation is essential for cellular viability and plant development. Its positioning at the intersection of organellar RNA and protein metabolism makes it a unique point for the regulation of gene expression in response to internal and external cues. Recently obtained high-resolution structures of plastid ribosomes, the development of approaches allowing genome-wide analyses of chloroplast translation (i.e., ribosome profiling), and the discovery of RNA binding proteins involved in the control of translational activity have greatly increased our understanding of the chloroplast translation process and its regulation. In this review, we provide an overview of the current knowledge of the chloroplast translation machinery, its structure, organization, and function. In addition, we summarize the techniques that are currently available to study chloroplast translation and describe how translational activity is controlled and which cis-elements and trans-factors are involved. Finally, we discuss how translational control contributes to the regulation of chloroplast gene expression in response to developmental, environmental, and physiological cues. We also illustrate the commonalities and the differences between the chloroplast and bacterial translation machineries and the mechanisms of protein biosynthesis in these two prokaryotic systems.
Collapse
Affiliation(s)
- Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| |
Collapse
|
159
|
Knopf RR, Adam Z. Lumenal exposed regions of the D1 protein of PSII are long enough to be degraded by the chloroplast Deg1 protease. Sci Rep 2018; 8:5230. [PMID: 29588501 PMCID: PMC5869739 DOI: 10.1038/s41598-018-23578-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/15/2018] [Indexed: 11/09/2022] Open
Abstract
Degradation of the D1 protein of photosystem II (PSII) reaction center is a pre-requisite for the repair cycle from photoinhibition. Two types of thylakoid proteases, FtsH and Deg, have been demonstrated to participate in this process. However, the location of the proteolytic sites of the lumenal Deg1 protease within its internal sphere raised the question whether the lumenal-exposed regions of D1 are indeed long enough to reach these sites. Implanting these regions into the stable GFP rendered it sensitive to the presence of Deg1 in vitro, demonstrating that the flexible regions of D1 that protrude into the lumen can penetrate through the three side-openings of Deg1 and reach its internal proteolytic sites. This mode of action, facilitating cooperation between proteases on both sides of the thylakoid membranes, should be applicable to the degradation of other integral thylakoid membrane proteins as well.
Collapse
Affiliation(s)
- Ronit Rimon Knopf
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.,Evogene Ltd., Rehovot, 76120, Israel
| | - Zach Adam
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| |
Collapse
|
160
|
Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis. Proc Natl Acad Sci U S A 2018; 115:E3588-E3596. [PMID: 29581280 DOI: 10.1073/pnas.1719645115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Assembly of light-harvesting complexes requires synchronization of chlorophyll (Chl) biosynthesis with biogenesis of light-harvesting Chl a/b-binding proteins (LHCPs). The chloroplast signal recognition particle (cpSRP) pathway is responsible for transport of nucleus-encoded LHCPs in the stroma of the plastid and their integration into the thylakoid membranes. Correct folding and assembly of LHCPs require the incorporation of Chls, whose biosynthesis must therefore be precisely coordinated with membrane insertion of LHCPs. How the spatiotemporal coordination between the cpSRP machinery and Chl biosynthesis is achieved is poorly understood. In this work, we demonstrate a direct interaction between cpSRP43, the chaperone that mediates LHCP targeting and insertion, and glutamyl-tRNA reductase (GluTR), a rate-limiting enzyme in tetrapyrrole biosynthesis. Concurrent deficiency for cpSRP43 and the GluTR-binding protein (GBP) additively reduces GluTR levels, indicating that cpSRP43 and GBP act nonredundantly to stabilize GluTR. The substrate-binding domain of cpSRP43 binds to the N-terminal region of GluTR, which harbors aggregation-prone motifs, and the chaperone activity of cpSRP43 efficiently prevents aggregation of these regions. Our work thus reveals a function of cpSRP43 in Chl biosynthesis and suggests a striking mechanism for posttranslational coordination of LHCP insertion with Chl biosynthesis.
