151
|
Kikkert S, Sonar HA, Freund P, Paik J, Wenderoth N. Hand and face somatotopy shown using MRI-safe vibrotactile stimulation with a novel soft pneumatic actuator (SPA)-skin interface. Neuroimage 2023; 269:119932. [PMID: 36750151 DOI: 10.1016/j.neuroimage.2023.119932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023] Open
Abstract
The exact somatotopy of the human facial representation in the primary somatosensory cortex (S1) remains debated. One reason that progress has been hampered is due to the methodological challenge of how to apply automated vibrotactile stimuli to face areas in a manner that is: (1) reliable despite differences in the curvatures of face locations; and (2) MR-compatible and free of MR-interference artefacts when applied in the MR head-coil. Here we overcome this challenge by using soft pneumatic actuator (SPA) technology. SPAs are made of a soft silicon material and can be in- or deflated by means of airflow, have a small diameter, and are flexible in structure, enabling good skin contact even on curved body surfaces (as on the face). To validate our approach, we first mapped the well-characterised S1 finger layout using this novel device and confirmed that tactile stimulation of the fingers elicited characteristic somatotopic finger activations in S1. We then used the device to automatically and systematically deliver somatosensory stimulation to different face locations. We found that the forehead representation was least distant from the representation of the hand. Within the face representation, we found that the lip representation is most distant from the forehead representation, with the chin represented in between. Together, our results demonstrate that this novel MR compatible device produces robust and clear somatotopic representational patterns using vibrotactile stimulation through SPA-technology.
Collapse
Affiliation(s)
- Sanne Kikkert
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland; Spinal Cord Injury Center Balgrist, University Hospital Zürich, University of Zürich, Zürich, Switzerland.
| | | | - Patrick Freund
- Spinal Cord Injury Center Balgrist, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Jamie Paik
- Reconfigurable Robotics Lab, EPFL, Lausanne, Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
152
|
Peterson M, Whetten C, Clark AM, Nielsen JA. No difference in extra-axial cerebrospinal fluid volumes across neurodevelopmental and psychiatric conditions in later childhood and adolescence. J Neurodev Disord 2023; 15:12. [PMID: 37005573 PMCID: PMC10068173 DOI: 10.1186/s11689-023-09477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/08/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND While autism spectrum disorder has been associated with various organizational and developmental aberrations in the brain, an increase in extra-axial cerebrospinal fluid volume has recently garnered attention. A series of studies indicate that an increased volume between the ages of 6 months and 4 years was both predictive of the autism diagnosis and symptom severity regardless of genetic risk for the condition. However, there remains a minimal understanding regarding the specificity of an increased volume of extra-axial cerebrospinal fluid to autism. METHODS In the present study, we explored extra-axial cerebrospinal fluid volumes in children and adolescents ages 5-21 years with various neurodevelopmental and psychiatric conditions. We hypothesized that an elevated extra-axial cerebrospinal fluid volume would be found in autism compared with typical development and the other diagnostic group. We tested this hypothesis by employing a cross-sectional dataset of 446 individuals (85 autistic, 60 typically developing, and 301 other diagnosis). An analysis of covariance was used to examine differences in extra-axial cerebrospinal fluid volumes between these groups as well as a group by age interaction in extra-axial cerebrospinal fluid volumes. RESULTS Inconsistent with our hypothesis, we found no group differences in extra-axial cerebrospinal fluid volume in this cohort. However, in replication of previous work, a doubling of extra-axial cerebrospinal fluid volume across adolescence was found. Further investigation into the relationship between extra-axial cerebrospinal fluid volume and cortical thickness suggested that this increase in extra-axial cerebrospinal fluid volume may be driven by a decrease in cortical thickness. Furthermore, an exploratory analysis found no relationship between extra-axial cerebrospinal fluid volume and sleep disturbances. CONCLUSIONS These results indicate that an increased volume of extra-axial cerebrospinal fluid may be limited to autistic individuals younger than 5 years. Additionally, extra-axial cerebrospinal fluid volume does not differ between autistic, neurotypical, and other psychiatric conditions after age 4.
Collapse
Affiliation(s)
- Madeline Peterson
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
| | | | - Anne M Clark
- Neuroscience Center, Brigham Young University, Provo, UT, 84604, USA
| | - Jared A Nielsen
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA.
- Neuroscience Center, Brigham Young University, Provo, UT, 84604, USA.
| |
Collapse
|
153
|
Struck AF, Garcia-Ramos C, Nair VA, Prabhakaran V, Dabbs K, Boly M, Conant LL, Binder JR, Meyerand ME, Hermann BP. The presence, nature and network characteristics of behavioural phenotypes in temporal lobe epilepsy. Brain Commun 2023; 5:fcad095. [PMID: 37038499 PMCID: PMC10082555 DOI: 10.1093/braincomms/fcad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/25/2023] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
The relationship between temporal lobe epilepsy and psychopathology has had a long and contentious history with diverse views regarding the presence, nature and severity of emotional-behavioural problems in this patient population. To address these controversies, we take a new person-centred approach through the application of unsupervised machine learning techniques to identify underlying latent groups or behavioural phenotypes. Addressed are the distinct psychopathological profiles, their linked frequency, patterns and severity and the disruptions in morphological and network properties that underlie the identified latent groups. A total of 114 patients and 83 controls from the Epilepsy Connectome Project were administered the Achenbach System of Empirically Based Assessment inventory from which six Diagnostic and Statistical Manual of Mental Disorders-oriented scales were analysed by unsupervised machine learning analytics to identify latent patient groups. Identified clusters were contrasted to controls as well as to each other in order to characterize their association with sociodemographic, clinical epilepsy and morphological and functional imaging network features. The concurrent validity of the behavioural phenotypes was examined through other measures of behaviour and quality of life. Patients overall exhibited significantly higher (abnormal) scores compared with controls. However, cluster analysis identified three latent groups: (i) unaffected, with no scale elevations compared with controls (Cluster 1, 37%); (ii) mild symptomatology characterized by significant elevations across several Diagnostic and Statistical Manual of Mental Disorders-oriented scales compared with controls (Cluster 2, 42%); and (iii) severe symptomatology with significant elevations across all scales compared with controls and the other temporal lobe epilepsy behaviour phenotype groups (Cluster 3, 21%). Concurrent validity of the behavioural phenotype grouping was demonstrated through identical stepwise links to abnormalities on independent measures including the National Institutes of Health Toolbox Emotion Battery and quality of life metrics. There were significant associations between cluster membership and sociodemographic (handedness and education), cognition (processing speed), clinical epilepsy (presence and lifetime number of tonic-clonic seizures) and neuroimaging characteristics (cortical volume and thickness and global graph theory metrics of morphology and resting-state functional MRI). Increasingly dispersed volumetric abnormalities and widespread disruptions in underlying network properties were associated with the most abnormal behavioural phenotype. Psychopathology in these patients is characterized by a series of discrete latent groups that harbour accompanying sociodemographic, clinical and neuroimaging correlates. The underlying neurobiological patterns suggest that the degree of psychopathology is linked to increasingly dispersed abnormal brain networks. Similar to cognition, machine learning approaches support a novel developing taxonomy of the comorbidities of epilepsy.
Collapse
Affiliation(s)
- Aaron F Struck
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Neurology, William S. Middleton Veterans Administration Hospital, Madison, WI 53705, USA
| | - Camille Garcia-Ramos
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Veena A Nair
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Vivek Prabhakaran
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kevin Dabbs
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Melanie Boly
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Lisa L Conant
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jeffrey R Binder
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mary E Meyerand
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Bruce P Hermann
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53726, USA
| |
Collapse
|
154
|
Puramat P, Dimick MK, Kennedy KG, Zai CC, Kennedy JL, MacIntosh BJ, Goldstein BI. Neurostructural and neurocognitive correlates of APOE ε4 in youth bipolar disorder. J Psychopharmacol 2023; 37:408-419. [PMID: 36919310 DOI: 10.1177/02698811221147151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a clinical risk factor for Alzheimer's disease (AD). Apolipoprotein E ε4 (APOE ε4), a genetic risk factor for AD, has been associated with brain structure and neurocognition in healthy youth. AIMS We evaluated whether there was an association between APOE ε4 with neurostructure and neurocognition in youth with BD. METHODS Participants included 150 youth (78 BD:19 ε4-carriers, 72 controls:17 ε4-carriers). 3T-magnetic resonance imaging yielded measures of cortical thickness, surface area, and volume. Regions-of-interest (ROI) and vertex-wise analyses of the cortex were conducted. Neurocognitive tests of attention and working memory were examined. RESULTS Vertex-wise analyses revealed clusters with a diagnosis-by-APOE ε4 interaction effect for surface area (p = 0.002) and volume (p = 0.046) in pars triangularis (BD ε4-carriers > BD noncarriers), and surface area (p = 0.03) in superior frontal gyrus (controls ε4-carriers > other groups). ROI analyses were not significant. A significant interaction effect for working memory (p = 0.001) appeared to be driven by nominally poorer performance in BD ε4-carriers but not control ε4-carriers; however, post hoc contrasts were not significant. CONCLUSIONS APOE ε4 was associated with larger neurostructural metrics in BD and controls, however, the regional association of APOE ε4 with neurostructure differed between groups. The role of APOE ε4 on neurodevelopmental processes is a plausible explanation for the observed differences. Future studies should evaluate the association of APOE ε4 with pars triangularis and its neurofunctional implications among youth with BD.
Collapse
Affiliation(s)
- Parnian Puramat
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto Faculty of Medicine, Toronto, ON, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto Faculty of Medicine, Toronto, ON, Canada
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto Faculty of Medicine, Toronto, ON, Canada
| | - Clement C Zai
- Neurogenetics Section and Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto Faculty of Medicine, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - James L Kennedy
- Neurogenetics Section and Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto Faculty of Medicine, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto Faculty of Medicine, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto Faculty of Medicine, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
155
|
Gimbel SI, Wang CC, Hungerford L, Twamley EW, Ettenhofer ML. Associations of mTBI and post-traumatic stress to amygdala structure and functional connectivity in military Service Members. FRONTIERS IN NEUROIMAGING 2023; 2:1129446. [PMID: 37554633 PMCID: PMC10406312 DOI: 10.3389/fnimg.2023.1129446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 08/10/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is one of the highest public health priorities, especially among military personnel where comorbidity with post-traumatic stress symptoms and resulting consequences is high. Brain injury and post-traumatic stress symptoms are both characterized by dysfunctional brain networks, with the amygdala specifically implicated as a region with both structural and functional abnormalities. METHODS This study examined the structural volumetrics and resting state functional connectivity of 68 Active Duty Service Members with or without chronic mild TBI (mTBI) and comorbid symptoms of Post-Traumatic Stress (PTS). RESULTS AND DISCUSSION Structural analysis of the amygdala revealed no significant differences in volume between mTBI and healthy comparison participants with and without post-traumatic stress symptoms. Resting state functional connectivity with bilateral amygdala revealed decreased anterior network connectivity and increased posterior network connectivity in the mTBI group compared to the healthy comparison group. Within the mTBI group, there were significant regions of correlation with amygdala that were modulated by PTS severity, including networks implicated in emotional processing and executive functioning. An examination of a priori regions of amygdala connectivity in the default mode network, task positive network, and subcortical structures showed interacting influences of TBI and PTS, only between right amygdala and right putamen. These results suggest that mTBI and PTS are associated with hypo-frontal and hyper-posterior amygdala connectivity. Additionally, comorbidity of these conditions appears to compound these neural activity patterns. PTS in mTBI may change neural resource recruitment for information processing between the amygdala and other brain regions and networks, not only during emotional processing, but also at rest.
Collapse
Affiliation(s)
- Sarah I. Gimbel
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, United States
- Traumatic Brain Injury Clinic, Naval Medical Center San Diego, San Diego, CA, United States
- General Dynamics Information Technology, Falls Church, VA, United States
| | - Cailynn C. Wang
- Department of Psychology, University of California, San Diego, San Diego, CA, United States
| | - Lars Hungerford
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, United States
- Traumatic Brain Injury Clinic, Naval Medical Center San Diego, San Diego, CA, United States
- General Dynamics Information Technology, Falls Church, VA, United States
| | - Elizabeth W. Twamley
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Mark L. Ettenhofer
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, United States
- Traumatic Brain Injury Clinic, Naval Medical Center San Diego, San Diego, CA, United States
- General Dynamics Information Technology, Falls Church, VA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
156
|
Pace B, Holtzer R, Wagshul ME. Gray matter volume and within-task verbal fluency performance among older adults. Brain Cogn 2023; 166:105960. [PMID: 36868129 PMCID: PMC10257804 DOI: 10.1016/j.bandc.2023.105960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 03/05/2023]
Abstract
The current study examined the relationship between gray matter volume (GMV) and rate of word generation over the course of three consecutive 20-sec intervals in 60-sec letter and category verbal fluency (VF) tasks. Attenuated rate of within-person word generation in VF provides incremental information beyond total scores and predicts increased risk of incident Mild Cognitive Impairment (MCI). No studies to date, however, have determined the structural neural substrates underlying word generation rate in VF. Participants were 70 community-residing adults ≥ 65 years, who completed the letter and category VF tasks and a 3 T structural MRI scan. Linear mixed effects models (LMEMs) were used to determine the moderating effect of GMV on word generation rate. Whole brain voxel-wise LMEMs, adjusted for age, gender, education, Wide-Range Achievement Test - reading subtest score (WRAT3), and global health score, were run using permutation methods to correct for multiple comparisons. Lower GMV, primarily in frontal regions (superior frontal, rostral middle frontal, frontal pole, medial orbitofrontal, and pars orbitalis), were related to attenuated word generation rate, especially for letter VF. We propose that lower frontal GMV underlies inefficient executive word search processes reflected by attenuated word generation slope in letter VF amongst older adults.
Collapse
Affiliation(s)
- Brigitte Pace
- Ferkauf Graduate School of Psychology, Yeshiva University, 1165 Morris Park Ave, The Bronx, NY 10461, United States.
