151
|
In silico target fishing and pharmacological profiling for the isoquinoline alkaloids of Macleaya cordata (Bo Luo Hui). Chin Med 2015; 10:37. [PMID: 26691584 PMCID: PMC4683977 DOI: 10.1186/s13020-015-0067-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 11/10/2015] [Indexed: 01/01/2023] Open
Abstract
Background Some isoquinoline alkaloids from Macleaya cordata (Willd). R. Br. (Bo Luo Hui) exhibited antibacterial, antiparasitic, antitumor, and analgesic effects. The targets of these isoquinoline alkaloids are undefined. This study aims to investigate the compound–target interaction network and potential pharmacological actions of isoquinoline alkaloids of M. cordata by reverse pharmacophore database screening. Methods The targets of 26 isoquinoline alkaloids identified from M. cordata were predicted by a pharmacophore-based target fishing approach. Discovery Studio 3.5 and two pharmacophore databases (PharmaDB and HypoDB) were employed for the target profiling. A compound–target interaction network of M. cordata was constructed and analyzed by Cytoscape 3.0. Results Thirteen of the 65 predicted targets identified by PharmaDB were confirmed as targets by HypoDB screening. The targets in the interaction network of M. cordata were involved in cancer (31 targets), microorganisms (12 targets), neurodegeneration (10 targets), inflammation and autoimmunity (8 targets), parasitosis (5 targets), injury (4 targets), and pain (3 targets). Dihydrochelerythrine (C6) was found to hit 23 fitting targets. Macrophage migration inhibitory factor (MIF) hits 15 alkaloids (C1–2, C11–16, C19–25) was the most promising target related to cancer. Conclusion Through in silico target fishing, the anticancer, anti-inflammatory, and analgesic effects of M. cordata were the most significant among many possible activities. The possible anticancer effects were mainly contributed by the isoquinoline alkaloids as active components.
Collapse
|
152
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
153
|
Winkler ML, Bonomo RA. SHV-129: A Gateway to Global Suppressors in the SHV β-Lactamase Family? Mol Biol Evol 2015; 33:429-41. [PMID: 26531195 DOI: 10.1093/molbev/msv235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Enzymes are continually evolving in response to environmental pressures. In order to increase enzyme fitness, amino acid substitutions can occur leading to a changing function or an increased stability. These evolutionary drivers determine the activity of an enzyme and its success in future generations in response to changing conditions such as environmental stressors or to improve physiological function allowing continual persistence of the enzyme. With recent warning reports on antibiotic resistance and multidrug resistant bacterial infections, understanding the evolution of β-lactamase enzymes, which are a large contributor to antibiotic resistance, is increasingly important. Here, we investigated a variant of the SHV β-lactamase identified from a clinical isolate of Escherichia coli in 2011 (SHV-129, G238S-E240K-R275L-N276D) to identify the first instance of a global suppressor substitution in the SHV β-lactamase family. We have used this enzyme to show that several evolutionary principles are conserved in different class A β-lactamases, such as active site mutations reducing stability and requiring compensating suppressor substitutions in order to ensure evolutionary persistence of a given β-lactamase. However, the pathway taken by a given β-lactamase in order to reach its evolutionary peak under a given set of conditions is likely different. We also provide further evidence for a conserved stabilizing substitution among class A β-lactamases, the back to consensus M182T substitution. In addition to expanding the spectrum of β-lactamase activity to include the hydrolysis of cefepime, the amino acid substitutions found in SHV-129 provide the enzyme with an excess of stability, which expands the evolutionary landscape of this enzyme and may result in further evolution to potentially include resistance to carbapenems or β-lactamase inhibitors.
Collapse
Affiliation(s)
- Marisa L Winkler
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH Department of Molecular Biology and Microbiology, Case Western Reserve University
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH Department of Molecular Biology and Microbiology, Case Western Reserve University Department of Pharmacology, Case Western Reserve University Department of Biochemistry, Case Western Reserve University Department of Medicine, Case Western Reserve University
| |
Collapse
|
154
|
Couce A, Rodríguez-Rojas A, Blázquez J. Bypass of genetic constraints during mutator evolution to antibiotic resistance. Proc Biol Sci 2015; 282:20142698. [PMID: 25716795 DOI: 10.1098/rspb.2014.2698] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Genetic constraints can block many mutational pathways to optimal genotypes in real fitness landscapes, yet the extent to which this can limit evolution remains to be determined. Interestingly, mutator bacteria elevate only specific types of mutations, and therefore could be very sensitive to genetic constraints. Testing this possibility is not only clinically relevant, but can also inform about the general impact of genetic constraints in adaptation. Here, we evolved 576 populations of two mutator and one wild-type Escherichia coli to doubling concentrations of the antibiotic cefotaxime. All strains carried TEM-1, a β-lactamase enzyme well known by its low availability of mutational pathways. Crucially, one of the mutators does not elevate any of the relevant first-step mutations known to improve cefatoximase activity. Despite this, both mutators displayed a similar ability to evolve more than 1000-fold resistance. Initial adaptation proceeded in parallel through general multi-drug resistance mechanisms. High-level resistance, in contrast, was achieved through divergent paths; with the a priori inferior mutator exploiting alternative mutational pathways in PBP3, the target of the antibiotic. These results have implications for mutator management in clinical infections and, more generally, illustrate that limits to natural selection in real organisms are alleviated by the existence of multiple loci contributing to fitness.
Collapse
Affiliation(s)
- Alejandro Couce
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain Unité Mixte de Recherche 1137 (IAME-INSERM), 75018 Paris, France
| | - Alexandro Rodríguez-Rojas
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain Institut für Biologie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jesús Blázquez
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain Instituto de Biomedicina de Sevilla (IBIS), 41013 Sevilla, Spain
| |
Collapse
|
155
|
Figliuzzi M, Jacquier H, Schug A, Tenaillon O, Weigt M. Coevolutionary Landscape Inference and the Context-Dependence of Mutations in Beta-Lactamase TEM-1. Mol Biol Evol 2015; 33:268-80. [PMID: 26446903 PMCID: PMC4693977 DOI: 10.1093/molbev/msv211] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The quantitative characterization of mutational landscapes is a task of outstanding importance in evolutionary and medical biology: It is, for example, of central importance for our understanding of the phenotypic effect of mutations related to disease and antibiotic drug resistance. Here we develop a novel inference scheme for mutational landscapes, which is based on the statistical analysis of large alignments of homologs of the protein of interest. Our method is able to capture epistatic couplings between residues, and therefore to assess the dependence of mutational effects on the sequence context where they appear. Compared with recent large-scale mutagenesis data of the beta-lactamase TEM-1, a protein providing resistance against beta-lactam antibiotics, our method leads to an increase of about 40% in explicative power as compared with approaches neglecting epistasis. We find that the informative sequence context extends to residues at native distances of about 20 Å from the mutated site, reaching thus far beyond residues in direct physical contact.
Collapse
Affiliation(s)
- Matteo Figliuzzi
- UPMC, Institut de Calcul et de la Simulation, Sorbonne Universités, Paris, France Computational and Quantitative Biology, UPMC, UMR 7238, Sorbonne Universités, Paris, France Computational and Quantitative Biology, CNRS, UMR 7238, Paris, France
| | - Hervé Jacquier
- Infection, Antimicrobials, Modelling, Evolution, INSERM, Université Denis Diderot Paris 7, UMR 1137, Sorbonne Paris Cité, Paris, France Service de Bactériologie-Virologie, Groupe Hospitalier Lariboisiére-Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Alexander Schug
- Steinbuch Centre for Computing, Karlsruhe Institute for Technology, Eggenstein-Leopoldshafen, Germany
| | - Oliver Tenaillon
- Infection, Antimicrobials, Modelling, Evolution, INSERM, Université Denis Diderot Paris 7, UMR 1137, Sorbonne Paris Cité, Paris, France
| | - Martin Weigt
- Computational and Quantitative Biology, UPMC, UMR 7238, Sorbonne Universités, Paris, France Computational and Quantitative Biology, CNRS, UMR 7238, Paris, France
| |
Collapse
|
156
|
Abstract
How biological systems such as proteins achieve robustness to ubiquitous perturbations is a fundamental biological question. Such perturbations include errors that introduce phenotypic mutations into nascent proteins during the translation of mRNA. These errors are remarkably frequent. They are also costly, because they reduce protein stability and help create toxic misfolded proteins. Adaptive evolution might reduce these costs of protein mistranslation by two principal mechanisms. The first increases the accuracy of translation via synonymous "high fidelity" codons at especially sensitive sites. The second increases the robustness of proteins to phenotypic errors via amino acids that increase protein stability. To study how these mechanisms are exploited by populations evolving in the laboratory, we evolved the antibiotic resistance gene TEM-1 in Escherichia coli hosts with either normal or high rates of mistranslation. We analyzed TEM-1 populations that evolved under relaxed and stringent selection for antibiotic resistance by single molecule real-time sequencing. Under relaxed selection, mistranslating populations reduce mistranslation costs by reducing TEM-1 expression. Under stringent selection, they efficiently purge destabilizing amino acid changes. More importantly, they accumulate stabilizing amino acid changes rather than synonymous changes that increase translational accuracy. In the large populations we study, and on short evolutionary timescales, the path of least resistance in TEM-1 evolution consists of reducing the consequences of translation errors rather than the errors themselves.