Collapse
|
161
|
Zhang L, Vertes A. Einzelzell‐Massenspektrometrie zur Untersuchung zellulärer Heterogenität. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201709719] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Linwen Zhang
- Department of Chemistry The George Washington University Washington DC 20052 USA
| | - Akos Vertes
- Department of Chemistry The George Washington University Washington DC 20052 USA
| |
Collapse
|
162
|
Zhang L, Vertes A. Single‐Cell Mass Spectrometry Approaches to Explore Cellular Heterogeneity. Angew Chem Int Ed Engl 2018; 57:4466-4477. [DOI: 10.1002/anie.201709719] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/27/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Linwen Zhang
- Department of Chemistry The George Washington University Washington DC 20052 USA
| | - Akos Vertes
- Department of Chemistry The George Washington University Washington DC 20052 USA
| |
Collapse
|
163
|
Wu GZ, Chalvin C, Hoelscher M, Meyer EH, Wu XN, Bock R. Control of Retrograde Signaling by Rapid Turnover of GENOMES UNCOUPLED1. PLANT PHYSIOLOGY 2018; 176:2472-2495. [PMID: 29367233 PMCID: PMC5841721 DOI: 10.1104/pp.18.00009] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 05/18/2023]
Abstract
The exchange of signals between cellular compartments coordinates development and differentiation, modulates metabolic pathways, and triggers responses to environmental conditions. The proposed central regulator of plastid-to-nucleus retrograde signaling, GENOMES UNCOUPLED1 (GUN1), is present at very low levels, which has hampered the discovery of its precise molecular function. Here, we show that the Arabidopsis (Arabidopsis thaliana) GUN1 protein accumulates to detectable levels only at very early stages of leaf development, where it functions in the regulation of chloroplast biogenesis. GUN1 mRNA is present at high levels in all tissues, but GUN1 protein undergoes rapid degradation (with an estimated half-life of ∼4 h) in all tissues where chloroplast biogenesis has been completed. The rapid turnover of GUN1 is controlled mainly by the chaperone ClpC1, suggesting degradation of GUN1 by the Clp protease. Degradation of GUN1 slows under stress conditions that alter retrograde signaling, thus ensuring that the plant has sufficient GUN1 protein. We also find that the pentatricopeptide repeat motifs of GUN1 are important determinants of GUN1 stability. Moreover, overexpression of GUN1 causes an early flowering phenotype, suggesting a function of GUN1 in developmental phase transitions beyond chloroplast biogenesis. Taken together, our results provide new insight into the regulation of GUN1 by proteolytic degradation, uncover its function in early chloroplast biogenesis, and suggest a role in developmental phase transitions.
Collapse
Affiliation(s)
- Guo-Zhang Wu
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Camille Chalvin
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Matthijs Hoelscher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Etienne H Meyer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Xu Na Wu
- Department of Plant Systems Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
164
|
Seaton DD, Graf A, Baerenfaller K, Stitt M, Millar AJ, Gruissem W. Photoperiodic control of the Arabidopsis proteome reveals a translational coincidence mechanism. Mol Syst Biol 2018; 14:e7962. [PMID: 29496885 PMCID: PMC5830654 DOI: 10.15252/msb.20177962] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 12/28/2022] Open
Abstract
Plants respond to seasonal cues such as the photoperiod, to adapt to current conditions and to prepare for environmental changes in the season to come. To assess photoperiodic responses at the protein level, we quantified the proteome of the model plant Arabidopsis thaliana by mass spectrometry across four photoperiods. This revealed coordinated changes of abundance in proteins of photosynthesis, primary and secondary metabolism, including pigment biosynthesis, consistent with higher metabolic activity in long photoperiods. Higher translation rates in the day than the night likely contribute to these changes, via an interaction with rhythmic changes in RNA abundance. Photoperiodic control of protein levels might be greatest only if high translation rates coincide with high transcript levels in some photoperiods. We term this proposed mechanism "translational coincidence", mathematically model its components, and demonstrate its effect on the Arabidopsis proteome. Datasets from a green alga and a cyanobacterium suggest that translational coincidence contributes to seasonal control of the proteome in many phototrophic organisms. This may explain why many transcripts but not their cognate proteins exhibit diurnal rhythms.
