151
|
Rahimpour M, Bertels J, Radwan A, Vandermeulen H, Sunaert S, Vandermeulen D, Maes F, Goffin K, Koole M. Cross-modal distillation to improve MRI-based brain tumor segmentation with missing MRI sequences. IEEE Trans Biomed Eng 2021; 69:2153-2164. [PMID: 34941496 DOI: 10.1109/tbme.2021.3137561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Convolutional neural networks (CNNs) for brain tumor segmentation are generally developed using complete sets of magnetic resonance imaging (MRI) sequences for both training and inference. As such, these algorithms are not trained for realistic, clinical scenarios where parts of the MRI sequences which were used for training, are missing during inference. To increase clinical applicability, we proposed a cross-modal distillation approach to leverage the availability of multi-sequence MRI data for training and generate an enriched CNN model which uses only single-sequence MRI data for inference but outperforms a single-sequence CNN model. We assessed the performance of the proposed method for whole tumor and tumor core segmentation with multi-sequence MRI data available for training but only T1- weighted (T1w) sequence data available for inference, using both BraTS 2018, and in-house datasets. Results showed that cross-modal distillation significantly improved the Dice score for both whole tumor and tumor core segmentation when only T1w sequence data were available for inference. For the evaluation using the in-house dataset, cross-modal distillation achieved an average Dice score of 79.04% and 69.39% for whole tumor and tumor core segmentation, respectively, while a single-sequence U-Net model using T1w sequence data for both training and inference achieved an average Dice score of 73.60% and 62.62%, respectively. These findings confirmed cross-modal distillation as an effective method to increase the potential of single-sequence CNN models such that segmentation performance is less compromised by missing MRI sequences or having only one MRI sequence available for segmentation.
Collapse
|
152
|
Luo Y, Zhou L, Zhan B, Fei Y, Zhou J, Wang Y, Shen D. Adaptive rectification based adversarial network with spectrum constraint for high-quality PET image synthesis. Med Image Anal 2021; 77:102335. [PMID: 34979432 DOI: 10.1016/j.media.2021.102335] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/02/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
Positron emission tomography (PET) is a typical nuclear imaging technique, which can provide crucial functional information for early brain disease diagnosis. Generally, clinically acceptable PET images are obtained by injecting a standard-dose radioactive tracer into human body, while on the other hand the cumulative radiation exposure inevitably raises concerns about potential health risks. However, reducing the tracer dose will increase the noise and artifacts of the reconstructed PET image. For the purpose of acquiring high-quality PET images while reducing radiation exposure, in this paper, we innovatively present an adaptive rectification based generative adversarial network with spectrum constraint, named AR-GAN, which uses low-dose PET (LPET) image to synthesize standard-dose PET (SPET) image of high-quality. Specifically, considering the existing differences between the synthesized SPET image by traditional GAN and the real SPET image, an adaptive rectification network (AR-Net) is devised to estimate the residual between the preliminarily predicted image and the real SPET image, based on the hypothesis that a more realistic rectified image can be obtained by incorporating both the residual and the preliminarily predicted PET image. Moreover, to address the issue of high-frequency distortions in the output image, we employ a spectral regularization term in the training optimization objective to constrain the consistency of the synthesized image and the real image in the frequency domain, which further preserves the high-frequency detailed information and improves synthesis performance. Validations on both the phantom dataset and the clinical dataset show that the proposed AR-GAN can estimate SPET images from LPET images effectively and outperform other state-of-the-art image synthesis approaches.
Collapse
Affiliation(s)
- Yanmei Luo
- School of Computer Science, Sichuan University, China
| | - Luping Zhou
- School of Electrical and Information Engineering, University of Sydney, Australia
| | - Bo Zhan
- School of Computer Science, Sichuan University, China
| | - Yuchen Fei
- School of Computer Science, Sichuan University, China
| | - Jiliu Zhou
- School of Computer Science, Sichuan University, China; School of Computer Science, Chengdu University of Information Technology, China
| | - Yan Wang
- School of Computer Science, Sichuan University, China.
| | - Dinggang Shen
- School of Biomedical Engineering, ShanghaiTech University, China; Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| |
Collapse
|
153
|
Manjón JV, Romero JE, Coupe P. Deep learning based MRI contrast synthesis using full volume prediction using full volume prediction. Biomed Phys Eng Express 2021; 8. [PMID: 34814130 DOI: 10.1088/2057-1976/ac3c64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/23/2021] [Indexed: 11/12/2022]
Abstract
In Magnetic Resonance Imaging (MRI), depending on the image acquisition settings, a large number of image types or contrasts can be generated showing complementary information of the same imaged subject. This multi-spectral information is highly beneficial since can improve MRI analysis tasks such as segmentation and registration, thanks to pattern ambiguity reduction. However, the acquisition of several contrasts is not always possible due to time limitations and patient comfort constraints. Contrast synthesis has emerged recently as an approximate solution to generate other image types different from those acquired originally. Most of the previously proposed methods for contrast synthesis are slice-based which result in intensity inconsistencies between neighbor slices when applied in 3D. We propose the use of a 3D convolutional neural network (CNN) capable of generating T2 and FLAIR images from a single anatomical T1 source volume. The proposed network is a 3D variant of the UNet that processes the whole volume at once breaking with the inconsistency in the resulting output volumes related to 2D slice or patch-based methods. Since working with a full volume at once has a huge memory demand we have introduced a spatial-to-depth and a reconstruction layer that allows working with the full volume but maintain the required network complexity to solve the problem. Our approach enhances the coherence in the synthesized volume while improving the accuracy thanks to the integrated three-dimensional context-awareness. Finally, the proposed method has been validated with a segmentation method, thus demonstrating its usefulness in a direct and relevant application.
Collapse
Affiliation(s)
- José V Manjón
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politécnica de Valencia, Camino de Vera s/n, 46022, Spain
| | - José E Romero
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politécnica de Valencia, Camino de Vera s/n, 46022, Spain
| | - Pierrick Coupe
- CNRS, Univ. Bordeaux, Bordeaux INP, LaBRI, UMR5800, PICTURA Research Group, 351, cours de la Liberation F-33405 Talence cedex, France
| |
Collapse
|
154
|
Oh G, Lee JE, Ye JC. Unpaired MR Motion Artifact Deep Learning Using Outlier-Rejecting Bootstrap Aggregation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3125-3139. [PMID: 34133276 DOI: 10.1109/tmi.2021.3089708] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, deep learning approaches for MR motion artifact correction have been extensively studied. Although these approaches have shown high performance and lower computational complexity compared to classical methods, most of them require supervised training using paired artifact-free and artifact-corrupted images, which may prohibit its use in many important clinical applications. For example, transient severe motion (TSM) due to acute transient dyspnea in Gd-EOB-DTPA-enhanced MR is difficult to control and model for paired data generation. To address this issue, here we propose a novel unpaired deep learning scheme that does not require matched motion-free and motion artifact images. Specifically, the first step of our method is k -space random subsampling along the phase encoding direction that can remove some outliers probabilistically. In the second step, the neural network reconstructs fully sampled resolution image from a downsampled k -space data, and motion artifacts can be reduced in this step. Last, the aggregation step through averaging can further improve the results from the reconstruction network. We verify that our method can be applied for artifact correction from simulated motion as well as real motion from TSM successfully from both single and multi-coil data with and without k -space raw data, outperforming existing state-of-the-art deep learning methods.
Collapse
|
155
|
Kumar V, Sharma MK, Jehadeesan R, Venkatraman B, Suman G, Patra A, Goenka AH, Sheet D. Learning to Generate Missing Pulse Sequence in MRI using Deep Convolution Neural Network Trained with Visual Turing Test. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3419-3422. [PMID: 34891974 DOI: 10.1109/embc46164.2021.9630435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetic resonance imaging (MRI) is widely used in clinical applications due to its ability to acquire a wide variety of soft tissues using multiple pulse sequences. Each sequence provides information that generally complements the other. However, factors like an increase in scan time or contrast allergies impede imaging with numerous sequences. Synthesizing images of such non acquired sequences is a challenging proposition that can suffice for corrupted acquisition, fast reconstruction prior, super-resolution, etc. This manuscript employed a deep convolution neural network (CNN) to synthesize multiple missing pulse sequences of brain MRI with tumors. The CNN is an encoder-decoder-like network trained to minimize reconstruction mean square error (MSE) loss while maximizing the adversarial attack. It inflicts on a relativistic Visual Turing Test discriminator (rVTT). The approach is evaluated through experiments performed with the Brats2018 dataset, quantitative metrics viz. MSE, Structural Similarity Measure (SSIM), and Peak Signal to Noise Ratio (PSNR). The Radiologist and MR physicist performed the Turing test with 76% accuracy, demonstrating our approach's performance superiority over the prior art. We can synthesize MR images of missing pulse sequences at an inference cost of 350.71 GFlops/voxel through this approach.
Collapse
|
156
|
Usage of intelligent medical aided diagnosis system under the deep convolutional neural network in lumbar disc herniation. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
157
|
Fan M, Zhang Y, Fu Z, Xu M, Wang S, Xie S, Gao X, Wang Y, Li L. A deep matrix completion method for imputing missing histological data in breast cancer by integrating DCE-MRI radiomics. Med Phys 2021; 48:7685-7697. [PMID: 34724248 DOI: 10.1002/mp.15316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Clinical indicators of histological information are important for breast cancer treatment and operational decision making, but these histological data suffer from frequent missing values due to various experimental/clinical reasons. The limited amount of histological information from breast cancer samples impedes the accuracy of data imputation. The purpose of this study was to impute missing histological data, including Ki-67 expression level, luminal A subtype, and histological grade, by integrating tumor radiomics. METHODS To this end, a deep matrix completion (DMC) method was proposed for imputing missing histological data using nonmissing features composed of histological and tumor radiomics (termed radiohistological features). DMC finds a latent nonlinear association between radiohistological features across all samples and samples for all the features. Radiomic features of morphologic, statistical, and texture were extracted from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) inside the tumor. Experiments on missing histological data imputation were performed with a variable number of features and missing data rates. The performance of the DMC method was compared with those of the nonnegative matrix factorization (NMF) and collaborative filtering (MCF)-based data imputation methods. The area under the curve (AUC) was used to assess the performance of missing histological data imputation. RESULTS By integrating radiomics from DCE-MRI, the DMC method showed significantly better performance in terms of AUC than that using only histological data. Additionally, DMC using 120 radiomic features showed an optimal prediction performance (AUC = 0.793), which was better than the NMF (AUC = 0.756) and MCF methods (AUC = 0.706; corrected p = 0.001). The DMC method consistently performed better than the NMF and MCF methods with a variable number of radiomic features and missing data rates. CONCLUSIONS DMC improves imputation performance by integrating tumor histological and radiomics data. This study transforms latent imaging-scale patterns for interactions with molecular-scale histological information and is promising in the tumor characterization and management of patients.
Collapse
Affiliation(s)
- Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - You Zhang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Zhenyu Fu
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Maosheng Xu
- Department of Radiology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shiwei Wang
- Department of Radiology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Sangma Xie
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, USA
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
158
|
Zou Q, Ahmed AH, Nagpal P, Kruger S, Jacob M. Dynamic Imaging Using a Deep Generative SToRM (Gen-SToRM) Model. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3102-3112. [PMID: 33720831 PMCID: PMC8590205 DOI: 10.1109/tmi.2021.3065948] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We introduce a generative smoothness regularization on manifolds (SToRM) model for the recovery of dynamic image data from highly undersampled measurements. The model assumes that the images in the dataset are non-linear mappings of low-dimensional latent vectors. We use the deep convolutional neural network (CNN) to represent the non-linear transformation. The parameters of the generator as well as the low-dimensional latent vectors are jointly estimated only from the undersampled measurements. This approach is different from traditional CNN approaches that require extensive fully sampled training data. We penalize the norm of the gradients of the non-linear mapping to constrain the manifold to be smooth, while temporal gradients of the latent vectors are penalized to obtain a smoothly varying time-series. The proposed scheme brings in the spatial regularization provided by the convolutional network. The main benefit of the proposed scheme is the improvement in image quality and the orders-of-magnitude reduction in memory demand compared to traditional manifold models. To minimize the computational complexity of the algorithm, we introduce an efficient progressive training-in-time approach and an approximate cost function. These approaches speed up the image reconstructions and offers better reconstruction performance.