Collapse
|
157
|
Kun Á, Szathmáry E. Fitness Landscapes of Functional RNAs. Life (Basel) 2015; 5:1497-517. [PMID: 26308059 PMCID: PMC4598650 DOI: 10.3390/life5031497] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/26/2015] [Accepted: 08/03/2015] [Indexed: 11/16/2022] Open
Abstract
The notion of fitness landscapes, a map between genotype and fitness, was proposed more than 80 years ago. For most of this time data was only available for a few alleles, and thus we had only a restricted view of the whole fitness landscape. Recently, advances in genetics and molecular biology allow a more detailed view of them. Here we review experimental and theoretical studies of fitness landscapes of functional RNAs, especially aptamers and ribozymes. We find that RNA structures can be divided into critical structures, connecting structures, neutral structures and forbidden structures. Such characterisation, coupled with theoretical sequence-to-structure predictions, allows us to construct the whole fitness landscape. Fitness landscapes then can be used to study evolution, and in our case the development of the RNA world.
Collapse
Affiliation(s)
- Ádám Kun
- Parmenides Center for the Conceptual Foundations of Science, Kirchplatz 1, 82049 Munich/Pullach, Germany.
- MTA-ELTE-MTMT Ecology Research Group, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary.
- Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary.
| | - Eörs Szathmáry
- Parmenides Center for the Conceptual Foundations of Science, Kirchplatz 1, 82049 Munich/Pullach, Germany.
- Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary.
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary.
| |
Collapse
|
158
|
Medina AM, Rivera FP, Pons MJ, Riveros M, Gomes C, Bernal M, Meza R, Maves RC, Huicho L, Chea-Woo E, Lanata CF, Gil AI, Ochoa TJ, Ruiz J. Comparative analysis of antimicrobial resistance in enterotoxigenic Escherichia coli isolates from two paediatric cohort studies in Lima, Peru. Trans R Soc Trop Med Hyg 2015; 109:493-502. [PMID: 26175267 PMCID: PMC4592336 DOI: 10.1093/trstmh/trv054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/29/2015] [Accepted: 06/11/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Antibiotic resistance is increasing worldwide, being of special concern in low- and middle-income countries. The aim of this study was to determine the antimicrobial susceptibility and mechanisms of resistance in 205 enterotoxigenic Escherichia coli (ETEC) isolates from two cohort studies in children <24 months in Lima, Peru. METHODS ETEC were identified by an in-house multiplex real-time PCR. Susceptibility to 13 antimicrobial agents was tested by disk diffusion; mechanisms of resistance were evaluated by PCR. RESULTS ETEC isolates were resistant to ampicillin (64%), cotrimoxazole (52%), tetracycline (37%); 39% of the isolates were multidrug-resistant. Heat-stable toxin producing (ETEC-st) (48%) and heat-labile toxin producing ETEC (ETEC-lt) (40%) had higher rates of multidrug resistance than isolates producing both toxins (ETEC-lt-st) (21%), p<0.05. Only 10% of isolates were resistant to nalidixic acid and none to ciprofloxacin or cefotaxime. Ampicillin and sulfamethoxazole resistance were most often associated with blaTEM (69%) and sul2 genes (68%), respectively. Tetracycline resistance was associated with tet(A) (49%) and tet(B) (39%) genes. Azithromycin inhibitory diameters were ≤15 mm in 36% of isolates, with 5% of those presenting the mph(A) gene. CONCLUSIONS ETEC from Peruvian children are often resistant to older, inexpensive antibiotics, while remaining susceptible to ciprofloxacin, cephalosporins and furazolidone. Fluoroquinolones and azithromycin remain the drugs of choice for ETEC infections in Peru. However, further development of resistance should be closely monitored.
Collapse
Affiliation(s)
- Anicia M Medina
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Fulton P Rivera
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maria J Pons
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain Universidad Peruana de Ciencias Aplicadas Lima, Peru
| | - Maribel Riveros
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Cláudia Gomes
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - María Bernal
- Department of Bacteriology, U.S. Naval Medical Research Unit No. 6, Callao, Peru
| | - Rina Meza
- Department of Bacteriology, U.S. Naval Medical Research Unit No. 6, Callao, Peru
| | - Ryan C Maves
- Department of Bacteriology, U.S. Naval Medical Research Unit No. 6, Callao, Peru Division of Infectious Diseases, Naval Medical Center San Diego, San Diego, California, USA
| | - Luis Huicho
- Universidad Peruana Cayetano Heredia, Lima, Peru Universidad Nacional Mayor de San Marcos, Lima, Peru Instituto Nacional de Salud del Niño, Lima, Peru Instituto de Investigación Nutricional, Lima, Peru
| | | | | | - Ana I Gil
- Instituto de Investigación Nutricional, Lima, Peru
| | - Theresa J Ochoa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru Universidad Peruana Cayetano Heredia, Lima, Peru Center for Infectious Diseases, University of Texas School of Public Health, Houston, Texas, USA
| | - Joaquim Ruiz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
159
|
Colzi I, Troyan AN, Perito B, Casalone E, Romoli R, Pieraccini G, Škalko-Basnet N, Adessi A, Rossi F, Gonnelli C, Ristori S. Antibiotic delivery by liposomes from prokaryotic microorganisms: Similia cum similis works better. Eur J Pharm Biopharm 2015; 94:411-8. [DOI: 10.1016/j.ejpb.2015.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/27/2015] [Accepted: 06/09/2015] [Indexed: 11/29/2022]
|
160
|
Porres-Osante N, Sáenz Y, Somalo S, Torres C. Characterization of Beta-lactamases in Faecal Enterobacteriaceae Recovered from Healthy Humans in Spain: Focusing on AmpC Polymorphisms. MICROBIAL ECOLOGY 2015; 70:132-40. [PMID: 25501887 DOI: 10.1007/s00248-014-0544-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/26/2014] [Indexed: 05/21/2023]
Abstract
The intestinal tract is a huge reservoir of Enterobacteriaceae, some of which are opportunist pathogens. Several genera of these bacteria harbour intrinsic antibiotic resistance genes, such as ampC genes in species of Citrobacter, Enterobacter or Escherichia genera. In this work, beta-lactamases and other resistance mechanisms have been characterized in Enterobacteriaceae isolates recovered from healthy human faecal samples, focusing on the ampC beta-lactamase genes. Fifty human faecal samples were obtained, and 70 Enterobacteriaceae bacteria were isolated: 44 Escherichia coli, 4 Citrobacter braakii, 9 Citrobacter freundii, 8 Enterobacter cloacae, 1 Proteus mirabilis, 1 Proteus vulgaris, 1 Klebsiella oxytoca, 1 Serratia sp. and 1 Cronobacter sp. A high percentage of resistance to ampicillin was detected (57%), observing the AmpC phenotype in 22 isolates (31%) and the ESBL phenotype in 3 isolates. AmpC molecular characterization showed high diversity into bla CMY and bla ACT genes from Citrobacter and Enterobacter species, respectively, and the pulsed-field gel electrophoresis (PFGE) analysis demonstrated low clonality among them. The prevalence of people colonized by strains carrying plasmid-mediated ampC genes obtained in this study was 2%. The unique plasmid-mediated bla AmpC identified in this study was the bla CMY-2 gene, detected in an E. coli isolate ascribed to the sequence type ST405 which belonged to phylogenetic group D. The hybridization and conjugation experiments demonstrated that the ISEcp1-bla CMY-2-blc structure was carried by a ~78-kb self-transferable IncK plasmid. This study shows a high polymorphism among beta-lactamase genes in Enterobacteriaceae from healthy people microbiota. Extensive AmpC-carrier studies would provide important information and could allow the anticipation of future global health problems.
Collapse
Affiliation(s)
- Nerea Porres-Osante
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | | | | | | |
Collapse
|
161
|
Dellus-Gur E, Elias M, Caselli E, Prati F, Salverda MLM, de Visser JAGM, Fraser JS, Tawfik DS. Negative Epistasis and Evolvability in TEM-1 β-Lactamase--The Thin Line between an Enzyme's Conformational Freedom and Disorder. J Mol Biol 2015; 427:2396-409. [PMID: 26004540 DOI: 10.1016/j.jmb.2015.05.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 12/28/2022]
Abstract
Epistasis is a key factor in evolution since it determines which combinations of mutations provide adaptive solutions and which mutational pathways toward these solutions are accessible by natural selection. There is growing evidence for the pervasiveness of sign epistasis--a complete reversion of mutational effects, particularly in protein evolution--yet its molecular basis remains poorly understood. We describe the structural basis of sign epistasis between G238S and R164S, two adaptive mutations in TEM-1 β-lactamase--an enzyme that endows antibiotics resistance. Separated by 10 Å, these mutations initiate two separate trajectories toward increased hydrolysis rates and resistance toward second and third-generation cephalosporins antibiotics. Both mutations allow the enzyme's active site to adopt alternative conformations and accommodate the new antibiotics. By solving the corresponding set of crystal structures, we found that R164S causes local disorder whereas G238S induces discrete conformations. When combined, the mutations in 238 and 164 induce local disorder whereby nonproductive conformations that perturb the enzyme's catalytic preorganization dominate. Specifically, Asn170 that coordinates the deacylating water molecule is misaligned, in both the free form and the inhibitor-bound double mutant. This local disorder is not restored by stabilizing global suppressor mutations and thus leads to an evolutionary cul-de-sac. Conformational dynamism therefore underlines the reshaping potential of protein's structures and functions but also limits protein evolvability because of the fragility of the interactions networks that maintain protein structures.