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, 1165 Morris Park Ave, The Bronx, NY 10461, United States; Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave, The Bronx, NY 10416, United States.
| | - Mark E Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, 1250 Morris Park Ave, The Bronx, NY 10461, United States; Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Ave, The Bronx, NY 10416, United States.
| |
Collapse
|
157
|
Kim J, Lee C, Kang Y, Kang W, Kim A, Tae WS, Ham BJ, Chang J, Han KM. Childhood Sexual Abuse and Cortical Thinning in Adults With Major Depressive Disorder. Psychiatry Investig 2023; 20:255-261. [PMID: 36990669 PMCID: PMC10064205 DOI: 10.30773/pi.2022.0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/27/2022] [Indexed: 03/31/2023] Open
Abstract
OBJECTIVE A growing body of evidence reports on the effect of different types of childhood abuse on the structural and functional architecture of the brain. In the present study, we aimed to investigate the differences in cortical thickness according to specific types of childhood abuse between patients with major depressive disorder (MDD) and healthy controls (HCs). METHODS A total of 61 patients with MDD and 98 HCs were included in this study. All participants underwent T1-weighted magnetic resonance imaging, and the occurrence of childhood abuse was assessed using the Childhood Trauma Questionnaire. We investigated the association between whole-brain cortical thickness and exposure to any type of childhood abuse and specific type of childhood abuse in the total sample using the FreeSurfer software. RESULTS No significant difference was reported in the cortical thickness between the MDD and HC groups nor between the "any abuse" and "no abuse" groups. Compared to no exposure to childhood sexual abuse (CSA), exposure to CSA was significantly associated with cortical thinning in the left rostral middle frontal gyrus (p=0.00020), left (p=0.00240), right fusiform gyri (p=0.00599), and right supramarginal gyrus (p=0.00679). CONCLUSION Exposure to CSA may lead to cortical thinning of the dorsolateral prefrontal cortex, which is deeply involved in emotion regulation, to a greater extent than other types of childhood abuse.
Collapse
Affiliation(s)
- Jinyi Kim
- Department of Psychiatry, Seoul Metropolitan Eunpyeong Hospital, Seoul, Republic of Korea
| | - Changju Lee
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
| | - Jisoon Chang
- Department of Psychiatry, Seoul Metropolitan Eunpyeong Hospital, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
| |
Collapse
|
158
|
Brown AA, Upton S, Craig S, Froeliger B. Associations between right inferior frontal gyrus morphometry and inhibitory control in individuals with nicotine dependence. Drug Alcohol Depend 2023; 244:109766. [PMID: 36640686 PMCID: PMC9974751 DOI: 10.1016/j.drugalcdep.2023.109766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
BACKGROUND The hyperdirect pathway - a circuit involved in executing inhibitory control (IC) - is dysregulated among individuals with nicotine dependence. The right inferior frontal gyrus (rIFG), a cortical input to the hyperdirect circuit, has been shown to be functionally and structurally altered among nicotine-dependent people who smoke. The rIFG is composed of 3 cytoarchitecturally distinct subregions: The pars opercularis, pars triangularis, and pars orbitalis. The present study assessed the relationship between rIFG subregion morphometry and inhibitory control among individuals with nicotine dependence. METHODS Behavioral and magnetic resonance brain imaging (MRI) data from 127 nicotine-dependent adults who smoke (MFTND = 5.4, ± 1.9; MCPD = 18.3, ± 7.0; Myears = 25.04, ± 11.97) (Mage = 42.9, ± 11.1) were assessed. Brain morphometry was assessed from T1-weighted MRIs using Freesurfer. IC was assessed with a response-inhibition Go/Go/No-Go (GGNG) task and a smoking relapse analog task (SRT). RESULTS AND CONCLUSIONS Vertex-wise analyses revealed that GGNG task scores were positively associated with cortical thickness and volume in the right pars triangularis (cluster-wise p = 0.006, 90% CI = 0.003 - 0.009; cluster-wise p = 0.040, 90% CI = 0.032 - 0.048), and the ability to inhibit ad lib smoking during the SRT was positively associated with cortical thickness in the right pars orbitalis (cluster-wise p = 0.011, 90% CI = 0.007 - 0.015). Our results indicate that cortical thickness of distinct rIFG subregions may serve as biomarkers for unique forms of IC deficits.
Collapse
Affiliation(s)
- Alexander A Brown
- Department of Psychiatry, University of Missouri, Columbia, MO, USA; Department of Psychological Sciences, University of Missouri, Columbia, MO, USA; Cognitive Neuroscience Systems Core Facility, University of Missouri, Columbia, MO, USA
| | - Spencer Upton
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Stephen Craig
- Department of Psychiatry, University of Missouri, Columbia, MO, USA; Department of Psychological Sciences, University of Missouri, Columbia, MO, USA; Cognitive Neuroscience Systems Core Facility, University of Missouri, Columbia, MO, USA
| | - Brett Froeliger
- Department of Psychiatry, University of Missouri, Columbia, MO, USA; Department of Psychological Sciences, University of Missouri, Columbia, MO, USA; Cognitive Neuroscience Systems Core Facility, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
159
|
Neuschwander P, Schmitt R, Jagoda L, Kurthen I, Giroud N, Meyer M. Different neuroanatomical correlates for temporal and spectral supra-threshold auditory tasks and speech in noise recognition in older adults with hearing impairment. Eur J Neurosci 2023; 57:981-1002. [PMID: 36683390 DOI: 10.1111/ejn.15922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/20/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023]
Abstract
Varying degrees of pure-tone hearing loss in older adults are differentially associated with cortical volume (CV) and thickness (CT) within and outside of the auditory pathway. This study addressed the question to what degree supra-threshold auditory performance (i.e., temporal compression and frequency selectivity) as well as speech in noise (SiN) recognition are associated with neurostructural correlates in a sample of 59 healthy older adults with mild to moderate pure-tone hearing loss. Using surface-based morphometry on T1-weighted MRI images, CT, CV, and surface area (CSA) of several regions-of-interest were obtained. The results showed distinct neurostructural patterns for the different tasks in terms of involved regions as well as morphometric parameters. While pure-tone averages (PTAs) positively correlated with CT in a right hemisphere superior temporal sulcus and gyrus cluster, supra-threshold auditory perception additionally extended significantly to CV and CT in left and right superior temporal clusters including Heschl's gyrus and sulcus, the planum polare and temporale. For SiN recognition, we found significant correlations with an auditory-related CT cluster and furthermore with language-related areas in the prefrontal cortex. Taken together, our results show that different auditory abilities are differently associated with cortical morphology in older adults with hearing impairment. Still, a common pattern is that greater PTAs and poorer supra-threshold auditory performance as well as poorer SiN recognition are all related to cortical thinning and volume loss but not to changes in CSA. These results support the hypothesis that mostly CT undergoes alterations in the context of auditory decline, while CSA remains stable.
Collapse
Affiliation(s)
- Pia Neuschwander
- Division of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Raffael Schmitt
- Neuroscience of Speech & Hearing, Department of Computational Linguistics, University of Zurich, Zurich, Switzerland
| | - Laura Jagoda
- Division of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Ira Kurthen
- Developmental Psychology: Infancy and Childhood, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Nathalie Giroud
- Neuroscience of Speech & Hearing, Department of Computational Linguistics, University of Zurich, Zurich, Switzerland
| | - Martin Meyer
- Evolutionary Neuroscience of Language, Department of Comparative Language Science, University of Zurich, Zurich, Switzerland.,Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Zurich, Switzerland.,Cognitive Psychology Unit, Alpen-Adria University of Klagenfurt, Klagenfurt, Austria
| |
Collapse
|
160
|
Griffiths-King DJ, Wood AG, Novak J. Predicting 'Brainage' in the Developmental Period using Structural MRI, Morphometric Similarity, and Machine Learning. RESEARCH SQUARE 2023:rs.3.rs-2583936. [PMID: 36909598 PMCID: PMC10002817 DOI: 10.21203/rs.3.rs-2583936/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Brain development is regularly studied using structural MRI. Recently, studies have used a combination of statistical learning and large-scale imaging databases of healthy-children to predict an individual's age from structural MRI. This data-driven, 'brainage' typically differs from the subjects chronological age, with this difference a potential measure of individual difference. Few studies have leveraged higher-order or connectomic representations of structural MRI data for this brainage approach. We leveraged morphometric similarity as a network-level approach to structural MRI to generate predictive models of age. We benchmarked these novel brain-age approaches using morphometric similarity against more typical, single feature (i.e. cortical thickness) approaches. We showed that these novel methods did not outperform cortical thickness or cortical volume measures. All models were significantly biased by age, but robust to motion confounds. The main results show that, whilst morphometric similarity mapping may be a novel way to leverage additional information from a T1-weighted structural MRI beyond individual features, in the context of a brain-age framework, morphometric similarity does not explain more variance than individual structural features. Morphometric similarity as a network-level approach to structural MRI may be poorly positioned to study individual differences in brain development in healthy individuals.
Collapse
|
161
|
Guma E, Beauchamp A, Liu S, Levitis E, Clasen LS, Torres E, Blumenthal J, Lalonde F, Qiu LR, Hrncir H, MacKenzie-Graham A, Yang X, Arnold AP, Lerch JP, Raznahan A. A Cross-Species Neuroimaging Study of Sex Chromosome Dosage Effects on Human and Mouse Brain Anatomy. J Neurosci 2023; 43:1321-1333. [PMID: 36631267 PMCID: PMC9987571 DOI: 10.1523/jneurosci.1761-22.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
All eutherian mammals show chromosomal sex determination with contrasting sex chromosome dosages (SCDs) between males (XY) and females (XX). Studies in transgenic mice and humans with sex chromosome trisomy (SCT) have revealed direct SCD effects on regional mammalian brain anatomy, but we lack a formal test for cross-species conservation of these effects. Here, we develop a harmonized framework for comparative structural neuroimaging and apply this to systematically profile SCD effects on regional brain anatomy in both humans and mice by contrasting groups with SCT (XXY and XYY) versus XY controls. Total brain size was substantially altered by SCT in humans (significantly decreased by XXY and increased by XYY), but not in mice. Robust and spatially convergent effects of XXY and XYY on regional brain volume were observed in humans, but not mice, when controlling for global volume differences. However, mice do show subtle effects of XXY and XYY on regional volume, although there is not a general spatial convergence in these effects within mice or between species. Notwithstanding this general lack of conservation in SCT effects, we detect several brain regions that show overlapping effects of XXY and XYY both within and between species (cerebellar, parietal, and orbitofrontal cortex), thereby nominating high priority targets for future translational dissection of SCD effects on the mammalian brain. Our study introduces a generalizable framework for comparative neuroimaging in humans and mice and applies this to achieve a cross-species comparison of SCD effects on the mammalian brain through the lens of SCT.SIGNIFICANCE STATEMENT Sex chromosome dosage (SCD) affects neuroanatomy and risk for psychopathology in humans. Performing mechanistic studies in the human brain is challenging but possible in mouse models. Here, we develop a framework for cross-species neuroimaging analysis and use this to show that an added X- or Y-chromosome significantly alters human brain anatomy but has muted effects in the mouse brain. However, we do find evidence for conserved cross-species impact of an added chromosome in the fronto-parietal cortices and cerebellum, which point to regions for future mechanistic dissection of sex chromosome dosage effects on brain development.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Antoine Beauchamp
- Mouse Imaging Centre, Toronto, Ontario M5T 3H7, Canada
- The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Elizabeth Levitis
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Liv S. Clasen
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Erin Torres
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Jonathan Blumenthal
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Francois Lalonde
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Lily R. Qiu
- Mouse Imaging Centre, Toronto, Ontario M5T 3H7, Canada
- The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Haley Hrncir
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Allan MacKenzie-Graham
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Arthur P. Arnold
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Jason P. Lerch
- Mouse Imaging Centre, Toronto, Ontario M5T 3H7, Canada
- The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| |
Collapse
|
162
|
Hölig C, Guerreiro MJS, Lingareddy S, Kekunnaya R, Röder B. Sight restoration in congenitally blind humans does not restore visual brain structure. Cereb Cortex 2023; 33:2152-2161. [PMID: 35580850 DOI: 10.1093/cercor/bhac197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/14/2022] Open
Abstract
It is unknown whether impaired brain structure after congenital blindness is reversible if sight is restored later in life. Using structural magnetic resonance imaging, visual cortical surface area and cortical thickness were assessed in a large group of 21 sight-recovery individuals who had been born blind and who months or years later gained sight through cataract removal surgery. As control groups, we included 27 normally sighted individuals, 10 individuals with permanent congenital blindness, and 11 sight-recovery individuals with a late onset of cataracts. Congenital cataract-reversal individuals had a lower visual cortical surface area and a higher visual cortical thickness than normally sighted controls. These results corresponded to those of congenitally permanently blind individuals suggesting that impaired brain structure did not recover. Crucially, structural brain alterations in congenital-cataract reversal individuals were associated with a lower post-surgery visual acuity. No significant changes in visual cortex structure were observed in sight-recovery individuals with late onset cataracts. The results demonstrate that impaired structural brain development due to visual deprivation from birth is not fully reversible and limits functional recovery. Additionally, they highlight the crucial importance of prevention measures in the context of other types of aberrant childhood environments including low socioeconomic status and adversity.
Collapse
Affiliation(s)
- Cordula Hölig
- Biological Psychology and Neuropsychology, University of Hamburg, 20146 Hamburg, Germany
| | - Maria J S Guerreiro
- Biological Psychology and Neuropsychology, University of Hamburg, 20146 Hamburg, Germany.,Biological Psychology, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany
| | | | - Ramesh Kekunnaya
- Jasti V Ramanamma Children's Eye Care Center, Child Sight Institute, LV Prasad Eye Institute, 50034 Hyderabad, India
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
163
|
Power L, Allain C, Moreau T, Gramfort A, Bardouille T. Using convolutional dictionary learning to detect task-related neuromagnetic transients and ageing trends in a large open-access dataset. Neuroimage 2023; 267:119809. [PMID: 36584759 DOI: 10.1016/j.neuroimage.2022.119809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022] Open
Abstract
Human neuromagnetic activity is characterised by a complex combination of transient bursts with varying spatial and temporal characteristics. The characteristics of these transient bursts change during task performance and normal ageing in ways that can inform about underlying cortical sources. Many methods have been proposed to detect transient bursts, with the most successful ones being those that employ multi-channel, data-driven approaches to minimize bias in the detection procedure. There has been little research, however, into the application of these data-driven methods to large datasets for group-level analyses. In the current work, we apply a data-driven convolutional dictionary learning (CDL) approach to detect neuromagnetic transient bursts in a large group of healthy participants from the Cam-CAN dataset. CDL was used to extract repeating spatiotemporal motifs in 538 participants between the ages of 18-88 during a sensorimotor task. Motifs were then clustered across participants based on similarity, and relevant task-related clusters were analysed for age-related trends in their spatiotemporal characteristics. Seven task-related motifs resembling known transient burst types were identified through this analysis, including beta, mu, and alpha type bursts. All burst types showed positive trends in their activation levels with age that could be explained by increasing burst rate with age. This work validated the data-driven CDL approach for transient burst detection on a large dataset and identified robust information about the complex characteristics of human brain signals and how they change with age.