Collapse
|
159
|
Guo P, Wang P, Yasarla R, Zhou J, Patel VM, Jiang S. Anatomic and Molecular MR Image Synthesis Using Confidence Guided CNNs. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2832-2844. [PMID: 33351754 PMCID: PMC8543492 DOI: 10.1109/tmi.2020.3046460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Data-driven automatic approaches have demonstrated their great potential in resolving various clinical diagnostic dilemmas in neuro-oncology, especially with the help of standard anatomic and advanced molecular MR images. However, data quantity and quality remain a key determinant, and a significant limit of the potential applications. In our previous work, we explored the synthesis of anatomic and molecular MR image networks (SAMR) in patients with post-treatment malignant gliomas. In this work, we extend this through a confidence-guided SAMR (CG-SAMR) that synthesizes data from lesion contour information to multi-modal MR images, including T1-weighted ( [Formula: see text]), gadolinium enhanced [Formula: see text] (Gd- [Formula: see text]), T2-weighted ( [Formula: see text]), and fluid-attenuated inversion recovery ( FLAIR ), as well as the molecular amide proton transfer-weighted ( [Formula: see text]) sequence. We introduce a module that guides the synthesis based on a confidence measure of the intermediate results. Furthermore, we extend the proposed architecture to allow training using unpaired data. Extensive experiments on real clinical data demonstrate that the proposed model can perform better than current the state-of-the-art synthesis methods. Our code is available at https://github.com/guopengf/CG-SAMR.
Collapse
|
160
|
Moya-Sáez E, Peña-Nogales Ó, Luis-García RD, Alberola-López C. A deep learning approach for synthetic MRI based on two routine sequences and training with synthetic data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 210:106371. [PMID: 34525411 DOI: 10.1016/j.cmpb.2021.106371] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Synthetic magnetic resonance imaging (MRI) is a low cost procedure that serves as a bridge between qualitative and quantitative MRI. However, the proposed methods require very specific sequences or private protocols which have scarcely found integration in clinical scanners. We propose a learning-based approach to compute T1, T2, and PD parametric maps from only a pair of T1- and T2-weighted images customarily acquired in the clinical routine. METHODS Our approach is based on a convolutional neural network (CNN) trained with synthetic data; specifically, a synthetic dataset with 120 volumes was constructed from the anatomical brain model of the BrainWeb tool and served as the training set. The CNN learns an end-to-end mapping function to transform the input T1- and T2-weighted images to their underlying T1, T2, and PD parametric maps. Then, conventional weighted images unseen by the network are analytically synthesized from the parametric maps. The network can be fine tuned with a small database of actual weighted images and maps for better performance. RESULTS This approach is able to accurately compute parametric maps from synthetic brain data achieving normalized squared error values predominantly below 1%. It also yields realistic parametric maps from actual MR brain acquisitions with T1, T2, and PD values in the range of the literature and with correlation values above 0.95 compared to the T1 and T2 maps obtained from relaxometry sequences. Further, the synthesized weighted images are visually realistic; the mean square error values are always below 9% and the structural similarity index is usually above 0.90. Network fine tuning with actual maps improves performance, while training exclusively with a small database of actual maps shows a performance degradation. CONCLUSIONS These results show that our approach is able to provide realistic parametric maps and weighted images out of a CNN that (a) is trained with a synthetic dataset and (b) needs only two inputs, which are in turn obtained from a common full-brain acquisition that takes less than 8 min of scan time. Although a fine tuning with actual maps improves performance, synthetic data is crucial to reach acceptable performance levels. Hence, we show the utility of our approach for both quantitative MRI in clinical viable times and for the synthesis of additional weighted images to those actually acquired.
Collapse
Affiliation(s)
- Elisa Moya-Sáez
- Laboratorio de Procesado de Imagen, Universidad de Valladolid, Valladolid, Spain. http://www.lpi.tel.uva.es
| | - Óscar Peña-Nogales
- Laboratorio de Procesado de Imagen, Universidad de Valladolid, Valladolid, Spain
| | | | | |
Collapse
|
161
|
Xing F, Cornish TC, Bennett TD, Ghosh D. Bidirectional Mapping-Based Domain Adaptation for Nucleus Detection in Cross-Modality Microscopy Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2880-2896. [PMID: 33284750 PMCID: PMC8543886 DOI: 10.1109/tmi.2020.3042789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cell or nucleus detection is a fundamental task in microscopy image analysis and has recently achieved state-of-the-art performance by using deep neural networks. However, training supervised deep models such as convolutional neural networks (CNNs) usually requires sufficient annotated image data, which is prohibitively expensive or unavailable in some applications. Additionally, when applying a CNN to new datasets, it is common to annotate individual cells/nuclei in those target datasets for model re-learning, leading to inefficient and low-throughput image analysis. To tackle these problems, we present a bidirectional, adversarial domain adaptation method for nucleus detection on cross-modality microscopy image data. Specifically, the method learns a deep regression model for individual nucleus detection with both source-to-target and target-to-source image translation. In addition, we explicitly extend this unsupervised domain adaptation method to a semi-supervised learning situation and further boost the nucleus detection performance. We evaluate the proposed method on three cross-modality microscopy image datasets, which cover a wide variety of microscopy imaging protocols or modalities, and obtain a significant improvement in nucleus detection compared to reference baseline approaches. In addition, our semi-supervised method is very competitive with recent fully supervised learning models trained with all real target training labels.
Collapse
|
162
|
Tomar D, Lortkipanidze M, Vray G, Bozorgtabar B, Thiran JP. Self-Attentive Spatial Adaptive Normalization for Cross-Modality Domain Adaptation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2926-2938. [PMID: 33577450 DOI: 10.1109/tmi.2021.3059265] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite the successes of deep neural networks on many challenging vision tasks, they often fail to generalize to new test domains that are not distributed identically to the training data. The domain adaptation becomes more challenging for cross-modality medical data with a notable domain shift. Given that specific annotated imaging modalities may not be accessible nor complete. Our proposed solution is based on the cross-modality synthesis of medical images to reduce the costly annotation burden by radiologists and bridge the domain gap in radiological images. We present a novel approach for image-to-image translation in medical images, capable of supervised or unsupervised (unpaired image data) setups. Built upon adversarial training, we propose a learnable self-attentive spatial normalization of the deep convolutional generator network's intermediate activations. Unlike previous attention-based image-to-image translation approaches, which are either domain-specific or require distortion of the source domain's structures, we unearth the importance of the auxiliary semantic information to handle the geometric changes and preserve anatomical structures during image translation. We achieve superior results for cross-modality segmentation between unpaired MRI and CT data for multi-modality whole heart and multi-modal brain tumor MRI (T1/T2) datasets compared to the state-of-the-art methods. We also observe encouraging results in cross-modality conversion for paired MRI and CT images on a brain dataset. Furthermore, a detailed analysis of the cross-modality image translation, thorough ablation studies confirm our proposed method's efficacy.
Collapse
|
163
|
Wang L, Guo D, Wang G, Zhang S. Annotation-Efficient Learning for Medical Image Segmentation Based on Noisy Pseudo Labels and Adversarial Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2795-2807. [PMID: 33370237 DOI: 10.1109/tmi.2020.3047807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite that deep learning has achieved state-of-the-art performance for medical image segmentation, its success relies on a large set of manually annotated images for training that are expensive to acquire. In this paper, we propose an annotation-efficient learning framework for segmentation tasks that avoids annotations of training images, where we use an improved Cycle-Consistent Generative Adversarial Network (GAN) to learn from a set of unpaired medical images and auxiliary masks obtained either from a shape model or public datasets. We first use the GAN to generate pseudo labels for our training images under the implicit high-level shape constraint represented by a Variational Auto-encoder (VAE)-based discriminator with the help of the auxiliary masks, and build a Discriminator-guided Generator Channel Calibration (DGCC) module which employs our discriminator's feedback to calibrate the generator for better pseudo labels. To learn from the pseudo labels that are noisy, we further introduce a noise-robust iterative learning method using noise-weighted Dice loss. We validated our framework with two situations: objects with a simple shape model like optic disc in fundus images and fetal head in ultrasound images, and complex structures like lung in X-Ray images and liver in CT images. Experimental results demonstrated that 1) Our VAE-based discriminator and DGCC module help to obtain high-quality pseudo labels. 2) Our proposed noise-robust learning method can effectively overcome the effect of noisy pseudo labels. 3) The segmentation performance of our method without using annotations of training images is close or even comparable to that of learning from human annotations.
Collapse
|
164
|
Liu X, Xing F, Fakhri GE, Woo J. A UNIFIED CONDITIONAL DISENTANGLEMENT FRAMEWORK FOR MULTIMODAL BRAIN MR IMAGE TRANSLATION. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2021; 2021. [PMID: 34567419 DOI: 10.1109/isbi48211.2021.9433897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multimodal MRI provides complementary and clinically relevant information to probe tissue condition and to characterize various diseases. However, it is often difficult to acquire sufficiently many modalities from the same subject due to limitations in study plans, while quantitative analysis is still demanded. In this work, we propose a unified conditional disentanglement framework to synthesize any arbitrary modality from an input modality. Our framework hinges on a cycle-constrained conditional adversarial training approach, where it can extract a modality-invariant anatomical feature with a modality-agnostic encoder and generate a target modality with a conditioned decoder. We validate our framework on four MRI modalities, including T1-weighted, T1 contrast enhanced, T2-weighted, and FLAIR MRI, from the BraTS'18 database, showing superior performance on synthesis quality over the comparison methods. In addition, we report results from experiments on a tumor segmentation task carried out with synthesized data.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Dept. of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Fangxu Xing
- Dept. of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Georges El Fakhri
- Dept. of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonghye Woo
- Dept. of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
165
|
Peng L, Lin L, Lin Y, Chen YW, Mo Z, Vlasova RM, Kim SH, Evans AC, Dager SR, Estes AM, McKinstry RC, Botteron KN, Gerig G, Schultz RT, Hazlett HC, Piven J, Burrows CA, Grzadzinski RL, Girault JB, Shen MD, Styner MA. Longitudinal Prediction of Infant MR Images With Multi-Contrast Perceptual Adversarial Learning. Front Neurosci 2021; 15:653213. [PMID: 34566556 PMCID: PMC8458966 DOI: 10.3389/fnins.2021.653213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022] Open
Abstract
The infant brain undergoes a remarkable period of neural development that is crucial for the development of cognitive and behavioral capacities (Hasegawa et al., 2018). Longitudinal magnetic resonance imaging (MRI) is able to characterize the developmental trajectories and is critical in neuroimaging studies of early brain development. However, missing data at different time points is an unavoidable occurrence in longitudinal studies owing to participant attrition and scan failure. Compared to dropping incomplete data, data imputation is considered a better solution to address such missing data in order to preserve all available samples. In this paper, we adapt generative adversarial networks (GAN) to a new application: longitudinal image prediction of structural MRI in the first year of life. In contrast to existing medical image-to-image translation applications of GANs, where inputs and outputs share a very close anatomical structure, our task is more challenging as brain size, shape and tissue contrast vary significantly between the input data and the predicted data. Several improvements over existing GAN approaches are proposed to address these challenges in our task. To enhance the realism, crispness, and accuracy of the predicted images, we incorporate both a traditional voxel-wise reconstruction loss as well as a perceptual loss term into the adversarial learning scheme. As the differing contrast changes in T1w and T2w MR images in the first year of life, we incorporate multi-contrast images leading to our proposed 3D multi-contrast perceptual adversarial network (MPGAN). Extensive evaluations are performed to assess the qualityand fidelity of the predicted images, including qualitative and quantitative assessments of the image appearance, as well as quantitative assessment on two segmentation tasks. Our experimental results show that our MPGAN is an effective solution for longitudinal MR image data imputation in the infant brain. We further apply our predicted/imputed images to two practical tasks, a regression task and a classification task, in order to highlight the enhanced task-related performance following image imputation. The results show that the model performance in both tasks is improved by including the additional imputed data, demonstrating the usability of the predicted images generated from our approach.
