151
|
Lhermie G, El Garch F, Toutain PL, Ferran AA, Bousquet-Mélou A. Bacterial Species-Specific Activity of a Fluoroquinolone against Two Closely Related Pasteurellaceae with Similar MICs: Differential In Vitro Inoculum Effects and In Vivo Efficacies. PLoS One 2015; 10:e0141441. [PMID: 26506096 PMCID: PMC4624641 DOI: 10.1371/journal.pone.0141441] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 10/08/2015] [Indexed: 11/18/2022] Open
Abstract
We investigated the antimicrobial activity of a fluoroquinolone against two genetically close bacterial species belonging to the Pasteurellaceae family. Time-kill experiments were used to measure the in vitro activity of marbofloxacin against two strains of Mannheimia haemolytica and Pasteurella multocida with similar MICs. We observed that marbofloxacin was equally potent against 105 CFU/mL inocula M. haemolytica and P. multocida. However, an inoculum effect was observed with P. multocida, meaning that marbofloxacin activity was decreased against a 108 CFU/mL inoculum, whereas no inoculum effect was observed with M. haemolytica. Marbofloxacin activity was also tested in a lung infection model with immunocompromised mice intratracheally infected with 109 CFU of each bacteria. At the same dose, the clinical and bacteriological outcomes were much better for mice infected with M. haemolytica than for those infected with P. multocida. Moreover, bacteriological eradication was obtained with a lower marbofloxacin dose for mice infected with M. haemolytica. Our results suggest that the differential in vivo marbofloxacin efficacy observed with the two bacterial species of similar MIC could be explained by a differential inoculum effect. Consequently, MICs determined on 105 CFU inocula were not predictive of the differences in antibiotic efficacies against high bacterial inocula of closely related bacterial strains. These results could stimulate further investigations on bacterial species-specific antibiotic doses in a clinical setting.
Collapse
Affiliation(s)
| | | | - Pierre-Louis Toutain
- INRA, UMR1331 TOXALIM, Toulouse, France
- Université de Toulouse, INPT, ENVT, EIP, UPS, Toulouse, France
| | - Aude A. Ferran
- INRA, UMR1331 TOXALIM, Toulouse, France
- Université de Toulouse, INPT, ENVT, EIP, UPS, Toulouse, France
| | - Alain Bousquet-Mélou
- INRA, UMR1331 TOXALIM, Toulouse, France
- Université de Toulouse, INPT, ENVT, EIP, UPS, Toulouse, France
- * E-mail:
| |
Collapse
|
152
|
Jacqz-Aigrain E, Leroux S, Zhao W, van den Anker JN, Sharland M. How to use vancomycin optimally in neonates: remaining questions. Expert Rev Clin Pharmacol 2015; 8:635-48. [PMID: 26289222 DOI: 10.1586/17512433.2015.1060124] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In neonates, vancomycin, a narrow-spectrum antibiotic, is the first choice of treatment of late-onset sepsis predominantly caused by Gram-positive bacteria (coagulase-negative staphylococci and enterococci). Although it has been used for >50 years, prescribing the right dose and dosing regimen remains a challenge in neonatal intensive care units for many reasons including high pharmacokinetic variability, increase in the minimal inhibition concentration against staphylococci, lack of consensus on dosing regimen and way of administration (continuous or intermittent), duration of treatment, use of therapeutic drug monitoring, limited data on short- and long-term toxicity, risk of mutant selection and errors of administration linked to concentrated formulations. This article highlights and discusses future research directions, with specific attention given to dosing optimization of vancomycin, including the advantages of modeling and simulation approaches.
Collapse
Affiliation(s)
- Evelyne Jacqz-Aigrain
- a 1 Department of Paediatric Pharmacology and Pharmacogenetics, Hôpital Robert Debré, AP-HP, Paris, France
| | | | | | | | | |
Collapse
|
153
|
Sanchez-Vizuete P, Orgaz B, Aymerich S, Le Coq D, Briandet R. Pathogens protection against the action of disinfectants in multispecies biofilms. Front Microbiol 2015; 6:705. [PMID: 26236291 PMCID: PMC4500986 DOI: 10.3389/fmicb.2015.00705] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/26/2015] [Indexed: 01/09/2023] Open
Abstract
Biofilms constitute the prevalent way of life for microorganisms in both natural and man-made environments. Biofilm-dwelling cells display greater tolerance to antimicrobial agents than those that are free-living, and the mechanisms by which this occurs have been investigated extensively using single-strain axenic models. However, there is growing evidence that interspecies interactions may profoundly alter the response of the community to such toxic exposure. In this paper, we propose an overview of the studies dealing with multispecies biofilms resistance to biocides, with particular reference to the protection of pathogenic species by resident surface flora when subjected to disinfectants treatments. The mechanisms involved in such protection include interspecies signaling, interference between biocides molecules and public goods in the matrix, or the physiology and genetic plasticity associated with a structural spatial arrangement. After describing these different mechanisms, we will discuss the experimental methods available for their analysis in the context of complex multispecies biofilms.
Collapse
Affiliation(s)
- Pilar Sanchez-Vizuete
- INRA, UMR1319 MICALIS, Jouy-en-JosasFrance
- AgroParisTech, UMR MICALIS, Jouy-en-JosasFrance
| | - Belen Orgaz
- Department of Nutrition, Food Science and Technology, Faculty of Veterinary, Complutense University de MadridMadrid, Spain
| | - Stéphane Aymerich
- INRA, UMR1319 MICALIS, Jouy-en-JosasFrance
- AgroParisTech, UMR MICALIS, Jouy-en-JosasFrance
| | - Dominique Le Coq
- INRA, UMR1319 MICALIS, Jouy-en-JosasFrance
- AgroParisTech, UMR MICALIS, Jouy-en-JosasFrance
- CNRS, Jouy-en-JosasFrance
| | - Romain Briandet
- INRA, UMR1319 MICALIS, Jouy-en-JosasFrance
- AgroParisTech, UMR MICALIS, Jouy-en-JosasFrance
| |
Collapse
|
154
|
Determination of the minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) of selected antimicrobials in bovine and swine Pasteurella multocida, Escherichia coli, and Staphylococcus aureus isolates. ACTA VET BRNO 2015. [DOI: 10.2754/avb201584020083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We compared the values of the minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) values of three antimicrobial agents for 72 bovine isolates ofPasteurella multocida, 80 swine isolates ofP. multocida, 80 bovine isolates ofEscherichia coli, 80 swine isolates ofE. coli, and 80 isolates ofStaphylococcus aureusfrom bovine mastitis. The ratio of MIC90/MPC90which limited mutant selection window (MSW) was ≤ 0.12/4 mg/l for enrofloxacin, 0.5/≥ 64 mg/l for florfenicol and 4/≥ 128 mg/l for tulathromycin in bovineP. multocidaisolates, ≤ 0.12/2 mg/l for enrofloxacin, 0.5/≥ 64 mg/l for florfenicol and 4/≥ 128 mg/l for tulathromycin in swineP. multocidaisolates, 1/16 mg/l for enrofloxacin, 8/≥ 64 mg/l for florfenicol and 8/≥ 128 mg/l for tulathromycin in bovineE. coliisolates, 0.5/16 mg/l for enrofloxacin, ≥ 64/≥ 64 mg/l for florfenicol and 8/≥ 128 mg/l for tulathromycin in swineE. coliisolates, and 0.25/16 mg/l for enrofloxacin, 4/≥ 64 mg/l for florfenicol and 4/≥ 128 mg/l for tulathromycin inS. aureusisolates. These findings indicate that the dosage of antimicrobial agents to achieve serum concentration equal to or higher than MPC could reduce selection of resistant bacterial subpopulation.