Collapse
Affiliation(s)
- Eynat Dellus-Gur
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mikael Elias
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Emilia Caselli
- Department of Chemistry, University of Modena, Modena 41100, Italy
| | - Fabio Prati
- Department of Chemistry, University of Modena, Modena 41100, Italy
| | - Merijn L M Salverda
- Institute for Translational Vaccinology (Intravacc), Bilthoven 3720 AL, The Netherlands
| | - J Arjan G M de Visser
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Wageningen 6700 AH, The Netherlands
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143, USA.
| | - Dan S Tawfik
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
162
|
Evolvability as a function of purifying selection in TEM-1 β-lactamase. Cell 2015; 160:882-892. [PMID: 25723163 DOI: 10.1016/j.cell.2015.01.035] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/30/2014] [Accepted: 01/17/2015] [Indexed: 12/16/2022]
Abstract
Evolvability—the capacity to generate beneficial heritable variation—is a central property of biological systems. However, its origins and modulation by environmental factors have not been examined systematically. Here, we analyze the fitness effects of all single mutations in TEM-1 β-lactamase (4,997 variants) under selection for the wild-type function (ampicillin resistance) and for a new function (cefotaxime resistance). Tolerance to mutation in this enzyme is bimodal and dependent on the strength of purifying selection in vivo, a result that derives from a steep non-linear ampicillin-dependent relationship between biochemical activity and fitness. Interestingly, cefotaxime resistance emerges from mutations that are neutral at low levels of ampicillin but deleterious at high levels; thus the capacity to evolve new function also depends on the strength of selection. The key property controlling evolvability is an excess of enzymatic activity relative to the strength of selection, suggesting that fluctuating environments might select for high-activity enzymes.
Collapse
|
163
|
How structural and physicochemical determinants shape sequence constraints in a functional enzyme. PLoS One 2015; 10:e0118684. [PMID: 25706742 PMCID: PMC4338278 DOI: 10.1371/journal.pone.0118684] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/21/2015] [Indexed: 01/14/2023] Open
Abstract
The need for interfacing structural biology and biophysics to molecular evolution is being increasingly recognized. One part of the big problem is to understand how physics and chemistry shape the sequence space available to functional proteins, while satisfying the needs of biology. Here we present a quantitative, structure-based analysis of a high-resolution map describing the tolerance to all substitutions in all positions of a functional enzyme, namely a TEM lactamase previously studied through deep sequencing of mutants growing in competition experiments with selection against ampicillin. Substitutions are rarely observed within 7 Å of the active site, a stringency that is relaxed slowly and extends up to 15–20 Å, with buried residues being especially sensitive. Substitution patterns in over one third of the residues can be quantitatively modeled by monotonic dependencies on amino acid descriptors and predictions of changes in folding stability. Amino acid volume and steric hindrance shape constraints on the protein core; hydrophobicity and solubility shape constraints on hydrophobic clusters underneath the surface, and on salt bridges and polar networks at the protein surface together with charge and hydrogen bonding capacity. Amino acid solubility, flexibility and conformational descriptors also provide additional constraints at many locations. These findings provide fundamental insights into the chemistry underlying protein evolution and design, by quantitating links between sequence and different protein traits, illuminating subtle and unexpected sequence-trait relationships and pinpointing what traits are sacrificed upon gain-of-function mutation.
Collapse
|
164
|
Stojanoski V, Chow DC, Hu L, Sankaran B, Gilbert HF, Prasad BVV, Palzkill T. A triple mutant in the Ω-loop of TEM-1 β-lactamase changes the substrate profile via a large conformational change and an altered general base for catalysis. J Biol Chem 2015; 290:10382-94. [PMID: 25713062 DOI: 10.1074/jbc.m114.633438] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 11/06/2022] Open
Abstract
β-Lactamases are bacterial enzymes that hydrolyze β-lactam antibiotics. TEM-1 is a prevalent plasmid-encoded β-lactamase in Gram-negative bacteria that efficiently catalyzes the hydrolysis of penicillins and early cephalosporins but not oxyimino-cephalosporins. A previous random mutagenesis study identified a W165Y/E166Y/P167G triple mutant that displays greatly altered substrate specificity with increased activity for the oxyimino-cephalosporin, ceftazidime, and decreased activity toward all other β-lactams tested. Surprisingly, this mutant lacks the conserved Glu-166 residue critical for enzyme function. Ceftazidime contains a large, bulky side chain that does not fit optimally in the wild-type TEM-1 active site. Therefore, it was hypothesized that the substitutions in the mutant expand the binding site in the enzyme. To investigate structural changes and address whether there is an enlargement in the active site, the crystal structure of the triple mutant was solved to 1.44 Å. The structure reveals a large conformational change of the active site Ω-loop structure to create additional space for the ceftazidime side chain. The position of the hydroxyl group of Tyr-166 and an observed shift in the pH profile of the triple mutant suggests that Tyr-166 participates in the hydrolytic mechanism of the enzyme. These findings indicate that the highly conserved Glu-166 residue can be substituted in the mechanism of serine β-lactamases. The results reveal that the robustness of the overall β-lactamase fold coupled with the plasticity of an active site loop facilitates the evolution of enzyme specificity and mechanism.
Collapse
Affiliation(s)
- Vlatko Stojanoski
- From the Verna and Marrs McLean Department of Biochemistry and Molecular Biology and the Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030 and
| | - Dar-Chone Chow
- the Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030 and
| | - Liya Hu
- From the Verna and Marrs McLean Department of Biochemistry and Molecular Biology and
| | - Banumathi Sankaran
- the Berkeley Center for Structural Biology, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Hiram F Gilbert
- From the Verna and Marrs McLean Department of Biochemistry and Molecular Biology and
| | - B V Venkataram Prasad
- From the Verna and Marrs McLean Department of Biochemistry and Molecular Biology and
| | - Timothy Palzkill
- From the Verna and Marrs McLean Department of Biochemistry and Molecular Biology and the Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030 and
| |
Collapse
|
165
|
In vitro prediction of the evolution of GES-1 β-lactamase hydrolytic activity. Antimicrob Agents Chemother 2015; 59:1664-70. [PMID: 25561336 DOI: 10.1128/aac.04450-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Resistance to β-lactams is constantly increasing due to the emergence of totally new enzymes but also to the evolution of preexisting β-lactamases. GES-1 is a clinically relevant extended-spectrum β-lactamase (ESBL) that hydrolyzes penicillins and broad-spectrum cephalosporins but spares monobactams and carbapenems. However, several GES-1 variants (i.e., GES-2 and GES-5) previously identified among clinical isolates display an extended spectrum of activity toward carbapenems. To study the evolution potential of the GES-1 β-lactamase, this enzyme was submitted to in vitro-directed evolution, with selection on increasing concentrations of the cephalosporin cefotaxime, the monobactam aztreonam, or the carbapenem imipenem. The highest resistance levels were conferred by a combination of up to four substitutions. The A6T-E104K-G243A variant selected on cefotaxime and the A6T-E104K-T237A-G243A variant selected on aztreonam conferred high resistance to cefotaxime, ceftazidime, and aztreonam. Conversely, the A6T-G170S variant selected on imipenem conferred high resistance to imipenem and cefoxitin. Of note, the A6T substitution involved in higher MICs for all β-lactams is located in the leader peptide of the GES enzyme and therefore is not present in the mature protein. Acquired cross-resistance was not observed, since selection with cefotaxime or aztreonam did not select for resistance to imipenem, and vice versa. Here, we demonstrate that the β-lactamase GES-1 exhibits peculiar properties, with a significant potential to gain activity against broad-spectrum cephalosporins, monobactams, and carbapenems.
Collapse
|
166
|
Egesborg P, Carlettini H, Volpato JP, Doucet N. Combinatorial active-site variants confer sustained clavulanate resistance in BlaC β-lactamase from Mycobacterium tuberculosis. Protein Sci 2014; 24:534-44. [PMID: 25492589 DOI: 10.1002/pro.2617] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/03/2014] [Indexed: 11/10/2022]
Abstract
Bacterial resistance to β-lactam antibiotics is a global issue threatening the success of infectious disease treatments worldwide. Mycobacterium tuberculosis has been particularly resilient to β-lactam treatment, primarily due to the chromosomally encoded BlaC β-lactamase, a broad-spectrum hydrolase that renders ineffective the vast majority of relevant β-lactam compounds currently in use. Recent laboratory and clinical studies have nevertheless shown that specific β-lactam-BlaC inhibitor combinations can be used to inhibit the growth of extensively drug-resistant strains of M. tuberculosis, effectively offering new tools for combined treatment regimens against resistant strains. In the present work, we performed combinatorial active-site replacements in BlaC to demonstrate that specific inhibitor-resistant (IRT) substitutions at positions 69, 130, 220, and/or 234 can act synergistically to yield active-site variants with several thousand fold greater in vitro resistance to clavulanate, the most common clinical β-lactamase inhibitor. While most single and double variants remain sensitive to clavulanate, double mutants R220S-K234R and S130G-K234R are substantially less affected by time-dependent clavulanate inactivation, showing residual β-lactam hydrolytic activities of 46% and 83% after 24 h incubation with a clinically relevant inhibitor concentration (5 μg/ml, 25 µM). These results demonstrate that active-site alterations in BlaC yield resistant variants that remain active and stable over prolonged bacterial generation times compatible with mycobacterial proliferation. These results also emphasize the formidable adaptive potential of inhibitor-resistant substitutions in β-lactamases, potentially casting a shadow on specific β-lactam-BlaC inhibitor combination treatments against M. tuberculosis.
