151
|
Kasper L, Seider K, Hube B. Intracellular survival of Candida glabrata in macrophages: immune evasion and persistence. FEMS Yeast Res 2015; 15:fov042. [PMID: 26066553 DOI: 10.1093/femsyr/fov042] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 12/11/2022] Open
Abstract
Candida glabrata is a successful human opportunistic pathogen which causes superficial but also life-threatening systemic infections. During infection, C. glabrata has to cope with cells of the innate immune system such as macrophages, which belong to the first line of defense against invading pathogens. Candida glabrata is able to survive and even replicate inside macrophages while causing surprisingly low damage and cytokine release. Here, we present an overview of recent studies dealing with the interaction of C. glabrata with macrophages, from phagocytosis to intracellular growth and escape. We review the strategies of C. glabrata that permit intracellular survival and replication, including poor host cell activation, modification of phagosome maturation and phagosome pH, adaptation to antimicrobial activities, and mechanisms to overcome the nutrient limitations within the phagosome. In summary, these studies suggest that survival within macrophages may be an immune evasion and persistence strategy of C. glabrata during infection.
Collapse
Affiliation(s)
- Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, 07745 Jena, Germany
| | - Katja Seider
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, 07745 Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, 07745 Jena, Germany Integrated Research and Treatment Center, Sepsis und Sepsisfolgen, Center for Sepsis Control and Care (CSCC), University Hospital, 07747 Jena, Germany Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
152
|
Duggan S, Essig F, Hünniger K, Mokhtari Z, Bauer L, Lehnert T, Brandes S, Häder A, Jacobsen ID, Martin R, Figge MT, Kurzai O. Neutrophil activation by Candida glabrata but not Candida albicans promotes fungal uptake by monocytes. Cell Microbiol 2015; 17:1259-76. [PMID: 25850517 DOI: 10.1111/cmi.12443] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 03/11/2015] [Accepted: 03/30/2015] [Indexed: 01/09/2023]
Abstract
Candida albicans and Candida glabrata account for the majority of candidiasis cases worldwide. Although both species are in the same genus, they differ in key virulence attributes. Within this work, live cell imaging was used to examine the dynamics of neutrophil activation after confrontation with either C. albicans or C. glabrata. Analyses revealed higher phagocytosis rates of C. albicans than C. glabrata that resulted in stronger PMN (polymorphonuclear cells) activation by C. albicans. Furthermore, we observed differences in the secretion of chemokines, indicating chemotactic differences in PMN signalling towards recruitment of further immune cells upon confrontation with Candida spp. Supernatants from co-incubations of neutrophils with C. glabrata primarily attracted monocytes and increased the phagocytosis of C. glabrata by monocytes. In contrast, PMN activation by C. albicans resulted in recruitment of more neutrophils. Two complex infection models confirmed distinct targeting of immune cell populations by the two Candida spp.: In a human whole blood infection model, C. glabrata was more effectively taken up by monocytes than C. albicans and histopathological analyses of murine model infections confirmed primarily monocytic infiltrates in C. glabrata kidney infection in contrast to PMN-dominated infiltrates in C. albicans infection. Taken together, our data demonstrate that the human opportunistic fungi C. albicans and C. glabrata are differentially recognized by neutrophils and one outcome of this differential recognition is the preferential uptake of C. glabrata by monocytes.
Collapse
Affiliation(s)
- Seána Duggan
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Fabian Essig
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.,Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany
| | - Kerstin Hünniger
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Zeinab Mokhtari
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.,Friedrich Schiller University Jena, Jena, Germany
| | - Laura Bauer
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Teresa Lehnert
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.,Friedrich Schiller University Jena, Jena, Germany
| | - Susanne Brandes
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.,Friedrich Schiller University Jena, Jena, Germany
| | - Antje Häder
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Ilse D Jacobsen
- Friedrich Schiller University Jena, Jena, Germany.,Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Ronny Martin
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.,Friedrich Schiller University Jena, Jena, Germany
| | - Oliver Kurzai
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.,Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany.,Friedrich Schiller University Jena, Jena, Germany.,German National Reference Center for Invasive Fungal Infections, Hans Knoell Institute, Jena, Germany
| |
Collapse
|
153
|
Srivastava VK, Suneetha KJ, Kaur R. The mitogen-activated protein kinase CgHog1 is required for iron homeostasis, adherence and virulence in Candida glabrata. FEBS J 2015; 282:2142-66. [PMID: 25772226 DOI: 10.1111/febs.13264] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 03/03/2015] [Accepted: 03/10/2015] [Indexed: 01/01/2023]
Abstract
Candida glabrata has emerged as a major fungal pathogen over the last two decades, although our understanding of its survival strategies inside the mammalian host remains rudimentary. An important requirement for survival in vivo is the ability to acquire critical nutrients such as iron from host niches of varied iron content. In the present study, we demonstrate for the first time that C. glabrata cells respond to high external iron levels via activation of two stress-responsive mitogen-activated protein kinases, CgHog1 and CgSlt2, and lack of either kinase results in sensitivity to the high-iron medium. Furthermore, we show that CgHOG1 deletion led to perturbed iron homeostasis (elevated intracellular iron content and high mitochondrial aconitase activity), reduced survival in macrophages and attenuated virulence in the murine model of disseminated candidiasis. Consistently, several genes implicated in iron acquisition and storage displayed deregulated expression in the Cghog1∆ mutant. Genome-wide transcriptional profiling analysis revealed upregulation of genes implicated in DNA repair, RNA processing and autophagy, and downregulation of genes related to cellular respiration and organonitrogen compound metabolism under iron-limiting conditions. In contrast, genes involved in the respiratory electron transport chain were induced under iron-replete conditions. Gene expression microarrays also identified a set of iron-responsive regulon in C. glabrata. Lastly, we present evidence for the iron-regulated expression of the major adhesin-encoding EPA1 gene, decreased histone deacetylase activity in a high-iron environment and increased adherence of iron-surplus-medium-grown C. glabrata cells to epithelial cells. Together, our findings yield novel insights into iron abundance-based regulation of transcriptional and mitogen-activated protein kinase signaling pathways in C. glabrata.