Collapse
|
155
|
Ahmad I, Hao H, Huang L, Sanders P, Wang X, Chen D, Tao Y, Xie S, Xiuhua K, Li J, Dan W, Yuan Z. Integration of PK/PD for dose optimization of Cefquinome against Staphylococcus aureus causing septicemia in cattle. Front Microbiol 2015; 6:588. [PMID: 26136730 PMCID: PMC4470083 DOI: 10.3389/fmicb.2015.00588] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/28/2015] [Indexed: 11/13/2022] Open
Abstract
Cefquinome is a fourth generation cephalosporin with antimicrobial activity against gram negative and gram positive bacterial species, including Staphylococcus aureus. The aim of our study was to observe the ex-vivo activity of cefquinome against Staphylococcus aureus strains by using bovine serum from intravenously treated cattle. Cefquinome kinetics were measured by liquid chromatography and UV detection. In vitro post antibiotic effects (PAEs) and mutant prevention concentrations were determined with S. aureus strain ATCC 12598. Cefquinome exhibited time-dependent killing and produced in vitro PAEs increasing with concentration and time of exposure. A pharmacokinetic-pharmacodynamic model was established to simulate the efficacy of cefquinome for different dosage regimens. A dosage of 2 mg/kg every 12 h for 3 days was expected to reach a bactericidal activity against S. aureus in case of septicemia.
Collapse
Affiliation(s)
- Ijaz Ahmad
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Drug Residues Detection, Huazhong Agriculture University Wuhan, China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Safety and Quality of Livestock and Poultry Products, Huazhong Agriculture University Wuhan, China
| | - Lingli Huang
- MOA Laboratory for Risk Assessment of Safety and Quality of Livestock and Poultry Products, Huazhong Agriculture University Wuhan, China ; Hubei Collaborative Innovation Centre for feed Safety and Animal Nutrition, Huazhong Agricultural University Wuhan, China
| | - Pascal Sanders
- Laboratory of Fougères, French Agency for Food, Environmental and Occupational Safety Maisons-Alfort, France
| | - Xu Wang
- MOA Laboratory for Risk Assessment of Safety and Quality of Livestock and Poultry Products, Huazhong Agriculture University Wuhan, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Drug Residues Detection, Huazhong Agriculture University Wuhan, China ; Hubei Collaborative Innovation Centre for feed Safety and Animal Nutrition, Huazhong Agricultural University Wuhan, China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Drug Residues Detection, Huazhong Agriculture University Wuhan, China ; Hubei Collaborative Innovation Centre for feed Safety and Animal Nutrition, Huazhong Agricultural University Wuhan, China
| | - Shuyu Xie
- MOA Laboratory for Risk Assessment of Safety and Quality of Livestock and Poultry Products, Huazhong Agriculture University Wuhan, China ; Hubei Collaborative Innovation Centre for feed Safety and Animal Nutrition, Huazhong Agricultural University Wuhan, China
| | - Kuang Xiuhua
- MOA Laboratory for Risk Assessment of Safety and Quality of Livestock and Poultry Products, Huazhong Agriculture University Wuhan, China
| | - Juan Li
- MOA Laboratory for Risk Assessment of Safety and Quality of Livestock and Poultry Products, Huazhong Agriculture University Wuhan, China
| | - Wan Dan
- MOA Laboratory for Risk Assessment of Safety and Quality of Livestock and Poultry Products, Huazhong Agriculture University Wuhan, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Drug Residues Detection, Huazhong Agriculture University Wuhan, China ; MOA Laboratory for Risk Assessment of Safety and Quality of Livestock and Poultry Products, Huazhong Agriculture University Wuhan, China ; Hubei Collaborative Innovation Centre for feed Safety and Animal Nutrition, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
156
|
Swift JM, Smith JT, Kiang JG. Ciprofloxacin Therapy Results in Mitigation of ATP Loss after Irradiation Combined with Wound Trauma: Preservation of Pyruvate Dehydrogenase and Inhibition of Pyruvate Dehydrogenase Kinase 1. Radiat Res 2015; 183:684-92. [PMID: 26010714 DOI: 10.1667/rr13853.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionizing radiation exposure combined with wound injury increases animal mortalities than ionizing radiation exposure alone. Ciprofloxacin (CIP) is in the fluroquinolone family of synthetic antibiotic that are available from the strategic national stockpile for emergency use and is known to inhibit bacterial sepsis. The purpose of this study was to evaluate the efficacy of ciprofloxacin as a countermeasure to combined injury mortality and determine the signaling proteins involved in energy machinery. B6D2F1/J female mice were randomly assigned to receive either 9.75 Gy irradiation with Co-60 gamma rays followed by skin wounding (combined injury; CI) or sham procedure (sham). Either ciprofloxacin (90 mg/kg/day) or vehicle (VEH) (water) was administered orally to these mice 2 h after wounding and thereafter daily for 10 days. Determination of tissue adenosine triphosphate (ATP) was conducted, and immunoblotting for signaling proteins involved in ATP machinery was performed. Combined injury resulted in 60% survival after 10 days compared to 100% survival in the sham group. Furthermore, combined injury caused significant reductions of ATP concentrations in ileum, pancreas, brain, spleen, kidney and lung (-25% to -95%) compared to the sham group. Ciprofloxacin administration after combined injury resulted in 100% survival and inhibited reductions in ileum and kidney ATP production. Ileum protein levels of heat-shock protein 70 kDa (HSP-70, a chaperone protein involved in ATP synthesis) and pyruvate dehydrogenase (PDH, an enzyme complex crucial to conversion of pyruvate to acetyl CoA for entrance into TCA cycle) were significantly lower in the CI group (vs. sham group). Using immunoprecipitation and immunoblotting, HSP-70-PDH complex was found to be present in the ileum tissue of CI mice treated with ciprofloxacin. Furthermore, phosphorylation of serine residues of PDH resulting in inactivating PDH enzymatic activity, which occurred after combined injury, was inhibited with ciprofloxacin treatment, thus enabling PDH to increase ATP production. Increased ileum levels of pyruvate dehydrogenase kinase 1 protein (PDK1, an enzyme responsible for PDH phosphorylation) after combined injury were also prevented by ciprofloxacin treatment. Taken together, these data suggest that ciprofloxacin oral administration after combined injury had a role in sustained ileum ATP levels, and may have acted through preservation of PDH by HSP-70 and inhibition of PDK1. These molecular changes in the ileum are simply one of a host of mechanisms working in concert with one another by which ciprofloxacin treatment mitigates body weight loss and drastically enhances subsequent survival after combined injury. To this end, our findings indicate that oral treatment of ciprofloxacin is a valuable therapeutic treatment after irradiation with combined injury and warrants further analyses to elucidate the precise mechanisms involved.