Collapse
Affiliation(s)
- Lindsey Power
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cédric Allain
- Inria, Mind team, Université Paris-Saclay, Saclay, France
| | - Thomas Moreau
- Inria, Mind team, Université Paris-Saclay, Saclay, France
| | | | - Timothy Bardouille
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
164
|
Dimitrova LI, Dean SL, Schlumpf YR, Vissia EM, Nijenhuis ERS, Chatzi V, Jäncke L, Veltman DJ, Chalavi S, Reinders AATS. A neurostructural biomarker of dissociative amnesia: a hippocampal study in dissociative identity disorder. Psychol Med 2023; 53:805-813. [PMID: 34165068 PMCID: PMC9975991 DOI: 10.1017/s0033291721002154] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/12/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Little is known about the neural correlates of dissociative amnesia, a transdiagnostic symptom mostly present in the dissociative disorders and core characteristic of dissociative identity disorder (DID). Given the vital role of the hippocampus in memory, a prime candidate for investigation is whether total and/or subfield hippocampal volume can serve as biological markers of dissociative amnesia. METHODS A total of 75 women, 32 with DID and 43 matched healthy controls (HC), underwent structural magnetic resonance imaging (MRI). Using Freesurfer (version 6.0), volumes were extracted for bilateral global hippocampus, cornu ammonis (CA) 1-4, the granule cell molecular layer of the dentate gyrus (GC-ML-DG), fimbria, hippocampal-amygdaloid transition area (HATA), parasubiculum, presubiculum and subiculum. Analyses of covariance showed volumetric differences between DID and HC. Partial correlations exhibited relationships between the three factors of the dissociative experience scale scores (dissociative amnesia, absorption, depersonalisation/derealisation) and traumatisation measures with hippocampal global and subfield volumes. RESULTS Hippocampal volumes were found to be smaller in DID as compared with HC in bilateral global hippocampus and bilateral CA1, right CA4, right GC-ML-DG, and left presubiculum. Dissociative amnesia was the only dissociative symptom that correlated uniquely and significantly with reduced bilateral hippocampal CA1 subfield volumes. Regarding traumatisation, only emotional neglect correlated negatively with bilateral global hippocampus, bilateral CA1, CA4 and GC-ML-DG, and right CA3. CONCLUSION We propose decreased CA1 volume as a biomarker for dissociative amnesia. We also propose that traumatisation, specifically emotional neglect, is interlinked with dissociative amnesia in having a detrimental effect on hippocampal volume.
Collapse
Affiliation(s)
- Lora I. Dimitrova
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychiatry, Amsterdam UMC, Location VUmc, VU University Amsterdam, Amsterdam, The Netherlands
| | - Sophie L. Dean
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK
| | - Yolanda R. Schlumpf
- Division of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
- Clienia Littenheid AG, Private Clinic for Psychiatry and Psychotherapy, Littenheid, Switzerland
| | | | - Ellert R. S. Nijenhuis
- Clienia Littenheid AG, Private Clinic for Psychiatry and Psychotherapy, Littenheid, Switzerland
| | - Vasiliki Chatzi
- Department of Biomedical Engineering, King's College London, London, UK
| | - Lutz Jäncke
- Division of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
- Research Unit for Plasticity and Learning of the Healthy Aging Brain, University of Zurich, Zurich, Switzerland
| | - Dick J. Veltman
- Department of Psychiatry, Amsterdam UMC, Location VUmc, VU University Amsterdam, Amsterdam, The Netherlands
| | - Sima Chalavi
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Antje A. T. S. Reinders
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
165
|
Murdoch DM, Barfield R, Chan C, Towe SL, Bell RP, Volkheimer A, Choe J, Hall SA, Berger M, Xie J, Meade CS. Neuroimaging and immunological features of neurocognitive function related to substance use in people with HIV. J Neurovirol 2023; 29:78-93. [PMID: 36348233 PMCID: PMC10089970 DOI: 10.1007/s13365-022-01102-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
This study sought to identify neuroimaging and immunological factors associated with substance use and that contribute to neurocognitive impairment (NCI) in people with HIV (PWH). We performed cross-sectional immunological phenotyping, neuroimaging, and neurocognitive testing on virally suppressed PWH in four substance groups: cocaine only users (COC), marijuana only users (MJ), dual users (Dual), and Non-users. Participants completed substance use assessments, multimodal MRI brain scan, neuropsychological testing, and blood and CSF sampling. We employed a two-stage analysis of 305 possible biomarkers of cognitive function associated with substance use. Feature reduction (Kruskal Wallis p-value < 0.05) identified 53 biomarkers associated with substance use (22 MRI and 31 immunological) for model inclusion along with clinical and demographic variables. We employed eXtreme Gradient Boosting (XGBoost) with these markers to predict cognitive function (global T-score). SHapley Additive exPlanations (SHAP) values were calculated to rank features for impact on model output and NCI. Participants were 110 PWH with sustained HIV viral suppression (33 MJ, 12 COC, 22 Dual, and 43 Non-users). The ten highest ranking biomarkers for predicting global T-score were 4 neuroimaging biomarkers including functional connectivity, gray matter volume, and white matter integrity; 5 soluble biomarkers (plasma glycine, alanine, lyso-phosphatidylcholine (lysoPC) aC17.0, hydroxy-sphingomyelin (SM.OH) C14.1, and phosphatidylcholinediacyl (PC aa) C28.1); and 1 clinical variable (nadir CD4 count). The results of our machine learning model suggest that substance use may indirectly contribute to NCI in PWH through both metabolomic and neuropathological mechanisms.
Collapse
Affiliation(s)
- David M Murdoch
- Department of Medicine, Duke University Medical Center, DUMC Box 2629, Durham, NC, 27710, USA.
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
- Center for Human Systems Immunology, School of Medicine, Duke University, Durham, NC, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
- Center for Human Systems Immunology, School of Medicine, Duke University, Durham, NC, USA
| | - Sheri L Towe
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Ryan P Bell
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Alicia Volkheimer
- Department of Medicine, Duke University Medical Center, DUMC Box 2629, Durham, NC, 27710, USA
| | - Joyce Choe
- Department of Medicine, Duke University Medical Center, DUMC Box 2629, Durham, NC, 27710, USA
| | - Shana A Hall
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Miles Berger
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Jichun Xie
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
- Center for Human Systems Immunology, School of Medicine, Duke University, Durham, NC, USA
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Christina S Meade
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
166
|
Rashidi-Ranjbar N, Rajji TK, Hawco C, Kumar S, Herrmann N, Mah L, Flint AJ, Fischer CE, Butters MA, Pollock BG, Dickie EW, Bowie CR, Soffer M, Mulsant BH, Voineskos AN. Association of functional connectivity of the executive control network or default mode network with cognitive impairment in older adults with remitted major depressive disorder or mild cognitive impairment. Neuropsychopharmacology 2023; 48:468-477. [PMID: 35410366 PMCID: PMC9852291 DOI: 10.1038/s41386-022-01308-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/13/2022] [Accepted: 03/09/2022] [Indexed: 02/02/2023]
Abstract
Major depressive disorder (MDD) is associated with an increased risk of developing dementia. The present study aimed to better understand this risk by comparing resting state functional connectivity (rsFC) in the executive control network (ECN) and the default mode network (DMN) in older adults with MDD or mild cognitive impairment (MCI). Additionally, we examined the association between rsFC in the ECN or DMN and cognitive impairment transdiagnostically. We assessed rsFC alterations in ECN and DMN in 383 participants from five groups at-risk for dementia-remitted MDD with normal cognition (MDD-NC), non-amnestic mild cognitive impairment (naMCI), remitted MDD + naMCI, amnestic MCI (aMCI), and remitted MDD + aMCI-and from healthy controls (HC) or individuals with Alzheimer's dementia (AD). Subject-specific whole-brain functional connectivity maps were generated for each network and group differences in rsFC were calculated. We hypothesized that alteration of rsFC in the ECN and DMN would be progressively larger among our seven groups, ranked from low to high according to their risk for dementia as HC, MDD-NC, naMCI, MDD + naMCI, aMCI, MDD + aMCI, and AD. We also regressed scores of six cognitive domains (executive functioning, processing speed, language, visuospatial memory, verbal memory, and working memory) on the ECN and DMN connectivity maps. We found a significant alteration in the rsFC of the ECN, with post hoc testing showing differences between the AD group and the HC, MDD-NC, or naMCI groups, but no significant alterations in rsFC of the DMN. Alterations in rsFC of the ECN and DMN were significantly associated with several cognitive domain scores transdiagnostically. Our findings suggest that a diagnosis of remitted MDD may not confer functional brain risk for dementia. However, given the association of rs-FC with cognitive performance (i.e., transdiagnostically), rs-FC may help in stratifying this risk among people with MDD and varying degrees of cognitive impairment.
Collapse
Affiliation(s)
- Neda Rashidi-Ranjbar
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tarek K Rajji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Sanjeev Kumar
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Nathan Herrmann
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Sunnybrook Health Sciences Centre, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Linda Mah
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Baycrest Health Sciences, Rotman Research Institute, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Alastair J Flint
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Centre for Mental Health, University Health Network, Toronto, ON, Canada
| | - Corinne E Fischer
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Meryl A Butters
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bruce G Pollock
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Erin W Dickie
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Christopher R Bowie
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Departments of Psychology and Psychiatry (CRB), Queen's University, Kingston, ON, Canada
| | - Matan Soffer
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Benoit H Mulsant
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
167
|
Mabrouk B, BenHamida A, Drissi N, Bouzidi N, Mhiri C. Contribution of Brain Regions Asymmetry Scores Combined with Random Forest Classifier in the Diagnosis of Alzheimer’s Disease in His Earlier Stage. J Med Biol Eng 2023. [DOI: 10.1007/s40846-023-00775-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
168
|
Katsumi Y, Quimby M, Hochberg D, Jones A, Brickhouse M, Eldaief MC, Dickerson BC, Touroutoglou A. Association of Regional Cortical Network Atrophy With Progression to Dementia in Patients With Primary Progressive Aphasia. Neurology 2023; 100:e286-e296. [PMID: 36192173 PMCID: PMC9869757 DOI: 10.1212/wnl.0000000000201403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/30/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Patients with primary progressive aphasia (PPA) have gradually progressive language deficits during the initial phase of the illness. As the underlying neurodegenerative disease progresses, patients with PPA start losing independent functioning due to the development of nonlanguage cognitive or behavioral symptoms. The timeline of this progression from the mild cognitive impairment stage to the dementia stage of PPA is variable across patients. In this study, in a sample of patients with PPA, we measured the magnitude of cortical atrophy within functional networks believed to subserve diverse cognitive and affective functions. The objective of the study was to evaluate the utility of this measure as a predictor of time to subsequent progression to dementia in PPA. METHODS Patients with PPA with largely independent daily function were recruited through the Massachusetts General Hospital Frontotemporal Disorders Unit. All patients underwent an MRI scan at baseline. Cortical atrophy was then estimated relative to a group of amyloid-negative cognitively normal control participants. For each patient, we measured the time between the baseline visit and the subsequent visit at which dementia progression was documented or last observation. Simple and multivariable Cox regression models were used to examine the relationship between cortical atrophy and the likelihood of progression to dementia. RESULTS Forty-nine patients with PPA (mean age = 66.39 ± 8.36 years, 59.2% females) and 25 controls (mean age = 67.43 ± 4.84 years, 48% females) were included in the data analysis. Greater baseline atrophy in not only the left language network (hazard ratio = 1.47, 95% CI = 1.17-1.84) but also in the frontoparietal control (1.75, 1.25-2.44), salience (1.63, 1.25-2.13), default mode (1.55, 1.19-2.01), and ventral frontotemporal (1.41, 1.16-1.71) networks was associated with a higher risk of progression to dementia. A multivariable model identified contributions of the left frontoparietal control (1.94, 1.09-3.48) and ventral frontotemporal (1.61, 1.09-2.39) networks in predicting dementia progression, with no additional variance explained by the language network (0.75, 0.43-1.31). DISCUSSION These results suggest that baseline atrophy in cortical networks subserving nonlanguage cognitive and affective functions is an important predictor of progression to dementia in PPA. This measure should be included in precision medicine models of prognosis in PPA.
Collapse
Affiliation(s)
- Yuta Katsumi
- *These authors contributed equally as co-first authors.
- These authors contributed equally as co-senior authors.
- From the Frontotemporal Disorders Unit (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), the Departments of Neurology (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), and Psychiatry (M.C.E., B.C.D., A.T.), the Massachusetts Alzheimer's Disease Research Center (M.C.E., B.C.D., A.T.), and the Athinoula A. Martinos Center for Biomedical Imaging (B.C.D.), Massachusetts General Hospital and Harvard Medical School, Boston, MA.
| | - Megan Quimby
- *These authors contributed equally as co-first authors
- These authors contributed equally as co-senior authors
- From the Frontotemporal Disorders Unit (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), the Departments of Neurology (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), and Psychiatry (M.C.E., B.C.D., A.T.), the Massachusetts Alzheimer's Disease Research Center (M.C.E., B.C.D., A.T.), and the Athinoula A. Martinos Center for Biomedical Imaging (B.C.D.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Daisy Hochberg
- *These authors contributed equally as co-first authors
- These authors contributed equally as co-senior authors
- From the Frontotemporal Disorders Unit (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), the Departments of Neurology (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), and Psychiatry (M.C.E., B.C.D., A.T.), the Massachusetts Alzheimer's Disease Research Center (M.C.E., B.C.D., A.T.), and the Athinoula A. Martinos Center for Biomedical Imaging (B.C.D.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Amelia Jones
- *These authors contributed equally as co-first authors
- These authors contributed equally as co-senior authors
- From the Frontotemporal Disorders Unit (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), the Departments of Neurology (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), and Psychiatry (M.C.E., B.C.D., A.T.), the Massachusetts Alzheimer's Disease Research Center (M.C.E., B.C.D., A.T.), and the Athinoula A. Martinos Center for Biomedical Imaging (B.C.D.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Michael Brickhouse
- *These authors contributed equally as co-first authors
- These authors contributed equally as co-senior authors
- From the Frontotemporal Disorders Unit (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), the Departments of Neurology (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), and Psychiatry (M.C.E., B.C.D., A.T.), the Massachusetts Alzheimer's Disease Research Center (M.C.E., B.C.D., A.T.), and the Athinoula A. Martinos Center for Biomedical Imaging (B.C.D.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Mark C Eldaief
- *These authors contributed equally as co-first authors
- These authors contributed equally as co-senior authors
- From the Frontotemporal Disorders Unit (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), the Departments of Neurology (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), and Psychiatry (M.C.E., B.C.D., A.T.), the Massachusetts Alzheimer's Disease Research Center (M.C.E., B.C.D., A.T.), and the Athinoula A. Martinos Center for Biomedical Imaging (B.C.D.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Bradford C Dickerson
- *These authors contributed equally as co-first authors
- These authors contributed equally as co-senior authors
- From the Frontotemporal Disorders Unit (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), the Departments of Neurology (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), and Psychiatry (M.C.E., B.C.D., A.T.), the Massachusetts Alzheimer's Disease Research Center (M.C.E., B.C.D., A.T.), and the Athinoula A. Martinos Center for Biomedical Imaging (B.C.D.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Alexandra Touroutoglou
- *These authors contributed equally as co-first authors
- These authors contributed equally as co-senior authors
- From the Frontotemporal Disorders Unit (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), the Departments of Neurology (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), and Psychiatry (M.C.E., B.C.D., A.T.), the Massachusetts Alzheimer's Disease Research Center (M.C.E., B.C.D., A.T.), and the Athinoula A. Martinos Center for Biomedical Imaging (B.C.D.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
169
|
Subcortical Structures in Demented Schizophrenia Patients: A Comparative Study. Biomedicines 2023; 11:biomedicines11010233. [PMID: 36672741 PMCID: PMC9855401 DOI: 10.3390/biomedicines11010233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
There are few studies on dementia and schizophrenia in older patients looking for structural differences. This paper aims to describe relation between cognitive performance and brain volumes in older schizophrenia patients. Twenty schizophrenic outpatients -10 without-dementia (SND), 10 with dementia (SD)- and fifteen healthy individuals -as the control group (CG)-, older than 50, were selected. Neuropsychological tests were used to examine cognitive domains. Brain volumes were calculated with magnetic resonance images. Cognitive performance was significantly better in CG than in schizophrenics. Cognitive performance was worst in SD than SND, except in semantic memory and visual attention. Hippocampal volumes showed significant differences between SD and CG, with predominance on the right side. Left thalamic volume was smaller in SD group than in SND. Structural differences were found in the hippocampus, amygdala, and thalamus; more evident in the amygdala and thalamus, which were mainly related to dementia. In conclusion, cognitive performance and structural changes allowed us to differentiate between schizophrenia patients and CG, with changes being more pronounced in SD than in SND. When comparing SND with SD, the functional alterations largely coincide, although sometimes in the opposite direction. Moreover, volume lost in the hippocampus, amygdala, and thalamus may be related to the possibility to develop dementia in schizophrenic patients.