Collapse
Affiliation(s)
- Vivek K Srivastava
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India.,Graduate Studies, Manipal University, India
| | - Korivi J Suneetha
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
154
|
Affiliation(s)
- Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
155
|
Behzadi P, Behzadi E, Ranjbar R. Urinary tract infections and Candida albicans. Cent European J Urol 2015; 68:96-101. [PMID: 25914847 PMCID: PMC4408390 DOI: 10.5173/ceju.2015.01.474] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/27/2014] [Accepted: 11/11/2014] [Indexed: 12/14/2022] Open
Abstract
Introduction Urinary tract candidiasis is known as the most frequent nosocomial fungal infection worldwide. Candida albicans is the most common cause of nosocomial fungal urinary tract infections; however, a rapid change in the distribution of Candida species is undergoing. Simultaneously, the increase of urinary tract candidiasis has led to the appearance of antifungal resistant Candida species. In this review, we have an in depth look into Candida albicans uropathogenesis and distribution of the three most frequent Candida species contributing to urinary tract candidiasis in different countries around the world. Material and methods For writing this review, Google Scholar –a scholarly search engine– (http://scholar.google.com/) and PubMed database (http://www.ncbi.nlm.nih.gov/pubmed/) were used. The most recently published original articles and reviews of literature relating to the first three Candida species causing urinary tract infections in different countries and the pathogenicity of Candida albicans were selected and studied. Results Although some studies show rapid changes in the uropathogenesis of Candida species causing urinary tract infections in some countries, Candida albicans is still the most important cause of candidal urinary tract infections. Conclusions Despite the ranking of Candida albicans as the dominant species for urinary tract candidiasis, specific changes have occurred in some countries. At this time, it is important to continue the surveillance related to Candida species causing urinary tract infections to prevent, control and treat urinary tract candidiasis in future.
Collapse
Affiliation(s)
- Payam Behzadi
- Islamic Azad University, Shahr-e-Qods Branch, Teheran, Iran
| | - Elham Behzadi
- Islamic Azad University, Shahr-e-Qods Branch, Teheran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
156
|
Abstract
Only few Candida species, e.g., Candida albicans, Candida glabrata, Candida dubliniensis, and Candida parapsilosis, are successful colonizers of a human host. Under certain circumstances these species can cause infections ranging from superficial to life-threatening disseminated candidiasis. The success of C. albicans, the most prevalent and best studied Candida species, as both commensal and human pathogen depends on its genetic, biochemical, and morphological flexibility which facilitates adaptation to a wide range of host niches. In addition, formation of biofilms provides additional protection from adverse environmental conditions. Furthermore, in many host niches Candida cells coexist with members of the human microbiome. The resulting fungal-bacterial interactions have a major influence on the success of C. albicans as commensal and also influence disease development and outcome. In this chapter, we review the current knowledge of important survival strategies of Candida spp., focusing on fundamental fitness and virulence traits of C. albicans.
Collapse
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
157
|
Hoffman AE, Miles L, Greenfield TJ, Shoen C, DeStefano M, Cynamon M, Doyle RP. Clinical isolates of Candida albicans, Candida tropicalis, and Candida krusei have different susceptibilities to Co(II) and Cu(II) complexes of 1,10-phenanthroline. Biometals 2015; 28:415-23. [PMID: 25663372 DOI: 10.1007/s10534-015-9825-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 01/27/2015] [Indexed: 12/31/2022]
Abstract
The minimal inhibitory concentrations (MICs) of copper and cobalt based dimeric pyrophosphate complexes with capping 1,10-phenanthroline groups on clinical isolates of C. albicans (28 isolates), C. krusei (20 isolates) and C. tropicalis (20 isolates) are reported. C. albicans was inhibited by the cobalt complex better than by the copper complex, while C. krusei demonstrated the opposite results. C. tropicalis showed similar sensitivities to both metals in terms of calculated MIC50 values but was more sensitive to cobalt when MIC90 values were noted. Knockout strains of C. albicans that had the copper efflux protein P-type ATPase (CRP1), the copper binding metallothionein CUP1 or both CRP1/CUP1 removed clearly demonstrate that the origins of copper resistant in C. albicans lies primarily in the P-type ATPase, with the MT playing an important secondary role in the absence of the efflux protein. This study suggests that certain strains of Candida have evolved to protect against particular metal ions and that in the case of C. albicans, a primary invasive fungal species, cobalt may be a good starting-point for new therapeutic development.
Collapse
Affiliation(s)
- Amanda E Hoffman
- Department of Chemistry, Syracuse University, Syracuse, NY, 13244, USA
| | | | | | | | | | | | | |
Collapse
|
158
|
Pärnänen P, Meurman JH, Nikula-Ijäs P. A novel Candida glabrata cell wall associated serine protease. Biochem Biophys Res Commun 2015; 457:676-80. [PMID: 25617734 DOI: 10.1016/j.bbrc.2015.01.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
We set out to identify the Candida glabrata cell wall attached proteases which may play a role as virulence factors in candidosis, particularly in the immunocompromized host. We studied a clinical C. glabrata strain T-1639, which was isolated from a patient from the Helsinki University Central Hospital. With non-reducing 2-D electrophoresis using parallel fluorogenic gels and mass spectrometry we identified a novel appr. 25 kDa (192 aa in length) cell wall located protease with an estimated pI of 7.6. The LC-MS/MS peptides matched with the ORF of predicted C. glabrata CBS138 cell wall protein Cwp1.2p/pI 7.7/212 aa (http://cbi.labri.fr/Génolevures/[NCBI access 49525604, UniProt access Q6FTZ7]), which is an ortholog to Saccharomyces cerevisiae cell wall protein Cwp1p (UniProt access P28319). The novel serine protease was released by β-1,3-glucanase treatment from the cell wall. In contrast to previous predictions this protease has an enzymatic function instead of being merely a structural cell wall protein. The protease showed gelatinolytic activity and was inhibited by PMSF, a known serine protease inhibitor. Further characterization of the protease may give insight to its role in infections caused by C. glabrata and possibly aid in the development of new kinds of antifungal drugs.