Collapse
Affiliation(s)
- Liying Peng
- Department of Computer Science, Zhejiang University, Hangzhou, China
- Department of Psychiatry, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Lanfen Lin
- Department of Computer Science, Zhejiang University, Hangzhou, China
| | - Yusen Lin
- Department of Electrical and Computer Engineering Department, University of Maryland, College Park, MD, United States
| | - Yen-wei Chen
- Department of Information Science and Engineering, Ritsumeikan University, Shiga, Japan
| | - Zhanhao Mo
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Roza M. Vlasova
- Department of Psychiatry, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Sun Hyung Kim
- Department of Psychiatry, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Alan C. Evans
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Stephen R. Dager
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Annette M. Estes
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, United States
| | - Robert C. McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, United States
| | - Kelly N. Botteron
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Guido Gerig
- Department of Computer Science and Engineering, New York University, New York, NY, United States
| | - Robert T. Schultz
- Center for Autism Research, Department of Pediatrics, Children's Hospital of Philadelphia, and University of Pennsylvania, Philadelphia, PA, United States
| | - Heather C. Hazlett
- Department of Psychiatry, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
| | - Joseph Piven
- Department of Psychiatry, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
| | - Catherine A. Burrows
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Rebecca L. Grzadzinski
- Department of Psychiatry, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
| | - Jessica B. Girault
- Department of Psychiatry, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
| | - Mark D. Shen
- Department of Psychiatry, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
- UNC Neuroscience Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
| | - Martin A. Styner
- Department of Psychiatry, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
166
|
Tian S, Wang M, Yuan F, Dai N, Sun Y, Xie W, Qin J. Efficient Computer-Aided Design of Dental Inlay Restoration: A Deep Adversarial Framework. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2415-2427. [PMID: 33945473 DOI: 10.1109/tmi.2021.3077334] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Restoring the normal masticatory function of broken teeth is a challenging task primarily due to the defect location and size of a patient's teeth. In recent years, although some representative image-to-image transformation methods (e.g. Pix2Pix) can be potentially applicable to restore the missing crown surface, most of them fail to generate dental inlay surface with realistic crown details (e.g. occlusal groove) that are critical to the restoration of defective teeth with varying shapes. In this article, we design a computer-aided Deep Adversarial-driven dental Inlay reStoration (DAIS) framework to automatically reconstruct a realistic surface for a defective tooth. Specifically, DAIS consists of a Wasserstein generative adversarial network (WGAN) with a specially designed loss measurement, and a new local-global discriminator mechanism. The local discriminator focuses on missing regions to ensure the local consistency of a generated occlusal surface, while the global discriminator aims at defective teeth and adjacent teeth to assess if it is coherent as a whole. Experimental results demonstrate that DAIS is highly efficient to deal with a large area of missing teeth in arbitrary shapes and generate realistic occlusal surface completion. Moreover, the designed watertight inlay prostheses have enough anatomical morphology, thus providing higher clinical applicability compared with more state-of-the-art methods.
Collapse
|
167
|
Modanwal G, Vellal A, Mazurowski MA. Normalization of breast MRIs using cycle-consistent generative adversarial networks. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 208:106225. [PMID: 34198016 DOI: 10.1016/j.cmpb.2021.106225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/29/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) is widely used to complement ultrasound examinations and x-ray mammography for early detection and diagnosis of breast cancer. However, images generated by various MRI scanners (e.g., GE Healthcare, and Siemens) differ both in intensity and noise distribution, preventing algorithms trained on MRIs from one scanner to generalize to data from other scanners. In this work, we propose a method to solve this problem by normalizing images between various scanners. METHODS MRI normalization is challenging because it requires normalizing intensity values and mapping noise distributions between scanners. We utilize a cycle-consistent generative adversarial network to learn a bidirectional mapping and perform normalization between MRIs produced by GE Healthcare and Siemens scanners in an unpaired setting. Initial experiments demonstrate that the traditional CycleGAN architecture struggles to preserve the anatomical structures of the breast during normalization. Thus, we propose two technical innovations in order to preserve both the shape of the breast as well as the tissue structures within the breast. First, we incorporate mutual information loss during training in order to ensure anatomical consistency. Second, we propose a modified discriminator architecture that utilizes a smaller field-of-view to ensure the preservation of finer details in the breast tissue. RESULTS Quantitative and qualitative evaluations show that the second innovation consistently preserves the breast shape and tissue structures while also performing the proper intensity normalization and noise distribution mapping. CONCLUSION Our results demonstrate that the proposed model can successfully learn a bidirectional mapping and perform normalization between MRIs produced by different vendors, potentially enabling improved diagnosis and detection of breast cancer. All the data used in this study are publicly available at https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70226903.
Collapse
Affiliation(s)
| | - Adithya Vellal
- Department of Computer Science, Duke University, Durham, NC, USA
| | | |
Collapse
|
168
|
Luo Y, Nie D, Zhan B, Li Z, Wu X, Zhou J, Wang Y, Shen D. Edge-preserving MRI image synthesis via adversarial network with iterative multi-scale fusion. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.04.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
169
|
Iglesias JE, Billot B, Balbastre Y, Tabari A, Conklin J, Gilberto González R, Alexander DC, Golland P, Edlow BL, Fischl B. Joint super-resolution and synthesis of 1 mm isotropic MP-RAGE volumes from clinical MRI exams with scans of different orientation, resolution and contrast. Neuroimage 2021; 237:118206. [PMID: 34048902 PMCID: PMC8354427 DOI: 10.1016/j.neuroimage.2021.118206] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Most existing algorithms for automatic 3D morphometry of human brain MRI scans are designed for data with near-isotropic voxels at approximately 1 mm resolution, and frequently have contrast constraints as well-typically requiring T1-weighted images (e.g., MP-RAGE scans). This limitation prevents the analysis of millions of MRI scans acquired with large inter-slice spacing in clinical settings every year. In turn, the inability to quantitatively analyze these scans hinders the adoption of quantitative neuro imaging in healthcare, and also precludes research studies that could attain huge sample sizes and hence greatly improve our understanding of the human brain. Recent advances in convolutional neural networks (CNNs) are producing outstanding results in super-resolution and contrast synthesis of MRI. However, these approaches are very sensitive to the specific combination of contrast, resolution and orientation of the input images, and thus do not generalize to diverse clinical acquisition protocols - even within sites. In this article, we present SynthSR, a method to train a CNN that receives one or more scans with spaced slices, acquired with different contrast, resolution and orientation, and produces an isotropic scan of canonical contrast (typically a 1 mm MP-RAGE). The presented method does not require any preprocessing, beyond rigid coregistration of the input scans. Crucially, SynthSR trains on synthetic input images generated from 3D segmentations, and can thus be used to train CNNs for any combination of contrasts, resolutions and orientations without high-resolution real images of the input contrasts. We test the images generated with SynthSR in an array of common downstream analyses, and show that they can be reliably used for subcortical segmentation and volumetry, image registration (e.g., for tensor-based morphometry), and, if some image quality requirements are met, even cortical thickness morphometry. The source code is publicly available at https://github.com/BBillot/SynthSR.
Collapse
Affiliation(s)
- Juan Eugenio Iglesias
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, USA.
| | - Benjamin Billot
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Yaël Balbastre
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Azadeh Tabari
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - John Conklin
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - R Gilberto González
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Neuroradiology Division, Massachusetts General Hospital, Boston, USA
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Polina Golland
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, USA
| | - Brian L Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| |
Collapse
|
170
|
Wang Q, Liu W, Chen X, Wang X, Chen G, Zhu X. Quantification of scar collagen texture and prediction of scar development via second harmonic generation images and a generative adversarial network. BIOMEDICAL OPTICS EXPRESS 2021; 12:5305-5319. [PMID: 34513258 PMCID: PMC8407811 DOI: 10.1364/boe.431096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 05/29/2023]
Abstract
Widely used for medical analysis, the texture of the human scar tissue is characterized by irregular and extensive types. The quantitative detection and analysis of the scar texture as enabled by image analysis technology is of great significance to clinical practice. However, the existing methods remain disadvantaged by various shortcomings, such as the inability to fully extract the features of texture. Hence, the integration of second harmonic generation (SHG) imaging and deep learning algorithm is proposed in this study. Through combination with Tamura texture features, a regression model of the scar texture can be constructed to develop a novel method of computer-aided diagnosis, which can assist clinical diagnosis. Based on wavelet packet transform (WPT) and generative adversarial network (GAN), the model is trained with scar texture images of different ages. Generalized Boosted Regression Trees (GBRT) is also adopted to perform regression analysis. Then, the extracted features are further used to predict the age of scar. The experimental results obtained by our proposed model are better compared to the previously published methods. It thus contributes to the better understanding of the mechanism behind scar development and possibly the further development of SHG for skin analysis and clinic practice.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Normal University, Fuzhou 350007, China
| | - Weiping Liu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Normal University, Fuzhou 350007, China
| | - Xinghong Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Normal University, Fuzhou 350007, China
| | - Xiumei Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Normal University, Fuzhou 350007, China
| | - Guannan Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Normal University, Fuzhou 350007, China
| | - Xiaoqin Zhu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
171
|
He Y, Carass A, Zuo L, Dewey BE, Prince JL. Autoencoder based self-supervised test-time adaptation for medical image analysis. Med Image Anal 2021; 72:102136. [PMID: 34246070 PMCID: PMC8316425 DOI: 10.1016/j.media.2021.102136] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/15/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023]
Abstract
Deep neural networks have been successfully applied to medical image analysis tasks like segmentation and synthesis. However, even if a network is trained on a large dataset from the source domain, its performance on unseen test domains is not guaranteed. The performance drop on data obtained differently from the network's training data is a major problem (known as domain shift) in deploying deep learning in clinical practice. Existing work focuses on retraining the model with data from the test domain, or harmonizing the test domain's data to the network training data. A common practice is to distribute a carefully-trained model to multiple users (e.g., clinical centers), and then each user uses the model to process their own data, which may have a domain shift (e.g., varying imaging parameters and machines). However, the lack of availability of the source training data and the cost of training a new model often prevents the use of known methods to solve user-specific domain shifts. Here, we ask whether we can design a model that, once distributed to users, can quickly adapt itself to each new site without expensive retraining or access to the source training data? In this paper, we propose a model that can adapt based on a single test subject during inference. The model consists of three parts, which are all neural networks: a task model (T) which performs the image analysis task like segmentation; a set of autoencoders (AEs); and a set of adaptors (As). The task model and autoencoders are trained on the source dataset and can be computationally expensive. In the deployment stage, the adaptors are trained to transform the test image and its features to minimize the domain shift as measured by the autoencoders' reconstruction loss. Only the adaptors are optimized during the testing stage with a single test subject thus is computationally efficient. The method was validated on both retinal optical coherence tomography (OCT) image segmentation and magnetic resonance imaging (MRI) T1-weighted to T2-weighted image synthesis. Our method, with its short optimization time for the adaptors (10 iterations on a single test subject) and its additional required disk space for the autoencoders (around 15 MB), can achieve significant performance improvement. Our code is publicly available at: https://github.com/YufanHe/self-domain-adapted-network.