Collapse
Affiliation(s)
- Daniel D Seaton
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Alexander Graf
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Zurich, Switzerland
| | - Katja Baerenfaller
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Zurich, Switzerland
| | - Mark Stitt
- System Regulation Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Wilhelm Gruissem
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
165
|
Colombo CV, Rosano GL, Mogk A, Ceccarelli EA. A Gatekeeper Residue of ClpS1 from Arabidopsis thaliana Chloroplasts Determines its Affinity Towards Substrates of the Bacterial N-End Rule. PLANT & CELL PHYSIOLOGY 2018; 59:624-636. [PMID: 29401302 DOI: 10.1093/pcp/pcy016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 01/23/2018] [Indexed: 06/07/2023]
Abstract
Proteins that are to be eliminated must be proficiently recognized by proteolytic systems so that inadvertent elimination of useful proteins is avoided. One mechanism to ensure proper recognition is the presence of N-terminal degradation signals (N-degrons) that are targeted by adaptor proteins (N-recognins). The members of the caseinolytic protease S (ClpS) family of N-recognins identify targets bearing an N-terminal phenylalanine, tyrosine, tryptophan or leucine residue, and then present them to a protease system. This process is known as the 'bacterial N-end rule'. The presence of a ClpS protein in Arabidopsis thaliana chloroplasts (AtClpS1) prompted the hypothesis that the bacterial N-end rule exists in this organelle. However, the specificity of AtClpS1 is unknown. Here we show that AtClpS1 has the ability to recognize bacterial N-degrons, albeit with low affinity. Recognition was assessed by the effect of purified AtClpS1 on the degradation of fluorescent variants bearing bacterial N-degrons. In many bacterial ClpS proteins, a methionine residue acts as a 'gatekeeper' residue, fine-tuning the specificity of the N-recognin. In plants, the amino acid at that position is an arginine. Replacement of this arginine for methionine in recombinant AtClpS1 allows for high-affinity binding to classical N-degrons of the bacterial N-end rule, suggesting that the arginine residue in the substrate-binding site may also act as a gatekeeper for plant substrates.
Collapse
Affiliation(s)
- Clara V Colombo
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Germán L Rosano
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Axel Mogk
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, INF 282, D-69120 Heidelberg, Germany
| | - Eduardo A Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| |
Collapse
|
166
|
Verbančič J, Lunn JE, Stitt M, Persson S. Carbon Supply and the Regulation of Cell Wall Synthesis. MOLECULAR PLANT 2018; 11:75-94. [PMID: 29054565 DOI: 10.1016/j.molp.2017.10.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 05/23/2023]
Abstract
All plant cells are surrounded by a cell wall that determines the directionality of cell growth and protects the cell against its environment. Plant cell walls are comprised primarily of polysaccharides and represent the largest sink for photosynthetically fixed carbon, both for individual plants and in the terrestrial biosphere as a whole. Cell wall synthesis is a highly sophisticated process, involving multiple enzymes and metabolic intermediates, intracellular trafficking of proteins and cell wall precursors, assembly of cell wall polymers into the extracellular matrix, remodeling of polymers and their interactions, and recycling of cell wall sugars. In this review we discuss how newly fixed carbon, in the form of UDP-glucose and other nucleotide sugars, contributes to the synthesis of cell wall polysaccharides, and how cell wall synthesis is influenced by the carbon status of the plant, with a focus on the model species Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Jana Verbančič
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
167
|
Kato Y, Sakamoto W. FtsH Protease in the Thylakoid Membrane: Physiological Functions and the Regulation of Protease Activity. FRONTIERS IN PLANT SCIENCE 2018; 9:855. [PMID: 29973948 PMCID: PMC6019477 DOI: 10.3389/fpls.2018.00855] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/01/2018] [Indexed: 05/18/2023]
Abstract
Protein homeostasis in the thylakoid membranes is dependent on protein quality control mechanisms, which are necessary to remove photodamaged and misfolded proteins. An ATP-dependent zinc metalloprotease, FtsH, is the major thylakoid membrane protease. FtsH proteases in the thylakoid membranes of Arabidopsis thaliana form a hetero-hexameric complex consisting of four FtsH subunits, which are divided into two types: type A (FtsH1 and FtsH5) and type B (FtsH2 and FtsH8). An increasing number of studies have identified the critical roles of FtsH in the biogenesis of thylakoid membranes and quality control in the photosystem II repair cycle. Furthermore, the involvement of FtsH proteolysis in a singlet oxygen- and EXECUTER1-dependent retrograde signaling mechanism has been suggested recently. FtsH is also involved in the degradation and assembly of several protein complexes in the photosynthetic electron-transport pathways. In this minireview, we provide an update on the functions of FtsH in thylakoid biogenesis and describe our current understanding of the D1 degradation processes in the photosystem II repair cycle. We also discuss the regulation mechanisms of FtsH protease activity, which suggest the flexible oligomerization capability of FtsH in the chloroplasts of seed plants.