Collapse
Affiliation(s)
- Philippe Egesborg
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, H7V 1B7, Canada
| | | | | | | |
Collapse
|
167
|
Risso VA, Manssour-Triedo F, Delgado-Delgado A, Arco R, Barroso-delJesus A, Ingles-Prieto A, Godoy-Ruiz R, Gavira JA, Gaucher EA, Ibarra-Molero B, Sanchez-Ruiz JM. Mutational studies on resurrected ancestral proteins reveal conservation of site-specific amino acid preferences throughout evolutionary history. Mol Biol Evol 2014; 32:440-55. [PMID: 25392342 PMCID: PMC4298172 DOI: 10.1093/molbev/msu312] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Local protein interactions (“molecular context” effects) dictate amino acid replacements and can be described in terms of site-specific, energetic preferences for any different amino acid. It has been recently debated whether these preferences remain approximately constant during evolution or whether, due to coevolution of sites, they change strongly. Such research highlights an unresolved and fundamental issue with far-reaching implications for phylogenetic analysis and molecular evolution modeling. Here, we take advantage of the recent availability of phenotypically supported laboratory resurrections of Precambrian thioredoxins and β-lactamases to experimentally address the change of site-specific amino acid preferences over long geological timescales. Extensive mutational analyses support the notion that evolutionary adjustment to a new amino acid may occur, but to a large extent this is insufficient to erase the primitive preference for amino acid replacements. Generally, site-specific amino acid preferences appear to remain conserved throughout evolutionary history despite local sequence divergence. We show such preference conservation to be readily understandable in molecular terms and we provide crystallographic evidence for an intriguing structural-switch mechanism: Energetic preference for an ancestral amino acid in a modern protein can be linked to reorganization upon mutation to the ancestral local structure around the mutated site. Finally, we point out that site-specific preference conservation naturally leads to one plausible evolutionary explanation for the existence of intragenic global suppressor mutations.
Collapse
Affiliation(s)
- Valeria A Risso
- Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Fadia Manssour-Triedo
- Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | - Rocio Arco
- Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Alicia Barroso-delJesus
- Unidad de Genómica, Instituto de Parasitología y Biomedicina López Neyra CSIC, PTS Granada, Granada, Spain
| | - Alvaro Ingles-Prieto
- Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Raquel Godoy-Ruiz
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Jose A Gavira
- Unidad de Genómica, Instituto de Parasitología y Biomedicina López Neyra CSIC, PTS Granada, Granada, Spain
| | - Eric A Gaucher
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Beatriz Ibarra-Molero
- Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Jose M Sanchez-Ruiz
- Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| |
Collapse
|
168
|
Resende J, Diniz C, Silva V, Otenio M, Bonnafous A, Arcuri P, Godon JJ. Dynamics of antibiotic resistance genes and presence of putative pathogens during ambient temperature anaerobic digestion. J Appl Microbiol 2014; 117:1689-99. [DOI: 10.1111/jam.12653] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/09/2014] [Accepted: 09/19/2014] [Indexed: 01/25/2023]
Affiliation(s)
- J.A. Resende
- Department of Parasitology, Microbiology and Immunology; Institute of Biological Sciences; Federal University of Juiz de Fora; Juiz de Fora Brazil
- INRA-Institute National Recherche Agronomique; Laboratoire de Biotechnologie de l'Environnement; Narbonne France
| | - C.G. Diniz
- Department of Parasitology, Microbiology and Immunology; Institute of Biological Sciences; Federal University of Juiz de Fora; Juiz de Fora Brazil
| | - V.L. Silva
- Department of Parasitology, Microbiology and Immunology; Institute of Biological Sciences; Federal University of Juiz de Fora; Juiz de Fora Brazil
| | - M.H. Otenio
- EMBRAPA Dairy Cattle-Brazilian Agricultural Research Corporation; Juiz de Fora Brazil
| | - A. Bonnafous
- INRA-Institute National Recherche Agronomique; Laboratoire de Biotechnologie de l'Environnement; Narbonne France
| | - P.B. Arcuri
- EMBRAPA Brazilian Agricultural Research Corporation; Secretariat for International Relations, Headquarters; Brasilia Brazil
| | - J.-J. Godon
- INRA-Institute National Recherche Agronomique; Laboratoire de Biotechnologie de l'Environnement; Narbonne France
| |
Collapse
|
169
|
Identification of TEM-135 β-lactamase in Neisseria gonorrhoeae strains carrying African and Toronto plasmids in Argentina. Antimicrob Agents Chemother 2014; 59:717-20. [PMID: 25367903 DOI: 10.1128/aac.03838-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One hundred forty-three penicillinase-producing Neisseria gonorrhoeae (PPNG) isolates obtained in Argentina from 2008 and 2012 were examined to detect blaTEM-135 genes and to investigate plasmid profiles and multiantigen sequence types. Forty-two PPNG isolates were found to carry TEM-135, and two contained a new TEM derivative characterized as TEM-220. The blaTEM-135 allele was carried by the Toronto/Rio and African plasmids. Molecular epidemiology revealed that two blaTEM-135 isolates were related to previously described isolates from Thailand and China, indicating a common evolutionary origin.
Collapse
|
170
|
Hartl DL. What can we learn from fitness landscapes? Curr Opin Microbiol 2014; 21:51-7. [PMID: 25444121 DOI: 10.1016/j.mib.2014.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/10/2014] [Accepted: 08/24/2014] [Indexed: 11/27/2022]
Abstract
A combinatorially complete data set consists of studies of all possible combinations of a set of mutant sites in a gene or mutant alleles in a genome. Among the most robust conclusions from these studies is that epistasis between beneficial mutations often shows a pattern of diminishing returns, in which favorable mutations are less fit when combined than would be expected. Another robust inference is that the number of adaptive evolutionary paths is often limited to a relatively small fraction of the theoretical possibilities, owing largely to sign epistasis requiring evolutionary steps that would entail a decrease in fitness. Here we summarize these and other results while also examining issues that remain unresolved and future directions that seem promising.
Collapse
Affiliation(s)
- Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
171
|
Schenk MF, Witte S, Salverda MLM, Koopmanschap B, Krug J, de Visser JAGM. Role of pleiotropy during adaptation of TEM-1 β-lactamase to two novel antibiotics. Evol Appl 2014; 8:248-60. [PMID: 25861383 PMCID: PMC4380919 DOI: 10.1111/eva.12200] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/02/2014] [Indexed: 12/18/2022] Open
Abstract
Pleiotropy is a key feature of the genotype–phenotype map, and its form and extent have many evolutionary implications, including for the dynamics of adaptation and the evolution of specialization. Similarly, pleiotropic effects of antibiotic resistance mutations may affect the evolution of antibiotic resistance in the simultaneous or fluctuating presence of different antibiotics. Here, we study the role of pleiotropy during the in vitro adaptation of the enzyme TEM-1 β-lactamase to two novel antibiotics, cefotaxime (CTX) and ceftazidime (CAZ). We subject replicate lines for four rounds of evolution to selection with CTX and CAZ alone, and in their combined and fluctuating presence. Evolved alleles show positive correlated responses when selecting with single antibiotics. Nevertheless, pleiotropic constraints are apparent from the effects of single mutations and from selected alleles showing smaller correlated than direct responses and smaller responses after simultaneous and fluctuating selection with both than with single antibiotics. We speculate that these constraints result from structural changes in the oxyanion pocket surrounding the active site, where accommodation of CTX and the larger CAZ is balanced against their positioning with respect to the active site. Our findings suggest limited benefits from the combined or fluctuating application of these related cephalosporins for containing antibiotic resistance.
Collapse
Affiliation(s)
- Martijn F Schenk
- Institute of Genetics, University of Cologne Köln, Germany ; Laboratory of Genetics, Wageningen University Wageningen, The Netherlands
| | - Sariette Witte
- Laboratory of Genetics, Wageningen University Wageningen, The Netherlands
| | | | | | - Joachim Krug
- Institute for Theoretical Physics, University of Cologne Köln, Germany ; Systems Biology of Ageing Cologne (Sybacol), University of Cologne Köln, Germany
| | | |
Collapse
|
172
|
Yi H, Song H, Hwang J, Kim K, Nierman WC, Kim HS. The tandem repeats enabling reversible switching between the two phases of β-lactamase substrate spectrum. PLoS Genet 2014; 10:e1004640. [PMID: 25233343 PMCID: PMC4169377 DOI: 10.1371/journal.pgen.1004640] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/31/2014] [Indexed: 11/25/2022] Open
Abstract
Expansion or shrinkage of existing tandem repeats (TRs) associated with various biological processes has been actively studied in both prokaryotic and eukaryotic genomes, while their origin and biological implications remain mostly unknown. Here we describe various duplications (de novo TRs) that occurred in the coding region of a β-lactamase gene, where a conserved structure called the omega loop is encoded. These duplications that occurred under selection using ceftazidime conferred substrate spectrum extension to include the antibiotic. Under selective pressure with one of the original substrates (amoxicillin), a high level of reversion occurred in the mutant β-lactamase genes completing a cycle back to the original substrate spectrum. The de novo TRs coupled with reversion makes a genetic toggling mechanism enabling reversible switching between the two phases of the substrate spectrum of β-lactamases. This toggle exemplifies the effective adaptation of de novo TRs for enhanced bacterial survival. We found pairs of direct repeats that mediated the DNA duplication (TR formation). In addition, we found different duos of sequences that mediated the DNA duplication. These novel elements—that we named SCSs (same-strand complementary sequences)—were also found associated with β-lactamase TR mutations from clinical isolates. Both direct repeats and SCSs had a high correlation with TRs in diverse bacterial genomes throughout the major phylogenetic lineages, suggesting that they comprise a fundamental mechanism shaping the bacterial evolution. β-lactamases can adapt to new antibiotics by mutations in their genes. The original and the extended substrate spectrums of β-lactamases define two phases of catalytic activity, and the conversion by point mutations is unidirectional from the initial to the new spectrum. We describe duplication mutations that enable reversible switching between the substrate spectrums, increasing the adaptability of the bacterium. We provide evidence supporting that two distinct groups of short sequences mediated the formation of DNA duplications in β-lactamases: direct repeats and novel elements that we named, SCSs (same-strand complementary sequences). Our study suggests that DNA duplication processes mediated by both direct repeats and SCSs are not just limited to the β-lactamase genes but comprise a fundamental mechanism in bacterial genome evolution.