Collapse
Affiliation(s)
- Yufan He
- Dept. of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Aaron Carass
- Dept. of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lianrui Zuo
- Dept. of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institute of Health, Baltimore, MD 20892, USA
| | - Blake E Dewey
- Dept. of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jerry L Prince
- Dept. of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
172
|
Liu X, Wang J, Lin S, Crozier S, Liu F. Optimizing multicontrast MRI reconstruction with shareable feature aggregation and selection. NMR IN BIOMEDICINE 2021; 34:e4540. [PMID: 33974306 DOI: 10.1002/nbm.4540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/05/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
This paper proposes a new method for optimizing feature sharing in deep neural network-based, rapid, multicontrast magnetic resonance imaging (MC-MRI). Using the shareable information of MC images for accelerated MC-MRI reconstruction, current algorithms stack the MC images or features without optimizing the sharing protocols, leading to suboptimal reconstruction results. In this paper, we propose a novel feature aggregation and selection scheme in a deep neural network to better leverage the MC features and improve the reconstruction results. First, we propose to extract and use the shareable information by mapping the MC images into multiresolution feature maps with multilevel layers of the neural network. In this way, the extracted features capture complementary image properties, including local patterns from the shallow layers and semantic information from the deep layers. Then, an explicit selection module is designed to compile the extracted features optimally. That is, larger weights are learned to incorporate the constructive, shareable features; and smaller weights are assigned to the unshareable information. We conduct comparative studies on publicly available T2-weighted and T2-weighted fluid attenuated inversion recovery brain images, and the results show that the proposed network consistently outperforms existing algorithms. In addition, the proposed method can recover the images with high fidelity under 16 times acceleration. The ablation studies are conducted to evaluate the effectiveness of the proposed feature aggregation and selection mechanism. The results and the visualization of the weighted features show that the proposed method does effectively improve the usage of the useful features and suppress useless information, leading to overall enhanced reconstruction results. Additionally, the selection module can zero-out repeated and redundant features and improve network efficiency.
Collapse
Affiliation(s)
- Xinwen Liu
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Jing Wang
- School of Information and Communication Technology, Griffith University, Brisbane, Australia
| | - Suzhen Lin
- School of Data Science and Technology, North University of China, Taiyuan, China
- The Key Laboratory of Biomedical Imaging and Big Data Processing in Shanxi Province, Shanxi, China
| | - Stuart Crozier
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Feng Liu
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| |
Collapse
|
173
|
Kim S, Jang H, Hong S, Hong YS, Bae WC, Kim S, Hwang D. Fat-saturated image generation from multi-contrast MRIs using generative adversarial networks with Bloch equation-based autoencoder regularization. Med Image Anal 2021; 73:102198. [PMID: 34403931 DOI: 10.1016/j.media.2021.102198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 11/28/2022]
Abstract
Obtaining multiple series of magnetic resonance (MR) images with different contrasts is useful for accurate diagnosis of human spinal conditions. However, this can be time consuming and a burden on both the patient and the hospital. We propose a Bloch equation-based autoencoder regularization generative adversarial network (BlochGAN) to generate a fat saturation T2-weighted (T2 FS) image from T1-weighted (T1-w) and T2-weighted (T2-w) images of human spine. To achieve this, our approach was to utilize the relationship between the contrasts using Bloch equation since it is a fundamental principle of MR physics and serves as a physical basis of each contrasts. BlochGAN properly generated the target-contrast images using the autoencoder regularization based on the Bloch equation to identify the physical basis of the contrasts. BlochGAN consists of four sub-networks: an encoder, a decoder, a generator, and a discriminator. The encoder extracts features from the multi-contrast input images, and the generator creates target T2 FS images using the features extracted from the encoder. The discriminator assists network learning by providing adversarial loss, and the decoder reconstructs the input multi-contrast images and regularizes the learning process by providing reconstruction loss. The discriminator and the decoder are only used in the training process. Our results demonstrate that BlochGAN achieved quantitatively and qualitatively superior performance compared to conventional medical image synthesis methods in generating spine T2 FS images from T1-w, and T2-w images.
Collapse
Affiliation(s)
- Sewon Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hanbyol Jang
- School of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Seokjun Hong
- School of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yeong Sang Hong
- Center for Clinical Imaging Data Science Center, Research Institute of Radiological Science, Department of Radiology, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Department of Radiology, Gangnam Severance Hospital, 211, Eonju-ro, Gangnam-gu, Seoul 06273, Republic of Korea
| | - Won C Bae
- Department of Radiology, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161-0114, USA; Department of Radiology, University of California-San Diego, La Jolla, CA 92093-0997, USA
| | - Sungjun Kim
- Center for Clinical Imaging Data Science Center, Research Institute of Radiological Science, Department of Radiology, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Department of Radiology, Gangnam Severance Hospital, 211, Eonju-ro, Gangnam-gu, Seoul 06273, Republic of Korea.
| | - Dosik Hwang
- School of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Center for Clinical Imaging Data Science Center, Research Institute of Radiological Science, Department of Radiology, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
174
|
Sun Y, Wang J, Shi J, Boppart SA. Synthetic polarization-sensitive optical coherence tomography by deep learning. NPJ Digit Med 2021; 4:105. [PMID: 34211104 PMCID: PMC8249385 DOI: 10.1038/s41746-021-00475-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022] Open
Abstract
Polarization-sensitive optical coherence tomography (PS-OCT) is a high-resolution label-free optical biomedical imaging modality that is sensitive to the microstructural architecture in tissue that gives rise to form birefringence, such as collagen or muscle fibers. To enable polarization sensitivity in an OCT system, however, requires additional hardware and complexity. We developed a deep-learning method to synthesize PS-OCT images by training a generative adversarial network (GAN) on OCT intensity and PS-OCT images. The synthesis accuracy was first evaluated by the structural similarity index (SSIM) between the synthetic and real PS-OCT images. Furthermore, the effectiveness of the computational PS-OCT images was validated by separately training two image classifiers using the real and synthetic PS-OCT images for cancer/normal classification. The similar classification results of the two trained classifiers demonstrate that the predicted PS-OCT images can be potentially used interchangeably in cancer diagnosis applications. In addition, we applied the trained GAN models on OCT images collected from a separate OCT imaging system, and the synthetic PS-OCT images correlate well with the real PS-OCT image collected from the same sample sites using the PS-OCT imaging system. This computational PS-OCT imaging method has the potential to reduce the cost, complexity, and need for hardware-based PS-OCT imaging systems.
Collapse
Affiliation(s)
- Yi Sun
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jianfeng Wang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jindou Shi
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
175
|
Abdelmotaal H, Abdou AA, Omar AF, El-Sebaity DM, Abdelazeem K. Pix2pix Conditional Generative Adversarial Networks for Scheimpflug Camera Color-Coded Corneal Tomography Image Generation. Transl Vis Sci Technol 2021; 10:21. [PMID: 34132759 PMCID: PMC8242686 DOI: 10.1167/tvst.10.7.21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Purpose To assess the ability of pix2pix conditional generative adversarial network (pix2pix cGAN) to create plausible synthesized Scheimpflug camera color-coded corneal tomography images based upon a modest-sized original dataset to be used for image augmentation during training a deep convolutional neural network (DCNN) for classification of keratoconus and normal corneal images. Methods Original images of 1778 eyes of 923 nonconsecutive patients with or without keratoconus were retrospectively analyzed. Images were labeled and preprocessed for use in training the proposed pix2pix cGAN. The best quality synthesized images were selected based on the Fréchet inception distance score, and their quality was studied by calculating the mean square error, structural similarity index, and the peak signal-to-noise ratio. We used original, traditionally augmented original and synthesized images to train a DCNN for image classification and compared classification performance metrics. Results The pix2pix cGAN synthesized images showed plausible subjectively and objectively assessed quality. Training the DCNN with a combination of real and synthesized images allowed better classification performance compared with training using original images only or with traditional augmentation. Conclusions Using the pix2pix cGAN to synthesize corneal tomography images can overcome issues related to small datasets and class imbalance when training computer-aided diagnostic models. Translational Relevance Pix2pix cGAN can provide an unlimited supply of plausible synthetic Scheimpflug camera color-coded corneal tomography images at levels useful for experimental and clinical applications.
Collapse
Affiliation(s)
- Hazem Abdelmotaal
- Department of Ophthalmology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed A Abdou
- Department of Ophthalmology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed F Omar
- Department of Ophthalmology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Khaled Abdelazeem
- Department of Ophthalmology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
176
|
MR-contrast-aware image-to-image translations with generative adversarial networks. Int J Comput Assist Radiol Surg 2021; 16:2069-2078. [PMID: 34148167 PMCID: PMC8616894 DOI: 10.1007/s11548-021-02433-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/11/2021] [Indexed: 11/06/2022]
Abstract
Purpose A magnetic resonance imaging (MRI) exam typically consists of several sequences that yield different image contrasts. Each sequence is parameterized through multiple acquisition parameters that influence image contrast, signal-to-noise ratio, acquisition time, and/or resolution. Depending on the clinical indication, different contrasts are required by the radiologist to make a diagnosis. As MR sequence acquisition is time consuming and acquired images may be corrupted due to motion, a method to synthesize MR images with adjustable contrast properties is required. Methods Therefore, we trained an image-to-image generative adversarial network conditioned on the MR acquisition parameters repetition time and echo time. Our approach is motivated by style transfer networks, whereas the “style” for an image is explicitly given in our case, as it is determined by the MR acquisition parameters our network is conditioned on. Results This enables us to synthesize MR images with adjustable image contrast. We evaluated our approach on the fastMRI dataset, a large set of publicly available MR knee images, and show that our method outperforms a benchmark pix2pix approach in the translation of non-fat-saturated MR images to fat-saturated images. Our approach yields a peak signal-to-noise ratio and structural similarity of 24.48 and 0.66, surpassing the pix2pix benchmark model significantly. Conclusion Our model is the first that enables fine-tuned contrast synthesis, which can be used to synthesize missing MR-contrasts or as a data augmentation technique for AI training in MRI. It can also be used as basis for other image-to-image translation tasks within medical imaging, e.g., to enhance intermodality translation (MRI → CT) or 7 T image synthesis from 3 T MR images.
Collapse
|
177
|
Zhan B, Li D, Wu X, Zhou J, Wang Y. Multi-modal MRI Image Synthesis via GAN with Multi-scale Gate Mergence. IEEE J Biomed Health Inform 2021; 26:17-26. [PMID: 34125692 DOI: 10.1109/jbhi.2021.3088866] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multi-modal magnetic resonance imaging (MRI) plays a critical role in clinical diagnosis and treatment nowadays. Each modality of MRI presents its own specific anatomical features which serve as complementary information to other modalities and can provide rich diagnostic information. However, due to the limitations of time consuming and expensive cost, some image sequences of patients may be lost or corrupted, posing an obstacle for accurate diagnosis. Although current multi-modal image synthesis approaches are able to alleviate the issues to some extent, they are still far short of fusing modalities effectively. In light of this, we propose a multi-scale gate mergence based generative adversarial network model, namely MGM-GAN, to synthesize one modality of MRI from others. Notably, we have multiple down-sampling branches corresponding to input modalities to specifically extract their unique features. In contrast to the generic multi-modal fusion approach of averaging or maximizing operations, we introduce a gate mergence (GM) mechanism to automatically learn the weights of different modalities across locations, enhancing the task-related information while suppressing the irrelative information. As such, the feature maps of all the input modalities at each down-sampling level, i.e., multi-scale levels, are integrated via GM module. In addition, both the adversarial loss and the pixel-wise loss, as well as gradient difference loss (GDL) are applied to train the network to produce the desired modality accurately. Extensive experiments demonstrate that the proposed method outperforms the state-of-the-art multi-modal image synthesis methods.