Collapse
|
168
|
Abstract
In most organisms, gene expression over the course of the day is under the control of the circadian clock. The canonical clock operates as a gene expression circuit that is controlled at the level of transcription, and transcriptional control is also a major clock output. However, rhythmic transcription cannot explain all the observed rhythms in protein accumulation. Although it is clear that rhythmic gene expression also involves RNA processing and protein turnover, until two years ago little was known in any eukaryote about diel dynamics of mRNA translation into protein. A recent series of studies in animals and plants demonstrated that diel cycles of translation efficiency are widespread across the tree of life and its transcriptomes. There are surprising parallels between the patterns of diel translation in mammals and plants. For example, ribosomal proteins and mitochondrial proteins are under translational control in mouse liver, human tissue culture, and Arabidopsis seedlings. In contrast, the way in which the circadian clock, light-dark changes, and other environmental factors such as nutritional signals interact to drive the cycles of translation may differ between organisms. Further investigation is needed to identify the signaling pathways, biochemical mechanisms, RNA sequence features, and the physiological implications of diel translation.
Collapse
Affiliation(s)
- Sarah Catherine Mills
- a Department of Biochemistry and Cellular & Molecular Biology , The University of Tennessee , Knoxville , TN , USA
| | - Ramya Enganti
- a Department of Biochemistry and Cellular & Molecular Biology , The University of Tennessee , Knoxville , TN , USA
| | - Albrecht G von Arnim
- a Department of Biochemistry and Cellular & Molecular Biology , The University of Tennessee , Knoxville , TN , USA.,b UT-ORNL Graduate School of Genome Science and Technology , The University of Tennessee , Knoxville , TN , USA
| |
Collapse
|
169
|
O'Leary BM, Lee CP, Atkin OK, Cheng R, Brown TB, Millar AH. Variation in Leaf Respiration Rates at Night Correlates with Carbohydrate and Amino Acid Supply. PLANT PHYSIOLOGY 2017; 174:2261-2273. [PMID: 28615345 PMCID: PMC5543967 DOI: 10.1104/pp.17.00610] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/09/2017] [Indexed: 05/17/2023]
Abstract
Plant respiration can theoretically be fueled by and dependent upon an array of central metabolism components; however, which ones are responsible for the quantitative variation found in respiratory rates is unknown. Here, large-scale screens revealed 2-fold variation in nighttime leaf respiration rate (RN) among mature leaves from an Arabidopsis (Arabidopsis thaliana) natural accession collection grown under common favorable conditions. RN variation was mostly maintained in the absence of genetic variation, which emphasized the low heritability of RN and its plasticity toward relatively small environmental differences within the sampling regime. To pursue metabolic explanations for leaf RN variation, parallel metabolite level profiling and assays of total protein and starch were performed. Within an accession, RN correlated strongly with stored carbon substrates, including starch and dicarboxylic acids, as well as sucrose, major amino acids, shikimate, and salicylic acid. Among different accessions, metabolite-RN correlations were maintained with protein, sucrose, and major amino acids but not stored carbon substrates. A complementary screen of the effect of exogenous metabolites and effectors on leaf RN revealed that (1) RN is stimulated by the uncoupler FCCP and high levels of substrates, demonstrating that both adenylate turnover and substrate supply can limit leaf RN, and (2) inorganic nitrogen did not stimulate RN, consistent with limited nighttime nitrogen assimilation. Simultaneous measurements of RN and protein synthesis revealed that these processes were largely uncorrelated in mature leaves. These results indicate that differences in preceding daytime metabolic activities are the major source of variation in mature leaf RN under favorable controlled conditions.