Collapse
Affiliation(s)
- Hyojeong Yi
- Department of Biosystems and Biotechnology, Korea University, Seoul, Korea
- Department of Biomedical Sciences, Korea University, Seoul, Korea
| | - Han Song
- Department of Biomedical Sciences, Korea University, Seoul, Korea
| | - Junghyun Hwang
- Department of Biomedical Sciences, Korea University, Seoul, Korea
| | - Karan Kim
- Department of Biomedical Sciences, Korea University, Seoul, Korea
| | - William C. Nierman
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Heenam Stanley Kim
- Department of Biosystems and Biotechnology, Korea University, Seoul, Korea
- Department of Biomedical Sciences, Korea University, Seoul, Korea
- * E-mail:
| |
Collapse
|
173
|
Kinetic study of the effect of histidines 240 and 164 on TEM-149 enzyme probed by β-lactam inhibitors. Antimicrob Agents Chemother 2014; 58:6294-6. [PMID: 25092695 DOI: 10.1128/aac.02950-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, we performed a detailed kinetic analysis of the enzymes TEM-149, TEM-149(H240), and TEM-149(H164-H240) versus a large panel of inhibitors/inactivators, including penicillins, penems, carbapenems, monobactams, cephamycin, and carbacephem. These compounds behaved as poor substrates versus TEM-149, TEM-149(H240), and TEM-149(H164-H240) β-lactamases, and the Ki (inhibition constant), K (dissociation constant of the Henri-Michaelis complex), k+2 and k+3 (first-order acylation and deacylation constants, respectively), and k+2/K values were calculated.
Collapse
|
174
|
Deletion mutations conferring substrate spectrum extension in the class A β-lactamase. Antimicrob Agents Chemother 2014; 58:6265-9. [PMID: 25049254 DOI: 10.1128/aac.02648-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe four new deletion mutations in a class A β-lactamase PenA in Burkholderia thailandensis, each conferring an extended substrate spectrum. Single-amino-acid deletions T171del, I173del, and P174del and a two-amino-acid deletion, R165_T167delinsP, occurred in the omega loop, increasing the flexibility of the binding cavity. This rare collection of mutations has significance, allowing exploration of the diverse evolutionary trajectories of β-lactamases and as potential future mutations conferring high-level ceftazidime resistance on isolates from clinical settings, compared with amino acid substitution mutations.
Collapse
|
175
|
Elumalai S, Muthu G, Selvam REM, Ramesh S. Detection of TEM-, SHV- and CTX-M-type β-lactamase production among clinical isolates of Salmonella species. J Med Microbiol 2014; 63:962-967. [DOI: 10.1099/jmm.0.068486-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enteric fever is a major public health problem in developing countries. Due to the problem of resistance to first-line drugs and fluoroquinolone, cephalosporins are currently used for treatment of enteric fever. Cephalosporin resistance in Salmonella spp. is mainly due to production of extended-spectrum β-lactamases (ESBLs). The majority of ESBLs in Salmonella are derivatives of the TEM and SHV β-lactamase families. The objectives of this study were to detect antibiotic susceptibility patterns, ESBL production and TEM-, SHV- and CTX-M-encoding genes (bla
TEM, bla
SHV and bla
CTX-M) among clinical isolates of Salmonella spp. A total of 134 Salmonella isolates [Salmonella Typhi (n = 101), Salmonella Paratyphi A (n = 31), Salmonella Paratyphi B (n = 1) and Salmonella Typhimurium (n = 1)] were included in this study. Multidrug resistance was seen in 5/134 (3.73 %) isolates, all of which belonged to serotype S. Typhi. A better susceptibility profile was observed for first-line drugs (ampicillin, chloramphenicol, co-trimoxazole and tetracycline) and cephalosporins (cefotaxime, ceftazidime, ceftriaxone, cefixime and cefepime). However, 131 (97.76 %) of the 134 isolates were resistant to nalidixic acid and one (0.75 %) was resistant to ciprofloxacin. TEM-1-type β-lactamase (bla
TEM-1) was detected in six (4.47 %) of the 134 isolates, which belonged to the serotype S. Typhi. All six TEM-positive isolates were negative for the bla
SHV gene and none of the isolates was positive for the bla
CTX-M gene. The presence of the bla
TEM gene encoding TEM-1 β-lactamase is believed to confer resistance only to penicillins and early cephalosporins; however, the resistance spectrum of TEM-1 descendants may extend to second-, third- and fourth-generation cephalosporins. The ESBLs derived from TEM-1 differ from their progenitors by as few as 1 aa, and have the ability to hydrolyse third-generation cephalosporins. Therefore, appropriate selection and rotation of antibiotics as well as continuous monitoring of antibiotic susceptibility profiles could help to control the emergence and spread of resistant strains.
Collapse
Affiliation(s)
- Sathishkumar Elumalai
- Department of Microbiology, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, Tamil Nadu, India
| | - G. Muthu
- Central Research Laboratory, Sri Manakula Vinayagar Medical College and Hospital, Madagadipet, Pondicherry 605 107, India
| | - R. Esther Mary Selvam
- Department of Microbiology, ESIC Hospital, K. K. Nagar, Chennai 600078, Tamil Nadu, India
| | - Srivani Ramesh
- Department of Microbiology, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, Tamil Nadu, India
| |
Collapse
|
176
|
Singhal N, Kumar M, Virdi JS. Molecular analysis of β-lactamase genes to understand their differential expression in strains of Yersinia enterocolitica biotype 1A. Sci Rep 2014; 4:5270. [PMID: 24920253 PMCID: PMC4053712 DOI: 10.1038/srep05270] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/21/2014] [Indexed: 11/09/2022] Open
Abstract
Beta-lactams are used as major therapeutic agents against a number of infectious agents. Due to widespread use of β-lactams, β-lactamases have evolved at a rapid pace leading to treatment failures. Yersinia enterocolitica causes many gastrointestinal problems. It is an extremely heterogeneous species comprising more than fifty serotypes and six biotypes which differ in their ecological niches, geographical distribution and pathogenic potential. Though biotype 1A strains have been associated with outbreaks of Yersiniosis, there has been a controversy regarding their pathogenicity. The strains of Y. enterocolitica isolated from India belonged to biotype 1A and possessed genes for two β-lactamases namely, blaA and blaB. An earlier study by us reported differential expression of blaA by strains of Y. enterocolitica biotype 1A. The present study has been carried out to understand the molecular bases which regulate the expression of blaA in Y. enterocolitica biotype 1A. We concluded that six types of blaA variants were present in strains of biotype 1A. Neither amino acid substitutions in blaA nor mutations in promoter regions of blaA contributed to differential expression of blaA in Y. enterocolitica biotype 1A. Rather, the secondary structures attained by mRNA of blaA might underlie the differential expression of blaA in Y. enterocolitica.
Collapse
Affiliation(s)
- Neelja Singhal
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | | |
Collapse
|
177
|
Abstract
The emergence and spread of antibiotic resistance among human pathogens is a relevant problem for human health and one of the few evolution processes amenable to experimental studies. In the present review, we discuss some basic aspects of antibiotic resistance, including mechanisms of resistance, origin of resistance genes, and bottlenecks that modulate the acquisition and spread of antibiotic resistance among human pathogens. In addition, we analyse several parameters that modulate the evolution landscape of antibiotic resistance. Learning why some resistance mechanisms emerge but do not evolve after a first burst, whereas others can spread over the entire world very rapidly, mimicking a chain reaction, is important for predicting the evolution, and relevance for human health, of a given mechanism of resistance. Because of this, we propose that the emergence and spread of antibiotic resistance can only be understood in a multi-parameter space. Measuring the effect on antibiotic resistance of parameters such as contact rates, transfer rates, integration rates, replication rates, diversification rates, and selection rates, for different genes and organisms, growing under different conditions in distinct ecosystems, will allow for a better prediction of antibiotic resistance and possibilities of focused interventions.
Collapse
Affiliation(s)
- José Luis Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain
| | - Fernando Baquero
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
178
|
Firnberg E, Labonte JW, Gray JJ, Ostermeier M. A comprehensive, high-resolution map of a gene's fitness landscape. Mol Biol Evol 2014; 31:1581-92. [PMID: 24567513 PMCID: PMC4032126 DOI: 10.1093/molbev/msu081] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mutations are central to evolution, providing the genetic variation upon which selection acts. A mutation’s effect on the suitability of a gene to perform a particular function (gene fitness) can be positive, negative, or neutral. Knowledge of the distribution of fitness effects (DFE) of mutations is fundamental for understanding evolutionary dynamics, molecular-level genetic variation, complex genetic disease, the accumulation of deleterious mutations, and the molecular clock. We present comprehensive DFEs for point and codon mutants of the Escherichia coli TEM-1 β-lactamase gene and missense mutations in the TEM-1 protein. These DFEs provide insight into the inherent benefits of the genetic code’s architecture, support for the hypothesis that mRNA stability dictates codon usage at the beginning of genes, an extensive framework for understanding protein mutational tolerance, and evidence that mutational effects on protein thermodynamic stability shape the DFE. Contrary to prevailing expectations, we find that deleterious effects of mutation primarily arise from a decrease in specific protein activity and not cellular protein levels.