Collapse
Affiliation(s)
- Pirjo Pärnänen
- Department of Biosciences, Division of Biochemistry and Biotechnology, University of Helsinki, Finland; Institute of Dentistry, University of Helsinki, Finland.
| | - Jukka H Meurman
- Institute of Dentistry, University of Helsinki, Finland; Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital (HUCH), Helsinki, Finland
| | - Pirjo Nikula-Ijäs
- Department of Biosciences, Division of Biochemistry and Biotechnology, University of Helsinki, Finland
| |
Collapse
|
159
|
Linde J, Duggan S, Weber M, Horn F, Sieber P, Hellwig D, Riege K, Marz M, Martin R, Guthke R, Kurzai O. Defining the transcriptomic landscape of Candida glabrata by RNA-Seq. Nucleic Acids Res 2015; 43:1392-406. [PMID: 25586221 PMCID: PMC4330350 DOI: 10.1093/nar/gku1357] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Candida glabrata is the second most common pathogenic Candida species and has emerged as a leading cause of nosocomial fungal infections. Its reduced susceptibility to antifungal drugs and its close relationship to Saccharomyces cerevisiae make it an interesting research focus. Although its genome sequence was published in 2004, little is known about its transcriptional dynamics. Here, we provide a detailed RNA-Seq-based analysis of the transcriptomic landscape of C. glabrata in nutrient-rich media, as well as under nitrosative stress and during pH shift. Using RNA-Seq data together with state-of-the-art gene prediction tools, we refined the annotation of the C. glabrata genome and predicted 49 novel protein-coding genes. Of these novel genes, 14 have homologs in S. cerevisiae and six are shared with other Candida species. We experimentally validated four novel protein-coding genes of which two are differentially regulated during pH shift and interaction with human neutrophils, indicating a potential role in host–pathogen interaction. Furthermore, we identified 58 novel non-protein-coding genes, 38 new introns and condition-specific alternative splicing. Finally, our data suggest different patterns of adaptation to pH shift and nitrosative stress in C. glabrata, Candida albicans and S. cerevisiae and thus further underline a distinct evolution of virulence in yeast.
Collapse
Affiliation(s)
- Jörg Linde
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Seána Duggan
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Michael Weber
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Fabian Horn
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Patricia Sieber
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany Department of Bioinformatics, Faculty of Biology and Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Daniela Hellwig
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Konstantin Riege
- Research Group Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Sciences, Friedrich Schiller University, Jena, Germany
| | - Manja Marz
- Research Group Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Sciences, Friedrich Schiller University, Jena, Germany
| | - Ronny Martin
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Reinhard Guthke
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Oliver Kurzai
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany National Reference Center for Invasive Mycoses, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| |
Collapse
|
160
|
Coad BR, Lamont-Friedrich SJ, Gwynne L, Jasieniak M, Griesser SS, Traven A, Peleg AY, Griesser HJ. Surface coatings with covalently attached caspofungin are effective in eliminating fungal pathogens. J Mater Chem B 2015; 3:8469-8476. [DOI: 10.1039/c5tb00961h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this work we have prepared surface coatings formulated with the antifungal drug caspofungin, an approved pharmaceutical lipopeptide compound of the echinocandin drug class.
Collapse
Affiliation(s)
- Bryan R. Coad
- Mawson Institute
- University of South Australia
- Australia
| | | | - Lauren Gwynne
- Mawson Institute
- University of South Australia
- Australia
- The University of Bath
- UK
| | | | | | - Ana Traven
- Department of Biochemistry and Molecular Biology
- Monash University
- Clayton
- Australia
| | - Anton Y. Peleg
- Department of Infectious Diseases
- The Alfred Hospital and Monash University
- Melbourne
- Australia
- Department of Microbiology
| | | |
Collapse
|
161
|
Abstract
The first description of dermatophytosis was recorded by Celsus, a Roman encyclopaedist who described a suppurative infection of scalp (‘porrigo’ or ‘kerion of Celsus’) in De Re Medicina (30 A.D.). Throughout the middle ages, several descriptions of dermatophytosis were produced where it is described as ‘tinea’. The keratin-destroying moths which made circular holes in the woollen garments are known as Tinea. Due to similarity in the structure of circular lesion of dermatophytosis on the smooth skin with the circular hole made by moth, Cassius Felix introduced the term ‘tinea’ to describe the lesions. In 1806, Alibert used the term ‘favus’ to describe the honey-like exudate in some scalp infections. However, the fungal aetiology of tinea was first detected by Robert Remak, a Polish physician who first observed the presence of hyphae in the crusts of favus. This detection is also a landmark in medical history because this is the first description of a microbe causing a human disease. He himself did not publish his work, but he permitted the reference of his observations in a dissertation by Xavier Hube in 1837. Remak gave all the credits of his discovery to his mentor Schoenlein who first published the fungal etiological report of favus in 1839. He observed the infectious nature of the favus by autoinoculation into his own hands and also successfully isolated the fungus later (1945) and named Achorion schoenleinii (Trichophyton schoenleinii) in honour of his mentor. In 1844, Gruby described the etiologic agent of tinea endothrix, later became known as Trichophyton tonsurans. The genus Trichophyton was created and described by Malmsten (1845) with its representative species T. tonsurans. Charles Robin identified T. mentagrophytes in 1847 and T. equinum was identified by Matruchot and Dassonville in 1898. Raymond Jacques Adrien Sabouraud (France) first compiled the description of Trichophyton in his book (Les Teignes) in 1910 which was based on his observation in artificial culture. The sexual state of dermatophyte was described by Nannizzi (1927). Emmons (1934) first reported the classification of dermatophytes based on vegetative structures and conidia. Gentles (1958) established the successful treatment of tinea capitis with griseofulvin.