Collapse
Affiliation(s)
- Brendan M O'Leary
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia 6009, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Chun Pong Lee
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Owen K Atkin
- Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Riyan Cheng
- Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Tim B Brown
- Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
170
|
Dell'Aglio E, Boycheva S, Fitzpatrick TB. The Pseudoenzyme PDX1.2 Sustains Vitamin B 6 Biosynthesis as a Function of Heat Stress. PLANT PHYSIOLOGY 2017; 174:2098-2112. [PMID: 28550206 PMCID: PMC5543961 DOI: 10.1104/pp.17.00531] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/23/2017] [Indexed: 05/06/2023]
Abstract
Plants sense temperature changes and respond by altering growth and metabolic activity to acclimate to the altered environmental conditions. The B vitamins give rise to vital coenzymes that are indispensable for growth and development but their inherent reactive nature renders them prone to destruction especially under stress conditions. Therefore, plant survival strategies would be expected to include mechanisms to sustain B vitamin supply under demanding circumstances. Here, using the example of vitamin B6, we investigate the regulation of biosynthesis across eudicot and monocot species under heat stress. Most eudicots carry a pseudoenzyme PDX1.2 that is a noncatalytic homolog of the PDX1 subunit of the vitamin B6 biosynthesis protein machinery, PYRIDOXINE BIOSYNTHESIS PROTEIN1. Using Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) as models, we show that PDX12 is transcriptionally regulated by the HSFA1 transcription factor family. Monocots only carry catalytic PDX1 homologs that do not respond to heat stress as demonstrated for rice (Oryza sativa) and maize (Zea mays), suggesting fundamental differences in the regulation of vitamin B6 biosynthesis across the two lineages. Investigation of the molecular mechanism of PDX12 transcription reveals two alternative transcriptional start sites, one of which is exclusive to heat stress. Further data suggest that PDX1.2 leads to stabilization of the catalytic PDX1s under heat stress conditions, which would serve to maintain vitamin B6 homeostasis in times of need in eudicots that carry this gene. Our analyses indicate an important abiotic stress tolerance strategy in several eudicots, which has not been evolutionarily adapted (or is not required) by monocots such as grasses.
Collapse
Affiliation(s)
- Elisa Dell'Aglio
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Svetlana Boycheva
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
171
|
Fernandez O, Ishihara H, George GM, Mengin V, Flis A, Sumner D, Arrivault S, Feil R, Lunn JE, Zeeman SC, Smith AM, Stitt M. Leaf Starch Turnover Occurs in Long Days and in Falling Light at the End of the Day. PLANT PHYSIOLOGY 2017; 174:2199-2212. [PMID: 28663333 PMCID: PMC5543966 DOI: 10.1104/pp.17.00601] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/24/2017] [Indexed: 05/17/2023]
Abstract
We investigated whether starch degradation occurs at the same time as starch synthesis in Arabidopsis (Arabidopsis thaliana) leaves in the light. Starch accumulated in a linear fashion for about 12 h after dawn, then accumulation slowed and content plateaued. Following decreases in light intensity, the rate of accumulation of starch declined in proportion to the decline in photosynthesis if the decrease occurred <10 h after dawn, but accumulation ceased or loss of starch occurred if the same decrease in light intensity was imposed more than 10 h after dawn. These changes in starch accumulation patterns after prolonged periods in the light occurred at both high and low starch contents and were not related to time-dependent changes in either the rate of photosynthesis or the partitioning of assimilate between starch and Suc, as assessed from metabolite measurements and 14CO2 pulse experiments. Instead, measurements of incorporation of 13C from 13CO2 into starch and of levels of the starch degradation product maltose showed that substantial starch degradation occurred simultaneously with synthesis at time points >14 h after dawn and in response to decreases in light intensity that occurred >10 h after dawn. Starch measurements in circadian clock mutants suggested that the clock influences the timing of onset of degradation. We conclude that the propensity for leaf starch to be degraded increases with time after dawn. The importance of this phenomenon for efficient use of carbon for growth in long days and for prevention of starvation during twilight is discussed.