Collapse
Affiliation(s)
- Joshua M Swift
- a Armed Forces Radiobiology Research Institute, Bethesda, Maryland 20889; and.,b Departments of Military and Emergency Medicine;,c Radiation Biology and
| | - Joan T Smith
- a Armed Forces Radiobiology Research Institute, Bethesda, Maryland 20889; and
| | - Juliann G Kiang
- a Armed Forces Radiobiology Research Institute, Bethesda, Maryland 20889; and.,c Radiation Biology and.,d Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| |
Collapse
|
157
|
Zhou Y, Joubran C, Miller-Vedam L, Isabella V, Nayar A, Tentarelli S, Miller A. Thinking Outside the “Bug”: A Unique Assay To Measure Intracellular Drug Penetration in Gram-Negative Bacteria. Anal Chem 2015; 87:3579-84. [DOI: 10.1021/ac504880r] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ying Zhou
- Department
of Chemistry, Infection Innovative Medicines Unit, AstraZeneca-US, 53 Gatehouse
Drive, Waltham, Massachusetts 02451, United States
| | - Camil Joubran
- Department
of Chemistry, Infection Innovative Medicines Unit, AstraZeneca-US, 53 Gatehouse
Drive, Waltham, Massachusetts 02451, United States
| | - Lakshmi Miller-Vedam
- Department
of Biosciences, Infection Innovative Medicines Unit, AstraZeneca-US, Waltham, Massachusetts 02451, United States
| | - Vincent Isabella
- Department
of Biosciences, Infection Innovative Medicines Unit, AstraZeneca-US, Waltham, Massachusetts 02451, United States
| | - Asha Nayar
- Department
of Biosciences, Infection Innovative Medicines Unit, AstraZeneca-US, Waltham, Massachusetts 02451, United States
| | - Sharon Tentarelli
- Department
of Chemistry, Infection Innovative Medicines Unit, AstraZeneca-US, 53 Gatehouse
Drive, Waltham, Massachusetts 02451, United States
| | - Alita Miller
- Department
of Biosciences, Infection Innovative Medicines Unit, AstraZeneca-US, Waltham, Massachusetts 02451, United States
| |
Collapse
|
158
|
El-Taweel HA. Understanding drug resistance in human intestinal protozoa. Parasitol Res 2015; 114:1647-59. [DOI: 10.1007/s00436-015-4423-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 03/05/2015] [Indexed: 01/07/2023]
|
159
|
Miller KP, Wang L, Chen YP, Pellechia PJ, Benicewicz BC, Decho AW. Engineering nanoparticles to silence bacterial communication. Front Microbiol 2015; 6:189. [PMID: 25806030 PMCID: PMC4354405 DOI: 10.3389/fmicb.2015.00189] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/20/2015] [Indexed: 02/05/2023] Open
Abstract
The alarming spread of bacterial resistance to traditional antibiotics has warranted the study of alternative antimicrobial agents. Quorum sensing (QS) is a chemical cell-to-cell communication mechanism utilized by bacteria to coordinate group behaviors and establish infections. QS is integral to bacterial survival, and therefore provides a unique target for antimicrobial therapy. In this study, silicon dioxide nanoparticles (Si-NP) were engineered to target the signaling molecules [i.e., acylhomoserine lactones (HSLs)] used for QS in order to halt bacterial communication. Specifically, when Si-NP were surface functionalized with β-cyclodextrin (β-CD), then added to cultures of bacteria (Vibrio fischeri), whose luminous output depends upon HSL-mediated QS, the cell-to-cell communication was dramatically reduced. Reductions in luminescence were further verified by quantitative polymerase chain reaction (qPCR) analyses of luminescence genes. Binding of HSLs to Si-NPs was examined using nuclear magnetic resonance (NMR) spectroscopy. The results indicated that by delivering high concentrations of engineered NPs with associated quenching compounds, the chemical signals were removed from the immediate bacterial environment. In actively-metabolizing cultures, this treatment blocked the ability of bacteria to communicate and regulate QS, effectively silencing and isolating the cells. Si-NPs provide a scaffold and critical stepping-stone for more pointed developments in antimicrobial therapy, especially with regard to QS-a target that will reduce resistance pressures imposed by traditional antibiotics.
Collapse
Affiliation(s)
- Kristen P Miller
- Microbial Interactions Laboratory, Department of Environmental Health Sciences, Public Health Research Center, Arnold School of Public Health, University of South Carolina Columbia, SC, USA
| | - Lei Wang
- Department of Chemistry and Biochemistry, JM Palms Center for Graduate Student Research, University of South Carolina Columbia, SC, USA
| | - Yung-Pin Chen
- Microbial Interactions Laboratory, Department of Environmental Health Sciences, Public Health Research Center, Arnold School of Public Health, University of South Carolina Columbia, SC, USA
| | - Perry J Pellechia
- Department of Chemistry and Biochemistry, JM Palms Center for Graduate Student Research, University of South Carolina Columbia, SC, USA
| | - Brian C Benicewicz
- Department of Chemistry and Biochemistry, JM Palms Center for Graduate Student Research, University of South Carolina Columbia, SC, USA
| | - Alan W Decho
- Microbial Interactions Laboratory, Department of Environmental Health Sciences, Public Health Research Center, Arnold School of Public Health, University of South Carolina Columbia, SC, USA
| |
Collapse
|
160
|
Day T, Huijben S, Read AF. Is selection relevant in the evolutionary emergence of drug resistance? Trends Microbiol 2015; 23:126-33. [PMID: 25680587 DOI: 10.1016/j.tim.2015.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
The emergence of drug-resistant pathogens is often considered a canonical case of evolution by natural selection. Here we argue that the strength of selection can be a poor predictor of the rate of resistance emergence. It is possible for a resistant strain to be under negative selection and still emerge in an infection or spread in a population. Measuring the right parameters is a necessary first step toward the development of evidence-based resistance-management strategies. We argue that it is the absolute fitness of the resistant strains that matters most and that a primary determinant of the absolute fitness of a resistant strain is the ecological context in which it finds itself.
Collapse
Affiliation(s)
- Troy Day
- Department of Mathematics and Statistics, Jeffery Hall, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada; The Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Silvie Huijben
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Andrew F Read
- The Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
161
|
Chen B, Liang X, Nie X, Huang X, Zou S, Li X. The role of class I integrons in the dissemination of sulfonamide resistance genes in the Pearl River and Pearl River Estuary, South China. JOURNAL OF HAZARDOUS MATERIALS 2015; 282:61-7. [PMID: 24994022 DOI: 10.1016/j.jhazmat.2014.06.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/02/2014] [Accepted: 06/09/2014] [Indexed: 05/08/2023]
Abstract
Antibiotic resistance genes (ARGs), as a newly emerging contaminant, are unique because they are disseminated through horizontal gene transfer in the environment. In the present study, a class 1 integron gene (int1) and various ARGs (sul1, sul2, sul3, qnrS, and ermB) were measured in water and sediment samples from the Pearl River (PR) to the Pearl River Estuary (PRE), where there is a distinct gradient in anthropogenic impact. The int1, sul1, and sul2 genes were detected in all samples, and their concentrations exhibited a clear trend of decline consistent with anthropogenic impact. Both the int1 and sul genes had dynamically migrated between water and sediments. The relative abundance of the int1 gene normalized to the 16S rRNA gene correlated significantly with the total concentrations of antibiotics in water and sediments. Good correlations were also observed between the abundance of int1 and each type of sul gene in the samples. However, the sul1 gene showed a much stronger relationship with int1 in different seasons, probably due to the presence of sul1 in the conserved region of class 1 integron. Our results strongly support that integrons play an important role in the dissemination of ARGs in human-impacted aquatic environments.
Collapse
Affiliation(s)
- Baowei Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ximei Liang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Xiangping Nie
- Department of Ecology/Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shichun Zou
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
162
|
Canut Blasco A, Aguilar Alfaro L, Cobo Reinoso J, Giménez Mestre MJ, Rodríguez-Gascón A. Análisis farmacocinético-farmacodinámico en microbiología: herramienta para evaluar el tratamiento antimicrobiano. Enferm Infecc Microbiol Clin 2015; 33:48-57. [DOI: 10.1016/j.eimc.2013.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/16/2013] [Accepted: 04/25/2013] [Indexed: 12/25/2022]
|
163
|
Miller KP, Wang L, Benicewicz BC, Decho AW. Inorganic nanoparticles engineered to attack bacteria. Chem Soc Rev 2015; 44:7787-807. [DOI: 10.1039/c5cs00041f] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibiotics delivered to bacteria using engineered nanoparticles (NP), offer a powerful and efficient means to kill or control bacteria, especially those already resistant to antibiotics.