Collapse
|
162
|
Rosseti IB, Rocha JBT, Costa MS. Diphenyl diselenide (PhSe)2 inhibits biofilm formation by Candida albicans, increasing both ROS production and membrane permeability. J Trace Elem Med Biol 2015; 29:289-95. [PMID: 25189816 DOI: 10.1016/j.jtemb.2014.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/07/2014] [Accepted: 08/06/2014] [Indexed: 12/11/2022]
Abstract
PROJECT The opportunistic fungal Candida albicans can produce superficial and systemic infections in immunocompromised patients. An essential stage to both colonization and virulence by C. albicans is the transition from budding yeast form to filamentous form, producing biofilms. PROCEDURE In this work, we studied the effect of the organochalcogenide compound (PhSe)2 on both cell growth and biofilm formation by C. albicans. RESULTS (PhSe)2 inhibited both growth and biofilm formation by C. albicans. The inhibitory effects of (PhSe)2 depended on the cell density and (PhSe)2 concentration. We have also observed that (PhSe)2 stimulated ROS production (67%) and increased cell membrane permeability (2.94-fold) in C. albicans. In addition, (PhSe)2 caused a marked decrease in proteinase activity (6.8-fold) in relation to non-treated group. CONCLUSIONS (PhSe)2 decreased both cell growth and biofilm development, decreasing the release of extracellular proteinases, which is an important facet of C. albicans pathogenicity. The toxicity of (PhSe)2 towards C. albicans can be associated with an increase in ROS production, which can increase cell permeability. The permanent damage to the cell membranes can culminate in cell death.
Collapse
Affiliation(s)
- Isabela Bueno Rosseti
- Instituto de Pesquisa e Desenvolvimento - IP&D, Universidade do Vale do Paraíba - UNIVAP, Av. Shishima Hifumi, 2911, CEP 12244-000, São José dos Campos, SP, Brazil
| | - João Batista Teixeira Rocha
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil
| | - Maricilia Silva Costa
- Instituto de Pesquisa e Desenvolvimento - IP&D, Universidade do Vale do Paraíba - UNIVAP, Av. Shishima Hifumi, 2911, CEP 12244-000, São José dos Campos, SP, Brazil.
| |
Collapse
|
163
|
Gupta P, Nath S, Meena R, Kumar N. Comparative effects of hypoxia and hypoxia mimetic cobalt chloride on in vitro adhesion, biofilm formation and susceptibility to amphotericin B of Candida glabrata. J Mycol Med 2014; 24:e169-77. [DOI: 10.1016/j.mycmed.2014.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 06/26/2014] [Accepted: 08/18/2014] [Indexed: 12/19/2022]
|
164
|
Tóth R, Tóth A, Papp C, Jankovics F, Vágvölgyi C, Alonso MF, Bain JM, Erwig LP, Gácser A. Kinetic studies of Candida parapsilosis phagocytosis by macrophages and detection of intracellular survival mechanisms. Front Microbiol 2014; 5:633. [PMID: 25477874 PMCID: PMC4238376 DOI: 10.3389/fmicb.2014.00633] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/05/2014] [Indexed: 01/08/2023] Open
Abstract
Even though the number of Candida infections due to non-albicans species like C. parapsilosis has been increasing, little is known about their pathomechanisms. Certain aspects of C. parapsilosis and host interactions have already been investigated; however we lack information about the innate cellular responses toward this species. The aim of our project was to dissect and compare the phagocytosis of C. parapsilosis to C. albicans and to another Candida species C. glabrata by murine and human macrophages by live cell video microscopy. We broke down the phagocytic process into three stages: macrophage migration, engulfment of fungal cells and host cell killing after the uptake. Our results showed increased macrophage migration toward C. parapsilosis and we observed differences during the engulfment processes when comparing the three species. The engulfment time of C. parapsilosis was comparable to that of C. albicans regardless of the pseudohypha length and spatial orientation relative to phagocytes, while the rate of host cell killing and the overall uptake regarding C. parapsilosis showed similarities mainly with C. glabrata. Furthermore, we observed difference between human and murine phagocytes in the uptake of C. parapsilosis. UV-treatment of fungal cells had varied effects on phagocytosis dependent upon which Candida strain was used. Besides statistical analysis, live cell imaging videos showed that this species similarly to the other two also has the ability to survive in host cells via the following mechanisms: yeast replication, and pseudohypha growth inside of phagocytes, exocytosis of fungal cells and also abortion of host cell mitosis following the uptake. According to our knowledge this is the first study that provides a thorough examination of C. parapsilosis phagocytosis and reports intracellular survival mechanisms associated with this species.