Collapse
|
170
|
Katsumi Y, Putcha D, Eckbo R, Wong B, Quimby M, McGinnis S, Touroutoglou A, Dickerson BC. Anterior dorsal attention network tau drives visual attention deficits in posterior cortical atrophy. Brain 2023; 146:295-306. [PMID: 36237170 PMCID: PMC10060714 DOI: 10.1093/brain/awac245] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/16/2022] [Accepted: 06/21/2022] [Indexed: 01/11/2023] Open
Abstract
Posterior cortical atrophy (PCA), usually an atypical clinical syndrome of Alzheimer's disease, has well-characterized patterns of cortical atrophy and tau deposition that are distinct from typical amnestic presentations of Alzheimer's disease. However, the mechanisms underlying the cortical spread of tau in PCA remain unclear. Here, in a sample of 17 biomarker-confirmed (A+/T+/N+) individuals with PCA, we sought to identify functional networks with heightened vulnerability to tau pathology by examining the cortical distribution of elevated tau as measured by 18F-flortaucipir (FTP) PET. We then assessed the relationship between network-specific FTP uptake and visuospatial cognitive task performance. As predicted, we found consistent and prominent localization of tau pathology in the dorsal attention network and visual network of the cerebral cortex. Elevated FTP uptake within the dorsal attention network (particularly the ratio of FTP uptake between the anterior and posterior nodes) was associated with poorer visuospatial attention in PCA; associations were also identified in other functional networks, although to a weaker degree. Furthermore, using functional MRI data collected from each patient at wakeful rest, we found that a greater anterior-to-posterior ratio in FTP uptake was associated with stronger intrinsic functional connectivity between anterior and posterior nodes of the dorsal attention network. Taken together, we conclude that our cross-sectional marker of anterior-to-posterior FTP ratio could indicate tau propagation from posterior to anterior dorsal attention network nodes, and that this anterior progression occurs in relation to intrinsic functional connectivity within this network critical for visuospatial attention. Our findings help to clarify the spatiotemporal pattern of tau propagation in relation to visuospatial cognitive decline and highlight the key role of the dorsal attention network in the disease progression of PCA.
Collapse
Affiliation(s)
- Yuta Katsumi
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Deepti Putcha
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ryan Eckbo
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Bonnie Wong
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Megan Quimby
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Scott McGinnis
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Alzheimer’s Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
171
|
Chong CD, Nikolova S, Dumkrieger G, Wu T, Berisha V, Li J, Ross K, Schwedt TJ. Thalamic subfield iron accumulation after acute mild traumatic brain injury as a marker of future post-traumatic headache intensity. Headache 2023; 63:156-164. [PMID: 36651577 PMCID: PMC10184776 DOI: 10.1111/head.14446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To explore alterations in thalamic subfield volume and iron accumulation in individuals with post-traumatic headache (PTH) relative to healthy controls. BACKGROUND The thalamus plays a pivotal role in the pathomechanism of pain and headache, yet the role of the thalamus in PTH attributed to mild traumatic brain injury (mTBI) remains unclear. METHODS A total of 107 participants underwent multimodal T1-weighted and T2* brain magnetic resonance imaging. Using a clinic-based observational study, thalamic subfield volume and thalamic iron accumulation were explored in 52 individuals with acute PTH (mean age = 41.3; standard deviation [SD] = 13.5), imaged on average 24 days post mTBI, and compared to 55 healthy controls (mean age = 38.3; SD = 11.7) without history of mTBI or migraine. Symptoms of mTBI and headache characteristics were assessed at baseline (0-59 days post mTBI) (n = 52) and 3 months later (n = 46) using the Symptom Evaluation of the Sports Concussion Assessment Tool (SCAT-5) and a detailed headache history questionnaire. RESULTS Relative to controls, individuals with acute PTH had significantly less volume in the lateral geniculate nucleus (LGN) (mean volume: PTH = 254.1, SD = 43.4 vs. controls = 278.2, SD = 39.8; p = 0.003) as well as more iron deposition in the left LGN (PTH: T2* signal = 38.6, SD = 6.5 vs. controls: T2* signal = 45.3, SD = 2.3; p = 0.048). Correlations in individuals with PTH revealed a positive relationship between left LGN T2* iron deposition and SCAT-5 symptom severity score at baseline (r = -0.29, p = 0.019) and maximum headache intensity at the 3-month follow-up (r = -0.47, p = 0.002). CONCLUSION Relative to healthy controls, individuals with acute PTH had less volume and higher iron deposition in the left LGN. Higher iron deposition in the left LGN might reflect mTBI severity and poor headache recovery.
Collapse
Affiliation(s)
- Catherine D Chong
- Department of Neurology, Mayo Clinic, Phoenix, Arizona, USA.,ASU-Mayo Center for Innovative Imaging, Phoenix, Arizona, USA
| | | | | | - Teresa Wu
- ASU-Mayo Center for Innovative Imaging, Phoenix, Arizona, USA.,School of Computing and Augmented Intelligence, Arizona State University, Tempe, Arizona, USA
| | - Visar Berisha
- ASU-Mayo Center for Innovative Imaging, Phoenix, Arizona, USA.,School of Electrical, Computer and Energy Engineering and College of Health Solutions, Arizona State University, Tempe, Arizona, USA.,College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Jing Li
- School of Industrial and Systems Engineering, Georgia Tech, Atlanta, Georgia, USA
| | | | - Todd J Schwedt
- Department of Neurology, Mayo Clinic, Phoenix, Arizona, USA.,ASU-Mayo Center for Innovative Imaging, Phoenix, Arizona, USA
| |
Collapse
|
172
|
Simonetti A, Lijffijt M, Kurian S, Saxena J, Janiri D, Mazza M, Carriero G, Moccia L, Mwangi B, Swann AC, Soares JC. Neuroanatomical Correlates of the Late Positive Potential in Youth with Pediatric Bipolar Disorder. Curr Neuropharmacol 2023; 21:1617-1630. [PMID: 37056060 PMCID: PMC10472816 DOI: 10.2174/1570159x21666230413104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND The late positive potential (LPP) could be a marker of emotion dysregulation in youth with pediatric bipolar disorder (PBD). However, the neuroanatomical correlates of the LPP are still not clarified. OBJECTIVE To provide cortical and deep gray matter correlates of the LPP in youth, specifically, youth with PBD. METHODS Twenty-four 7 to 17 years-old children with PBD and 28 healthy controls (HC) underwent cortical thickness and deep gray matter volumes measurements through magnetic resonance imaging and LPP measurement elicited by passively viewing emotional faces through electroencephalography. T-tests compared group differences in LPP, cortical thickness, and deep gray matter volumes. Linear regressions tested the relationship between LPP amplitude and cortical thickness/deep gray matter volumes. RESULTS PBD had a more pronounced LPP amplitude for happy faces and a thinner cortex in prefrontal areas than HC. While considering both groups, a higher LPP amplitude was associated with a thicker cortex across occipital and frontal lobes, and with a smaller right globus pallidus volume. In addition, a higher LPP amplitude for happy faces was associated with smaller left caudate and left globus pallidus volumes across both groups. Finally, the LPP amplitude correlated negatively with right precentral gyrus thickness across youth with PBD, but positively across HC. CONCLUSION Neural correlates of LPP in youth included fronto-occipital areas that have been associated also with emotion processing and control. The opposite relationship between BPD and HC of LPP amplitude and right precentral gyrus thickness might explain the inefficacy of the emotional control system in PBD.
Collapse
Affiliation(s)
- Alessio Simonetti
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neuroscience, Section of Psychiatry; Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Marijn Lijffijt
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, 77030, USA
| | - Sherin Kurian
- Department of Psychiatry, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Johanna Saxena
- Department of Psychiatry, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Delfina Janiri
- Department of Neuroscience, Section of Psychiatry; Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Marianna Mazza
- Department of Neuroscience, Section of Psychiatry; Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Giulio Carriero
- Department of Neuroscience, Section of Psychiatry; Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Lorenzo Moccia
- Department of Neuroscience, Section of Psychiatry; Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Benson Mwangi
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Alan C. Swann
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, 77030, USA
| | - Jair C. Soares
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, 77030, USA
| |
Collapse
|
173
|
Nazlee N, Waiter GD, Sandu A. Age-associated sex and asymmetry differentiation in hemispheric and lobar cortical ribbon complexity across adulthood: A UK Biobank imaging study. Hum Brain Mapp 2023; 44:49-65. [PMID: 36574599 PMCID: PMC9783444 DOI: 10.1002/hbm.26076] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/28/2022] [Accepted: 08/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cortical morphology changes with ageing and age-related neurodegenerative diseases. Previous studies suggest that the age effect is more pronounced in the frontal lobe. However, our knowledge of structural complexity changes in male and female brains is still limited. We measured cortical ribbon complexity through fractal dimension (FD) analysis at the hemisphere and lobe level in 7010 individuals from the UK Biobank imaging cohort to study age-related sex differences (3332 males, age ranged 45-79 years). FD decreases significantly with age and sexual dimorphism exists. With correction for brain size, females showed higher complexity in the left hemisphere and left and right parietal lobes whereas males showed higher complexity in the right temporal and left and right occipital lobes. A nonlinear age effect was observed in the left and right frontal, and right temporal lobes. Differential patterns of age effects were observed in both sexes with relatively more age-affected regions in males. Significantly higher rightward asymmetries at hemisphere, frontal, parietal, and occipital lobe level and higher leftward asymmetry in temporal lobe were observed. There was no age-by-sex-by asymmetry interaction in any region. When controlling for brain size, the leftward hemispheric, and temporal lobe asymmetry decreased with age. Males had significantly lower asymmetry between hemispheres and higher asymmetry in the parietal and occipital lobes than females. This work provides distinct patterns of age-related sex and asymmetry differences that can aid in the future development of sex-specific models of the normal brain to ascribe cognitive functional significance of these patterns in ageing.
Collapse
Affiliation(s)
- Nafeesa Nazlee
- Aberdeen Biomedical Imaging CentreUniversity of AberdeenAberdeenScotland
| | - Gordon D. Waiter
- Aberdeen Biomedical Imaging CentreUniversity of AberdeenAberdeenScotland
| | - Anca‐Larisa Sandu
- Aberdeen Biomedical Imaging CentreUniversity of AberdeenAberdeenScotland
| |
Collapse
|
174
|
Kim SY, An SJ, Han JH, Kang Y, Bae EB, Tae WS, Ham BJ, Han KM. Childhood abuse and cortical gray matter volume in patients with major depressive disorder. Psychiatry Res 2023; 319:114990. [PMID: 36495619 DOI: 10.1016/j.psychres.2022.114990] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Childhood abuse is associated with brain structural alterations; however, few studies have investigated the association between specific types of childhood abuse and cortical volume in patients with major depressive disorder (MDD). We aimed to investigate the association between specific types of childhood abuse and gray matter volumes in patients with MDD. Seventy-five participants with MDD and 97 healthy controls (HCs) aged 19-64 years were included. Cortical gray matter volumes were compared between MDD and HC groups, and also compared according to exposure to each type of specific childhood abuse. Emotional, sexual, and physical childhood abuse were assessed using the 28-item Childhood Trauma Questionnaire. Patients with MDD showed a significantly decreased gray matter volume in the right anterior cingulate gyrus (ACG). Childhood sexual abuse (CSA) was associated with significantly decreased gray matter volume in the right middle occipital gyrus (MOG). In the post-hoc comparison of volumes of the right ACG and MOG, MDD patients with CSA had significantly smaller volumes in the right MOG than did MDD patients without CSA or HCs. The right MOG volume decrease could be a neuroimaging marker associated with CSA and morphological changes in the brain may be involved in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Soo Young Kim
- Department of Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Seong Joon An
- Department of Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Jong Hee Han
- Department of Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Eun Bit Bae
- Research Institute for Medical Bigdata Science, Korea University, Seoul, South Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University, Seoul, South Korea
| | - Byung-Joo Ham
- Brain Convergence Research Center, Korea University, Seoul, South Korea; Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Kyu-Man Han
- Brain Convergence Research Center, Korea University, Seoul, South Korea; Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
175
|
Planchuelo-Gómez Á, García-Azorín D, Guerrero ÁL, Rodríguez M, Aja-Fernández S, de Luis-García R. Structural brain changes in patients with persistent headache after COVID-19 resolution. J Neurol 2023; 270:13-31. [PMID: 36178541 PMCID: PMC9522538 DOI: 10.1007/s00415-022-11398-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 01/09/2023]
Abstract
Headache is among the most frequently reported symptoms after resolution of COVID-19. We assessed structural brain changes using T1- and diffusion-weighted MRI processed data from 167 subjects: 40 patients who recovered from COVID-19 but suffered from persistent headache without prior history of headache (COV), 41 healthy controls, 43 patients with episodic migraine and 43 patients with chronic migraine. To evaluate gray matter and white matter changes, morphometry parameters and diffusion tensor imaging-based measures were employed, respectively. COV patients showed significant lower cortical gray matter volume and cortical thickness than healthy subjects (p < 0.05, false discovery rate corrected) in the inferior frontal and the fusiform cortex. Lower fractional anisotropy and higher radial diffusivity (p < 0.05, family-wise error corrected) were observed in COV patients compared to controls, mainly in the corpus callosum and left hemisphere. COV patients showed higher cortical volume and thickness than migraine patients in the cingulate and frontal gyri, paracentral lobule and superior temporal sulcus, lower volume in subcortical regions and lower curvature in the precuneus and cuneus. Lower diffusion metric values in COV patients compared to migraine were identified prominently in the right hemisphere. COV patients present diverse changes in the white matter and gray matter structure. White matter changes seem to be associated with impairment of fiber bundles. Besides, the gray matter changes and other white matter modifications such as axonal integrity loss seemed subtle and less pronounced than those detected in migraine, showing that persistent headache after COVID-19 resolution could be an intermediate state between normality and migraine.