Collapse
Affiliation(s)
- Kristen P. Miller
- Department of Environmental Health Sciences
- Arnold School of Public Health
- University of South Carolina
- Columbia
- USA
| | - Lei Wang
- Department of Chemistry and Biochemistry
- College of Arts and Sciences
- University of South Carolina
- Columbia
- USA
| | - Brian C. Benicewicz
- Department of Chemistry and Biochemistry
- College of Arts and Sciences
- University of South Carolina
- Columbia
- USA
| | - Alan W. Decho
- Department of Environmental Health Sciences
- Arnold School of Public Health
- University of South Carolina
- Columbia
- USA
| |
Collapse
|
164
|
Bontemps S, Lagrée M, Dessein R, Maftei A, Martinot A, Dubos F. Évaluation des pratiques de prise en charge des infections urinaires de l’enfant. Arch Pediatr 2015; 22:24-31. [DOI: 10.1016/j.arcped.2014.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/05/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
165
|
Simulation of the rate of transfer of antibiotic resistance between Escherichia coli strains cultured under well controlled environmental conditions. Food Microbiol 2014; 45:189-94. [PMID: 25500384 DOI: 10.1016/j.fm.2014.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/18/2014] [Accepted: 03/23/2014] [Indexed: 11/23/2022]
Abstract
It was demonstrated that the tetracycline resistance plasmid in Escherichia coli resembling K-12 23:06 containing the E. coli plasmid DM0133 could be transferred to tetracycline sensitive E. coli K-12 MG1655 YFP. The sensitive recipient strain has a slight metabolic advantage in continuous fermentation in absence of tetracycline pressure and as a result the numbers of the resistant recipient strain increase during fermentation. In presence of tetracycline pressure the sensitive strain is eliminated, but when it acquires tetracycline resistance the strain has still the same metabolic advantage as its sensitive parent strain in absence of tetracycline. Here a model will be shown that could explain the rate of transformation of a sensitive into a resistant recipient strain and its subsequent growth during continuous fermentation. According to the model the probability of formation of mutants would be much higher at the dilution rate of 0.09 compared to 0.28, whereas the growth of mutants would be much faster at high dilution rate. The growth model shows how the recipient mutants and the donor cells behave in relation to the dilution rate and the number of mutants. Apart from a deterministic model describing the growth rate of both the donor strain and the resistant recipient strain a stochastic model was developed that is particularly useful when low numbers of mutants are formed.
Collapse
|
166
|
Pereira RVV, Siler JD, Bicalho RC, Warnick LD. In vivo selection of resistant E. coli after ingestion of milk with added drug residues. PLoS One 2014; 9:e115223. [PMID: 25506918 PMCID: PMC4266680 DOI: 10.1371/journal.pone.0115223] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/20/2014] [Indexed: 12/25/2022] Open
Abstract
Antimicrobial resistance represents a major global threat to modern medicine. In vitro studies have shown that very low concentrations of drugs, as frequently identified in the environment, and in foods and water for human and animal consumption, can select for resistant bacteria. However, limited information is currently available on the in vivo impact of ingested drug residues. The objective of our study was to evaluate the effect of feeding preweaned calves milk containing antimicrobial drug residues (below the minimum inhibitory concentration), similar to concentrations detected in milk commonly fed to dairy calves, on selection of resistant fecal E. coli in calves from birth to weaning. At birth, thirty calves were randomly assigned to a controlled feeding trial where: 15 calves were fed raw milk with no drug residues (NR), and 15 calves were fed raw milk with drug residues (DR) by adding ceftiofur, penicillin, ampicillin, and oxytetracycline at final concentrations in the milk of 0.1, 0.005, 0.01, and 0.3 µg/ml, respectively. Fecal samples were rectally collected from each calf once a week starting at birth prior to the first feeding in the trial (pre-treatment) until 6 weeks of age. A significantly greater proportion of E. coli resistant to ampicillin, cefoxitin, ceftiofur, streptomycin and tetracycline was observed in DR calves when compared to NR calves. Additionally, isolates from DR calves had a significant decrease in susceptibility to ceftriaxone and ceftiofur when compared to isolates from NR calves. A greater proportion of E. coli isolates from calves in the DR group were resistant to 3 or more antimicrobial drugs when compared to calves in the ND group. These findings highlight the role that low concentrations of antimicrobial drugs have on the evolution and selection of resistance to multiple antimicrobial drugs in vivo.
Collapse
Affiliation(s)
- Richard Van Vleck Pereira
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Julie D Siler
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Rodrigo Carvalho Bicalho
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Lorin D Warnick
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
167
|
Rout S, Dubey D, Panigrahy R, Padhy RN. Surveillance of extended-spectrum β-lactamase producing bacteria in an Indian teaching hospital. J Taibah Univ Med Sci 2014. [DOI: 10.1016/j.jtumed.2014.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
168
|
Charrier C, Rodger C, Robertson J, Kowalczuk A, Shand N, Fraser-Pitt D, Mercer D, O'Neil D. Cysteamine (Lynovex®), a novel mucoactive antimicrobial & antibiofilm agent for the treatment of cystic fibrosis. Orphanet J Rare Dis 2014; 9:189. [PMID: 25433388 PMCID: PMC4260250 DOI: 10.1186/s13023-014-0189-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/10/2014] [Indexed: 01/02/2023] Open
Abstract
Background There remains a critical need for more effective, safe, long-term treatments for cystic fibrosis (CF). Any successful therapeutic strategy designed to combat the respiratory pathology of this condition must address the altered lung physiology and recurrent, complex, polymicrobial infections and biofilms that affect the CF pulmonary tract. Cysteamine is a potential solution to these unmet medical needs and is described here for the first time as (Lynovex®) a single therapy with the potential to deliver mucoactive, antibiofilm and antibacterial properties; both in oral and inhaled delivery modes. Cysteamine is already established in clinical practice for an unrelated orphan condition, cystinosis, and is therefore being repurposed (in oral form) for cystic fibrosis from a platform of over twenty years of safety data and clinical experience. Methods The antibacterial and antibiofilm attributes of cysteamine were determined against type strain and clinical isolates of CF relevant pathogens using CLSI standard and adapted microbiological methods and a BioFlux microfluidic system. Assays were performed in standard nutrient media conditions, minimal media, to mimic the low metabolic activity of microbes/persister cells in the CF respiratory tract and in artificial sputum medium. In vivo antibacterial activity was determined in acute murine lung infection/cysteamine nebulisation models. The mucolytic potential of cysteamine was assessed against DNA and mucin in vitro by semi-quantitative macro-rheology. In all cases, the ‘gold standard’ therapeutic agents were employed as control/comparator compounds against which the efficacy of cysteamine was compared. Results Cysteamine demonstrated at least comparable mucolytic activity to currently available mucoactive agents. Cysteamine was rapidly bactericidal against both metabolically active and persister cells of Pseudomonas aeruginosa and also emerging CF pathogens; its activity was not sensitive to high ionic concentrations characteristic of the CF lung. Cysteamine prevented the formation of, and disrupted established P. aeruginosa biofilms. Cysteamine was synergistic with conventional CF antibiotics; reversing antibiotic resistance/insensitivity in CF bacterial pathogens. Conclusions The novel mucolytic-antimicrobial activity of cysteamine (Lynovex®) provides potential for a much needed new therapeutic strategy in cystic fibrosis. The data we present here provides a platform for cysteamine’s continued investigation as a novel treatment for this poorly served orphan disease. Electronic supplementary material The online version of this article (doi:10.1186/s13023-014-0189-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cedric Charrier
- NovaBiotics Ltd, Cruickshank Building, Craibstone, Aberdeen, AB21 9TR, UK.