Collapse
|
178
|
Fei Y, Zhan B, Hong M, Wu X, Zhou J, Wang Y. Deep learning-based multi-modal computing with feature disentanglement for MRI image synthesis. Med Phys 2021; 48:3778-3789. [PMID: 33959965 DOI: 10.1002/mp.14929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Different Magnetic resonance imaging (MRI) modalities of the same anatomical structure are required to present different pathological information from the physical level for diagnostic needs. However, it is often difficult to obtain full-sequence MRI images of patients owing to limitations such as time consumption and high cost. The purpose of this work is to develop an algorithm for target MRI sequences prediction with high accuracy, and provide more information for clinical diagnosis. METHODS We propose a deep learning-based multi-modal computing model for MRI synthesis with feature disentanglement strategy. To take full advantage of the complementary information provided by different modalities, multi-modal MRI sequences are utilized as input. Notably, the proposed approach decomposes each input modality into modality-invariant space with shared information and modality-specific space with specific information, so that features are extracted separately to effectively process the input data. Subsequently, both of them are fused through the adaptive instance normalization (AdaIN) layer in the decoder. In addition, to address the lack of specific information of the target modality in the test phase, a local adaptive fusion (LAF) module is adopted to generate a modality-like pseudo-target with specific information similar to the ground truth. RESULTS To evaluate the synthesis performance, we verify our method on the BRATS2015 dataset of 164 subjects. The experimental results demonstrate our approach significantly outperforms the benchmark method and other state-of-the-art medical image synthesis methods in both quantitative and qualitative measures. Compared with the pix2pixGANs method, the PSNR improves from 23.68 to 24.8. Moreover the ablation studies have also verified the effectiveness of important components of the proposed method. CONCLUSION The proposed method could be effective in prediction of target MRI sequences, and useful for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yuchen Fei
- School of Computer Science, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Bo Zhan
- School of Computer Science, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Mei Hong
- School of Computer Science, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xi Wu
- School of Computer Science, Chengdu University of Information Technology, Chengdu, Sichuan, China
| | - Jiliu Zhou
- School of Computer Science, Sichuan University, Chengdu, Sichuan, 610065, China.,School of Computer Science, Chengdu University of Information Technology, Chengdu, Sichuan, China
| | - Yan Wang
- School of Computer Science, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
179
|
Liu H, Nai YH, Saridin F, Tanaka T, O' Doherty J, Hilal S, Gyanwali B, Chen CP, Robins EG, Reilhac A. Improved amyloid burden quantification with nonspecific estimates using deep learning. Eur J Nucl Med Mol Imaging 2021; 48:1842-1853. [PMID: 33415430 PMCID: PMC8113180 DOI: 10.1007/s00259-020-05131-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/18/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Standardized uptake value ratio (SUVr) used to quantify amyloid-β burden from amyloid-PET scans can be biased by variations in the tracer's nonspecific (NS) binding caused by the presence of cerebrovascular disease (CeVD). In this work, we propose a novel amyloid-PET quantification approach that harnesses the intermodal image translation capability of convolutional networks to remove this undesirable source of variability. METHODS Paired MR and PET images exhibiting very low specific uptake were selected from a Singaporean amyloid-PET study involving 172 participants with different severities of CeVD. Two convolutional neural networks (CNN), ScaleNet and HighRes3DNet, and one conditional generative adversarial network (cGAN) were trained to map structural MR to NS PET images. NS estimates generated for all subjects using the most promising network were then subtracted from SUVr images to determine specific amyloid load only (SAβL). Associations of SAβL with various cognitive and functional test scores were then computed and compared to results using conventional SUVr. RESULTS Multimodal ScaleNet outperformed other networks in predicting the NS content in cortical gray matter with a mean relative error below 2%. Compared to SUVr, SAβL showed increased association with cognitive and functional test scores by up to 67%. CONCLUSION Removing the undesirable NS uptake from the amyloid load measurement is possible using deep learning and substantially improves its accuracy. This novel analysis approach opens a new window of opportunity for improved data modeling in Alzheimer's disease and for other neurodegenerative diseases that utilize PET imaging.
Collapse
Affiliation(s)
- Haohui Liu
- Raffles Institution, Singapore, Singapore
| | - Ying-Hwey Nai
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine (MD6), 14 Medical Drive, #B1-01, Singapore, 117599, Singapore.
| | - Francis Saridin
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Tomotaka Tanaka
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Jim O' Doherty
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine (MD6), 14 Medical Drive, #B1-01, Singapore, 117599, Singapore
| | - Saima Hilal
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Bibek Gyanwali
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christopher P Chen
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Edward G Robins
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine (MD6), 14 Medical Drive, #B1-01, Singapore, 117599, Singapore
- Singapore BioImaging Consortium (SBIC), Agency for Science, Technology and Research (A*Star), Singapore, Singapore
| | - Anthonin Reilhac
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine (MD6), 14 Medical Drive, #B1-01, Singapore, 117599, Singapore
| |
Collapse
|
180
|
Saha M, Guo X, Sharma A. TilGAN: GAN for Facilitating Tumor-Infiltrating Lymphocyte Pathology Image Synthesis With Improved Image Classification. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2021; 9:79829-79840. [PMID: 34178560 PMCID: PMC8224465 DOI: 10.1109/access.2021.3084597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tumor-infiltrating lymphocytes (TILs) act as immune cells against cancer tissues. The manual assessment of TILs is usually erroneous, tedious, costly and subject to inter- and intraobserver variability. Machine learning approaches can solve these issues, but they require a large amount of labeled data for model training, which is expensive and not readily available. In this study, we present an efficient generative adversarial network, TilGAN, to generate high-quality synthetic pathology images followed by classification of TIL and non-TIL regions. Our proposed architecture is constructed with a generator network and a discriminator network. The novelty exists in the TilGAN architecture, loss functions, and evaluation techniques. Our TilGAN-generated images achieved a higher Inception score than the real images (2.90 vs. 2.32, respectively). They also achieved a lower kernel Inception distance (1.44) and a lower Fréchet Inception distance (0.312). It also passed the Turing test performed by experienced pathologists and clinicians. We further extended our evaluation studies and used almost one million synthetic data, generated by TilGAN, to train a classification model. Our proposed classification model achieved a 97.83% accuracy, a 97.37% F1-score, and a 97% area under the curve. Our extensive experiments and superior outcomes show the efficiency and effectiveness of our proposed TilGAN architecture. This architecture can also be used for other types of images for image synthesis.
Collapse
Affiliation(s)
- Monjoy Saha
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Xiaoyuan Guo
- Department of Computer Science, Emory University, Atlanta, GA 30332, USA
| | - Ashish Sharma
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
181
|
Schaefferkoetter J, Yan J, Moon S, Chan R, Ortega C, Metser U, Berlin A, Veit-Haibach P. Deep learning for whole-body medical image generation. Eur J Nucl Med Mol Imaging 2021; 48:3817-3826. [PMID: 34021779 DOI: 10.1007/s00259-021-05413-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/11/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Artificial intelligence (AI) algorithms based on deep convolutional networks have demonstrated remarkable success for image transformation tasks. State-of-the-art results have been achieved by generative adversarial networks (GANs) and training approaches which do not require paired data. Recently, these techniques have been applied in the medical field for cross-domain image translation. PURPOSE This study investigated deep learning transformation in medical imaging. It was motivated to identify generalizable methods which would satisfy the simultaneous requirements of quality and anatomical accuracy across the entire human body. Specifically, whole-body MR patient data acquired on a PET/MR system were used to generate synthetic CT image volumes. The capacity of these synthetic CT data for use in PET attenuation correction (AC) was evaluated and compared to current MR-based attenuation correction (MR-AC) methods, which typically use multiphase Dixon sequences to segment various tissue types. MATERIALS AND METHODS This work aimed to investigate the technical performance of a GAN system for general MR-to-CT volumetric transformation and to evaluate the performance of the generated images for PET AC. A dataset comprising matched, same-day PET/MR and PET/CT patient scans was used for validation. RESULTS A combination of training techniques was used to produce synthetic images which were of high-quality and anatomically accurate. Higher correlation was found between the values of mu maps calculated directly from CT data and those derived from the synthetic CT images than those from the default segmented Dixon approach. Over the entire body, the total amounts of reconstructed PET activities were similar between the two MR-AC methods, but the synthetic CT method yielded higher accuracy for quantifying the tracer uptake in specific regions. CONCLUSION The findings reported here demonstrate the feasibility of this technique and its potential to improve certain aspects of attenuation correction for PET/MR systems. Moreover, this work may have larger implications for establishing generalized methods for inter-modality, whole-body transformation in medical imaging. Unsupervised deep learning techniques can produce high-quality synthetic images, but additional constraints may be needed to maintain medical integrity in the generated data.
Collapse
Affiliation(s)
- Joshua Schaefferkoetter
- Siemens Medical Solutions USA, Inc., 810 Innovation Drive, Knoxville, TN, 37932, USA.
- Joint Department of Medical Imaging, Princess Margaret Cancer Centre, Mount Sinai Hospital and Women's College Hospital, University of Toronto, University Health Network, 610 University Ave, Toronto, Ontario, M5G 2M9, Canada.
| | - Jianhua Yan
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Sangkyu Moon
- Joint Department of Medical Imaging, Princess Margaret Cancer Centre, Mount Sinai Hospital and Women's College Hospital, University of Toronto, University Health Network, 610 University Ave, Toronto, Ontario, M5G 2M9, Canada
| | - Rosanna Chan
- Joint Department of Medical Imaging, Princess Margaret Cancer Centre, Mount Sinai Hospital and Women's College Hospital, University of Toronto, University Health Network, 610 University Ave, Toronto, Ontario, M5G 2M9, Canada
| | - Claudia Ortega
- Joint Department of Medical Imaging, Princess Margaret Cancer Centre, Mount Sinai Hospital and Women's College Hospital, University of Toronto, University Health Network, 610 University Ave, Toronto, Ontario, M5G 2M9, Canada
| | - Ur Metser
- Joint Department of Medical Imaging, Princess Margaret Cancer Centre, Mount Sinai Hospital and Women's College Hospital, University of Toronto, University Health Network, 610 University Ave, Toronto, Ontario, M5G 2M9, Canada
| | - Alejandro Berlin
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Techna Institute, University Health Network, Toronto, ON, Canada
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, Princess Margaret Cancer Centre, Mount Sinai Hospital and Women's College Hospital, University of Toronto, University Health Network, 610 University Ave, Toronto, Ontario, M5G 2M9, Canada
| |
Collapse
|
182
|
Peng B, Liu B, Bin Y, Shen L, Lei J. Multi-Modality MR Image Synthesis via Confidence-Guided Aggregation and Cross-Modality Refinement. IEEE J Biomed Health Inform 2021; 26:27-35. [PMID: 34018939 DOI: 10.1109/jbhi.2021.3082541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Magnetic resonance imaging (MRI) can provide multi-modality MR images by setting task-specific scan parameters, and has been widely used in various disease diagnosis and planned treatments. However, in practical clinical applications, it is often difficult to obtain multi-modality MR images simultaneously due to patient discomfort, and scanning costs, etc. Therefore, how to effectively utilize the existing modality images to synthesize missing modality image has become a hot research topic. In this paper, we propose a novel confidence-guided aggregation and cross-modality refinement network (CACR-Net) for multi-modality MR image synthesis, which effectively utilizes complementary and correlative information of multiple modalities to synthesize high-quality target-modality images. Specifically, to effectively utilize the complementary modality-specific characteristics, a confidence-guided aggregation module is proposed to adaptively aggregate the multiple target-modality images generated from multiple source-modality images by using the corresponding confidence maps. Based on the aggregated target-modality image, a cross-modality refinement module is presented to further refine the target-modality image by mining correlative information among the multiple source-modality images and aggregated target-modality image. By training the proposed CACR-Net in an end-to-end manner, high-quality and sharp target-modality MR images are effectively synthesized. Experimental results on the widely used benchmark demonstrate that the proposed method outperforms state-of-the-art methods.