Collapse
Affiliation(s)
- Álvaro Planchuelo-Gómez
- Laboratorio de Procesado de Imagen (LPI), Universidad de Valladolid, 47011, Valladolid, Spain
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, CF24 4HQ, UK
| | - David García-Azorín
- Department of Neurology, Headache Unit, Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal, 3, 47003, Valladolid, Spain.
- Department of Medicine, Universidad de Valladolid, 47005, Valladolid, Spain.
| | - Ángel L Guerrero
- Department of Neurology, Headache Unit, Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal, 3, 47003, Valladolid, Spain
- Department of Medicine, Universidad de Valladolid, 47005, Valladolid, Spain
| | - Margarita Rodríguez
- Department of Radiology, Hospital Clínico Universitario de Valladolid, 47003, Valladolid, Spain
| | - Santiago Aja-Fernández
- Laboratorio de Procesado de Imagen (LPI), Universidad de Valladolid, 47011, Valladolid, Spain
| | - Rodrigo de Luis-García
- Laboratorio de Procesado de Imagen (LPI), Universidad de Valladolid, 47011, Valladolid, Spain
| |
Collapse
|
176
|
Bramen JE, Siddarth P, Popa ES, Kress GT, Rapozo MK, Hodes JF, Ganapathi AS, Slyapich CB, Glatt RM, Pierce K, Porter VR, Wong C, Kim M, Dye RV, Panos S, Bookheimer T, Togashi T, Loong S, Raji CA, Bookheimer SY, Roach JC, Merrill DA. Impact of Eating a Carbohydrate-Restricted Diet on Cortical Atrophy in a Cross-Section of Amyloid Positive Patients with Alzheimer's Disease: A Small Sample Study. J Alzheimers Dis 2023; 96:329-342. [PMID: 37742646 PMCID: PMC10657694 DOI: 10.3233/jad-230458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND A carbohydrate-restricted diet aimed at lowering insulin levels has the potential to slow Alzheimer's disease (AD). Restricting carbohydrate consumption reduces insulin resistance, which could improve glucose uptake and neural health. A hallmark feature of AD is widespread cortical thinning; however, no study has demonstrated that lower net carbohydrate (nCHO) intake is linked to attenuated cortical atrophy in patients with AD and confirmed amyloidosis. OBJECTIVE We tested the hypothesis that individuals with AD and confirmed amyloid burden eating a carbohydrate-restricted diet have thicker cortex than those eating a moderate-to-high carbohydrate diet. METHODS A total of 31 patients (mean age 71.4±7.0 years) with AD and confirmed amyloid burden were divided into two groups based on a 130 g/day nCHO cutoff. Cortical thickness was estimated from T1-weighted MRI using FreeSurfer. Cortical surface analyses were corrected for multiple comparisons using cluster-wise probability. We assessed group differences using a two-tailed two-independent sample t-test. Linear regression analyses using nCHO as a continuous variable, accounting for confounders, were also conducted. RESULTS The lower nCHO group had significantly thicker cortex within somatomotor and visual networks. Linear regression analysis revealed that lower nCHO intake levels had a significant association with cortical thickness within the frontoparietal, cingulo-opercular, and visual networks. CONCLUSIONS Restricting carbohydrates may be associated with reduced atrophy in patients with AD. Lowering nCHO to under 130 g/day would allow patients to follow the well-validated MIND diet while benefiting from lower insulin levels.
Collapse
Affiliation(s)
- Jennifer E. Bramen
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Saint John’s Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
- Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Prabha Siddarth
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Emily S. Popa
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
| | - Gavin T. Kress
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Molly K. Rapozo
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
| | - John F. Hodes
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Aarthi S. Ganapathi
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
| | - Colby B. Slyapich
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
| | - Ryan M. Glatt
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
| | - Kyron Pierce
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
| | - Verna R. Porter
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Saint John’s Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
- Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Claudia Wong
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Mihae Kim
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Richelin V. Dye
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Loma Linda University, School of Medicine and School of Behavioral Health, Loma Linda, CA, USA
| | - Stella Panos
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
| | - Tess Bookheimer
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
| | - Tori Togashi
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Loma Linda University, School of Medicine and School of Behavioral Health, Loma Linda, CA, USA
| | - Spencer Loong
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Loma Linda University, School of Medicine and School of Behavioral Health, Loma Linda, CA, USA
| | - Cyrus A. Raji
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Susan Y. Bookheimer
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | | | - David A. Merrill
- Pacific Brain Health Center, Pacific Neuroscience Institute and Foundation, Santa Monica, CA, USA
- Saint John’s Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
- Providence Saint John’s Health Center, Santa Monica, CA, USA
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
177
|
Putcha D, Katsumi Y, Brickhouse M, Flaherty R, Salat DH, Touroutoglou A, Dickerson BC. Gray to white matter signal ratio as a novel biomarker of neurodegeneration in Alzheimer's disease. Neuroimage Clin 2022; 37:103303. [PMID: 36586361 PMCID: PMC9830315 DOI: 10.1016/j.nicl.2022.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is characterized neuropathologically by β-amyloid (Aβ) plaques, hyperphosphorylated tau neurofibrillary tangles, and neurodegeneration, which lead to a phenotypically heterogeneous cognitive-behavioral dementia syndrome. Our understanding of how these neuropathological and neurodegeneration biomarkers relate to each other is still evolving. A relatively new approach to measuring structural brain change, gray matter to white matter signal intensity ratio (GWR), quantifies the signal contrast between these tissue compartments, and has emerged as a promising marker of AD-related neurodegeneration. We sought to validate GWR as a novel MRI biomarker of neurodegeneration in 29 biomarker positive individuals across the atypical syndromic spectrum of AD. Bivariate correlation analyses revealed that GWR was associated with cortical thickness, tau PET, and amyloid PET, with GWR showing a larger magnitude of abnormality than cortical thickness. We also found that combining GWR, cortical thickness, and amyloid PET better explained observed tau PET signal than using these modalities alone, suggesting that the three imaging biomarkers contribute independently and synergistically to explaining the variance in the distribution of tau pathology. We conclude that GWR is a uniquely sensitive in vivo marker of neurodegenerative change that reflects pathological mechanisms which may occur prior to cortical atrophy. By using all of these imaging biomarkers of AD together, we may be better able to capture, and possibly predict, AD neuropathologic changes in vivo. We hope that such an approach will ultimately contribute to better endpoints to evaluate the efficacy of therapeutic interventions as we move toward an era of disease-modifying treatments for this devastating disease.
Collapse
Affiliation(s)
- Deepti Putcha
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Yuta Katsumi
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Michael Brickhouse
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ryn Flaherty
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David H Salat
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
178
|
Kennedy E, Nivins S, Thompson B, McKinlay CJD, Harding J, McKinlay C, Alsweiler J, Brown G, Gamble G, Wouldes T, Keegan P, Harris D, Chase JG, Thompson B, Turuwhenua J, Rogers J, Kennedy E, Shah R, Dai D, Nivins S, Ledger J, Macdonald S, McNeill A, Bevan C, Burakevych N, May R, Hossin S, McKnight G, Hasan R, Wilson J, Knopp J, Chakraborty A, Zhou T, Miller S. Neurodevelopmental correlates of caudate volume in children born at risk of neonatal hypoglycaemia. Pediatr Res 2022; 93:1634-1641. [PMID: 36513807 DOI: 10.1038/s41390-022-02410-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neonatal hypoglycaemia can lead to brain damage and neurocognitive impairment. Neonatal hypoglycaemia is associated with smaller caudate volume in the mid-childhood. We investigated the relationship between neurodevelopmental outcomes and caudate volume and whether this relationship was influenced by neonatal hypoglycaemia. METHODS Children born at risk of neonatal hypoglycaemia ≥36 weeks' gestation who participated in a prospective cohort study underwent neurodevelopmental assessment (executive function, academic achievement, and emotional-behavioural regulation) and MRI at age 9-10 years. Neonatal hypoglycaemia was defined as at least one hypoglycaemic episode (blood glucose concentration <2.6 mmol/L or at least 10 min of interstitial glucose concentrations <2.6 mmol/L). Caudate volume was computed using FreeSurfer. RESULTS There were 101 children with MRI and neurodevelopmental data available, of whom 70 had experienced neonatal hypoglycaemia. Smaller caudate volume was associated with greater parent-reported emotional and behavioural difficulties, and poorer prosocial behaviour. Caudate volume was significantly associated with visual memory only in children who had not experienced neonatal hypoglycaemia (interaction p = 0.03), but there were no other significant interactions between caudate volume and neonatal hypoglycaemia. CONCLUSION Smaller caudate volume is associated with emotional behaviour difficulties in the mid-childhood. Although neonatal hypoglycaemia is associated with smaller caudate volume, this appears not to contribute to clinically relevant neurodevelopmental deficits. IMPACT At 9-10 years of age, caudate volume was inversely associated with emotional-behavioural difficulties and positively associated with prosocial behaviour but was not related to executive function or educational achievement. Previous studies have suggested that neonatal hypoglycaemia may contribute to smaller caudate volume but exposure to neonatal hypoglycaemia did not appear to influence the relationship between caudate volume and behaviour. Among children not exposed to neonatal hypoglycaemia, caudate volume was also positively associated with visual memory, but no such association was detected among those exposed to neonatal hypoglycaemia. Understanding early-life factors that affect caudate development may provide targets for improving behavioural function.
Collapse
Affiliation(s)
- Eleanor Kennedy
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Samson Nivins
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Benjamin Thompson
- Liggins Institute, University of Auckland, Auckland, New Zealand.,School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada.,Centre for Eye and Vision Research, 17W Science Park, Hong Kong, Hong Kong
| | - Christopher J D McKinlay
- Kidz First Neonatal Care, Counties Manukau Health, Auckland, New Zealand.,Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand
| | - Jane Harding
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Ali TS, Lv J, Calamante F. Gradual changes in microarchitectural properties of cortex and juxtacortical white matter: Observed by anatomical and diffusion MRI. Magn Reson Med 2022; 88:2485-2503. [PMID: 36045582 DOI: 10.1002/mrm.29413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Characterization of cerebral cortex is challenged by the complexity and heterogeneity of its cyto- and myeloarchitecture. This study evaluates quantitative MRI metrics, measured across two cortical depths and in subcortical white matter (WM) adjacent to cortex (juxtacortical WM), indicative of myelin content, neurite density, and diffusion microenvironment, for a comprehensive characterization of cortical microarchitecture. METHODS High-quality structural and diffusion MRI data (N = 30) from the Human Connectome Project were processed to compute myelin index, neurite density index, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity from superficial cortex, deep cortex, and juxtacortical WM. The distributional patterns of these metrics were analyzed individually, correlated to one another, and were compared to established parcellations. RESULTS Our results supported that myeloarchitectonic and the coexisting cytoarchitectonic structures influence the diffusion properties of water molecules residing in cortex. Full cortical thickness showed myelination patterns similar to those previously observed in humans. Higher myelin indices with similar distributional patterns were observed in deep cortex whereas lower myelin indices were observed in superficial cortex. Neurite density index and other diffusion MRI derived parameters provided complementary information to myelination. Reliable and reproducible correlations were identified among the cortical microarchitectural properties and fiber distributional patterns in proximal WM structures. CONCLUSION We demonstrated gradual changes across the cortical sheath by assessing depth-specific cortical micro-architecture using anatomical and diffusion MRI. Mutually independent but coexisting features of cortical layers and juxtacortical WM provided new insights towards structural organizational units and variabilities across cortical regions and through depth.
Collapse
Affiliation(s)
- Tonima S Ali
- School of Biomedical Engineering, The University of Sydney, Sydney, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Jinglei Lv
- School of Biomedical Engineering, The University of Sydney, Sydney, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Sydney Imaging, The University of Sydney, Sydney, Australia
| | - Fernando Calamante
- School of Biomedical Engineering, The University of Sydney, Sydney, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Sydney Imaging, The University of Sydney, Sydney, Australia
| |
Collapse
|
180
|
Terock J, Bonk S, Frenzel S, Wittfeld K, Garvert L, Hosten N, Nauck M, Völzke H, Van der Auwera S, Grabe HJ. Vitamin D deficit is associated with accelerated brain aging in the general population. Psychiatry Res Neuroimaging 2022; 327:111558. [PMID: 36302278 DOI: 10.1016/j.pscychresns.2022.111558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 12/04/2022]
Abstract
Vitamin D deficiency has been associated with reduced neurocognitive functioning and the neurodegenerative processes. However, existing evidence on brain structural correlates of vitamin D deficiency is controversial. We sought to investigate associations of vitamin D levels with imaging patterns of brain aging. In addition, we investigated whether low vitamin D levels were associated with gray matter volumes, whole brain volumes and hippocampus volumes. Structural MRI data and vitamin D levels were obtained in 1,865 subjects from the general population. Linear regressions were applied to investigate the association of vitamin D levels and vitamin D deficiency with imaging derived brain age, total brain, gray matter and hippocampal volumes. Different sets of covariates were included. Vitamin D deficiency was significantly associated with increased brain age. Also, linear vitamin D levels were significantly associated with total brain and gray matter volumes, while no significant association with hippocampal volume was found. Further interaction analyses showed that this association was only significant for male subjects. Our results support previous findings suggesting that vitamin D-deficient individuals have an accelerated brain aging. In addition, associations between vitamin D levels and total brain/ gray matter volumes suggest neuroprotective effects of vitamin D on the brain.