Collapse
Affiliation(s)
- Elad Firnberg
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University
| | - Jason W Labonte
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University
| |
Collapse
|
179
|
Kaltenbach M, Tokuriki N. Dynamics and constraints of enzyme evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 322:468-87. [DOI: 10.1002/jez.b.22562] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/06/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Miriam Kaltenbach
- Michael Smith Laboratories; University of British Columbia; Vancouver British Columbia Canada
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
180
|
Jansen G, Barbosa C, Schulenburg H. Experimental evolution as an efficient tool to dissect adaptive paths to antibiotic resistance. Drug Resist Updat 2014; 16:96-107. [PMID: 24594007 DOI: 10.1016/j.drup.2014.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibiotic treatments increasingly fail due to rapid dissemination of drug resistance. Comparative genomics of clinical isolates highlights the role of de novo adaptive mutations and horizontal gene transfer (HGT) in the acquisition of resistance. Yet it cannot fully describe the selective pressures and evolutionary trajectories that yielded today's problematic strains. Experimental evolution offers a compelling addition to such studies because the combination of replicated experiments under tightly controlled conditions with genomics of intermediate time points allows real-time reconstruction of evolutionary trajectories. Recent studies thus established causal links between antibiotic deployment therapies and the course and timing of mutations, the cost of resistance and the likelihood of compensating mutations. They particularly underscored the importance of long-term effects. Similar investigations incorporating horizontal gene transfer (HGT) are wanting, likely because of difficulties associated with its integration into experiments. In this review, we describe current advances in experimental evolution of antibiotic resistance and reflect on ways to incorporate horizontal gene transfer into the approach. We contend it provides a powerful tool for systematic and highly controlled dissection of evolutionary paths to antibiotic resistance that needs to be taken into account for the development of sustainable anti-bacterial treatment strategies.
Collapse
Affiliation(s)
- Gunther Jansen
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University of Kiel, Germany.
| | - Camilo Barbosa
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University of Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University of Kiel, Germany
| |
Collapse
|
181
|
Onishi M, Mizusawa M, Tsuchiya T, Kuroda T, Ogawa W. Suppression of stop codon UGA in acrB can contribute to antibiotic resistance in Klebsiella pneumoniae ATCC10031. Gene 2014. [DOI: 10.1016/j.gene.2013.10.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
182
|
Pimenta AC, Martins JM, Fernandes R, Moreira IS. Ligand-Induced Structural Changes in TEM-1 Probed by Molecular Dynamics and Relative Binding Free Energy Calculations. J Chem Inf Model 2013; 53:2648-58. [DOI: 10.1021/ci400269d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- A. C. Pimenta
- REQUIMTE/Departamento
de Química, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- Centro
de Investigação em Saúde e Ambiente, da Escola
Superior de Tecnologia da Saúde do Porto, do Instituto Politécnico do Porto, Rua Valente Perfeito 322, 4400-330 Vila Nova de Gaia, Portugal
- Centro
de Farmacologia e Biopatologia Química (U38-FCT), Faculdade
de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - J. M. Martins
- REQUIMTE/Departamento
de Química, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - R. Fernandes
- Centro
de Investigação em Saúde e Ambiente, da Escola
Superior de Tecnologia da Saúde do Porto, do Instituto Politécnico do Porto, Rua Valente Perfeito 322, 4400-330 Vila Nova de Gaia, Portugal
- Centro
de Farmacologia e Biopatologia Química (U38-FCT), Faculdade
de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - I. S. Moreira
- REQUIMTE/Departamento
de Química, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
183
|
Abstract
Adaptation proceeds through the selection of mutations. The distribution of mutant fitness effect and the forces shaping this distribution are therefore keys to predict the evolutionary fate of organisms and their constituents such as enzymes. Here, by producing and sequencing a comprehensive collection of 10,000 mutants, we explore the mutational landscape of one enzyme involved in the spread of antibiotic resistance, the beta-lactamase TEM-1. We measured mutation impact on the enzyme activity through the estimation of amoxicillin minimum inhibitory concentration on a subset of 990 mutants carrying a unique missense mutation, representing 64% of possible amino acid changes in that protein reachable by point mutation. We established that mutation type, solvent accessibility of residues, and the predicted effect of mutations on protein stability primarily determined alone or in combination changes in minimum inhibitory concentration of mutants. Moreover, we were able to capture the drastic modification of the mutational landscape induced by a single stabilizing point mutation (M182T) by a simple model of protein stability. This work thereby provides an integrated framework to study mutation effects and a tool to understand/define better the epistatic interactions.
Collapse
|
184
|
Jacquier H, Marcadé G, Raffoux E, Dombret H, Woerther PL, Donay JL, Arlet G, Cambau E. In vivo selection of a complex mutant TEM (CMT) from an inhibitor-resistant TEM (IRT) during ceftazidime therapy. J Antimicrob Chemother 2013; 68:2792-6. [PMID: 23861309 DOI: 10.1093/jac/dkt278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES A relapse from Escherichia coli bloodstream infection was observed in a patient with acute leukaemia treated with ceftazidime for 7 days for febrile neutropenia. Whereas the original E. coli isolate was resistant to β-lactam/β-lactamase inhibitor combinations (EC1), the relapse E. coli isolate showed a similar phenotype but with resistance extended to ceftazidime (EC2). We investigated the molecular mechanisms of β-lactam resistance and sought if EC2 could have been selected in vivo from EC1. METHODS EC1 and EC2 isolates were compared for antibiotic MICs, plasmid content, genotyping, β-lactamase genes and their environment. Both isolates were conjugated with E. coli JW4111ΔampC and MICs determined for transconjugants. In addition, ceftazidime-resistant mutants were selected in vitro from EC1. RESULTS EC1 and EC2 showed identical patterns for genotyping and resistance plasmids. PCR sequencing of blaTEM in EC1 showed the mutations M69L and N276D corresponding to TEM-35, also called inhibitor-resistant TEM (IRT)-4. In EC2, the TEM allele showed an additional mutation, R164S, known to confer resistance to ceftazidime. The combination of these three mutations was previously reported in TEM-158, described as the complex mutant TEM (CMT)-9, associated with resistance to β-lactamase inhibitors and third-generation cephalosporins. In vitro selection of ceftazidime-resistant mutants from EC1 yielded six different CMT alleles, including TEM-158 containing the R164S mutation. CONCLUSIONS This first known report of in vivo selection of CMT from IRT, reproduced in vitro, shows how the evolution of β-lactamase enzymes is easily driven by antibiotic pressure, even during a short antibiotic therapy.
Collapse
Affiliation(s)
- H Jacquier
- APHP, Hôpital Lariboisière, Service de Bactériologie, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Firnberg E, Ostermeier M. The genetic code constrains yet facilitates Darwinian evolution. Nucleic Acids Res 2013; 41:7420-8. [PMID: 23754851 PMCID: PMC3753648 DOI: 10.1093/nar/gkt536] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An important goal of evolutionary biology is to understand the constraints that shape the dynamics and outcomes of evolution. Here, we address the extent to which the structure of the standard genetic code constrains evolution by analyzing adaptive mutations of the antibiotic resistance gene TEM-1 β-lactamase and the fitness distribution of codon substitutions in two influenza hemagglutinin inhibitor genes. We find that the architecture of the genetic code significantly constrains the adaptive exploration of sequence space. However, the constraints endow the code with two advantages: the ability to restrict access to amino acid mutations with a strong negative effect and, most remarkably, the ability to enrich for adaptive mutations. Our findings support the hypothesis that the standard genetic code was shaped by selective pressure to minimize the deleterious effects of mutation yet facilitate the evolution of proteins through imposing an adaptive mutation bias.
Collapse
Affiliation(s)
- Elad Firnberg
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | |
Collapse
|
186
|
Schenk MF, Szendro IG, Salverda ML, Krug J, de Visser JAG. Patterns of Epistasis between beneficial mutations in an antibiotic resistance gene. Mol Biol Evol 2013; 30:1779-87. [PMID: 23676768 PMCID: PMC3708503 DOI: 10.1093/molbev/mst096] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Understanding epistasis is central to biology. For instance, epistatic interactions determine the topography of the fitness landscape and affect the dynamics and determinism of adaptation. However, few empirical data are available, and comparing results is complicated by confounding variation in the system and the type of mutations used. Here, we take a systematic approach by quantifying epistasis in two sets of four beneficial mutations in the antibiotic resistance enzyme TEM-1 β-lactamase. Mutations in these sets have either large or small effects on cefotaxime resistance when present as single mutations. By quantifying the epistasis and ruggedness in both landscapes, we find two general patterns. First, resistance is maximal for combinations of two mutations in both fitness landscapes and declines when more mutations are added due to abundant sign epistasis and a pattern of diminishing returns with genotype resistance. Second, large-effect mutations interact more strongly than small-effect mutations, suggesting that the effect size of mutations may be an organizing principle in understanding patterns of epistasis. By fitting the data to simple phenotype resistance models, we show that this pattern may be explained by the nonlinear dependence of resistance on enzyme stability and an unknown phenotype when mutations have antagonistically pleiotropic effects. The comparison to a previously published set of mutations in the same gene with a joint benefit further shows that the enzyme's fitness landscape is locally rugged but does contain adaptive pathways that lead to high resistance.
Collapse
Affiliation(s)
| | - Ivan G. Szendro
- Institute for Theoretical Physics, University of Cologne, Köln, Germany
| | | | - Joachim Krug
- Institute for Theoretical Physics, University of Cologne, Köln, Germany
- Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Köln, Germany
| | - J. Arjan G.M. de Visser
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
- *Corresponding author: E-mail:
| |
Collapse
|
187
|
Olivares J, Bernardini A, Garcia-Leon G, Corona F, B Sanchez M, Martinez JL. The intrinsic resistome of bacterial pathogens. Front Microbiol 2013; 4:103. [PMID: 23641241 PMCID: PMC3639378 DOI: 10.3389/fmicb.2013.00103] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/11/2013] [Indexed: 11/13/2022] Open
Abstract
Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.