Collapse
Affiliation(s)
- Renáta Tóth
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Adél Tóth
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Csaba Papp
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Ferenc Jankovics
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Maria F Alonso
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK
| | - Judith M Bain
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK
| | - Lars-Peter Erwig
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK
| | - Attila Gácser
- Department of Microbiology, University of Szeged Szeged, Hungary
| |
Collapse
|
165
|
Rai MN, Sharma V, Balusu S, Kaur R. An essential role for phosphatidylinositol 3-kinase in the inhibition of phagosomal maturation, intracellular survival and virulence inCandida glabrata. Cell Microbiol 2014; 17:269-87. [DOI: 10.1111/cmi.12364] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/29/2014] [Accepted: 09/10/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Maruti Nandan Rai
- Laboratory of Fungal Pathogenesis; Centre for DNA Fingerprinting and Diagnostics; Hyderabad Telangana India
| | - Vandana Sharma
- Laboratory of Fungal Pathogenesis; Centre for DNA Fingerprinting and Diagnostics; Hyderabad Telangana India
| | - Sriram Balusu
- Laboratory of Fungal Pathogenesis; Centre for DNA Fingerprinting and Diagnostics; Hyderabad Telangana India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis; Centre for DNA Fingerprinting and Diagnostics; Hyderabad Telangana India
| |
Collapse
|
166
|
Srivastava VK, Suneetha KJ, Kaur R. A systematic analysis reveals an essential role for high-affinity iron uptake system, haemolysin and CFEM domain-containing protein in iron homoeostasis and virulence in Candida glabrata. Biochem J 2014; 463:103-14. [PMID: 24987864 DOI: 10.1042/bj20140598] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Iron is an essential nutrient for all living organisms and human pathogens employ a battery of factors to scavenge iron from the high-affinity iron-binding host proteins. In the present study, we have elucidated, via a candidate gene approach, major iron acquisition and homoeostatic mechanisms operational in an opportunistic human fungal pathogen Candida glabrata. Phenotypic, biochemical and molecular analysis of a set of 13 C. glabrata strains, deleted for proteins potentially implicated in iron metabolism, revealed that the high-affinity reductive iron uptake system is required for utilization of alternate carbon sources and for growth under both in vitro iron-limiting and in vivo conditions. Furthermore, we show for the first time that the cysteine-rich CFEM (common in fungal extracellular membranes) domain-containing cell wall structural protein, CgCcw14, and a putative haemolysin, CgMam3, are essential for maintenance of intracellular iron content, adherence to epithelial cells and virulence. Consistent with their roles in iron homoeostasis, mitochondrial aconitase activity was lower and higher in mutants disrupted for high-affinity iron transport, and haemolysin respectively. Additionally, we present evidence that the mitochondrial frataxin, CgYfh1, is pivotal to iron metabolism. Besides yielding insights into major in vitro and in vivo iron acquisition strategies, our findings establish high-affinity iron uptake mechanisms as critical virulence determinants in C. glabrata.
Collapse
Affiliation(s)
- Vivek Kumar Srivastava
- *Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001, India
| | - Korivi Jyothiraj Suneetha
- *Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001, India
| | - Rupinder Kaur
- *Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001, India
| |
Collapse
|
167
|
Abstract
The gateway to the secretory pathway is the endoplasmic reticulum (ER), an organelle that is responsible for the accurate folding, post-translational modification and final assembly of up to a third of the cellular proteome. When secretion levels are high, errors in protein biogenesis can lead to the accumulation of abnormally folded proteins, which threaten ER homeostasis. The unfolded protein response (UPR) is an adaptive signaling pathway that counters a buildup in misfolded and unfolded proteins by increasing the expression of genes that support ER protein folding capacity. Fungi, like other eukaryotic cells that are specialized for secretion, rely upon the UPR to buffer ER stress caused by fluctuations in secretory demand. However, emerging evidence is also implicating the UPR as a central regulator of fungal pathogenesis. In this review, we discuss how diverse fungal pathogens have adapted ER stress response pathways to support the expression of virulence-related traits that are necessary in the host environment.
Collapse
Affiliation(s)
- Karthik Krishnan
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267-0529
| | - David S Askew
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267-0529
| |
Collapse
|
168
|
Abstract
Fungal pathogens must assimilate local nutrients to establish an infection in their mammalian host. We focus on carbon, nitrogen, and micronutrient assimilation mechanisms, discussing how these influence host-fungus interactions during infection. We highlight several emerging trends based on the available data. First, the perturbation of carbon, nitrogen, or micronutrient assimilation attenuates fungal pathogenicity. Second, the contrasting evolutionary pressures exerted on facultative versus obligatory pathogens have led to contemporary pathogenic fungal species that display differing degrees of metabolic flexibility. The evolutionarily ancient metabolic pathways are conserved in most fungal pathogen, but interesting gaps exist in some species (e.g., Candida glabrata). Third, metabolic flexibility is generally essential for fungal pathogenicity, and in particular, for the adaptation to contrasting host microenvironments such as the gastrointestinal tract, mucosal surfaces, bloodstream, and internal organs. Fourth, this metabolic flexibility relies on complex regulatory networks, some of which are conserved across lineages, whereas others have undergone significant evolutionary rewiring. Fifth, metabolic adaptation affects fungal susceptibility to antifungal drugs and also presents exciting opportunities for the development of novel therapies.