Collapse
Affiliation(s)
- Jan Terock
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany; Department of Psychiatry and Psychotherapy, HELIOS Hanseklinikum Stralsund, Stralsund, Germany.
| | - Sarah Bonk
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany; German Center for Neurodegenerative Diseases DZNE, Site Rostock/ Greifswald, Germany
| | - Linda Garvert
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
| | - Norbert Hosten
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany; German Center for Neurodegenerative Diseases DZNE, Site Rostock/ Greifswald, Germany
| | - Hans Joergen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany; German Center for Neurodegenerative Diseases DZNE, Site Rostock/ Greifswald, Germany
| |
Collapse
|
181
|
Karaman BK, Mormino EC, Sabuncu MR. Machine learning based multi-modal prediction of future decline toward Alzheimer's disease: An empirical study. PLoS One 2022; 17:e0277322. [PMID: 36383528 PMCID: PMC9668188 DOI: 10.1371/journal.pone.0277322] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that progresses over decades. Early detection of individuals at high risk of future progression toward AD is likely to be of critical significance for the successful treatment and/or prevention of this devastating disease. In this paper, we present an empirical study to characterize how predictable an individual subjects' future AD trajectory is, several years in advance, based on rich multi-modal data, and using modern deep learning methods. Crucially, the machine learning strategy we propose can handle different future time horizons and can be trained with heterogeneous data that exhibit missingness and non-uniform follow-up visit times. Our experiments demonstrate that our strategy yields predictions that are more accurate than a model trained on a single time horizon (e.g. 3 years), which is common practice in prior literature. We also provide a comparison between linear and nonlinear models, verifying the well-established insight that the latter can offer a boost in performance. Our results also confirm that predicting future decline for cognitively normal (CN) individuals is more challenging than for individuals with mild cognitive impairment (MCI). Intriguingly, however, we discover that prediction accuracy decreases with increasing time horizon for CN subjects, but the trend is in the opposite direction for MCI subjects. Additionally, we quantify the contribution of different data types in prediction, which yields novel insights into the utility of different biomarkers. We find that molecular biomarkers are not as helpful for CN individuals as they are for MCI individuals, whereas magnetic resonance imaging biomarkers (hippocampus volume, specifically) offer a significant boost in prediction accuracy for CN individuals. Finally, we show how our model's prediction reveals the evolution of individual-level progression risk over a five-year time horizon. Our code is available at https://github.com/batuhankmkaraman/mlbasedad.
Collapse
Affiliation(s)
- Batuhan K. Karaman
- School of Electrical and Computer Engineering, Cornell University and Cornell Tech, New York, NY, United States of America
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States of America
| | - Elizabeth C. Mormino
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States of America
| | - Mert R. Sabuncu
- School of Electrical and Computer Engineering, Cornell University and Cornell Tech, New York, NY, United States of America
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States of America
| | | |
Collapse
|
182
|
Yoo HJ, Nashiro K, Min J, Cho C, Bachman SL, Nasseri P, Porat S, Dutt S, Grigoryan V, Choi P, Thayer JF, Lehrer PM, Chang C, Mather M. Heart rate variability (HRV) changes and cortical volume changes in a randomized trial of five weeks of daily HRV biofeedback in younger and older adults. Int J Psychophysiol 2022; 181:50-63. [PMID: 36030986 PMCID: PMC11195601 DOI: 10.1016/j.ijpsycho.2022.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/02/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022]
Abstract
Previous studies indicate that the structure and function of medial prefrontal cortex (PFC) and lateral orbitofrontal cortex (OFC) are associated with heart rate variability (HRV). Typically, this association is assumed to reflect the PFC's role in controlling HRV and emotion regulation, with better prefrontal structural integrity supporting greater HRV and better emotion regulation. However, as a control system, the PFC must monitor and respond to heart rate oscillatory activity. Thus, engaging in regulatory feedback during heart rate oscillatory activity may over time help shape PFC structure, as relevant circuits and connections are modified. In the current study with younger and older adults, we tested whether 5 weeks of daily sessions of biofeedback to increase heart rate oscillations (Osc+ condition) vs. to decrease heart rate oscillations (Osc- condition) affected cortical volume in left OFC and right OFC, two regions particularly associated with HRV in prior studies. The left OFC showed significant differences in volume change across conditions, with Osc+ increasing volume relative to Osc-. The volume changes in left OFC were significantly correlated with changes in mood disturbance. In addition, resting low frequency HRV increased more in the Osc+ than in the Osc- condition. These findings indicate that daily biofeedback sessions regulating heart rate oscillatory activity can shape both resting HRV and the brain circuits that help control HRV and regulate emotion.
Collapse
Affiliation(s)
- Hyun Joo Yoo
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Kaoru Nashiro
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Jungwon Min
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Christine Cho
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Shelby L Bachman
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Padideh Nasseri
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Shai Porat
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Shubir Dutt
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Vardui Grigoryan
- University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - Paul Choi
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Julian F Thayer
- University of California, Irvine, Irvine, CA 92697, United States of America
| | - Paul M Lehrer
- Rutgers University, Piscataway, NJ 08854, United States of America
| | - Catie Chang
- Vanderbilt University, TN 37235, United States of America
| | - Mara Mather
- University of Southern California, Los Angeles, CA 90089, United States of America.
| |
Collapse
|
183
|
Temiz G, Atkinson-Clement C, Lau B, Czernecki V, Bardinet E, Francois C, Worbe Y, Karachi C. Structural hyperconnectivity of the subthalamic area with limbic cortices underpins anxiety and impulsivity in Tourette syndrome. Cereb Cortex 2022; 33:5181-5191. [PMID: 36310093 DOI: 10.1093/cercor/bhac408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Tourette syndrome (TS) is a neurodevelopmental disorder characterized by motor and vocal tics, which is often associated with psychiatric comorbidities. Dysfunction of basal ganglia pathways might account for the wide spectrum of symptoms in TS patients. Although psychiatric symptoms may be related to limbic networks, the specific contribution of different limbic structures remains unclear. We used tractography to investigate cortical connectivity with the striatal area (caudate, putamen, core and shell of the nucleus accumbens), the subthalamic nucleus (STN), and the adjacent medial subthalamic region (MSR) in 58 TS patients and 35 healthy volunteers. 82% of TS patients showed psychiatric comorbidities, with significantly higher levels of anxiety and impulsivity compared to controls. Tractography analysis revealed significantly increased limbic cortical connectivity of the left MSR with the entorhinal (BA34), insular (BA48), and temporal (BA38) cortices in TS patients compared to controls. Furthermore, we found that left insular-STN connectivity was positively correlated with impulsivity scores for all subjects and with anxiety scores for all subjects, particularly for TS. Our study highlights a heterogenous modification of limbic structure connectivity in TS, with specific abnormalities found for the subthalamic area. Abnormal connectivity with the insular cortex might underpin the higher level of impulsivity and anxiety observed in TS.
Collapse
Affiliation(s)
- Gizem Temiz
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
| | - Cyril Atkinson-Clement
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
| | - Brian Lau
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
| | - Virginie Czernecki
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
- Department of Neurology, Pitié Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris , 75013 Paris, France
| | - Eric Bardinet
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
| | - Chantal Francois
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
| | - Yulia Worbe
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
- Department of Neurophysiology, Saint Antoine Hospital, Assistance Publique-Hôpitaux de Paris , 75012 Paris, France
| | - Carine Karachi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute- ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière , 75013 Paris, France
- Department of Neurosurgery, Pitié Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris , 75013 Paris, France
| |
Collapse
|
184
|
Nian R, Gao M, Zhang S, Yu J, Gholipour A, Kong S, Wang R, Sui Y, Velasco-Annis C, Tomas-Fernandez X, Li Q, Lv H, Qian Y, Warfield SK. Toward evaluation of multiresolution cortical thickness estimation with FreeSurfer, MaCRUISE, and BrainSuite. Cereb Cortex 2022; 33:5082-5096. [PMID: 36288912 DOI: 10.1093/cercor/bhac401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Advances in Magnetic Resonance Imaging hardware and methodologies allow for promoting the cortical morphometry with submillimeter spatial resolution. In this paper, we generated 3D self-enhanced high-resolution (HR) MRI imaging, by adapting 1 deep learning architecture, and 3 standard pipelines, FreeSurfer, MaCRUISE, and BrainSuite, have been collectively employed to evaluate the cortical thickness. We systematically investigated the differences in cortical thickness estimation for MRI sequences at multiresolution homologously originated from the native image. It has been revealed that there systematically exhibited the preferences in determining both inner and outer cortical surfaces at higher resolution, yielding most deeper cortical surface placements toward GM/WM or GM/CSF boundaries, which directs a consistent reduction tendency of mean cortical thickness estimation; on the contrary, the lower resolution data will most probably provide a more coarse and rough evaluation in cortical surface reconstruction, resulting in a relatively thicker estimation. Although the differences of cortical thickness estimation at the diverse spatial resolution varied with one another, almost all led to roughly one-sixth to one-fifth significant reduction across the entire brain at the HR, independent to the pipelines we applied, which emphasizes on generally coherent improved accuracy in a data-independent manner and endeavors to cost-efficiency with quantitative opportunities.
Collapse
Affiliation(s)
- Rui Nian
- School of Electronic Engineering, Ocean University of China, 238 Songling Road, Qingdao, China
- Harvard Medical School, 25 Shattuck Street, Boston, MA, United States
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States
| | - Mingshan Gao
- Citigroup Services and Technology Limited, 1000 Chenhi Road, Shanghai, China
| | | | - Junjie Yu
- School of Electronic Engineering, Ocean University of China, 238 Songling Road, Qingdao, China
| | - Ali Gholipour
- Harvard Medical School, 25 Shattuck Street, Boston, MA, United States
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States
| | - Shuang Kong
- School of Electronic Engineering, Ocean University of China, 238 Songling Road, Qingdao, China
| | - Ruirui Wang
- School of Electronic Engineering, Ocean University of China, 238 Songling Road, Qingdao, China
| | - Yao Sui
- Harvard Medical School, 25 Shattuck Street, Boston, MA, United States
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States
| | - Clemente Velasco-Annis
- Harvard Medical School, 25 Shattuck Street, Boston, MA, United States
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States
| | - Xavier Tomas-Fernandez
- Harvard Medical School, 25 Shattuck Street, Boston, MA, United States
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States
| | - Qiuying Li
- School of Electronic Engineering, Ocean University of China, 238 Songling Road, Qingdao, China
| | - Hangyu Lv
- School of Electronic Engineering, Ocean University of China, 238 Songling Road, Qingdao, China
| | - Yuqi Qian
- School of Electronic Engineering, Ocean University of China, 238 Songling Road, Qingdao, China
| | - Simon K Warfield
- Harvard Medical School, 25 Shattuck Street, Boston, MA, United States
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States
| |
Collapse
|
185
|
Smith JL, Allen JW, Fleischer CC, Harper DE. Topology of pain networks in patients with temporomandibular disorder and pain-free controls with and without concurrent experimental pain: A pilot study. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 3:966398. [PMID: 36324873 PMCID: PMC9619074 DOI: 10.3389/fpain.2022.966398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022]
Abstract
Temporomandibular disorders (TMD) involve chronic pain in the masticatory muscles and jaw joints, but the mechanisms underlying the pain are heterogenous and vary across individuals. In some cases, structural, functional, and metabolic changes in the brain may underlie the condition. In the present study, we evaluated the functional connectivity between 86 regions of interest (ROIs), which were chosen based on previously reported neuroimaging studies of pain and differences in brain morphology identified in an initial surface-based morphometry analysis. Our main objectives were to investigate the topology of the network formed by these ROIs and how it differs between individuals with TMD and chronic pain (n = 16) and pain-free control participants (n = 12). In addition to a true resting state functional connectivity scan, we also measured functional connectivity during a 6-min application of a noxious cuff stimulus applied to the left leg. Our principal finding is individuals with TMD exhibit more suprathreshold correlations (higher nodal degree) among all ROIs but fewer "hub" nodes (i.e., decreased betweenness centrality) across conditions and across all pain pathways. These results suggest is this pain-related network of nodes may be "over-wired" in individuals with TMD and chronic pain compared to controls, both at rest and during experimental pain.
Collapse
Affiliation(s)
- Jeremy L. Smith
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Jason W. Allen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States,Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Candace C. Fleischer
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States,Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Daniel E. Harper
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States,Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States,Correspondence: Daniel E. Harper
| |
Collapse
|
186
|
Wang X, Lu L, Liao M, Wei H, Chen X, Huang X, Liu L, Gong Q. Abnormal cortical morphology in children and adolescents with intermittent exotropia. Front Neurosci 2022; 16:923213. [PMID: 36267233 PMCID: PMC9577327 DOI: 10.3389/fnins.2022.923213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To investigate cortical differences, age-related cortical differences, and structural covariance differences between children with intermittent exotropia (IXT) and healthy controls (HCs) using high-resolution magnetic resonance imaging (MRI). Methods Sixteen IXT patients and 16 HCs underwent MRI using a 3-T MR scanner. FreeSurfer software was used to obtain measures of cortical volume, thickness, and surface area. Group differences in cortical thickness, volume and surface area were examined using a general linear model with intracranial volume (ICV), age and sex as covariates. Then, the age-related cortical differences between the two groups and structural covariance in abnormal morphometric changes were examined. Results Compared to HCs, IXT patients demonstrated significantly decreased surface area in the left primary visual cortex (PVC), and increased surface area in the left inferior temporal cortex (ITC). We also found increased cortical thickness in the left orbitofrontal cortex (OFC), right middle temporal cortex (MT), and right inferior frontal cortex (IFC). No significant differences were found in cortical volume between the two groups. There were several negative correlations between neuroanatomic measurements and age in the HC group that were not observed in the IXT group. In addition, we identified altered patterns of structural correlations across brain regions in patients with IXT. Conclusion To our knowledge, this study is the first to characterize the cortical morphometry of the children and adolescents with IXT. Based on our results, children and adolescents with IXT exhibited significant alterations in the PVC and association cortices, different cortical morphometric development patterns, and disrupted structural covariance across brain regions.