| | - Catherine Rodger
- NovaBiotics Ltd, Cruickshank Building, Craibstone, Aberdeen, AB21 9TR, UK.
| | - Jennifer Robertson
- NovaBiotics Ltd, Cruickshank Building, Craibstone, Aberdeen, AB21 9TR, UK.
| | | | - Nicola Shand
- NovaBiotics Ltd, Cruickshank Building, Craibstone, Aberdeen, AB21 9TR, UK.
| | | | - Derry Mercer
- NovaBiotics Ltd, Cruickshank Building, Craibstone, Aberdeen, AB21 9TR, UK.
| | - Deborah O'Neil
- NovaBiotics Ltd, Cruickshank Building, Craibstone, Aberdeen, AB21 9TR, UK.
| |
Collapse
|
169
|
Torres-Barceló C, Arias-Sánchez FI, Vasse M, Ramsayer J, Kaltz O, Hochberg ME. A window of opportunity to control the bacterial pathogen Pseudomonas aeruginosa combining antibiotics and phages. PLoS One 2014; 9:e106628. [PMID: 25259735 PMCID: PMC4178015 DOI: 10.1371/journal.pone.0106628] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/25/2014] [Indexed: 01/09/2023] Open
Abstract
The evolution of antibiotic resistance in bacteria is a global concern and the use of bacteriophages alone or in combined therapies is attracting increasing attention as an alternative. Evolutionary theory predicts that the probability of bacterial resistance to both phages and antibiotics will be lower than to either separately, due for example to fitness costs or to trade-offs between phage resistance mechanisms and bacterial growth. In this study, we assess the population impacts of either individual or combined treatments of a bacteriophage and streptomycin on the nosocomial pathogen Pseudomonas aeruginosa. We show that combining phage and antibiotics substantially increases bacterial control compared to either separately, and that there is a specific time delay in antibiotic introduction independent of antibiotic dose, that minimizes both bacterial density and resistance to either antibiotics or phage. These results have implications for optimal combined therapeutic approaches.
Collapse
Affiliation(s)
- Clara Torres-Barceló
- Institut des Sciences de l'Evolution, CNRS-Université Montpellier 2, Montpellier, France
- * E-mail: (CTB); (MEH)
| | - Flor I. Arias-Sánchez
- Institut des Sciences de l'Evolution, CNRS-Université Montpellier 2, Montpellier, France
| | - Marie Vasse
- Institut des Sciences de l'Evolution, CNRS-Université Montpellier 2, Montpellier, France
| | - Johan Ramsayer
- Institut des Sciences de l'Evolution, CNRS-Université Montpellier 2, Montpellier, France
| | - Oliver Kaltz
- Institut des Sciences de l'Evolution, CNRS-Université Montpellier 2, Montpellier, France
| | - Michael E. Hochberg
- Institut des Sciences de l'Evolution, CNRS-Université Montpellier 2, Montpellier, France
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
- Wissenshaftskolleg zu Berlin, Berlin, Germany
- * E-mail: (CTB); (MEH)
| |
Collapse
|
170
|
Swidsinski A, Loening-Baucke V, Swidsinski S, Verstraelen H. Polymicrobial Gardnerella biofilm resists repeated intravaginal antiseptic treatment in a subset of women with bacterial vaginosis: a preliminary report. Arch Gynecol Obstet 2014; 291:605-9. [PMID: 25245669 DOI: 10.1007/s00404-014-3484-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 09/17/2014] [Indexed: 11/25/2022]
Abstract
PURPOSE Bacterial vaginosis is a recalcitrant polymicrobial biofilm infection that often resists standard antibiotic treatment. We therefore considered repeated treatment with octenidine, a local antiseptic that has previously been shown to be highly effective in several biofilm-associated infections. METHODS Twenty-four patients with recurrent BV were treated with a 7-day course of octenidine (octenidine dihydrochloride spray application with the commercial product Octenisept). In case of treatment failure or relapse within 6 months, patients were re-treated with a 28-day course of octenidine. In case of recurrence within 6 months after the second treatment course, patients were treated again with a 28-day course followed by weekly applications for 2 months. Treatment effect was evaluated by assessment of the presence of the biofilm on voided vaginal epithelial cells through fluorescence in situ hybridisation. RESULTS The initial cure rate following a 7-day course of octenidine was as high as 87.5%. The 6-month relapse rate was, however, as high as 66.6%. Repeated treatment for 28 days led to an overall cure rate of 75.0%; however, it was also associated with emergence of complete resistance to octenidine in a subset of women. The overall cure rate after three treatment courses with 1-year follow-up was 62.5 %, with 37.5 % of the patients showing complete resistance to octenidine. CONCLUSION Our preliminary results showed that octenidine dihydrochloride was initially highly effective, but the efficacy of repeated and prolonged treatment dropped quickly as challenge with the antiseptic rapidly led to bacterial resistance in a considerable subset of women.
Collapse
Affiliation(s)
- Alexander Swidsinski
- Laboratory for Molecular Genetics, Polymicrobial Infections and Bacterial Biofilms and Department of Medicine, Gastroenterology, Charité Hospital, Campus Mitte, Universitätsmedizin Berlin, 10117, Berlin, Germany,
| | | | | | | |
Collapse
|
171
|
Cantón R, Horcajada JP, Oliver A, Garbajosa PR, Vila J. Inappropriate use of antibiotics in hospitals: the complex relationship between antibiotic use and antimicrobial resistance. Enferm Infecc Microbiol Clin 2014; 31 Suppl 4:3-11. [PMID: 24129283 DOI: 10.1016/s0213-005x(13)70126-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hospitals are considered an excellent compartment for the selection of resistant and multi-drug resistant (MDR) bacteria. The overuse and misuse of antimicrobial agents are considered key points fuelling this situation. Antimicrobial stewardship programs have been designed for better use of these compounds to prevent the emergence of resistant microorganisms and to diminish the upward trend in resistance. Nevertheless, the relationship between antibiotic use and antimicrobial resistance is complex, and the desired objectives are difficult to reach. Various factors affecting this relationship have been advocated including, among others, antibiotic exposure and mutant selection windows, antimicrobial pharmacodynamics, the nature of the resistance (natural or acquired, including mutational and that associated with horizontal gene transfer) and the definition of resistance. Moreover, antimicrobial policies to promote better use of these drugs should be implemented not only in the hospital setting coupled with infection control programs, but also in the community, which should also include animal and environmental compartments. Within hospitals, the restriction of antimicrobials, cycling and mixing strategies and the use of combination therapies have been used to avoid resistance. Nevertheless, the results have not always been favorable and resistant bacteria have persisted despite the theoretical benefits of these strategies. Mathematical models as well as microbiological knowledge can explain this failure, which is mainly related to the current scenario involving MDR bacteria and overcoming the fitness associated with resistance. New antimicrobials, rapid diagnostic and antimicrobial susceptibility testing and biomarkers will be useful for future antimicrobial stewardship interventions.