Collapse
Affiliation(s)
- Iuliana V Ene
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, 07745 Jena, Germany
| | - Alistair J P Brown
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, 07745 Jena, Germany Friedrich Schiller University, 07743 Jena, Germany Center for Sepsis Control and Care, Universitätsklinikum Jena, 07747 Jena, Germany
| |
Collapse
|
169
|
Immunoproteomic profiling of Saccharomyces cerevisiae systemic infection in a murine model. J Proteomics 2014; 112:14-26. [PMID: 25173100 DOI: 10.1016/j.jprot.2014.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/01/2014] [Accepted: 08/06/2014] [Indexed: 02/01/2023]
Abstract
UNLABELLED Saccharomyces cerevisiae is considered a safe microorganism widely used as a dietary supplement. However, in the latest decades several cases of S. cerevisiae infections have been reported. Recent studies in a murine model of systemic infection have also revealed the virulence of some S. cerevisiae dietary strains. Here we use an immunoproteomic approach based on protein separation by 2D-PAGE followed by Western-blotting to compare the serological response against a virulent dietary and a non-virulent laboratory strains leading to the identification of highly different patterns of antigenic proteins. Thirty-six proteins that elicit a serological response in mice have been identified. Most of them are involved in stress responses and metabolic pathways. Their selectivity as putative biomarkers for S. cerevisiae infections was assessed by testing sera from S. cerevisiae-infected mice against Candida albicans and C. glabrata proteins. Some chaperones and metabolic proteins showed cross-reactivity. We also compare the S. cerevisiae immunodetected proteins with previously described C. albicans antigens. The results point to the stress-related proteins Ahp1, Yhb1 and Oye2, as well as the glutamine synthetase Gln1 and the oxysosterol binding protein Kes1 as putative candidates for being evaluated as biomarkers for diagnostic assays of S. cerevisiae infections. BIOLOGICAL SIGNIFICANCE S. cerevisiae can cause opportunistic infections, and therefore, a precise diagnosis of fungal infections is necessary. This immunoproteomic analysis of sera from a model murine infection with a virulent dietary S. cerevisiae strain has been shown to be a source of candidate proteins for being evaluated as biomarkers to develop assays for diagnosis of S. cerevisiae infections. To our knowledge, this is the first study devoted to the identification of S. cerevisiae immunogenic proteins and the results allowed the proposal of five antigens to be further investigated.
Collapse
|
170
|
Épidémiologie des otomycoses au centre hospitalier et universitaire de Yopougon (Abidjan-Côte d’Ivoire). J Mycol Med 2014; 24:e9-15. [DOI: 10.1016/j.mycmed.2013.07.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 07/08/2013] [Accepted: 07/19/2013] [Indexed: 11/18/2022]
|
171
|
Martins N, Ferreira ICFR, Barros L, Silva S, Henriques M. Candidiasis: Predisposing Factors, Prevention, Diagnosis and Alternative Treatment. Mycopathologia 2014; 177:223-40. [DOI: 10.1007/s11046-014-9749-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/18/2014] [Indexed: 11/29/2022]
|
172
|
Histidine degradation via an aminotransferase increases the nutritional flexibility of Candida glabrata. EUKARYOTIC CELL 2014; 13:758-65. [PMID: 24728193 DOI: 10.1128/ec.00072-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability to acquire nutrients during infections is an important attribute in microbial pathogenesis. Amino acids are a valuable source of nitrogen if they can be degraded by the infecting organism. In this work, we analyzed histidine utilization in the fungal pathogen of humans Candida glabrata. Hemiascomycete fungi, like C. glabrata or Saccharomyces cerevisiae, possess no gene coding for a histidine ammonia-lyase, which catalyzes the first step of a major histidine degradation pathway in most other organisms. We show that C. glabrata instead initializes histidine degradation via the aromatic amino acid aminotransferase Aro8. Although ARO8 is also present in S. cerevisiae and is induced by extracellular histidine, the yeast cannot use histidine as its sole nitrogen source, possibly due to growth inhibition by a downstream degradation product. Furthermore, C. glabrata relies only on Aro8 for phenylalanine and tryptophan utilization, since ARO8, but not its homologue ARO9, was transcriptionally activated in the presence of these amino acids. Accordingly, an ARO9 deletion had no effect on growth with aromatic amino acids. In contrast, in S. cerevisiae, ARO9 is strongly induced by tryptophan and is known to support growth on aromatic amino acids. Differences in the genomic structure of the ARO9 gene between C. glabrata and S. cerevisiae indicate a possible disruption in the regulatory upstream region. Thus, we show that, in contrast to S. cerevisiae, C. glabrata has adapted to use histidine as a sole source of nitrogen and that the aromatic amino acid aminotransferase Aro8, but not Aro9, is the enzyme required for this process.
Collapse
|
173
|
Martínez-Jiménez MC, Muñoz P, Guinea J, Valerio M, Alonso R, Escribano P, Bouza E. Potential role of Candida albicans germ tube antibody in the diagnosis of deep-seated candidemia. Med Mycol 2014; 52:270-5. [PMID: 24662248 DOI: 10.1093/mmy/myt025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Patients with candidemia may have transient or catheter-related infections without involvement of deep tissues or deep-seated candidiasis. Clinical differentiation of these entities may not be evident with conventional microbiological and imaging methods. Our aim was to determine if the detection of Candida albicans germ tube-specific antibody (CAGTA) in patients with candidemia was related to the extent of the disease. This study was conducted from 2003 to 2012 with 50 patients diagnosed as having candidemia, that is, 29 with deep-seated candidiasis and 21 with non-deep-seated candidiasis. The most common species recovered from samples obtained from these patients were C. albicans, 40%; C. tropicalis, 20%; C. parapsilosis, 18%; and C. glabrata, 12%. Serum samples were processed according to the manufacturer's recommendations (Vircell Microbiologist S.L., Granada, Spain). The CAGTA tests were positive in 1/21 non-deep-seated candidemias (DSCs; 4.76%) and 20/29 DSCs (68.96%; P < 0.01). Accordingly, the values for specificity and positive predictive values of CAGTA for identifying DSC were 95%. We concluded that the presence of a positive CAGTA test in a sample from a patient with candidemia suggests deep-seated candidiasis. Extension screening studies should be considered and origins other than catheters should be searched. Prospective studies are needed to determine the clinical implications of this finding and its potential use in defining the optimal duration of therapy.