Collapse
Affiliation(s)
- Olivier Fernandez
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Hirofumi Ishihara
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Gavin M George
- ETH Zürich, Plant Biochemistry, CH-8092 Zurich, Switzerland
| | - Virginie Mengin
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Anna Flis
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Dean Sumner
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Stéphanie Arrivault
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Regina Feil
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Alison M Smith
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
172
|
Ishihara H, Moraes TA, Pyl ET, Schulze WX, Obata T, Scheffel A, Fernie AR, Sulpice R, Stitt M. Growth rate correlates negatively with protein turnover in Arabidopsis accessions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:416-429. [PMID: 28419597 DOI: 10.1111/tpj.13576] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/17/2017] [Accepted: 04/10/2017] [Indexed: 05/22/2023]
Abstract
Previous studies with Arabidopsis accessions revealed that biomass correlates negatively to dusk starch content and total protein, and positively to the maximum activities of enzymes in photosynthesis. We hypothesized that large accessions have lower ribosome abundance and lower rates of protein synthesis, and that this is compensated by lower rates of protein degradation. This would increase growth efficiency and allow more investment in photosynthetic machinery. We analysed ribosome abundance and polysome loading in 19 accessions, modelled the rates of protein synthesis and compared them with the observed rate of growth. Large accessions contained less ribosomes than small accessions, due mainly to cytosolic ribosome abundance falling at night in large accessions. The modelled rates of protein synthesis resembled those required for growth in large accessions, but were up to 30% in excess in small accessions. We then employed 13 CO2 pulse-chase labelling to measure the rates of protein synthesis and degradation in 13 accessions. Small accessions had a slightly higher rate of protein synthesis and much higher rates of protein degradation than large accessions. Protein turnover was negligible in large accessions but equivalent to up to 30% of synthesised protein day-1 in small accessions. We discuss to what extent the decrease in growth in small accessions can be quantitatively explained by known costs of protein turnover and what factors may lead to the altered diurnal dynamics and increase of ribosome abundance in small accessions, and propose that there is a trade-off between protein turnover and maximisation of growth rate.
Collapse
Affiliation(s)
- Hirofumi Ishihara
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Thiago Alexandre Moraes
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Eva-Theresa Pyl
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Waltraud X Schulze
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Department of Plant Systems Biology, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany
| | - Toshihiro Obata
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - André Scheffel
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Ronan Sulpice
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Plant Systems Biology Laboratory, Plant and AgriBiosciences Research Centre, Botany and Plant Science, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - Mark Stitt
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
173
|
Georgii E, Jin M, Zhao J, Kanawati B, Schmitt-Kopplin P, Albert A, Winkler JB, Schäffner AR. Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis. BMC PLANT BIOLOGY 2017; 17:120. [PMID: 28693422 PMCID: PMC5504741 DOI: 10.1186/s12870-017-1062-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 06/25/2017] [Indexed: 05/17/2023]
Abstract
BACKGROUND Elevated temperature and reduced water availability are frequently linked abiotic stresses that may provoke distinct as well as interacting molecular responses. Based on non-targeted metabolomic and transcriptomic measurements from Arabidopsis rosettes, this study aims at a systematic elucidation of relevant components in different drought and heat scenarios as well as relationships between molecular players of stress response. RESULTS In combined drought-heat stress, the majority of single stress responses are maintained. However, interaction effects between drought and heat can be discovered as well; these relate to protein folding, flavonoid biosynthesis and growth inhibition, which are enhanced, reduced or specifically induced in combined stress, respectively. Heat stress experiments with and without supplementation of air humidity for maintenance of vapor pressure deficit suggest that decreased relative air humidity due to elevated temperature is an important component of heat stress, specifically being responsible for hormone-related responses to water deprivation. Remarkably, this "dry air effect" is the primary trigger of the metabolomic response to heat. In contrast, the transcriptomic response has a substantial temperature component exceeding the dry air component and including up-regulation of many transcription factors and protein folding-related genes. Data level integration independent of prior knowledge on pathways and condition labels reveals shared drought and heat responses between transcriptome and metabolome, biomarker candidates and co-regulation between genes and metabolic compounds, suggesting novel players in abiotic stress response pathways. CONCLUSIONS Drought and heat stress interact both at transcript and at metabolite response level. A comprehensive, non-targeted view of this interaction as well as non-interacting processes is important to be taken into account when improving tolerance to abiotic stresses in breeding programs. Transcriptome and metabolome may respond with different extent to individual stress components. Their contrasting behavior in response to temperature stress highlights that the protein folding machinery effectively shields the metabolism from stress. Disentangling the complex relationships between transcriptome and metabolome in response to stress is an enormous challenge. As demonstrated by case studies with supporting evidence from additional data, the large dataset provided in this study may assist in determining linked genetic and metabolic features as candidates for future mechanistic analyses.