Collapse
Affiliation(s)
- Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | | | | | | | | |
Collapse
|
172
|
Evaluation of meropenem regimens suppressing emergence of resistance in Acinetobacter baumannii with human simulated exposure in an in vitro intravenous-infusion hollow-fiber infection model. Antimicrob Agents Chemother 2014; 58:6773-81. [PMID: 25182633 DOI: 10.1128/aac.03505-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The emergence of resistance to carbapenems in Pseudomonas aeruginosa can be suppressed by optimizing the administration of meropenem. However, whether the same is true for Acinetobacter baumannii is not fully understood. We assessed the bactericidal activity of meropenem and its potency to suppress the emergence of resistance in A. baumannii with human simulated exposure in an in vitro intravenous-infusion hollow-fiber infection model (HFIM). Two clinical strains of carbapenem-susceptible multidrug-resistant A. baumannii (CS-MDRAB), CSRA24 and CSRA91, were used, and their MICs and mutant prevention concentrations (MPCs) were determined. Six meropenem dosage regimens (0.5, 1.0, or 2.0 g given every 8 h [q8h] with a 0.5-h or 3-h infusion for seven consecutive days) were simulated and then evaluated in the HFIM. Both the total population and resistant subpopulations of the two strains were quantified. Drug concentrations were measured by high-performance liquid chromatography. All dosage regimens, except for the lowest dosage (0.5 g for both the 0.5-h and 3-h infusions), showed 3-log CFU/ml bacterial killing. Dosage regimens of 2.0 g with 0.5-h and 3-h infusions exhibited an obvious bactericidal effect and suppressed resistance. Selective amplification of subpopulations with reduced susceptibility to meropenem was suppressed with a percentage of the dosage interval in which meropenem concentrations exceeded the MPC (T>MPC) of ≥20% or with a ratio of T>MPC to the percentage of the dosage interval in which drug concentrations are within the mutant selection window of ≥0.25. Our in vitro data support the use of a high dosage of meropenem (2.0 g q8h) for the treatment of severe infection caused by CS-MDRAB.
Collapse
|
173
|
Sangster W, Hegarty JP, Stewart DB. Phage therapy for Clostridium difficile infection: An alternative to antibiotics? SEMINARS IN COLON AND RECTAL SURGERY 2014. [DOI: 10.1053/j.scrs.2014.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
174
|
Koch G, Yepes A, Förstner KU, Wermser C, Stengel ST, Modamio J, Ohlsen K, Foster KR, Lopez D. Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition. Cell 2014; 158:1060-1071. [PMID: 25171407 PMCID: PMC4163622 DOI: 10.1016/j.cell.2014.06.046] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/28/2014] [Accepted: 06/23/2014] [Indexed: 01/02/2023]
Abstract
Antibiotic resistance is a key medical concern, with antibiotic use likely being an important cause. However, here we describe an alternative route to clinically relevant antibiotic resistance that occurs solely due to competitive interactions among bacterial cells. We consistently observe that isolates of Methicillin-resistant Staphylococcus aureus diversify spontaneously into two distinct, sequentially arising strains. The first evolved strain outgrows the parent strain via secretion of surfactants and a toxic bacteriocin. The second is resistant to the bacteriocin. Importantly, this second strain is also resistant to intermediate levels of vancomycin. This so-called VISA (vancomycin-intermediate S. aureus) phenotype is seen in many hard-to-treat clinical isolates. This strain diversification also occurs during in vivo infection in a mouse model, which is consistent with the fact that both coevolved phenotypes resemble strains commonly found in clinic. Our study shows how competition between coevolving bacterial strains can generate antibiotic resistance and recapitulate key clinical phenotypes.
Collapse
Affiliation(s)
- Gudrun Koch
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
| | - Ana Yepes
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
| | - Konrad U Förstner
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Charlotte Wermser
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
| | - Stephanie T Stengel
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
| | - Jennifer Modamio
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford OX1 3QU, UK; Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford OX1 3QU, UK
| | - Daniel Lopez
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany.
| |
Collapse
|
175
|
Yazdi IK, Murphy MB, Loo C, Liu X, Ferrari M, Weiner BK, Tasciotti E. Cefazolin-loaded mesoporous silicon microparticles show sustained bactericidal effect against Staphylococcus aureus. J Tissue Eng 2014; 5:2041731414536573. [PMID: 24904728 PMCID: PMC4046808 DOI: 10.1177/2041731414536573] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/28/2014] [Indexed: 12/19/2022] Open
Abstract
Cefazolin is an antibiotic frequently used in preoperative prophylaxis of orthopedic surgery and to fight secondary infections post-operatively. Although its systemic delivery in a bulk or bolus dose is usually effective, the local and controlled release can increase its effectiveness by lowering dosages, minimizing total drug exposure, abating the development of antibiotic resistance and avoiding the cytotoxic effect. A delivery system based on mesoporous silicon microparticles was developed that is capable of efficiently loading and continuously releasing cefazolin over several days. The in vitro release kinetics from mesoporous silicon microparticles with three different nanopore sizes was evaluated, and minimal inhibitory concentration of cefazolin necessary to eliminate a culture of Staphylococcus aureus was identified to be 250 µg/mL. A milder toxicity toward mesenchymal stem cells was observed from mesoporous silicon microparticles over a 7-day period. Medium pore size-loaded mesoporous silicon microparticles exhibited long-lasting bactericidal properties in a zone inhibition assay while they were able to kill all the bacteria growing in suspension cultures within 24 h. This study demonstrates that the sustained release of cefazolin from mesoporous silicon microparticles provides immediate and long-term control over bacterial growth both in suspension and adhesion while causing minimal toxicity to a population of mesenchymal stem cell. Mesoporous silicon microparticles offer significant advantageous properties for drug delivery applications in tissue engineering as it favorably extends drug bioavailability and stability, while reducing concomitant cytotoxicity to the surrounding tissues.
Collapse
Affiliation(s)
- Iman K Yazdi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA ; Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Matthew B Murphy
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Christopher Loo
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Xuewu Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Bradley K Weiner
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA ; Department of Orthopedic Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Ennio Tasciotti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
176
|
Nesme J, Cécillon S, Delmont TO, Monier JM, Vogel TM, Simonet P. Large-scale metagenomic-based study of antibiotic resistance in the environment. Curr Biol 2014; 24:1096-100. [PMID: 24814145 DOI: 10.1016/j.cub.2014.03.036] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/01/2013] [Accepted: 03/13/2014] [Indexed: 12/13/2022]
Abstract
Antibiotic resistance, including multiresistance acquisition and dissemination by pathogens, is a critical healthcare issue threatening our management of infectious diseases [1-3]. Rapid accumulation of resistance phenotypes implies a reservoir of transferable antibiotic resistance gene determinants (ARGDs) selected in response to inhibition of antibiotic concentrations, as found in hospitals [1, 3-5]. Antibiotic resistance genes were found in environmental isolates, soil DNA [4-6], secluded caves [6, 7], and permafrost DNA [7, 8]. Antibiotics target essential and ubiquitous cell functions, and resistance is a common characteristic of environmental bacteria [8-11]. Environmental ARGDs are an abundant reservoir of potentially transferable resistance for pathogens [9-12]. Using metagenomic sequences, we show that ARGDs can be detected in all (n=71) environments analyzed. Soil metagenomes had the most diverse pool of ARGDs. The most common types of resistances found in environmental metagenomes were efflux pumps and genes conferring resistance to vancomycin, tetracycline, or β-lactam antibiotics used in veterinary and human healthcare. Our study describes the diverse and abundant antibiotic resistance genes in nonclinical environments and shows that these genes are not randomly distributed among different environments (e.g., soil, oceans or human feces).