Collapse
Affiliation(s)
- Jorge Olivares
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | | | | | | | | | | |
Collapse
|
188
|
Detection of antibiotic resistance genes in samples from acute and chronic endodontic infections and after treatment. Arch Oral Biol 2013; 58:1123-8. [PMID: 23591127 DOI: 10.1016/j.archoralbio.2013.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/04/2013] [Accepted: 03/20/2013] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The purpose of this study was twofold: survey samples from acute and chronic endodontic infections for the presence of genes encoding resistance to beta-lactams, tetracycline and erythromycin, and evaluate the ability of treatment to eliminate these genes from root canals. DESIGN DNA extracts from samples of abscess aspirates (n=25) and root canals of teeth with asymptomatic apical periodontitis (n=24) were used as template for direct detection of the genes blaTEM, cfxA, tetM, tetQ, tetW, and ermC using real-time polymerase chain reaction (PCR). Bacterial presence was determined using PCR with universal bacterial primers. Root canals of the asymptomatic cases were also sampled and evaluated after chemomechanical procedures using NiTi instruments with 2.5% NaOCl irrigation. RESULTS All abscess and initial root canal samples were positive for bacteria. At least one of the target resistance genes was found in 36% of the abscess samples and 67% of the asymptomatic cases. The most prevalent genes in abscesses were blaTEM (24%) and ermC (24%), while tetM (42%) and tetW (29%) prevailed in asymptomatic cases. The blaTEM gene was significantly associated with acute cases (p=0.02). Conversely, tetM was significantly more prevalent in asymptomatic cases (p=0.008). Treatment eliminated resistance genes from most cases. CONCLUSIONS Acute and chronic endodontic infections harboured resistance genes for 3 classes of widely used antibiotics. In most cases, treatment was effective in eliminating these genes, but there were a few cases in which they persisted. The implications of persistence are unknown. Direct detection of resistance genes in abscesses may be a potential method for rapid diagnosis and establishment of proactive antimicrobial therapy.
Collapse
|
189
|
Dellus-Gur E, Toth-Petroczy A, Elias M, Tawfik DS. What makes a protein fold amenable to functional innovation? Fold polarity and stability trade-offs. J Mol Biol 2013; 425:2609-21. [PMID: 23542341 DOI: 10.1016/j.jmb.2013.03.033] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/18/2013] [Accepted: 03/24/2013] [Indexed: 12/30/2022]
Abstract
Protein evolvability includes two elements--robustness (or neutrality, mutations having no effect) and innovability (mutations readily inducing new functions). How are these two conflicting demands bridged? Does the ability to bridge them relate to the observation that certain folds, such as TIM barrels, accommodate numerous functions, whereas other folds support only one? Here, we hypothesize that the key to innovability is polarity--an active site composed of flexible, loosely packed loops alongside a well-separated, highly ordered scaffold. We show that highly stabilized variants of TEM-1 β-lactamase exhibit selective rigidification of the enzyme's scaffold while the active-site loops maintained their conformational plasticity. Polarity therefore results in stabilizing, compensatory mutations not trading off, but instead promoting the acquisition of new activities. Indeed, computational analysis indicates that in folds that accommodate only one function throughout evolution, for example, dihydrofolate reductase, ≥ 60% of the active-site residues belong to the scaffold. In contrast, folds associated with multiple functions such as the TIM barrel show high scaffold-active-site polarity (~20% of the active site comprises scaffold residues) and >2-fold higher rates of sequence divergence at active-site positions. Our work suggests structural measures of fold polarity that appear to be correlated with innovability, thereby providing new insights regarding protein evolution, design, and engineering.
Collapse
Affiliation(s)
- Eynat Dellus-Gur
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
190
|
Rapid detection of TEM-type extended-spectrum β-lactamase (ESBL) mutations using lights-on/lights-off probes with single-stranded DNA amplification. J Mol Diagn 2013; 15:291-8. [PMID: 23518216 DOI: 10.1016/j.jmoldx.2013.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/14/2012] [Accepted: 02/05/2013] [Indexed: 11/21/2022] Open
Abstract
Rapid identification of specific TEM-type β-lactamase genes in bacterial infections is important for determining appropriate clinical treatment. We report here the design and initial testing of a molecular diagnostic assay capable of amplifying a large segment of the blaTEM gene, as well as detecting widely spaced extended-spectrum β-lactamase (ESBL) mutations and inhibitor-resistant TEM (IRT) mutations (eg, clavulanic acid resistance). Single-stranded DNA is generated using linear-after-the-exponential PCR (LATE-PCR) and is analyzed at the endpoint, using a set of four fluorescently labeled and four quencher-labeled probes in a single closed tube. These lights-on/lights-off probes work in concert to generate sequence-specific fluorescence contours over a temperature range from 25°C to 75°C. Mutant sequences from synthetic TEM gene variants and from TEM gene variants in bacterial strains generated large increases in fluorescent signal relative to that from the reference sequence for TEM-1. Clinical use of this convenient, single-closed-tube assay would make it possible to rapidly distinguish ESBL from non-ESBL variants and thereby to begin early treatment with suitable antibiotics.
Collapse
|
191
|
Galán JC, González-Candelas F, Rolain JM, Cantón R. Antibiotics as selectors and accelerators of diversity in the mechanisms of resistance: from the resistome to genetic plasticity in the β-lactamases world. Front Microbiol 2013; 4:9. [PMID: 23404545 PMCID: PMC3567504 DOI: 10.3389/fmicb.2013.00009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/09/2013] [Indexed: 11/13/2022] Open
Abstract
Antibiotics and antibiotic resistance determinants, natural molecules closely related to bacterial physiology and consistent with an ancient origin, are not only present in antibiotic-producing bacteria. Throughput sequencing technologies have revealed an unexpected reservoir of antibiotic resistance in the environment. These data suggest that co-evolution between antibiotic and antibiotic resistance genes has occurred since the beginning of time. This evolutionary race has probably been slow because of highly regulated processes and low antibiotic concentrations. Therefore to understand this global problem, a new variable must be introduced, that the antibiotic resistance is a natural event, inherent to life. However, the industrial production of natural and synthetic antibiotics has dramatically accelerated this race, selecting some of the many resistance genes present in nature and contributing to their diversification. One of the best models available to understand the biological impact of selection and diversification are β-lactamases. They constitute the most widespread mechanism of resistance, at least among pathogenic bacteria, with more than 1000 enzymes identified in the literature. In the last years, there has been growing concern about the description, spread, and diversification of β-lactamases with carbapenemase activity and AmpC-type in plasmids. Phylogenies of these enzymes help the understanding of the evolutionary forces driving their selection. Moreover, understanding the adaptive potential of β-lactamases contribute to exploration the evolutionary antagonists trajectories through the design of more efficient synthetic molecules. In this review, we attempt to analyze the antibiotic resistance problem from intrinsic and environmental resistomes to the adaptive potential of resistance genes and the driving forces involved in their diversification, in order to provide a global perspective of the resistance problem.
Collapse
Affiliation(s)
- Juan-Carlos Galán
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal Madrid, Spain ; Centros de Investigación Biomédica en Red en Epidemiología y Salud Pública, Instituto Ramón y Cajal de Investigación Sanitaria Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana Asociada al Consejo Superior de Investigaciones Científicas Madrid, Spain
| | | | | | | |
Collapse
|
192
|
R164H and V240H replacements by site-directed mutagenesis of TEM-149 extended-spectrum β-lactamase: kinetic analysis of TEM-149H240 and TEM-149H164-H240 laboratory mutants. Antimicrob Agents Chemother 2012. [PMID: 23183431 DOI: 10.1128/aac.01268-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two laboratory mutant forms, TEM-149(H240) and TEM-149(H164-H240), of the TEM-149 extended-spectrum β-lactamase enzyme were constructed by site-directed mutagenesis. TEM-149(H240) and TEM-149(H164-H240) were similar in kinetic behavior, except with respect to benzylpenicillin and ceftazidime. Molecular modeling of the two mutant enzymes demonstrated the role of histidine at position 240 in the reduction of the affinity of the enzyme for ceftazidime.
Collapse
|
193
|
Fisette O, Gagné S, Lagüe P. Molecular dynamics of class A β-lactamases-effects of substrate binding. Biophys J 2012; 103:1790-801. [PMID: 23083723 DOI: 10.1016/j.bpj.2012.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 11/18/2022] Open
Abstract
The effects of substrate binding on class A β-lactamase dynamics were studied using molecular dynamics simulations of two model enzymes; 40 100-ns trajectories of the free and substrate-bound forms of TEM-1 (with benzylpenicillin) and PSE-4 (with carbenicillin) were recorded (totaling 4.0 μs). Substrates were parameterized with the CHARMM General Force Field. In both enzymes, the Ω loop exhibits a marked flexibility increase upon substrate binding, supporting the hypothesis of substrate gating. However, specific interactions that are formed or broken in the Ω loop upon binding differ between the two enzymes: dynamics are conserved, but not specific interactions. Substrate binding also has a global structuring effect on TEM-1, but not on PSE-4. Changes in TEM-1's normal modes show long-range effects of substrate binding on enzyme dynamics. Hydrogen bonds observed in the active site are mostly preserved upon substrate binding, and new, transient interactions are also formed. Agreement between NMR relaxation parameters and our theoretical results highlights the dynamic duality of class A β-lactamases: enzymes that are highly structured on the ps-ns timescale, with important flexibility on the μs-ms timescale in regions such as the Ω loop.