Collapse
Affiliation(s)
- Elisabeth Georgii
- Helmholtz Zentrum München, Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Ming Jin
- Helmholtz Zentrum München, Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Jin Zhao
- Helmholtz Zentrum München, Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Basem Kanawati
- Helmholtz Zentrum München, Department of Environmental Sciences, Research Unit Analytical Biogeochemistry, Ingolstädter Landstr, 1, 85764, Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum München, Department of Environmental Sciences, Research Unit Analytical Biogeochemistry, Ingolstädter Landstr, 1, 85764, Neuherberg, Germany
| | - Andreas Albert
- Helmholtz Zentrum München, Department of Environmental Sciences, Research Unit Environmental Simulation, Ingolstädter Landstr, 1, 85764, Neuherberg, Germany
| | - J Barbro Winkler
- Helmholtz Zentrum München, Department of Environmental Sciences, Research Unit Environmental Simulation, Ingolstädter Landstr, 1, 85764, Neuherberg, Germany
| | - Anton R Schäffner
- Helmholtz Zentrum München, Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
174
|
Roach M, Arrivault S, Mahboubi A, Krohn N, Sulpice R, Stitt M, Niittylä T. Spatially resolved metabolic analysis reveals a central role for transcriptional control in carbon allocation to wood. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68. [PMID: 28645173 PMCID: PMC5853372 DOI: 10.1093/jxb/erx200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The contribution of transcriptional and post-transcriptional regulation to modifying carbon allocation to developing wood of trees is not well defined. To clarify the role of transcriptional regulation, the enzyme activity patterns of eight central primary metabolism enzymes across phloem, cambium, and developing wood of aspen (Populus tremula L.) were compared with transcript levels obtained by RNA sequencing of sequential stem sections from the same trees. Enzymes were selected on the basis of their importance in sugar metabolism and in linking primary metabolism to lignin biosynthesis. Existing enzyme assays were adapted to allow measurements from ~1 mm3 sections of dissected stem tissue. These experiments provided high spatial resolution of enzyme activity changes across different stages of wood development, and identified the gene transcripts probably responsible for these changes. In most cases, there was a clear positive relationship between transcripts and enzyme activity. During secondary cell wall formation, the increases in transcript levels and enzyme activities also matched with increased levels of glucose, fructose, hexose phosphates, and UDP-glucose, emphasizing an important role for transcriptional regulation in carbon allocation to developing aspen wood. These observations corroborate the efforts to increase carbon allocation to wood by engineering gene regulatory networks.
Collapse
Affiliation(s)
- Melissa Roach
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Amir Mahboubi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Nicole Krohn
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Ronan Sulpice
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
- Plant Systems Biology Laboratory, Plant AgriBiosciences Research Centre, School of Natural Science, Galway, Ireland
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Totte Niittylä
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Correspondence:
| |
Collapse
|
175
|
Expression Profiling of Strawberry Allergen Fra a during Fruit Ripening Controlled by Exogenous Auxin. Int J Mol Sci 2017; 18:ijms18061186. [PMID: 28574483 PMCID: PMC5486009 DOI: 10.3390/ijms18061186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/19/2023] Open
Abstract
Strawberry fruit contain the allergenic Fra a proteins, members of the pathogenesis-related 10 protein family that causes oral allergic syndrome symptoms. Fra a proteins are involved in the flavonoid biosynthesis pathway, which might be important for color development in fruits. Auxin is an important plant hormone in strawberry fruit that controls fruit fleshiness and ripening. In this study, we treated strawberry fruits with exogenous auxin or auxin inhibitors at pre- and post-harvest stages, and analyzed Fra a transcriptional and translational expression levels during fruit development by real-time PCR and immunoblotting. Pre-harvest treatment with 1-naphthaleneacetic acid (NAA) alone did not affect Fra a expression, but applied in conjunction with achene removal NAA promoted fruit pigmentation and Fra a protein accumulation. The response was developmental stage-specific: Fra a 1 was highly expressed in immature fruit, whereas Fra a 2 was expressed in young to ripe fruit. In post-harvest treatments, auxin did not contribute to Fra a induction. Auxin inhibitors delayed fruit ripening; as a result, they seemed to influence Fra a 1 expression. Thus, Fra a expression was not directly regulated by auxin, but might be associated with the ripening process and/or external factors in a paralog-specific manner.