Collapse
|
183
|
Abstract
The scarcity of balanced and annotated datasets has been a recurring problem in medical image analysis. Several researchers have tried to fill this gap employing dataset synthesis with adversarial networks (GANs). Breast magnetic resonance imaging (MRI) provides complex, texture-rich medical images, with the same annotation shortage issues, for which, to the best of our knowledge, no previous work tried synthesizing data. Within this context, our work addresses the problem of synthesizing breast MRI images from corresponding annotations and evaluate the impact of this data augmentation strategy on a semantic segmentation task. We explored variations of image-to-image translation using conditional GANs, namely fitting the generator’s architecture with residual blocks and experimenting with cycle consistency approaches. We studied the impact of these changes on visual verisimilarity and how an U-Net segmentation model is affected by the usage of synthetic data. We achieved sufficiently realistic-looking breast MRI images and maintained a stable segmentation score even when completely replacing the dataset with the synthetic set. Our results were promising, especially when concerning to Pix2PixHD and Residual CycleGAN architectures.
Collapse
|
184
|
Park JE, Eun D, Kim HS, Lee DH, Jang RW, Kim N. Generative adversarial network for glioblastoma ensures morphologic variations and improves diagnostic model for isocitrate dehydrogenase mutant type. Sci Rep 2021; 11:9912. [PMID: 33972663 PMCID: PMC8110557 DOI: 10.1038/s41598-021-89477-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
Generative adversarial network (GAN) creates synthetic images to increase data quantity, but whether GAN ensures meaningful morphologic variations is still unknown. We investigated whether GAN-based synthetic images provide sufficient morphologic variations to improve molecular-based prediction, as a rare disease of isocitrate dehydrogenase (IDH)-mutant glioblastomas. GAN was initially trained on 500 normal brains and 110 IDH-mutant high-grade astocytomas, and paired contrast-enhanced T1-weighted and FLAIR MRI data were generated. Diagnostic models were developed from real IDH-wild type (n = 80) with real IDH-mutant glioblastomas (n = 38), or with synthetic IDH-mutant glioblastomas, or augmented by adding both real and synthetic IDH-mutant glioblastomas. Turing tests showed synthetic data showed reality (classification rate of 55%). Both the real and synthetic data showed that a more frontal or insular location (odds ratio [OR] 1.34 vs. 1.52; P = 0.04) and distinct non-enhancing tumor margins (OR 2.68 vs. 3.88; P < 0.001), which become significant predictors of IDH-mutation. In an independent validation set, diagnostic accuracy was higher for the augmented model (90.9% [40/44] and 93.2% [41/44] for each reader, respectively) than for the real model (84.1% [37/44] and 86.4% [38/44] for each reader, respectively). The GAN-based synthetic images yield morphologically variable, realistic-seeming IDH-mutant glioblastomas. GAN will be useful to create a realistic training set in terms of morphologic variations and quality, thereby improving diagnostic performance in a clinical model.
Collapse
Affiliation(s)
- Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul, 05505, Korea
| | - Dain Eun
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul, 05505, Korea
- School of Medicine, Kyunghee University, Seoul, 02447, Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul, 05505, Korea.
| | - Da Hyun Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul, 05505, Korea
| | - Ryoung Woo Jang
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul, 05505, Korea
| | - Namkug Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul, 05505, Korea
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul, 05505, Korea
| |
Collapse
|
185
|
Wolterink JM, Mukhopadhyay A, Leiner T, Vogl TJ, Bucher AM, Išgum I. Generative Adversarial Networks: A Primer for Radiologists. Radiographics 2021; 41:840-857. [PMID: 33891522 DOI: 10.1148/rg.2021200151] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Artificial intelligence techniques involving the use of artificial neural networks-that is, deep learning techniques-are expected to have a major effect on radiology. Some of the most exciting applications of deep learning in radiology make use of generative adversarial networks (GANs). GANs consist of two artificial neural networks that are jointly optimized but with opposing goals. One neural network, the generator, aims to synthesize images that cannot be distinguished from real images. The second neural network, the discriminator, aims to distinguish these synthetic images from real images. These deep learning models allow, among other applications, the synthesis of new images, acceleration of image acquisitions, reduction of imaging artifacts, efficient and accurate conversion between medical images acquired with different modalities, and identification of abnormalities depicted on images. The authors provide an introduction to GANs and adversarial deep learning methods. In addition, the different ways in which GANs can be used for image synthesis and image-to-image translation tasks, as well as the principles underlying conditional GANs and cycle-consistent GANs, are described. Illustrated examples of GAN applications in radiologic image analysis for different imaging modalities and different tasks are provided. The clinical potential of GANs, future clinical GAN applications, and potential pitfalls and caveats that radiologists should be aware of also are discussed in this review. The online slide presentation from the RSNA Annual Meeting is available for this article. ©RSNA, 2021.
Collapse
Affiliation(s)
- Jelmer M Wolterink
- From the Department of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Centre, University of Twente, Zilverling, PO Box 217, 7500 AE Enschede, the Netherlands (J.M.W.); Department of Biomedical Engineering and Physics (J.M.W., I.I.) and Department of Radiology and Nuclear Medicine (I.I.), Amsterdam University Medical Center, Amsterdam, the Netherlands; Department of Informatics, Technische Universität Darmstadt, Darmstadt, Germany (A.M.); Department of Radiology, Utrecht University Medical Center, Utrecht, the Netherlands (T.L.); and Institute of Diagnostic and Interventional Radiology, Universitätsklinikum Frankfurt, Frankfurt, Germany (T.J.V., A.M.B.)
| | - Anirban Mukhopadhyay
- From the Department of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Centre, University of Twente, Zilverling, PO Box 217, 7500 AE Enschede, the Netherlands (J.M.W.); Department of Biomedical Engineering and Physics (J.M.W., I.I.) and Department of Radiology and Nuclear Medicine (I.I.), Amsterdam University Medical Center, Amsterdam, the Netherlands; Department of Informatics, Technische Universität Darmstadt, Darmstadt, Germany (A.M.); Department of Radiology, Utrecht University Medical Center, Utrecht, the Netherlands (T.L.); and Institute of Diagnostic and Interventional Radiology, Universitätsklinikum Frankfurt, Frankfurt, Germany (T.J.V., A.M.B.)
| | - Tim Leiner
- From the Department of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Centre, University of Twente, Zilverling, PO Box 217, 7500 AE Enschede, the Netherlands (J.M.W.); Department of Biomedical Engineering and Physics (J.M.W., I.I.) and Department of Radiology and Nuclear Medicine (I.I.), Amsterdam University Medical Center, Amsterdam, the Netherlands; Department of Informatics, Technische Universität Darmstadt, Darmstadt, Germany (A.M.); Department of Radiology, Utrecht University Medical Center, Utrecht, the Netherlands (T.L.); and Institute of Diagnostic and Interventional Radiology, Universitätsklinikum Frankfurt, Frankfurt, Germany (T.J.V., A.M.B.)
| | - Thomas J Vogl
- From the Department of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Centre, University of Twente, Zilverling, PO Box 217, 7500 AE Enschede, the Netherlands (J.M.W.); Department of Biomedical Engineering and Physics (J.M.W., I.I.) and Department of Radiology and Nuclear Medicine (I.I.), Amsterdam University Medical Center, Amsterdam, the Netherlands; Department of Informatics, Technische Universität Darmstadt, Darmstadt, Germany (A.M.); Department of Radiology, Utrecht University Medical Center, Utrecht, the Netherlands (T.L.); and Institute of Diagnostic and Interventional Radiology, Universitätsklinikum Frankfurt, Frankfurt, Germany (T.J.V., A.M.B.)
| | - Andreas M Bucher
- From the Department of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Centre, University of Twente, Zilverling, PO Box 217, 7500 AE Enschede, the Netherlands (J.M.W.); Department of Biomedical Engineering and Physics (J.M.W., I.I.) and Department of Radiology and Nuclear Medicine (I.I.), Amsterdam University Medical Center, Amsterdam, the Netherlands; Department of Informatics, Technische Universität Darmstadt, Darmstadt, Germany (A.M.); Department of Radiology, Utrecht University Medical Center, Utrecht, the Netherlands (T.L.); and Institute of Diagnostic and Interventional Radiology, Universitätsklinikum Frankfurt, Frankfurt, Germany (T.J.V., A.M.B.)
| | - Ivana Išgum
- From the Department of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Centre, University of Twente, Zilverling, PO Box 217, 7500 AE Enschede, the Netherlands (J.M.W.); Department of Biomedical Engineering and Physics (J.M.W., I.I.) and Department of Radiology and Nuclear Medicine (I.I.), Amsterdam University Medical Center, Amsterdam, the Netherlands; Department of Informatics, Technische Universität Darmstadt, Darmstadt, Germany (A.M.); Department of Radiology, Utrecht University Medical Center, Utrecht, the Netherlands (T.L.); and Institute of Diagnostic and Interventional Radiology, Universitätsklinikum Frankfurt, Frankfurt, Germany (T.J.V., A.M.B.)
| |
Collapse
|
186
|
Sun H, Lu Z, Fan R, Xiong W, Xie K, Ni X, Yang J. Research on obtaining pseudo CT images based on stacked generative adversarial network. Quant Imaging Med Surg 2021; 11:1983-2000. [PMID: 33936980 DOI: 10.21037/qims-20-1019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background To investigate the feasibility of using a stacked generative adversarial network (sGAN) to synthesize pseudo computed tomography (CT) images based on ultrasound (US) images. Methods The pre-radiotherapy US and CT images of 75 patients with cervical cancer were selected for the training set of pseudo-image synthesis. In the first stage, labeled US images were used as the first conditional GAN input to obtain low-resolution pseudo CT images, and in the second stage, a super-resolution reconstruction GAN was used. The pseudo CT image obtained in the first stage was used as an input, following which a high-resolution pseudo CT image with clear texture and accurate grayscale information was obtained. Five cross validation tests were performed to verify our model. The mean absolute error (MAE) was used to compare each pseudo CT with the same patient's real CT image. Also, another 10 cases of patients with cervical cancer, before radiotherapy, were selected for testing, and the pseudo CT image obtained using the neural style transfer (NSF) and CycleGAN methods were compared with that obtained using the sGAN method proposed in this study. Finally, the dosimetric accuracy of pseudo CT images was verified by phantom experiments. Results The MAE metric values between the pseudo CT obtained based on sGAN, and the real CT in five-fold cross validation are 66.82±1.59 HU, 66.36±1.85 HU, 67.26±2.37 HU, 66.34±1.75 HU, and 67.22±1.30 HU, respectively. The results of the metrics, namely, normalized mutual information (NMI), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR), between the pseudo CT images obtained using the sGAN method and the ground truth CT (CTgt) images were compared with those of the other two methods via the paired t-test, and the differences were statistically significant. The dice similarity coefficient (DSC) measurement results showed that the pseudo CT images obtained using the sGAN method were more similar to the CTgt images of organs at risk. The dosimetric phantom experiments also showed that the dose distribution between the pseudo CT images synthesized by the new method was similar to that of the CTgt images. Conclusions Compared with NSF and CycleGAN methods, the sGAN method can obtain more accurate pseudo CT images, thereby providing a new method for image guidance in radiotherapy for cervical cancer.