Collapse
Affiliation(s)
- Joseph Nesme
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Sébastien Cécillon
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Tom O Delmont
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Jean-Michel Monier
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Pascal Simonet
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France.
| |
Collapse
|
177
|
Abstract
Human use of antibiotics has driven the selective enrichment of pathogenic bacteria resistant to clinically used drugs. Traditionally, the selection of resistance has been considered to occur mainly at high, therapeutic levels of antibiotics, but we are now beginning to understand better the importance of selection of resistance at low levels of antibiotics. The concentration of an antibiotic varies in different body compartments during treatment, and low concentrations of antibiotics are found in sewage water, soils, and many water environments due to natural production and contamination from human activities. Selection of resistance at non-lethal antibiotic concentrations (below the wild-type minimum inhibitory concentration) occurs due to differences in growth rate at the particular antibiotic concentration between cells with different tolerance levels to the antibiotic. The minimum selective concentration for a particular antibiotic is reached when its reducing effect on growth of the susceptible strain balances the reducing effect (fitness cost) of the resistance determinant in the resistant strain. Recent studies have shown that resistant bacteria can be selected at concentrations several hundred-fold below the lethal concentrations for susceptible cells. Resistant mutants selected at low antibiotic concentrations are generally more fit than those selected at high concentrations but can still be highly resistant. The characteristics of selection at low antibiotic concentrations, the potential clinical problems of this mode of selection, and potential solutions will be discussed.
Collapse
Affiliation(s)
- Linus Sandegren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| |
Collapse
|
178
|
Rath S, Dubey D, Sahu MC, Debata NK, Padhy RN. Surveillance of ESBL producing multidrug resistant Escherichia coli in a teaching hospital in India. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60331-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
179
|
Fukumoto R, Burns TM, Kiang JG. Ciprofloxacin enhances stress erythropoiesis in spleen and increases survival after whole-body irradiation combined with skin-wound trauma. PLoS One 2014; 9:e90448. [PMID: 24587369 PMCID: PMC3938753 DOI: 10.1371/journal.pone.0090448] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/02/2014] [Indexed: 02/04/2023] Open
Abstract
Severe hematopoietic loss is one of the major therapeutic targets after radiation-combined injury (CI), a kind of injury resulting from radiation exposure combined with other traumas. In this study, we tested the use of ciprofloxacin (CIP) as a treatment, because of recently reported immunomodulatory effects against CI that may improve hematopoiesis. The CIP regimen was a daily, oral dose for 3 weeks, with the first dose 2 h after CI. CIP treatment improved 30-day survival in mice at 80% compared to 35% for untreated controls. Study of early changes in hematological parameters identified CI-induced progressive anemia by 10 days that CIP significantly ameliorated. CI induced erythropoietin (EPO) mRNA in kidney and protein in kidney and serum; CIP stimulated EPO mRNA expression. In spleens of CI mice, CIP induced bone morphogenetic protein 4 (BMP4) in macrophages with EPO receptors. Splenocytes from CIP-treated CI mice formed CD71+ colony-forming unit-erythroid significantly better than those from controls. Thus, CIP-mediated BMP4-dependent stress erythropoiesis may play a role in improving survival after CI.
Collapse
Affiliation(s)
- Risaku Fukumoto
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland, United States of America
| | - True M. Burns
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland, United States of America
| | - Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland, United States of America
- Department of Radiation Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
180
|
Vaz-Moreira I, Nunes OC, Manaia CM. Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome. FEMS Microbiol Rev 2014; 38:761-78. [PMID: 24484530 DOI: 10.1111/1574-6976.12062] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 12/31/2013] [Accepted: 01/10/2014] [Indexed: 12/14/2022] Open
Abstract
Water is one of the most important bacterial habitats on Earth. As such, water represents also a major way of dissemination of bacteria between different environmental compartments. Human activities led to the creation of the so-called urban water cycle, comprising different sectors (waste, surface, drinking water), among which bacteria can hypothetically be exchanged. Therefore, bacteria can be mobilized between unclean water habitats (e.g. wastewater) and clean or pristine water environments (e.g. disinfected and spring drinking water) and eventually reach humans. In addition, bacteria can also transfer mobile genetic elements between different water types, other environments (e.g. soil) and humans. These processes may involve antibiotic resistant bacteria and antibiotic resistance genes. In this review, the hypothesis that some bacteria may share different water compartments and be also hosted by humans is discussed based on the comparison of the bacterial diversity in different types of water and with the human-associated microbiome. The role of such bacteria as potential disseminators of antibiotic resistance and the inference that currently only a small fraction of the clinically relevant antibiotic resistome may be known is discussed.
Collapse
Affiliation(s)
- Ivone Vaz-Moreira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino Almeida, Porto, Portugal
| | | | | |
Collapse
|
181
|
Experimental Simulation of the Effects of an Initial Antibiotic Treatment on a Subsequent Treatment after Initial Therapy Failure. Antibiotics (Basel) 2014; 3:49-63. [PMID: 27025733 PMCID: PMC4790345 DOI: 10.3390/antibiotics3010049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 11/17/2022] Open
Abstract
Therapy failure of empirical antibiotic treatments prescribed by primary care physicians occurs commonly. The effect of such a treatment on the susceptibility to second line antimicrobial drugs is unknown. Resistance to amoxicillin was rapidly induced or selected in E. coli at concentrations expected in the patient's body. Strains with reduced susceptibility outcompeted the wild-type whenever antibiotics were present, even in low concentrations that did not affect the growth rates of both strains. Exposure of E. coli to amoxicillin caused moderate resistance to cefotaxime. The combined evidence suggests that initial treatment by amoxicillin has a negative effect on subsequent therapy with beta-lactam antibiotics.
Collapse
|
182
|
Effects of Chlorophyll-Derived Efflux Pump Inhibitor Pheophorbide a and Pyropheophorbide a on Growth and Macrolide Antibiotic Resistance of Indicator and Anaerobic Swine Manure Bacteria. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/185068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Natural plant compounds, such as the chlorophyll a catabolites pheophorbide a (php) and pyropheophorbide a (pyp), are potentially active in the gastrointestinal tracts and manure of livestock as antimicrobial resistance-modifying agents through inhibition of bacterial efflux pumps. To investigate whether php, a known efflux pump inhibitor, and pyp influence bacterial resistance, we determined their long-term effects on the MICs of erythromycin for reference strains of clinically relevant indicator bacteria with macrolide or multidrug resistance efflux pumps. Pyp reduced the final MIC endpoint for Staphylococcus (S.) aureus and Escherichia (E.) coli by up to 1536 and 1024 μg erythromycin mL−1 or 1.4- and 1.2-fold, respectively. Estimation of growth parameters of S. aureus revealed that pyp exerted an intrinsic inhibitory effect under anaerobic conditions and was synergistically active, thereby potentiating the effect of erythromycin and partially reversing high-level erythromycin resistance. Anaerobe colony counts of total and erythromycin-resistant bacteria from stored swine manure samples tended to be lower in the presence of pyp. Tylosin, php, and pyp were not detectable by HPLC in the manure or medium. This is the first study showing that pyp affects growth and the level of sensitivity to erythromycin of S. aureus, E. coli, and anaerobic manure bacteria.