Collapse
|
176
|
Uhrig RG, Moorhead G. AtSLP2 is an intronless protein phosphatase that co-expresses with intronless mitochondrial pentatricopeptide repeat (PPR) and tetratricopeptide (TPR) protein encoding genes. PLANT SIGNALING & BEHAVIOR 2017; 12:e1307493. [PMID: 28350216 PMCID: PMC5437834 DOI: 10.1080/15592324.2017.1307493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/11/2017] [Accepted: 03/13/2017] [Indexed: 06/06/2023]
Abstract
Shewanella-like PPP family phosphatases (SLPs) are a unique lineage of eukaryote PPP-family phosphatases of bacterial origin which are not found in metazoans. 1,2 Their absence in metazoans is marked by their ancient bacterial origins and presence in plants. 1 Recently, we found that the SLP2 phosphatase ortholog of Arabidopsis thaliana localized to the mitochondrial intermembrane space (IMS) where it was determined to be activated by mitochondrial intermembrane space protein 40 (MIA40) to regulate seed germination. 3 Through examination of atslp2 knockout (accelerated germination) and 35S::AtSLP2 over-expressing (delayed germination) plants it was found that AtSLP2 influences Arabidopsis thaliana germination rates via gibberellic acid (GA) biosynthesis. 3 However, the exact mechanism by which this occurs remains unresolved. To identify potential partners of AtSLP2 in regulating germination through GA, we undertook a gene co-expression network analysis using RNA-sequencing data available through Genevestigator ( https://genevestigator.com/gv/ ).
Collapse
Affiliation(s)
- R. Glen Uhrig
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Group of Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Greg Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
177
|
Enganti R, Cho SK, Toperzer JD, Urquidi-Camacho RA, Cakir OS, Ray AP, Abraham PE, Hettich RL, von Arnim AG. Phosphorylation of Ribosomal Protein RPS6 Integrates Light Signals and Circadian Clock Signals. FRONTIERS IN PLANT SCIENCE 2017; 8:2210. [PMID: 29403507 PMCID: PMC5780430 DOI: 10.3389/fpls.2017.02210] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/15/2017] [Indexed: 05/20/2023]
Abstract
The translation of mRNA into protein is tightly regulated by the light environment as well as by the circadian clock. Although changes in translational efficiency have been well documented at the level of mRNA-ribosome loading, the underlying mechanisms are unclear. The reversible phosphorylation of RIBOSOMAL PROTEIN OF THE SMALL SUBUNIT 6 (RPS6) has been known for 40 years, but the biochemical significance of this event remains unclear to this day. Here, we confirm using a clock-deficient strain of Arabidopsis thaliana that RPS6 phosphorylation (RPS6-P) is controlled by the diel light-dark cycle with a peak during the day. Strikingly, when wild-type, clock-enabled, seedlings that have been entrained to a light-dark cycle are placed under free-running conditions, the circadian clock drives a cycle of RPS6-P with an opposite phase, peaking during the subjective night. We show that in wild-type seedlings under a light-dark cycle, the incoherent light and clock signals are integrated by the plant to cause an oscillation in RPS6-P with a reduced amplitude with a peak during the day. Sucrose can stimulate RPS6-P, as seen when sucrose in the medium masks the light response of etiolated seedlings. However, the diel cycles of RPS6-P are observed in the presence of 1% sucrose and in its absence. Sucrose at a high concentration of 3% appears to interfere with the robust integration of light and clock signals at the level of RPS6-P. Finally, we addressed whether RPS6-P occurs uniformly in polysomes, non-polysomal ribosomes and their subunits, and non-ribosomal protein. It is the polysomal RPS6 whose phosphorylation is most highly stimulated by light and repressed by darkness. These data exemplify a striking case of contrasting biochemical regulation between clock signals and light signals. Although the physiological significance of RPS6-P remains unknown, our data provide a mechanistic basis for the future understanding of this enigmatic event.
Collapse
Affiliation(s)
- Ramya Enganti
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, United States
| | - Sung Ki Cho
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, United States
| | - Jody D. Toperzer
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, United States
| | - Ricardo A. Urquidi-Camacho
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN, United States
| | - Ozkan S. Cakir
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, United States
| | - Alexandria P. Ray
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, United States
| | - Paul E. Abraham
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert L. Hettich
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Albrecht G. von Arnim
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, United States
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN, United States
- *Correspondence: Albrecht G. von Arnim,
| |
Collapse
|