Collapse
Affiliation(s)
- Olivier Fisette
- Département de Biochimie et de Mcrobiologie, Université Laval and PROTEO and IBIS, Québec (QC), Canada
| | | | | |
Collapse
|
194
|
Abriata LA, Salverda MLM, Tomatis PE. Sequence-function-stability relationships in proteins from datasets of functionally annotated variants: the case of TEM β-lactamases. FEBS Lett 2012; 586:3330-5. [PMID: 22850115 DOI: 10.1016/j.febslet.2012.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/02/2012] [Accepted: 07/04/2012] [Indexed: 11/19/2022]
Abstract
A dataset of TEM lactamase variants with different substrate and inhibition profiles was compiled and analyzed. Trends show that loops are the main evolvable regions in these enzymes, gradually accumulating mutations to generate increasingly complex functions. Notably, many mutations present in evolved enzymes are also found in simpler variants, probably originating functional promiscuity. Following a function-stability tradeoff, the increase in functional complexity driven by accumulation of mutations fosters the incorporation of other stability-restoring substitutions, although our analysis suggests they might not be as "global" as generally accepted and seem instead specific to different networks of protein sites. Finally, we show how this dataset can be used to model functional changes in TEMs based on the physicochemical properties of the amino acids.
Collapse
Affiliation(s)
- Luciano A Abriata
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina.
| | | | | |
Collapse
|
195
|
Abstract
IL-10 is one of the key cytokines preventing inflammation-mediated tissue damage. In an attempt to identify IL-10-producing cells in vivo, several groups have recently developed IL-10 reporter mouse strains. Up until now, in total, eight IL-10 reporter strains have been published. This incomparable interest in IL-10 reporter mice emphasizes the importance and difficulties in tracking and subsequently investigating the role of IL-10-producing cells in infectious, inflammatory, autoimmune and cancer diseases. In this review, I summarize and compare the properties of those published IL-10 reporter mouse models. I also discuss the necessity to develop new strategies to generate 'multi-cytokine' reporter mouse models enabling highly sensitive in/ex vivo detection of many cytokines in the same single cell. Such 'multi-cytokine' reporter mice will enable to reconsider the dichotomy 'T-effector versus T-regulatory' paradigm and to provide an accurate revised model for cellular sources of cytokines. Finally, I propose to launch cooperative, international initiatives to promote and coordinate the generation of accurate, combinatorial, reporter mice for every individual murine cytokine.
Collapse
Affiliation(s)
- H Bouabe
- Department of Bacteriology, Max von Pettenkofer Institute, Munich, Germany.
| |
Collapse
|
196
|
The antibiotic resistome: challenge and opportunity for therapeutic intervention. Future Med Chem 2012; 4:347-59. [PMID: 22393941 DOI: 10.4155/fmc.12.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite the relevance of infectious disease as main causes of human morbidity and mortality, the development of new antibacterials is not among the highest priorities for pharmaceutical companies. Regulatory and economic issues, together with the lack of novel targets, might justify the reduced rate of discovery of new antimicrobials. With the increasing number of antibiotic resistant pathogens, the mechanisms of resistance appear as appealing alternatives for developing new drugs. Defining the elements that contribute to the characteristic phenotype of susceptibility to antibiotics of a given bacterial species, will serve to find those targets. Recent information on the elements forming part of bacterial intrinsic resistomes and on the inhibitors of resistance currently under development are presented. The possibility of developing new therapeutic procedures based on the administration, together with antibiotics of specific metabolic intermediates capable of increasing the susceptibility to antibiotics by altering bacterial physiology, are also discussed.
Collapse
|
197
|
Poirel L, Bonnin RA, Nordmann P. Genetic support and diversity of acquired extended-spectrum β-lactamases in Gram-negative rods. INFECTION GENETICS AND EVOLUTION 2012; 12:883-93. [DOI: 10.1016/j.meegid.2012.02.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 02/01/2023]
|
198
|
Schenk MF, Szendro IG, Krug J, de Visser JAGM. Quantifying the adaptive potential of an antibiotic resistance enzyme. PLoS Genet 2012; 8:e1002783. [PMID: 22761587 PMCID: PMC3386231 DOI: 10.1371/journal.pgen.1002783] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/09/2012] [Indexed: 12/30/2022] Open
Abstract
For a quantitative understanding of the process of adaptation, we need to understand its "raw material," that is, the frequency and fitness effects of beneficial mutations. At present, most empirical evidence suggests an exponential distribution of fitness effects of beneficial mutations, as predicted for Gumbel-domain distributions by extreme value theory. Here, we study the distribution of mutation effects on cefotaxime (Ctx) resistance and fitness of 48 unique beneficial mutations in the bacterial enzyme TEM-1 β-lactamase, which were obtained by screening the products of random mutagenesis for increased Ctx resistance. Our contributions are threefold. First, based on the frequency of unique mutations among more than 300 sequenced isolates and correcting for mutation bias, we conservatively estimate that the total number of first-step mutations that increase Ctx resistance in this enzyme is 87 [95% CI 75-189], or 3.4% of all 2,583 possible base-pair substitutions. Of the 48 mutations, 10 are synonymous and the majority of the 38 non-synonymous mutations occur in the pocket surrounding the catalytic site. Second, we estimate the effects of the mutations on Ctx resistance by determining survival at various Ctx concentrations, and we derive their fitness effects by modeling reproduction and survival as a branching process. Third, we find that the distribution of both measures follows a Fréchet-type distribution characterized by a broad tail of a few exceptionally fit mutants. Such distributions have fundamental evolutionary implications, including an increased predictability of evolution, and may provide a partial explanation for recent observations of striking parallel evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Martijn F. Schenk
- Institute for Genetics, University of Cologne, Köln, Germany
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Ivan G. Szendro
- Institute for Theoretical Physics, University of Cologne, Köln, Germany
| | - Joachim Krug
- Institute for Theoretical Physics, University of Cologne, Köln, Germany
- Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Köln, Germany
| | | |
Collapse
|
199
|
Speck J, Hecky J, Tam HK, Arndt KM, Einsle O, Müller KM. Exploring the molecular linkage of protein stability traits for enzyme optimization by iterative truncation and evolution. Biochemistry 2012; 51:4850-67. [PMID: 22545913 DOI: 10.1021/bi2018738] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The stability of proteins is paramount for their therapeutic and industrial use and, thus, is a major task for protein engineering. Several types of chemical and physical stabilities are desired, and discussion revolves around whether each stability trait needs to be addressed separately and how specific and compatible stabilizing mutations act. We demonstrate a stepwise perturbation-compensation strategy, which identifies mutations rescuing the activity of a truncated TEM β-lactamase. Analyses relating structural stress with the external stresses of heat, denaturants, and proteases reveal our second-site suppressors as general stability centers that also improve the full-length enzyme. A library of lactamase variants truncated by 15 N-terminal and three C-terminal residues (Bla-NΔ15CΔ3) was subjected to activity selection and DNA shuffling. The resulting clone with the best in vivo performance harbored eight mutations, surpassed the full-length wild-type protein by 5.3 °C in T(m), displayed significantly higher catalytic activity at elevated temperatures, and showed delayed guanidine-induced denaturation. The crystal structure of this mutant was determined and provided insights into its stability determinants. Stepwise reconstitution of the N- and C-termini increased its thermal, denaturant, and proteolytic resistance successively, leading to a full-length enzyme with a T(m) increased by 15.3 °C and a half-denaturation concentration shifted from 0.53 to 1.75 M guanidinium relative to that of the wild type. These improvements demonstrate that iterative truncation-optimization cycles can exploit stability-trait linkages in proteins and are exceptionally suited for the creation of progressively stabilized variants and/or downsized proteins without the need for detailed structural or mechanistic information.
Collapse
Affiliation(s)
- Janina Speck
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
200
|
Yi H, Cho KH, Cho YS, Kim K, Nierman WC, Kim HS. Twelve positions in a β-lactamase that can expand its substrate spectrum with a single amino acid substitution. PLoS One 2012; 7:e37585. [PMID: 22629423 PMCID: PMC3358254 DOI: 10.1371/journal.pone.0037585] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/22/2012] [Indexed: 11/18/2022] Open
Abstract
The continuous evolution of β-lactamases resulting in bacterial resistance to β-lactam antibiotics is a major concern in public health, and yet the underlying molecular basis or the pattern of such evolution is largely unknown. We investigated the mechanics of the substrate fspectrum expansion of the class A β-lactamase using PenA of Burkholderia thailandensis as a model. By analyzing 516 mutated enzymes that acquired the ceftazidime-hydrolyzing activity, we found twelve positions with single amino acid substitutions (altogether twenty-nine different substitutions), co-localized at the active-site pocket area. The ceftazidime MIC (minimum inhibitory concentration) levels and the relative frequency in the occurrence of substitutions did not correlate well with each other, and the latter appeared be largely influenced by the intrinsic mutational biases present in bacteria. Simulation studies suggested that all substitutions caused a congruent effect, expanding the space in a conserved structure called the omega loop, which in turn increased flexibility at the active site. A second phase of selection, in which the mutants were placed under increased antibiotic pressure, did not result in a second mutation in the coding region, but a mutation that increased gene expression arose in the promoter. This result suggests that the twelve amino acid positions and their specific substitutions in PenA may represent a comprehensive repertoire of the enzyme's adaptability to a new substrate. These mapped substitutions represent a comprehensive set of general mechanical paths to substrate spectrum expansion in class A β-lactamases that all share a functional evolutionary mechanism using common conserved residues.
Collapse
Affiliation(s)
- Hyojeong Yi
- Department of Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Kwang-Hwi Cho
- School of Systems Biomedical Science and Research Center for Integrative Basic Science, Soongsil University, Seoul, Korea
| | - Yun Sung Cho
- School of Systems Biomedical Science and Research Center for Integrative Basic Science, Soongsil University, Seoul, Korea
| | - Karan Kim
- Department of Medicine, College of Medicine, Korea University, Seoul, Korea
| | - William C. Nierman
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Heenam Stanley Kim
- Department of Medicine, College of Medicine, Korea University, Seoul, Korea
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| |
Collapse
|