Collapse
Affiliation(s)
- M Carmen Martínez-Jiménez
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid
| | | | | | | | | | | | | |
Collapse
|
174
|
Miyazaki T, Kohno S. ER stress response mechanisms in the pathogenic yeast Candida glabrata and their roles in virulence. Virulence 2013; 5:365-70. [PMID: 24335436 PMCID: PMC3956515 DOI: 10.4161/viru.27373] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The maintenance of endoplasmic reticulum (ER) homeostasis is critical for numerous aspects of cell physiology. Eukaryotic cells respond to the accumulation of misfolded proteins in the ER (ER stress) by activating the unfolded protein response (UPR), an intracellular signaling pathway that adjusts the folding capacity of the ER. Recent studies of several pathogenic fungi have revealed that the UPR is important for antifungal resistance and virulence; therefore, the pathway has attracted much attention as a potential therapeutic target. While the UPR is highly conserved among eukaryotes, our group recently discovered that the pathogenic yeast Candida glabrata lacks the typical fungal UPR, but possesses alternative mechanisms to cope with ER stress. This review summarizes how C. glabrata responds to ER stress and discusses the impacts of ER quality control systems on antifungal resistance and virulence.
Collapse
Affiliation(s)
- Taiga Miyazaki
- Department of Molecular Microbiology and Immunology; Nagasaki University School of Medicine; Nagasaki, Japan; Department of Respiratory Medicine; Sasebo City General Hospital; Nagasaki, Japan
| | - Shigeru Kohno
- Department of Molecular Microbiology and Immunology; Nagasaki University School of Medicine; Nagasaki, Japan
| |
Collapse
|
175
|
Rodrigues CF, Silva S, Henriques M. Candida glabrata: a review of its features and resistance. Eur J Clin Microbiol Infect Dis 2013; 33:673-88. [PMID: 24249283 DOI: 10.1007/s10096-013-2009-3] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/22/2013] [Indexed: 11/30/2022]
Abstract
Candida species belong to the normal microbiota of the oral cavity and gastrointestinal and vaginal tracts, and are responsible for several clinical manifestations, from mucocutaneous overgrowth to bloodstream infections. Once believed to be non-pathogenic, Candida glabrata was rapidly blamable for many human diseases. Year after year, these pathological circumstances are more recurrent and problematic to treat, especially when patients reveal any level of immunosuppression. These difficulties arise from the capacity of C. glabrata to form biofilms and also from its high resistance to traditional antifungal therapies. Thus, this review intends to present an excerpt of the biology, epidemiology, and pathology of C. glabrata, and detail an approach to its resistance mechanisms based on studies carried out up to the present.
Collapse
Affiliation(s)
- C F Rodrigues
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | | | | |
Collapse
|
176
|
Photodynamic antimicrobial chemotherapy (PACT) inhibits biofilm formation by Candida albicans, increasing both ROS production and membrane permeability. Lasers Med Sci 2013; 29:1059-64. [DOI: 10.1007/s10103-013-1473-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/16/2013] [Indexed: 01/22/2023]
|
177
|
Binkley J, Arnaud MB, Inglis DO, Skrzypek MS, Shah P, Wymore F, Binkley G, Miyasato SR, Simison M, Sherlock G. The Candida Genome Database: the new homology information page highlights protein similarity and phylogeny. Nucleic Acids Res 2013; 42:D711-6. [PMID: 24185697 PMCID: PMC3965001 DOI: 10.1093/nar/gkt1046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Candida Genome Database (CGD, http://www.candidagenome.org/) is a freely available online resource that provides gene, protein and sequence information for multiple Candida species, along with web-based tools for accessing, analyzing and exploring these data. The goal of CGD is to facilitate and accelerate research into Candida pathogenesis and biology. The CGD Web site is organized around Locus pages, which display information collected about individual genes. Locus pages have multiple tabs for accessing different types of information; the default Summary tab provides an overview of the gene name, aliases, phenotype and Gene Ontology curation, whereas other tabs display more in-depth information, including protein product details for coding genes, notes on changes to the sequence or structure of the gene and a comprehensive reference list. Here, in this update to previous NAR Database articles featuring CGD, we describe a new tab that we have added to the Locus page, entitled the Homology Information tab, which displays phylogeny and gene similarity information for each locus.
Collapse
Affiliation(s)
- Jonathan Binkley
- Department of Genetics, Stanford University Medical School, Stanford, CA 94305-5120, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Bolden S, Zhu XY, Etukala JR, Boateng C, Mazu T, Flores-Rozas H, Jacob MR, Khan SI, Walker LA, Ablordeppey SY. Structure-activity relationship (SAR) and preliminary mode of action studies of 3-substituted benzylthioquinolinium iodide as anti-opportunistic infection agents. Eur J Med Chem 2013; 70:130-42. [PMID: 24141203 DOI: 10.1016/j.ejmech.2013.09.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/23/2013] [Accepted: 09/26/2013] [Indexed: 10/26/2022]
Abstract
Opportunistic infections are devastating to immunocompromised patients. And in especially sub-Saharan Africa where the AIDS epidemic is still raging, the mortality rate was recently as high as 70%. The paucity of anti-opportunistic drugs, the decreasing efficacy and the development of resistance against the azoles and even amphotericin B have stimulated the search for new drugs with new mechanisms of action. In a previous work, we showed that a new chemotype derived from the natural product cryptolepine displayed selective toxicity against opportunistic pathogens with minimal cytotoxicity to normal cells. In this manuscript, we report the design and synthesis of substituted benzylthioquinolinium iodides, evaluated their anti-infective properties and formulated some initial structure-activity relationships around phenyl ring A from the original natural product. The sensitivity of the most potent analog 10l, to selected strains of C. cerevisiae was also evaluated leading to the observation that this scaffold may have a different mode of action from its predecessor, cryptolepine.