Collapse
Affiliation(s)
- Hongfei Sun
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Zhengda Lu
- Department of Radiotherapy, Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, China.,The Center of Medical Physics, Nanjing Medical University, Changzhou, China.,The Key Laboratory of Medical Physics, Changzhou, China
| | - Rongbo Fan
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Wenjun Xiong
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Kai Xie
- Department of Radiotherapy, Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, China.,The Center of Medical Physics, Nanjing Medical University, Changzhou, China.,The Key Laboratory of Medical Physics, Changzhou, China
| | - Xinye Ni
- Department of Radiotherapy, Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, China.,The Center of Medical Physics, Nanjing Medical University, Changzhou, China.,The Key Laboratory of Medical Physics, Changzhou, China
| | - Jianhua Yang
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
187
|
Hu Z, Zhuang Q, Xiao Y, Wu G, Shi Z, Chen L, Wang Y, Yu J. MIL normalization -- prerequisites for accurate MRI radiomics analysis. Comput Biol Med 2021; 133:104403. [PMID: 33932645 DOI: 10.1016/j.compbiomed.2021.104403] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/11/2021] [Accepted: 04/11/2021] [Indexed: 01/15/2023]
Abstract
The quality of magnetic resonance (MR) images obtained with different instruments and imaging parameters varies greatly. A large number of heterogeneous images are collected, and they suffer from acquisition variation. Such imaging quality differences will have a great impact on the radiomics analysis. The main differences in MR images include modality mismatch (M), intensity distribution variance (I), and layer-spacing differences (L), which are referred to as MIL differences in this paper for convenience. An MIL normalization system is proposed to reconstruct uneven MR images into high-quality data with complete modality, a uniform intensity distribution and consistent layer spacing. Three radiomics tasks, including tumor segmentation, pathological grading and genetic diagnosis of glioma, were used to verify the effect of MIL normalization on radiomics analysis. Three retrospective glioma datasets were analyzed in this study: BraTs (285 cases), TCGA (112 cases) and HuaShan (403 cases). They were used to test the effect of MIL on three different radiomics tasks, including tumor segmentation, pathological grading and genetic diagnosis. MIL normalization included three components: multimodal synthesis based on an encoder-decoder network, intensity normalization based on CycleGAN, and layer-spacing unification based on Statistical Parametric Mapping (SPM). The Dice similarity coefficient, areas under the curve (AUC) and six other indicators were calculated and compared after different normalization steps. The MIL normalization system can improved the Dice coefficient of segmentation by 9% (P < .001), the AUC of pathological grading by 32% (P < .001), and IDH1 status prediction by 25% (P < .001) when compared to non-normalization. The proposed MIL normalization system provides high-quality standardized data, which is a prerequisite for accurate radiomics analysis.
Collapse
Affiliation(s)
- Zhaoyu Hu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Qiyuan Zhuang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Xiao
- Department of Biomedical Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guoqing Wu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanyuan Wang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Jinhua Yu
- School of Information Science and Technology, Fudan University, Shanghai, China.
| |
Collapse
|
188
|
LR-cGAN: Latent representation based conditional generative adversarial network for multi-modality MRI synthesis. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102457] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
189
|
Shen L, Zhu W, Wang X, Xing L, Pauly JM, Turkbey B, Harmon SA, Sanford TH, Mehralivand S, Choyke PL, Wood BJ, Xu D. Multi-Domain Image Completion for Random Missing Input Data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1113-1122. [PMID: 33351753 PMCID: PMC8136445 DOI: 10.1109/tmi.2020.3046444] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Multi-domain data are widely leveraged in vision applications taking advantage of complementary information from different modalities, e.g., brain tumor segmentation from multi-parametric magnetic resonance imaging (MRI). However, due to possible data corruption and different imaging protocols, the availability of images for each domain could vary amongst multiple data sources in practice, which makes it challenging to build a universal model with a varied set of input data. To tackle this problem, we propose a general approach to complete the random missing domain(s) data in real applications. Specifically, we develop a novel multi-domain image completion method that utilizes a generative adversarial network (GAN) with a representational disentanglement scheme to extract shared content encoding and separate style encoding across multiple domains. We further illustrate that the learned representation in multi-domain image completion could be leveraged for high-level tasks, e.g., segmentation, by introducing a unified framework consisting of image completion and segmentation with a shared content encoder. The experiments demonstrate consistent performance improvement on three datasets for brain tumor segmentation, prostate segmentation, and facial expression image completion respectively.
Collapse
|
190
|
Park HY, Bae HJ, Hong GS, Kim M, Yun J, Park S, Chung WJ, Kim N. Realistic High-Resolution Body Computed Tomography Image Synthesis by Using Progressive Growing Generative Adversarial Network: Visual Turing Test. JMIR Med Inform 2021; 9:e23328. [PMID: 33609339 PMCID: PMC8077702 DOI: 10.2196/23328] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/15/2020] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Generative adversarial network (GAN)-based synthetic images can be viable solutions to current supervised deep learning challenges. However, generating highly realistic images is a prerequisite for these approaches. OBJECTIVE The aim of this study was to investigate and validate the unsupervised synthesis of highly realistic body computed tomography (CT) images by using a progressive growing GAN (PGGAN) trained to learn the probability distribution of normal data. METHODS We trained the PGGAN by using 11,755 body CT scans. Ten radiologists (4 radiologists with <5 years of experience [Group I], 4 radiologists with 5-10 years of experience [Group II], and 2 radiologists with >10 years of experience [Group III]) evaluated the results in a binary approach by using an independent validation set of 300 images (150 real and 150 synthetic) to judge the authenticity of each image. RESULTS The mean accuracy of the 10 readers in the entire image set was higher than random guessing (1781/3000, 59.4% vs 1500/3000, 50.0%, respectively; P<.001). However, in terms of identifying synthetic images as fake, there was no significant difference in the specificity between the visual Turing test and random guessing (779/1500, 51.9% vs 750/1500, 50.0%, respectively; P=.29). The accuracy between the 3 reader groups with different experience levels was not significantly different (Group I, 696/1200, 58.0%; Group II, 726/1200, 60.5%; and Group III, 359/600, 59.8%; P=.36). Interreader agreements were poor (κ=0.11) for the entire image set. In subgroup analysis, the discrepancies between real and synthetic CT images occurred mainly in the thoracoabdominal junction and in the anatomical details. CONCLUSIONS The GAN can synthesize highly realistic high-resolution body CT images that are indistinguishable from real images; however, it has limitations in generating body images of the thoracoabdominal junction and lacks accuracy in the anatomical details.
Collapse
Affiliation(s)
- Ho Young Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine & Asan Medical Center, Seoul, Republic of Korea
| | - Hyun-Jin Bae
- Department of Medicine, University of Ulsan College of Medicine & Asan Medical Center, Seoul, Republic of Korea
| | - Gil-Sun Hong
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine & Asan Medical Center, Seoul, Republic of Korea
| | - Minjee Kim
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea, Seoul, Republic of Korea
| | - JiHye Yun
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine & Asan Medical Center, Seoul, Republic of Korea
| | - Sungwon Park
- Department of Health Screening and Promotion Center, University of Ulsan College of Medicine & Asan Medical Center, Seoul, Republic of Korea
| | - Won Jung Chung
- Department of Health Screening and Promotion Center, University of Ulsan College of Medicine & Asan Medical Center, Seoul, Republic of Korea
| | - NamKug Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine & Asan Medical Center, Seoul, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine & Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
191
|
Cheng D, Qiu N, Zhao F, Mao Y, Li C. Research on the Modality Transfer Method of Brain Imaging Based on Generative Adversarial Network. Front Neurosci 2021; 15:655019. [PMID: 33790739 PMCID: PMC8005554 DOI: 10.3389/fnins.2021.655019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022] Open
Abstract
Brain imaging technology is an important means to study brain diseases. The commonly used brain imaging technologies are fMRI and EEG. Clinical practice has shown that although fMRI is superior to EEG in observing the anatomical details of some diseases that are difficult to diagnose, its costs are prohibitive. In particular, more and more patients who use metal implants cannot use this technology. In contrast, EEG technology is easier to implement. Therefore, to break through the limitations of fMRI technology, we propose a brain imaging modality transfer framework, namely BMT-GAN, based on a generative adversarial network. The framework introduces a new non-adversarial loss to reduce the perception and style difference between input and output images. It also realizes the conversion from EEG modality data to fMRI modality data and provides comprehensive reference information of EEG and fMRI for radiologists. Finally, a qualitative and quantitative comparison with the existing GAN-based brain imaging modality transfer approaches demonstrates the superiority of our framework.
Collapse
Affiliation(s)
- Dapeng Cheng
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China.,Shandong Co-Innovation Center of Future Intelligent Computing, Yantai, China
| | - Nuan Qiu
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Feng Zhao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China.,Shandong Co-Innovation Center of Future Intelligent Computing, Yantai, China
| | - Yanyan Mao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China.,Shandong Co-Innovation Center of Future Intelligent Computing, Yantai, China
| | - Chengnuo Li
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| |
Collapse
|
192
|
Zhao Y, Ma B, Jiang P, Zeng D, Wang X, Li S. Prediction of Alzheimer's Disease Progression with Multi-Information Generative Adversarial Network. IEEE J Biomed Health Inform 2021; 25:711-719. [PMID: 32750952 DOI: 10.1109/jbhi.2020.3006925] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease, and its long-term progression prediction is definitely important. The structural Magnetic Resonance Imaging (sMRI) can be used to characterize the cortical atrophy that is closely coupled with clinical symptoms in AD and its prodromal stages. Many existing methods have focused on predicting the cognitive scores at future time-points using a set of morphological features derived from sMRI. The 3D sMRI can provide more massive information than the cognitive scores. However, very few works consider to predict an individual brain MRI image at future time-points. In this article, we propose a disease progression prediction framework that comprises a 3D multi-information generative adversarial network (mi-GAN) to predict what one's whole brain will look like with an interval, and a 3D DenseNet based multi-class classification network optimized with a focal loss to determine the clinical stage of the estimated brain. The mi-GAN can generate high-quality individual 3D brain MRI image conditioning on the individual 3D brain sMRI and multi-information at the baseline time-point. Experiments are implemented on the Alzheimer's Disease Neuroimaging Initiative (ADNI). Our mi-GAN shows the state-of-the-art performance with the structural similarity index (SSIM) of 0.943 between the real MRI images at the fourth year and the generated ones. With mi-GAN and focal loss, the pMCI vs. sMCI accuracy achieves 6.04% improvement in comparison with conditional GAN and cross entropy loss.