Collapse
Affiliation(s)
- Xi Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Lu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Liao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Wei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohang Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xiaoqi Huang,
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, China
- Longqian Liu,
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
187
|
Schlemm E, Frey BM, Mayer C, Petersen M, Fiehler J, Hanning U, Kühn S, Twerenbold R, Gallinat J, Gerloff C, Thomalla G, Cheng B. Equalization of Brain State Occupancy Accompanies Cognitive Impairment in Cerebral Small Vessel Disease. Biol Psychiatry 2022; 92:592-602. [PMID: 35691727 DOI: 10.1016/j.biopsych.2022.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/08/2022] [Accepted: 03/23/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND Cognitive impairment is a hallmark of cerebral small vessel disease (cSVD). Functional magnetic resonance imaging has highlighted connections between patterns of brain activity and variability in behavior. We aimed to characterize the associations between imaging markers of cSVD, dynamic connectivity, and cognitive impairment. METHODS We obtained magnetic resonance imaging and clinical data from the population-based Hamburg City Health Study. cSVD was quantified by white matter hyperintensities and peak-width of skeletonized mean diffusivity (PSMD). Resting-state blood oxygen level-dependent signals were clustered into discrete brain states, for which fractional occupancies (%) and dwell times (seconds) were computed. Cognition in multiple domains was assessed using validated tests. Regression analysis was used to quantify associations between white matter damage, spatial coactivation patterns, and cognitive function. RESULTS Data were available for 979 participants (ages 45-74 years, median white matter hyperintensity volume 0.96 mL). Clustering identified five brain states with the most time spent in states characterized by activation (+) or suppression (-) of the default mode network (DMN) (fractional occupancy: DMN+ = 25.1 ± 7.2%, DMN- = 25.5 ± 7.2%). Every 4.7-fold increase in white matter hyperintensity volume was associated with a 0.95-times reduction of the odds of occupying DMN+ or DMN-. Time spent in DMN-related brain states was associated with executive function. CONCLUSIONS Associations between white matter damage, whole-brain spatial coactivation patterns, and cognition suggest equalization of time spent in different brain states as a marker for cSVD-associated cognitive decline. Reduced gradients between brain states in association with brain damage and cognitive impairment reflect the dedifferentiation hypothesis of neurocognitive aging in a network-theoretical context.
Collapse
Affiliation(s)
- Eckhard Schlemm
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - Benedikt M Frey
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Carola Mayer
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Marvin Petersen
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Fiehler
- Department of Neuroradiology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Uta Hanning
- Department of Neuroradiology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Kühn
- Department of Psychiatry, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Raphael Twerenbold
- Department of Cardiology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Jürgen Gallinat
- Department of Psychiatry, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
188
|
Calandrelli R, Panfili M, Onofrj V, Tran HE, Piludu F, Guglielmi V, Colosimo C, Pilato F. Brain atrophy pattern in patients with mild cognitive impairment: MRI study. Transl Neurosci 2022; 13:335-348. [PMID: 36250040 PMCID: PMC9518661 DOI: 10.1515/tnsci-2022-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/21/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
We evaluated the accuracy of the quantitative and semiquantitative analysis in detecting regional atrophy patterns and differentiating mild cognitive impairment patients who remain stable (aMCI-S) from patients who develop Alzheimer’s disease (aMCI-AD) at clinical follow-up. Baseline magnetic resonance imaging was used for quantitative and semiquantitative analysis using visual rating scales. Visual rating scores were related to gray matter thicknesses or volume measures of some structures belonging to the same brain regions. Receiver operating characteristic (ROC) analysis was performed to assess measures’ accuracy in differentiating aMCI-S from aMCI-AD. Comparing aMCI-S and aMCI-AD patients, significant differences were found for specific rating scales, for cortical thickness belonging to the middle temporal lobe (MTL), anterior temporal (AT), and fronto-insular (FI) regions, for gray matter volumes belonging to MTL and AT regions. ROC curve analysis showed that middle temporal atrophy, AT, and FI visual scales showed better diagnostic accuracy than quantitative measures also when thickness measures were combined with hippocampal volumes. Semiquantitative evaluation, performed by trained observers, is a fast and reliable tool in differentiating, at the early stage of disease, aMCI patients that remain stable from those patients that may progress to AD since visual rating scales may be informative both about early hippocampal volume loss and cortical thickness reduction.
Collapse
Affiliation(s)
- Rosalinda Calandrelli
- Dipartimento di Diagnostica per Immagini, Radioterapia, Oncologia ed Ematologia, Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Largo A. Gemelli, 1 , 00168 Rome , Italy
| | - Marco Panfili
- Dipartimento di Diagnostica per Immagini, Radioterapia, Oncologia ed Ematologia, Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Largo A. Gemelli, 1 , 00168 Rome , Italy
| | - Valeria Onofrj
- Department of Medical Imaging, Cliniques Universitaires Saint-Luc , Brussels , Belgium
| | - Huong Elena Tran
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Largo A. Gemelli, 1 , 00168 Rome , Italy
| | - Francesca Piludu
- Department of Radiology and Diagnostic Imaging, IRCCS Regina Elena National Cancer Institute , Via Elio Chianesi 53 , 00144 Rome , Italy
| | - Valeria Guglielmi
- Institute of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Largo A. Gemelli, 1 , 00168 Rome , Italy
| | - Cesare Colosimo
- Dipartimento di Diagnostica per Immagini, Radioterapia, Oncologia ed Ematologia, Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Largo A. Gemelli, 1 , 00168 Rome , Italy
| | - Fabio Pilato
- Department of Medicine, Unit of Neurology, Neurophysiology, Neurobiology, Campus Bio-Medico University , Rome 00128 , Italy
| |
Collapse
|
189
|
Cheung EYW, Chau ACM, Shea YF, Chiu PKC, Kwan JSK, Mak HKF. Level of Amyloid-β (Aβ) Binding Leading to Differential Effects on Resting State Functional Connectivity in Major Brain Networks. Biomedicines 2022; 10:biomedicines10092321. [PMID: 36140422 PMCID: PMC9496530 DOI: 10.3390/biomedicines10092321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
Introduction: Amyloid-β protein (Aβ) is one of the biomarkers for Alzheimer’s disease (AD). The recent application of interhemispheric functional connectivity (IFC) in resting-state fMRI has been used as a non-invasive diagnostic tool for early dementia. In this study, we focused on the level of Aβ accumulated and its effects on the major functional networks, including default mode network (DMN), central executive network (CEN), salience network (SN), self-referential network (SRN) and sensory motor network (SMN). Methods: 58 participants (27 Hi Aβ (HiAmy) and 31 low Aβ (LowAmy)) and 25 healthy controls (HC) were recruited. [18F]flutemetamol PET/CT was performed for diseased groups, and MRI scanning was done for all participants. Voxel-by-voxel correlation analysis was done for both groups in all networks. Results: In HiAmy, IFC was reduced in all networks except SN. A negative correlation in DMN, CEN, SRN and SMN suggests high Aβ related to IFC reduction; However, a positive correlation in SN suggests high Aβ related to an increase in IFC. In LowAmy, IFC increased in CEN, SMN, SN and SRN. Positive correlation in all major brain networks. Conclusion: The level of Aβ accumulated demonstrated differential effects on IFC in various brain networks. As the treatment to reduce Aβ plaque deposition is available in the market, it may be an option for the HiAmy group to improve their IFC in major brain networks.
Collapse
Affiliation(s)
- Eva Y. W. Cheung
- Department of Diagnostic Radiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
- School of Medical Health and Sciences, Tung Wah College, 19/F, 31 Wylie Road, Ho Man Tin, Hong Kong
- Correspondence: (E.Y.W.C.); (H.K.F.M.)
| | - Anson C. M. Chau
- Medical Radiation Science, Allied Health and Human Performance Unit, University of South Australia, City East Campus, Bonython Jubilee Building, 1-26, Adelaide, SA 5001, Australia
| | - Yat-Fung Shea
- Division of Geriatrics, Department of Medicine, Queen Mary Hospital, Hong Kong
| | - Patrick K. C. Chiu
- Division of Geriatrics, Department of Medicine, Queen Mary Hospital, Hong Kong
| | - Joseph S. K. Kwan
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Henry K. F. Mak
- Department of Diagnostic Radiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
- Alzheimer’s Disease Research Network, The University of Hong Kong, Hong Kong
- Correspondence: (E.Y.W.C.); (H.K.F.M.)
| |
Collapse
|
190
|
Fitness is positively associated with hippocampal formation subfield volumes in schizophrenia: a multiparametric magnetic resonance imaging study. Transl Psychiatry 2022; 12:388. [PMID: 36114184 PMCID: PMC9481539 DOI: 10.1038/s41398-022-02155-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Hippocampal formation (HF) volume loss is a well-established finding in schizophrenia, with select subfields, such as the cornu ammonis and dentate gyrus, being particularly vulnerable. These morphologic alterations are related to functional abnormalities and cognitive deficits, which are at the core of the insufficient recovery frequently seen in this illness. To counteract HF volume decline, exercise to improve aerobic fitness is considered as a promising intervention. However, the effects of aerobic fitness levels on HF subfields are not yet established in individuals with schizophrenia. Therefore, our study investigated potential associations between aerobic fitness and HF subfield structure, functional connectivity, and related cognitive impact in a multiparametric research design. In this cross-sectional study, 53 participants diagnosed with schizophrenia (33 men, 20 women; mean [SD] age, 37.4 [11.8] years) underwent brain structural and functional magnetic resonance imaging and assessments of aerobic fitness and verbal memory. Multivariate multiple linear regressions were performed to determine whether aerobic fitness was associated with HF subfield volumes and functional connections. In addition, we explored whether identified associations mediated verbal memory functioning. Significant positive associations between aerobic fitness levels and volumes were demonstrated for most HF subfields, with the strongest associations for the cornu ammonis, dentate gyrus, and subiculum. No significant associations were found for HF functional connectivity or mediation effects on verbal memory. Aerobic fitness may mitigate HF volume loss, especially in the subfields most affected in schizophrenia. This finding should be further investigated in longitudinal studies.Clinical Trials Registration: The study on which the manuscript is based was registered in the International Clinical Trials Database, ClinicalTrials.gov (NCT number: NCT03466112 ) and in the German Clinical Trials Register (DRKS-ID: DRKS00009804).
Collapse
|
191
|
Allebone J, Wilson SJ, Bradlow RCJ, Maller J, O'Brien T, Mullen SA, Cook M, Adams SJ, Vogrin S, Vaughan DN, Connelly A, Kwan P, Berkovic SF, D'Souza WJ, Jackson G, Velakoulis D, Kanaan RA. Increased cortical thickness in nodes of the cognitive control and default mode networks in psychosis of epilepsy. Seizure 2022; 101:244-252. [PMID: 36116283 DOI: 10.1016/j.seizure.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/07/2022] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE To explore the cortical morphological associations of the psychoses of epilepsy. METHODS Psychosis of epilepsy (POE) has two main subtypes - postictal psychosis and interictal psychosis. We used automated surface-based analysis of magnetic resonance images to compare cortical thickness, area, and volume across the whole brain between: (i) all patients with POE (n = 23) relative to epilepsy-without psychosis controls (EC; n = 23), (ii) patients with interictal psychosis (n = 10) or postictal psychosis (n = 13) relative to EC, and (iii) patients with postictal psychosis (n = 13) relative to patients with interictal psychosis (n = 10). RESULTS POE is characterised by cortical thickening relative to EC, occurring primarily in nodes of the cognitive control network; (rostral anterior cingulate, caudal anterior cingulate, middle frontal gyrus), and the default mode network (posterior cingulate, medial paracentral gyrus, and precuneus). Patients with interictal psychosis displayed cortical thickening in the left hemisphere in occipital and temporal regions relative to EC (lateral occipital cortex, lingual, fusiform, and inferior temporal gyri), which was evident to a lesser extent in postictal psychosis patients. There were no significant differences in cortical thickness, area, or volume between the postictal psychosis and EC groups, or between the postictal psychosis and interictal psychosis groups. However, prior to correction for multiple comparisons, both the interictal psychosis and postictal psychosis groups displayed cortical thickening relative to EC in highly similar regions to those identified in the POE group overall. SIGNIFICANCE The results show cortical thickening in POE overall, primarily in nodes of the cognitive control and default mode networks, compared to patients with epilepsy without psychosis. Additional thickening in temporal and occipital neocortex implicated in the dorsal and ventral visual pathways may differentiate interictal psychosis from postictal psychosis. A novel mechanism for cortical thickening in POE is proposed whereby normal synaptic pruning processes are interrupted by seizure onset.
Collapse
Affiliation(s)
- James Allebone
- Melbourne School of Psychological Sciences, University of Melbourne, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Sarah J Wilson
- Melbourne School of Psychological Sciences, University of Melbourne, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Comprehensive Epilepsy Program, Austin Health, University of Melbourne, Victoria, Australia
| | | | - Jerome Maller
- ANU College of Health and Medicine, Australian National University, Canberra, Victoria, Australia; Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Melbourne, Australia
| | - Terry O'Brien
- Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Neuroscience, Alfred Hospital, Monash University, Melbourne, Australia
| | - Saul A Mullen
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Mark Cook
- Graeme Clark Institute, University of Melbourne, Melbourne, Australia
| | - Sophia J Adams
- Department of Psychiatry, Austin Health, University of Melbourne, Melbourne, Australia
| | - Simon Vogrin
- St Vincent's Hospital, Melbourne, Victoria, Australia
| | - David N Vaughan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Comprehensive Epilepsy Program, Austin Health, University of Melbourne, Victoria, Australia
| | - Alan Connelly
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Comprehensive Epilepsy Program, Austin Health, University of Melbourne, Victoria, Australia
| | - Patrick Kwan
- Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Neuroscience, Alfred Hospital, Monash University, Melbourne, Australia
| | - Samuel F Berkovic
- Comprehensive Epilepsy Program, Austin Health, University of Melbourne, Victoria, Australia
| | - Wendyl J D'Souza
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Australia
| | - Graeme Jackson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Comprehensive Epilepsy Program, Austin Health, University of Melbourne, Victoria, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Richard A Kanaan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Department of Psychiatry, Austin Health, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
192
|
Foit NA, Yung S, Lee HM, Bernasconi A, Bernasconi N, Hong SJ. A whole-brain 3D myeloarchitectonic atlas: Mapping the Vogt-Vogt legacy to the cortical surface. Neuroimage 2022; 263:119617. [PMID: 36084859 DOI: 10.1016/j.neuroimage.2022.119617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Building precise and detailed parcellations of anatomically and functionally distinct brain areas has been a major focus in Neuroscience. Pioneer anatomists parcellated the cortical manifold based on extensive histological studies of post-mortem brain, harnessing local variations in cortical cyto- and myeloarchitecture to define areal boundaries. Compared to the cytoarchitectonic field, where multiple neuroimaging studies have recently translated this old legacy data into useful analytical resources, myeloarchitectonics, which parcellate the cortex based on the organization of myelinated fibers, has received less attention. Here, we present the neocortical surface-based myeloarchitectonic atlas based on the histology-derived maps of the Vogt-Vogt school and its 2D translation by Nieuwenhuys. In addition to a myeloarchitectonic parcellation, our package includes intracortical laminar profiles of myelin content based on Vogt-Vogt-Hopf original publications. Histology-derived myelin density mapped on our atlas demonstrated a close overlap with in vivo quantitative MRI markers for myelin and relates to cytoarchitectural features. Complementing the existing battery of approaches for digital cartography, the whole-brain myeloarchitectonic atlas offers an opportunity to validate imaging surrogate markers of myelin in both health and disease.