Collapse
Affiliation(s)
- Sidney Bolden
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Pérez JC, Kumamoto CA, Johnson AD. Candida albicans commensalism and pathogenicity are intertwined traits directed by a tightly knit transcriptional regulatory circuit. PLoS Biol 2013; 11:e1001510. [PMID: 23526879 PMCID: PMC3601966 DOI: 10.1371/journal.pbio.1001510] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/06/2013] [Indexed: 12/21/2022] Open
Abstract
The identification of regulators, circuits, and target genes employed by the fungus Candida albicans to thrive in disparate niches in a mammalian host reveals interconnection between commensal and pathogenic lifestyles. Systemic, life-threatening infections in humans are often caused by bacterial or fungal species that normally inhabit a different locale in our body, particularly mucosal surfaces. A hallmark of these opportunistic pathogens, therefore, is their ability to thrive in disparate niches within the host. In this work, we investigate the transcriptional circuitry and gene repertoire that enable the human opportunistic fungal pathogen Candida albicans to proliferate in two different niches. By screening a library of transcription regulator deletion strains in mouse models of intestinal colonization and systemic infection, we identified eight transcription regulators that play roles in at least one of these models. Using genome-wide chromatin immunoprecipitation, we uncovered a network comprising ∼800 target genes and a tightly knit transcriptional regulatory circuit at its core. The network is enriched with genes upregulated in C. albicans cells growing in the host. Our findings indicate that many aspects of commensalism and pathogenicity are intertwined and that the ability of this microorganism to colonize multiple niches relies on a large, integrated circuit. Our skin and mouth, as well as our genital and gastrointestinal tracts, are laden with microorganisms belonging to all three domains of life (bacteria, archaea, and eukaryotes). Much of the time these commensal microorganisms are not only harmless but provide advantages to us. However, when the host's defenses are compromised, some members of the normal flora, such as the fungus C. albicans, can cross the host's protective barriers and colonize virtually every internal organ causing life-threatening conditions. The environment found in the bloodstream and internal organs is presumably distinct from the mucosal surfaces where our flora typically resides. Whether opportunistic pathogens such as C. albicans rely on common or separate gene repertoires to thrive in each of these locales is largely unknown. To address this question we carried out genetic screens in mouse models that recapitulate niches where C. albicans thrives and used genome-wide experimental approaches to uncover the genes required to proliferate in each environment. In fact, the ability of C. albicans to colonize disparate niches within a mammalian host relies on a large, integrated circuit. Our observations suggest that at least some key gene circuits are not dedicated to one niche or another. Rather, thriving in various locales of the host seems to involve the complex regulation of multiple processes, which may allow C. albicans to adjust to different environments.
Collapse
Affiliation(s)
- J Christian Pérez
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America.
| | | | | |
Collapse
|
180
|
Gain-of-function mutations in PDR1, a regulator of antifungal drug resistance in Candida glabrata, control adherence to host cells. Infect Immun 2013; 81:1709-20. [PMID: 23460523 DOI: 10.1128/iai.00074-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Candida glabrata is an emerging opportunistic pathogen that is known to develop resistance to azole drugs due to increased drug efflux. The mechanism consists of CgPDR1-mediated upregulation of ATP-binding cassette transporters. A range of gain-of-function (GOF) mutations in CgPDR1 have been found to lead not only to azole resistance but also to enhanced virulence. This implicates CgPDR1 in the regulation of the interaction of C. glabrata with the host. To identify specific CgPDR1-regulated steps of the host-pathogen interaction, we investigated in this work the interaction of selected CgPDR1 GOF mutants with murine bone marrow-derived macrophages and human acute monocytic leukemia cell line (THP-1)-derived macrophages, as well as different epithelial cell lines. GOF mutations in CgPDR1 did not influence survival and replication within macrophages following phagocytosis but led to decreased adherence to and uptake by macrophages. This may allow evasion from the host's innate cellular immune response. The interaction with epithelial cells revealed an opposite trend, suggesting that GOF mutations in CgPDR1 may favor epithelial colonization of the host by C. glabrata through increased adherence to epithelial cell layers. These data reveal that GOF mutations in CgPDR1 modulate the interaction with host cells in ways that may contribute to increased virulence.
Collapse
|
181
|
Transcriptional profiling of Candida glabrata during phagocytosis by neutrophils and in the infected mouse spleen. Infect Immun 2013; 81:1325-33. [PMID: 23403555 DOI: 10.1128/iai.00851-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression microarray analysis of Candida glabrata following phagocytosis by human neutrophils was performed, and results were compared with those from C. glabrata incubated under conditions of carbohydrate or nitrogen deprivation. Twenty genes were selected to represent the major cell processes altered by phagocytosis or nutrient deprivation. Quantitative real-time PCR (qRT-PCR) with TaqMan chemistry was used to assess expression of the same genes in spleens of mice infected intravenously with Candida glabrata. The results in spleen closely paralleled gene expression in neutrophils or following carbohydrate deprivation. Fungal cells responded by upregulating alternative energy sources through gluconeogenesis, glyoxylate cycle, and long-chain fatty acid metabolism. Autophagy was likely employed to conserve intracellular resources. Aspartyl protease upregulation occurred and may represent defense against attacks on cell wall integrity. Downregulated genes were in the pathways of protein and ergosterol synthesis. Upregulation of the sterol transport gene AUS1 suggested that murine cholesterol may have been used to replace ergosterol, as has been reported in vitro. C. glabrata isolates in spleens of gp91(phox-/-) knockout mice with reduced oxidative phagocyte defenses were grossly similar although with a reduced level of response. These results are consistent with reported results of other fungi responding to phagocytosis, indicating that a rapid shift in metabolism is required for growth in a carbohydrate-limited intracellular environment.
Collapse
|