Collapse
|
193
|
Zunair H, Hamza AB. Synthesis of COVID-19 chest X-rays using unpaired image-to-image translation. SOCIAL NETWORK ANALYSIS AND MINING 2021; 11:23. [PMID: 33643491 PMCID: PMC7903408 DOI: 10.1007/s13278-021-00731-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/05/2021] [Accepted: 02/04/2021] [Indexed: 12/28/2022]
Abstract
Motivated by the lack of publicly available datasets of chest radiographs of positive patients with coronavirus disease 2019 (COVID-19), we build the first-of-its-kind open dataset of synthetic COVID-19 chest X-ray images of high fidelity using an unsupervised domain adaptation approach by leveraging class conditioning and adversarial training. Our contributions are twofold. First, we show considerable performance improvements on COVID-19 detection using various deep learning architectures when employing synthetic images as additional training set. Second, we show how our image synthesis method can serve as a data anonymization tool by achieving comparable detection performance when trained only on synthetic data. In addition, the proposed data generation framework offers a viable solution to the COVID-19 detection in particular, and to medical image classification tasks in general. Our publicly available benchmark dataset (https://github.com/hasibzunair/synthetic-covid-cxr-dataset.) consists of 21,295 synthetic COVID-19 chest X-ray images. The insights gleaned from this dataset can be used for preventive actions in the fight against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Hasib Zunair
- Concordia Institute for Information Systems Engineering, Concordia University, Montreal, QC Canada
| | - A Ben Hamza
- Concordia Institute for Information Systems Engineering, Concordia University, Montreal, QC Canada
| |
Collapse
|
194
|
Zhang G, Mao Y, Li M, Peng L, Ling Y, Zhou X. The Optimal Tetralogy of Fallot Repair Using Generative Adversarial Networks. Front Physiol 2021; 12:613330. [PMID: 33708135 PMCID: PMC7942511 DOI: 10.3389/fphys.2021.613330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/28/2021] [Indexed: 02/05/2023] Open
Abstract
Background Tetralogy of Fallot (TOF) is a type of congenital cardiac disease with pulmonary artery (PA) stenosis being the most common defect. Repair surgery needs an appropriate patch to enlarge the narrowed artery from the right ventricular (RV) to the PA. Methods In this work, we proposed a generative adversarial networks (GANs) based method to optimize the patch size, shape, and location. Firstly, we built the 3D PA of patients by segmentation from cardiac computed tomography angiography. After that, normal and stenotic areas of each PA were detected and labeled into two sub-images groups. Then a GAN was trained based on these sub-images. Finally, an optimal prediction model was utilized to repair the PA with patch augmentation in the new patient. Results The fivefold cross-validation (CV) was performed for optimal patch prediction based on GANs in the repair of TOF and the CV accuracy was 93.33%, followed by the clinical outcome. This showed that the GAN model has a significant advantage in finding the best balance point of patch optimization. Conclusion This approach has the potential to reduce the intraoperative misjudgment rate, thereby providing a detailed surgical plan in patients with TOF.
Collapse
Affiliation(s)
- Guangming Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yujie Mao
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mingliang Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Peng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yunfei Ling
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaobo Zhou
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
195
|
Yurt M, Dar SU, Erdem A, Erdem E, Oguz KK, Çukur T. mustGAN: multi-stream Generative Adversarial Networks for MR Image Synthesis. Med Image Anal 2021; 70:101944. [PMID: 33690024 DOI: 10.1016/j.media.2020.101944] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/28/2023]
Abstract
Multi-contrast MRI protocols increase the level of morphological information available for diagnosis. Yet, the number and quality of contrasts are limited in practice by various factors including scan time and patient motion. Synthesis of missing or corrupted contrasts from other high-quality ones can alleviate this limitation. When a single target contrast is of interest, common approaches for multi-contrast MRI involve either one-to-one or many-to-one synthesis methods depending on their input. One-to-one methods take as input a single source contrast, and they learn a latent representation sensitive to unique features of the source. Meanwhile, many-to-one methods receive multiple distinct sources, and they learn a shared latent representation more sensitive to common features across sources. For enhanced image synthesis, we propose a multi-stream approach that aggregates information across multiple source images via a mixture of multiple one-to-one streams and a joint many-to-one stream. The complementary feature maps generated in the one-to-one streams and the shared feature maps generated in the many-to-one stream are combined with a fusion block. The location of the fusion block is adaptively modified to maximize task-specific performance. Quantitative and radiological assessments on T1,- T2-, PD-weighted, and FLAIR images clearly demonstrate the superior performance of the proposed method compared to previous state-of-the-art one-to-one and many-to-one methods.
Collapse
Affiliation(s)
- Mahmut Yurt
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, TR-06800, Turkey; National Magnetic Resonance Research Center, Bilkent University, Ankara, TR-06800, Turkey
| | - Salman Uh Dar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, TR-06800, Turkey; National Magnetic Resonance Research Center, Bilkent University, Ankara, TR-06800, Turkey
| | - Aykut Erdem
- Department of Computer Engineering, Koç University, İstanbul, TR-34450, Turkey
| | - Erkut Erdem
- Department of Computer Engineering, Hacettepe University, Ankara, TR-06800, Turkey
| | - Kader K Oguz
- National Magnetic Resonance Research Center, Bilkent University, Ankara, TR-06800, Turkey; Department of Radiology, Hacettepe University, Ankara, TR-06100, Turkey
| | - Tolga Çukur
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, TR-06800, Turkey; National Magnetic Resonance Research Center, Bilkent University, Ankara, TR-06800, Turkey; Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent, Ankara, TR-06800, Turkey.
| |
Collapse
|
196
|
Synthesize and Segment: Towards Improved Catheter Segmentation via Adversarial Augmentation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Automatic catheter and guidewire segmentation plays an important role in robot-assisted interventions that are guided by fluoroscopy. Existing learning based methods addressing the task of segmentation or tracking are often limited by the scarcity of annotated samples and difficulty in data collection. In the case of deep learning based methods, the demand for large amounts of labeled data further impedes successful application. We propose a synthesize and segment approach with plug in possibilities for segmentation to address this. We show that an adversarially learned image-to-image translation network can synthesize catheters in X-ray fluoroscopy enabling data augmentation in order to alleviate a low data regime. To make realistic synthesized images, we train the translation network via a perceptual loss coupled with similarity constraints. Then existing segmentation networks are used to learn accurate localization of catheters in a semi-supervised setting with the generated images. The empirical results on collected medical datasets show the value of our approach with significant improvements over existing translation baseline methods.
Collapse
|
197
|
Abstract
As an emerging biomedical image processing technology, medical image segmentation has made great contributions to sustainable medical care. Now it has become an important research direction in the field of computer vision. With the rapid development of deep learning, medical image processing based on deep convolutional neural networks has become a research hotspot. This paper focuses on the research of medical image segmentation based on deep learning. First, the basic ideas and characteristics of medical image segmentation based on deep learning are introduced. By explaining its research status and summarizing the three main methods of medical image segmentation and their own limitations, the future development direction is expanded. Based on the discussion of different pathological tissues and organs, the specificity between them and their classic segmentation algorithms are summarized. Despite the great achievements of medical image segmentation in recent years, medical image segmentation based on deep learning has still encountered difficulties in research. For example, the segmentation accuracy is not high, the number of medical images in the data set is small and the resolution is low. The inaccurate segmentation results are unable to meet the actual clinical requirements. Aiming at the above problems, a comprehensive review of current medical image segmentation methods based on deep learning is provided to help researchers solve existing problems.
Collapse
|
198
|
Toda R, Teramoto A, Tsujimoto M, Toyama H, Imaizumi K, Saito K, Fujita H. Synthetic CT image generation of shape-controlled lung cancer using semi-conditional InfoGAN and its applicability for type classification. Int J Comput Assist Radiol Surg 2021; 16:241-251. [PMID: 33428062 DOI: 10.1007/s11548-021-02308-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/03/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE In recent years, convolutional neural network (CNN), an artificial intelligence technology with superior image recognition, has become increasingly popular and frequently used for classification tasks in medical imaging. However, the amount of labelled data available for classifying medical images is often significantly less than that of natural images, and the handling of rare diseases is often challenging. To overcome these problems, data augmentation has been performed using generative adversarial networks (GANs). However, conventional GAN cannot effectively handle the various shapes of tumours because it randomly generates images. In this study, we introduced semi-conditional InfoGAN, which enables some labels to be added to InfoGAN, for the generation of shape-controlled tumour images. InfoGAN is a derived model of GAN, and it can represent object features in images without any label. METHODS Chest computed tomography images of 66 patients diagnosed with three histological types of lung cancer (adenocarcinoma, squamous cell carcinoma, and small cell lung cancer) were used for analysis. To investigate the applicability of the generated images, we classified the histological types of lung cancer using a CNN that was pre-trained with the generated images. RESULTS As a result of the training, InfoGAN was possible to generate images that controlled the diameters of each lesion and the presence or absence of the chest wall. The classification accuracy of the pre-trained CNN was 57.7%, which was higher than that of the CNN trained only with real images (34.2%), thereby suggesting the potential of image generation. CONCLUSION The applicability of semi-conditional InfoGAN for feature learning and representation in medical images was demonstrated in this study. InfoGAN can perform constant feature learning and generate images with a variety of shapes using a small dataset.
Collapse
Affiliation(s)
- Ryo Toda
- Graduate School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Atsushi Teramoto
- Graduate School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | - Masakazu Tsujimoto
- Fujita Health University Hospital, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hiroshi Toyama
- School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Kazuyoshi Imaizumi
- School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Kuniaki Saito
- Graduate School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hiroshi Fujita
- Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu City, 510-1193, Japan
| |
Collapse
|
199
|
Wang Y, Zhang W, Cai A, Wang L, Tang C, Feng Z, Li L, Liang N, Yan B. An effective sinogram inpainting for complementary limited-angle dual-energy computed tomography imaging using generative adversarial networks. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2021; 29:37-61. [PMID: 33104055 DOI: 10.3233/xst-200736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dual-energy computed tomography (DECT) provides more anatomical and functional information for image diagnosis. Presently, the popular DECT imaging systems need to scan at least full angle (i.e., 360°). In this study, we propose a DECT using complementary limited-angle scan (DECT-CL) technology to reduce the radiation dose and compress the spatial distribution of the imaging system. The dual-energy total scan is 180°, where the low- and high-energy scan range is the first 90° and last 90°, respectively. We describe this dual limited-angle problem as a complementary limited-angle problem, which is challenging to obtain high-quality images using traditional reconstruction algorithms. Furthermore, a complementary-sinogram-inpainting generative adversarial networks (CSI-GAN) with a sinogram loss is proposed to inpainting sinogram to suppress the singularity of truncated sinogram. The sinogram loss focuses on the data distribution of the generated sinogram while approaching the target sinogram. We use the simultaneous algebraic reconstruction technique namely, a total variable (SART-TV) algorithms for image reconstruction. Then, taking reconstructed CT images of pleural and cranial cavity slices as examples, we evaluate the performance of our method and numerically compare different methods based on root mean square error (RMSE), peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). Compared with traditional algorithms, the proposed network shows advantages in numerical terms. Compared with Patch-GAN, the proposed network can also reduce the RMSE of the reconstruction results by an average of 40% and increase the PSNR by an average of 26%. In conclusion, both qualitative and quantitative comparison and analysis demonstrate that our proposed method achieves a good artifact suppression effect and can suitably solve the complementary limited-angle problem.
Collapse
Affiliation(s)
- Yizhong Wang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Wenkun Zhang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Ailong Cai
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Linyuan Wang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Chao Tang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Zhiwei Feng
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Lei Li
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Ningning Liang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Bin Yan
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| |
Collapse
|
200
|
Wang T, Lei Y, Fu Y, Wynne JF, Curran WJ, Liu T, Yang X. A review on medical imaging synthesis using deep learning and its clinical applications. J Appl Clin Med Phys 2021; 22:11-36. [PMID: 33305538 PMCID: PMC7856512 DOI: 10.1002/acm2.13121] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
This paper reviewed the deep learning-based studies for medical imaging synthesis and its clinical application. Specifically, we summarized the recent developments of deep learning-based methods in inter- and intra-modality image synthesis by listing and highlighting the proposed methods, study designs, and reported performances with related clinical applications on representative studies. The challenges among the reviewed studies were then summarized with discussion.
Collapse
Affiliation(s)
- Tonghe Wang
- Department of Radiation OncologyEmory UniversityAtlantaGAUSA
- Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Yang Lei
- Department of Radiation OncologyEmory UniversityAtlantaGAUSA
| | - Yabo Fu
- Department of Radiation OncologyEmory UniversityAtlantaGAUSA
| | - Jacob F. Wynne
- Department of Radiation OncologyEmory UniversityAtlantaGAUSA
| | - Walter J. Curran
- Department of Radiation OncologyEmory UniversityAtlantaGAUSA
- Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Tian Liu
- Department of Radiation OncologyEmory UniversityAtlantaGAUSA
- Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Xiaofeng Yang
- Department of Radiation OncologyEmory UniversityAtlantaGAUSA
- Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| |
Collapse
|