Collapse
Affiliation(s)
- Niels A Foit
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Seles Yung
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - Hyo Min Lee
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - Seok-Jun Hong
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada; Center for the Developing Brain, Child Mind Institute, NY, USA; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
193
|
Smolker HR, Snyder HR, Hankin BL, Banich MT. Gray-Matter Morphometry of Internalizing-Symptom Dimensions During Adolescence. Clin Psychol Sci 2022; 10:941-959. [PMID: 36211328 PMCID: PMC9536530 DOI: 10.1177/21677026211071091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Understanding the neuroanatomical correlates of internalizing psychopathology during adolescence may shed light on to neurodevelopmental processes that make this a critical period for the trajectory of mental illness. However, few studies have simultaneously examined co-occurring and dissociable features of internalizing psychopathology during this formative developmental stage. In the current study we identify the neuroanatomical correlates of four dimensions of internalizing psychopathology symptoms in adolescents: a common internalizing dimension capturing covariance in symptoms across internalizing disorders, as well as low positive affect-, anxious arousal-, and anxious apprehension-specific residuals. Our results suggest that these dimensions are associated with neuroanatomy across much of the brain, including prefrontal and limbic regions implicated in case-control studies, but also regions supporting visual processing. Importantly, results differed between males and females in regions that are sexually dimorphic in adulthood and the direction of the effects were largely opposite to what has been observed in adults and children.
Collapse
Affiliation(s)
- Harry R Smolker
- Institute of Cognitive Science, University of Colorado Boulder
| | | | | | - Marie T Banich
- Institute of Cognitive Science, University of Colorado Boulder
- Department of Psychology & Neuroscience, University of Colorado Boulder
| |
Collapse
|
194
|
Neuroanatomical Correlates of Perceived Stress Controllability in Adolescents and Emerging Adults. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:655-671. [PMID: 35091987 PMCID: PMC9308625 DOI: 10.3758/s13415-022-00985-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 11/08/2022]
Abstract
Stressful life events predict changes in brain structure and increases in psychopathology, but not everyone is equally affected by life stress. The learned helplessness theory posits that perceiving life stressors as uncontrollable leads to depression. Evidence supports this theory for youth, but the impact of perceived control diverges based on stressor type: perceived lack of control over dependent (self-generated) stressors is associated with greater depression symptoms when controlling for the frequency of stress exposure, but perceived control over independent (non-self-generated) stressors is not. However, it is unknown how perceived control over these stressor types is associated with brain structure. We tested whether perceived lack of control over dependent and independent life stressors, controlling for stressor exposure, is associated with gray matter (GM) in a priori regions of interest (ROIs; mPFC, hippocampus, amygdala) and across the cortex in a sample of 108 adolescents and emerging adults ages 14-22. There were no associations across the full sample between perceived control over either stressor type and GM in the ROIs. However, less perceived control over dependent stressors was associated with greater amygdala gray matter volume in female youth and greater medial prefrontal cortex thickness in male youth. Furthermore, whole-cortex analyses revealed less perceived control over dependent stressors was associated with greater GM thickness in cortical regions involved in cognitive and emotional regulation. Thus, appraisals of control have distinct associations with brain morphology while controlling for stressor frequency, highlighting the importance of differentiating between these aspects of the stress experience in future research.
Collapse
|
195
|
Yu J, Fischer NL. Asymmetric generalizability of multimodal brain-behavior associations across age-groups. Hum Brain Mapp 2022; 43:5593-5604. [PMID: 35906870 PMCID: PMC9704787 DOI: 10.1002/hbm.26035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 07/15/2022] [Indexed: 01/15/2023] Open
Abstract
Machine learning methods have increasingly been used to map out brain-behavior associations (BBA), and to predict out-of-scanner behavior of unseen subjects. Given the brain changes that occur in the context of aging, the accuracy of these predictions is likely to depend on how similar the training and testing data sets are in terms of age. To this end, we examined how well BBAs derived from an age-group generalize to other age-groups. We partitioned the CAM-CAN data set (N = 550) into the young, middle, and old age-groups, then used the young and old age-groups to construct prediction models for 11 behavioral outcomes using multimodal neuroimaging features (i.e., structural and resting-state functional connectivity, and gray matter volume/cortical thickness). These models were then applied to all three age-groups to predict their behavioral scores. When the young-derived models were used, a graded pattern of age-generalization was generally observed across most behavioral outcomes-predictions are the most accurate in the young subjects in the testing data set, followed by the middle and then old-aged subjects. Conversely, when the old-derived models were used, the disparity in the predictive accuracy across age-groups was mostly negligible. These findings hold across different imaging modalities. These results suggest the asymmetric age-generalization of BBAs-old-derived BBAs generalized well to all age-groups, however young-derived BBAs generalized poorly beyond their own age-group.
Collapse
Affiliation(s)
- Junhong Yu
- Psychology, School of Social SciencesNational Technological UniversitySingaporeSingapore
| | - Nastassja L. Fischer
- Centre for Research and Development in Learning (CRADLE)Nanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
196
|
Cascino G, Canna A, Russo AG, Monaco F, Esposito F, Di Salle F, Monteleone P, Monteleone AM. Childhood maltreatment is associated with cortical thinning in people with eating disorders. Eur Arch Psychiatry Clin Neurosci 2022; 273:459-466. [PMID: 35852616 PMCID: PMC10070200 DOI: 10.1007/s00406-022-01456-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/27/2022] [Indexed: 11/27/2022]
Abstract
Childhood maltreatment (CM) is a non-specific risk factor for eating disorders (ED) and is associated with a greater severity in their clinical presentation and poorer treatment outcome. These data suggest that maltreated people with ED may be biologically other than clinically different from non-maltreated people. The aim of the present study was to investigate cortical thickness (CT), a possible biomarker of neurodevelopment, in people with ED with or without history of CM and in healthy women. Twenty-four healthy women, 26 with anorexia nervosa and 24 with bulimia nervosa underwent a 3T MRI scan. All participants filled in the childhood trauma questionnaire. All neuroimaging data were processed by FreeSurfer. Twenty-four participants with ED were identified as maltreated and 26 participants with ED as non-maltreated. All healthy women were non-maltreated. Compared to healthy women, maltreated people with ED showed lower CT in the left rostral anterior cingulate gyrus, while compared to people with ED without history of CM showed lower CT values in the left superior frontal and in right caudal middle frontal and superior parietal gyri. No significant differences emerged in CT measures between healthy women and people with ED without history of CM. The present findings show for the first time that in adult people with ED childhood maltreatment is associated with cortical thinning in areas implicated in the modulation of brain processes that are acknowledged to play a role in the psychopathology of ED.
Collapse
Affiliation(s)
- Giammarco Cascino
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Section of Neurosciences, University of Salerno, Via Allende 1, Baronissi, 84081, Salerno, Italy.
| | - Antonietta Canna
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Andrea Gerardo Russo
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Section of Neurosciences, University of Salerno, Via Allende 1, Baronissi, 84081, Salerno, Italy
| | | | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Di Salle
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Section of Neurosciences, University of Salerno, Via Allende 1, Baronissi, 84081, Salerno, Italy
| | - Palmiero Monteleone
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', Section of Neurosciences, University of Salerno, Via Allende 1, Baronissi, 84081, Salerno, Italy
| | | |
Collapse
|
197
|
Brown AA, Ferguson BJ, Jones V, Green BE, Pearre JD, Anunoby IA, Beversdorf DQ, Barohn RJ, Cirstea CM. Pilot Study of Real-World Monitoring of the Heart Rate Variability in Amyotrophic Lateral Sclerosis. Front Artif Intell 2022; 5:910049. [PMID: 35875194 PMCID: PMC9301244 DOI: 10.3389/frai.2022.910049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/15/2022] [Indexed: 12/03/2022] Open
Abstract
Aims Cardiovascular dysautonomia may impact the quality of life and survival in amyotrophic lateral sclerosis (ALS). Such dysfunction is not systematically assessed in these patients. Wearable devices could help. The feasibility of a wearable biosensor to detect heart rate variability (HRV), a physiological marker of sympathovagal balance, was studied for the first time in real-world settings in ALS. Methods Five ALS patients (two early/three late; one bulbar-onset; mildly-to-moderately disabled) and five age/sex/BMI/comorbidities-matched controls underwent assessment of 3-day HRV via VitalConnect biosensor (worn on the left thorax). De-identified data captured by the biosensor were transferred to a secure cloud server via a relay Bluetooth device. Baseline ALS severity/anxiety and physical activity during testing were documented/quantified. Time-domain HRV measures (i.e., pNN50) were analyzed. Results An overall 3-day abnormal HRV (pNN50 < 3%), was found in three out of five patients (mean ± SD for the group, 2.49 ± 1.51). Similar changes were reported in controls (12.32 ± 21.14%). There were no statistically significant relationships between pNN50 values and baseline anxiety or physical activity during the tested days (p > 0.05 for both groups). A negative correlation was found between pNN50 values and age in patients (p = 0.01) and controls (p = 0.09), which is similar with what is found in the general population. In line with prior studies, pNN50 values were independent of disease stage (p = 0.6) and disability (p = 0.4). Conclusions These preliminary results suggest that remote HRV measures using the VitalConnect is feasible and may constitute an improved strategy to provide insights into sympathovagal balance in ALS. Further work with larger sample sizes is warranted.
Collapse
Affiliation(s)
- Alexander A. Brown
- Department of Psychological Sciences, College of Arts and Science, University of Missouri, Columbia, MO, United States
| | - Bradley J. Ferguson
- Department of Health Psychology, School of Health Professions, University of Missouri, Columbia, MO, United States
- Department of Radiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Vovanti Jones
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Bruce E. Green
- School of Medicine, University of Missouri, Columbia, MO, United States
| | - Justin D. Pearre
- School of Medicine, University of Missouri, Columbia, MO, United States
| | - Ifeoma A. Anunoby
- College of Arts and Science, University of Missouri, Columbia, MO, United States
| | - David Q. Beversdorf
- Department of Health Psychology, School of Health Professions, University of Missouri, Columbia, MO, United States
- Department of Radiology, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Richard J. Barohn
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Carmen M. Cirstea
- Department of Health Psychology, School of Health Professions, University of Missouri, Columbia, MO, United States
- *Correspondence: Carmen M. Cirstea
| |
Collapse
|
198
|
Story Memory Impairment Rates and Association with Hippocampal Volumes in a Memory Clinic Population. J Int Neuropsychol Soc 2022; 28:611-619. [PMID: 34187612 PMCID: PMC8716676 DOI: 10.1017/s1355617721000850] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Story memory tasks are among the most commonly used memory tests; however, research suggests they may be less sensitive to memory decline and have a weaker association with hippocampal volumes than list learning tasks. To examine its utility, we compared story memory to other memory tests on impairment rates and association with hippocampal volumes. METHOD Archival records from 1617 older adults (Mage = 74.41, range = 65-93) who completed the Wechsler Memory Scale - 4th edition (WMS-IV) Logical Memory (LM), Hopkins Verbal Learning Test - Revised (HVLT-R), and Brief Visuospatial Memory Test - Revised (BVMT-R) as part of a clinical neuropsychological evaluation were reviewed. Scores >1.5 SD below age-adjusted means were considered impaired, and frequency distributions were used to examine impairment rates. A subset of participants (n = 179) had magnetic resonance imaging (MRI) data that underwent image quality assessment. Partial correlations and linear regression analyses, accounting for age, education, and total intracranial volume (TIV), examined associations between memory raw scores and hippocampal volumes. RESULTS For delayed recall, nearly half of the sample was impaired on HVLT-R (48.8%) and BVMT-R (46.1%), whereas a little more than a third was impaired on LM (35.7%). Better performance on all three measures was related to larger hippocampal volumes (r's =. 26-.43, p's < .001). Individually adding memory scores to regression models predicting hippocampal volumes improved the model fit for all measures. CONCLUSIONS Despite findings suggesting that story memory is less sensitive to memory dysfunction, it was not differentially associated with hippocampal volumes compared to other memory measures. Results support assessing memory using different formats and modalities in older adults.
Collapse
|
199
|
Explanations of Machine Learning Models in Repeated Nested Cross-Validation: An Application in Age Prediction Using Brain Complexity Features. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136681] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SHAP (Shapley additive explanations) is a framework for explainable AI that makes explanations locally and globally. In this work, we propose a general method to obtain representative SHAP values within a repeated nested cross-validation procedure and separately for the training and test sets of the different cross-validation rounds to assess the real generalization abilities of the explanations. We applied this method to predict individual age using brain complexity features extracted from MRI scans of 159 healthy subjects. In particular, we used four implementations of the fractal dimension (FD) of the cerebral cortex—a measurement of brain complexity. Representative SHAP values highlighted that the most recent implementation of the FD had the highest impact over the others and was among the top-ranking features for predicting age. SHAP rankings were not the same in the training and test sets, but the top-ranking features were consistent. In conclusion, we propose a method—and share all the source code—that allows a rigorous assessment of the SHAP explanations of a trained model in a repeated nested cross-validation setting.
Collapse
|
200
|
Szabo E, Chang YC, Shulman J, Sieberg CB, Sethna NF, Borsook D, Holmes SA, Lebel AA. Alterations in the structure and function of the brain in adolescents with new daily persistent headache: A pilot
MRI
study. Headache 2022; 62:858-869. [DOI: 10.1111/head.14360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Edina Szabo
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, and Pain Medicine Boston Children's Hospital, Harvard Medical School Boston Massachusetts USA
- Biobehavioral Pediatric Pain Lab, Department of Psychiatry and Behavioral Sciences Boston Children's Hospital, Harvard Medical School Boston Massachusetts USA
| | | | - Julie Shulman
- Department of Physical Therapy and Occupational Therapy Boston Children's Hospital Boston Massachusetts USA
| | - Christine B. Sieberg
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, and Pain Medicine Boston Children's Hospital, Harvard Medical School Boston Massachusetts USA
- Biobehavioral Pediatric Pain Lab, Department of Psychiatry and Behavioral Sciences Boston Children's Hospital, Harvard Medical School Boston Massachusetts USA
- Department of Psychiatry Harvard Medical School Boston Massachusetts USA
| | - Navil F. Sethna
- Department of Anesthesiology, Critical Care, and Pain Medicine Boston Children's Hospital Boston Massachusetts USA
| | - David Borsook
- Department of Psychiatry Massachusetts General Hospital Boston Massachusetts USA
- Department of Radiology Massachusetts General Hospital Boston Massachusetts USA
- Department of Anesthesiology Harvard Medical School Boston Massachusetts USA
| | - Scott A. Holmes
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, and Pain Medicine Boston Children's Hospital, Harvard Medical School Boston Massachusetts USA
- Pediatric Pain Pathway Lab, Department of Anesthesiology, Critical Care, and Pain Medicine Boston Children's Hospital, Harvard Medical School Boston Massachusetts USA
| | - Alyssa A. Lebel
- Department of Anesthesiology, Critical Care, and Pain Medicine Boston Children's Hospital Boston Massachusetts USA
| |
Collapse
|