Collapse
|
183
|
Schuurmans JM, van Hijum SAFT, Piet JR, Händel N, Smelt J, Brul S, ter Kuile BH. Effect of growth rate and selection pressure on rates of transfer of an antibiotic resistance plasmid between E. coli strains. Plasmid 2014; 72:1-8. [PMID: 24525238 DOI: 10.1016/j.plasmid.2014.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
Antibiotic resistance increases costs for health care and causes therapy failure. An important mechanism for spreading resistance is transfer of plasmids containing resistance genes and subsequent selection. Yet the factors that influence the rate of transfer are poorly known. Rates of plasmid transfer were measured in co-cultures in chemostats of a donor and a acceptor strain under various selective pressures. To document whether specific mutations in either plasmid or acceptor genome are associated with the plasmid transfer, whole genome sequencing was performed. The DM0133 TetR tetracycline resistance plasmid was transferred between Escherichia coli K-12 strains during co-culture at frequencies that seemed higher at increased growth rate. Modeling of the take-over of the culture by the transformed strain suggests that in reality more transfer events occurred at low growth rates. At moderate selection pressure due to an antibiotic concentration that still allowed growth, a maximum transfer frequency was determined of once per 10(11) cell divisions. In the absence of tetracycline or in the presence of high concentrations the frequency of transfer was sometimes zero, but otherwise reduced by at least a factor of 5. Whole genome sequencing showed that the plasmid was transferred without mutations, but two functional mutations in the genome of the recipient strain accompanied this transfer. Exposure to concentrations of antibiotics that fall within the mutant selection window stimulated transfer of the resistance plasmid most.
Collapse
Affiliation(s)
- Jasper M Schuurmans
- Department of Molecular Biology & Microbial Food Safety, Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sacha A F T van Hijum
- NIZO Food Research B.V., Kernhemseweg 2, 6718 ZB Ede, The Netherlands; Centre for Molecular and Biomolecular Informatics (CMBI), NCMLS, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jurgen R Piet
- Department of Medical Microbiology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands
| | - Nadine Händel
- Department of Molecular Biology & Microbial Food Safety, Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jan Smelt
- Department of Molecular Biology & Microbial Food Safety, Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Department of Molecular Biology & Microbial Food Safety, Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Benno H ter Kuile
- Department of Molecular Biology & Microbial Food Safety, Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority, Catharijnesingel 59, 3511 GG Utrecht, The Netherlands.
| |
Collapse
|
184
|
Yap PSX, Yiap BC, Ping HC, Lim SHE. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol J 2014; 8:6-14. [PMID: 24627729 PMCID: PMC3950955 DOI: 10.2174/1874285801408010006] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 10/24/2013] [Accepted: 12/26/2013] [Indexed: 02/01/2023] Open
Abstract
For many years, the battle between humans and the multitudes of infection and disease causing pathogens continues. Emerging at the battlefield as some of the most significant challenges to human health are bacterial resistance and its rapid rise. These have become a major concern in global public health invigorating the need for new antimicrobial compounds. A rational approach to deal with antibiotic resistance problems requires detailed knowledge of the different biological and non-biological factors that affect the rate and extent of resistance development. Combination therapy combining conventional antibiotics and essential oils is currently blooming and represents a potential area for future investigations. This new generation of phytopharmaceuticals may shed light on the development of new pharmacological regimes in combating antibiotic resistance. This review consolidated and described the observed synergistic outcome between essential oils and antibiotics, and highlighted the possibilities of essential oils as the potential resistance modifying agent.
Collapse
Affiliation(s)
- Polly Soo Xi Yap
- School of Postgraduate Studies and Research, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Beow Chin Yiap
- School of Pharmacy, Department of Life Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Hu Cai Ping
- School of Health Sciences, Department of Chinese Medicine, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Swee Hua Erin Lim
- School of Pharmacy, Department of Life Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
185
|
Woappi Y, Gabani P, Singh A, Singh OV. Antibiotrophs: The complexity of antibiotic-subsisting and antibiotic-resistant microorganisms. Crit Rev Microbiol 2014; 42:17-30. [PMID: 24495094 DOI: 10.3109/1040841x.2013.875982] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Widespread overuse of antibiotics has led to the emergence of numerous antibiotic-resistant bacteria; among these are antibiotic-subsisting strains capable of surviving in environments with antibiotics as the sole carbon source. This unparalleled expansion of antibiotic resistance reveals the potent and diversified resistance abilities of certain bacterial strains. Moreover, these strains often possess hypermutator phenotypes and virulence transmissibility competent for genomic and proteomic propagation and pathogenicity. Pragmatic and prospicient approaches will be necessary to develop efficient therapeutic methods against such bacteria and to understand the extent of their genomic adaptability. This review aims to reveal the niches of these antibiotic-catabolizing microbes and assesses the underlying factors linking natural microbial antibiotic production, multidrug resistance, and antibiotic-subsistence.
Collapse
Affiliation(s)
- Yvon Woappi
- a Division of Biological and Health Sciences , University of Pittsburgh , Bradford , PA , USA and
| | - Prashant Gabani
- a Division of Biological and Health Sciences , University of Pittsburgh , Bradford , PA , USA and
| | - Arya Singh
- b Department of Computer Science , Texas State University , San Marcos , TX , USA
| | - Om V Singh
- a Division of Biological and Health Sciences , University of Pittsburgh , Bradford , PA , USA and
| |
Collapse
|
186
|
Hernandez J, Bota D, Farbos M, Bernardin F, Ragetly G, Médaille C. Risk factors for urinary tract infection with multiple drug-resistant Escherichia coli in cats. J Feline Med Surg 2014; 16:75-81. [PMID: 24065707 PMCID: PMC11383123 DOI: 10.1177/1098612x13504407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The emergence of multiple drug-resistant (MDR) bacteria is a growing public health problem. The objective of this retrospective study was to identify risk factors associated with MDR Escherichia coli infection of the urinary tract in cats. All cats presenting with an E coli urinary infection between March 2010 and December 2012 were included and divided into two groups: an MDR group and a non-MDR group. The effects of different variables on the occurrence of an MDR E coli infection were evaluated: age, sex, additional diseases, number of antibiotics and number of days of hospitalisation. Fifty-two cats were identified (10 MDR and 42 non-MDR). The number of antibiotic groups used within the last 3 months was associated with an increased risk of MDR E coli urinary infection (P = 0.007). The association of the number of days of hospitalisation within the last 3 months and the increased risk of MDR E coli urinary infection did not reach significance (P = 0.090). This study provides evidence that systematic urinary culture with antibiotic sensitivity testing should be recommended when treating urinary tract infections if antibiotics have been prescribed within the past 3 months. Moreover, the selection of MDR bacteria through antibiotic use should be considered as a potential risk associated with treatment.
Collapse
|
187
|
Low or high doses of cefquinome targeting low or high bacterial inocula cure Klebsiella pneumoniae lung infections but differentially impact the levels of antibiotic resistance in fecal flora. Antimicrob Agents Chemother 2014; 58:1744-8. [PMID: 24395228 DOI: 10.1128/aac.02135-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The combination of efficacious treatment against bacterial infections and mitigation of antibiotic resistance amplification in gut microbiota is a major challenge for antimicrobial therapy in food-producing animals. In rats, we evaluated the impact of cefquinome, a fourth-generation cephalosporin, on both Klebsiella pneumoniae lung infection and intestinal flora harboring CTX-M-producing Enterobacteriaceae. Germfree rats received a fecal flora specimen from specific-pathogen-free pigs, to which a CTX-M-producing Escherichia coli strain had been added. K. pneumoniae cells were inoculated in the lungs of these gnotobiotic rats by using either a low (10(5) CFU) or a high (10(9) CFU) inoculum. Without treatment, all animals infected with the low or high K. pneumoniae inoculum developed pneumonia and died before 120 h postchallenge. In the treated groups, the low-inoculum rats received a 4-day treatment of 5 mg/kg of body weight cefquinome beginning at 24 h postchallenge (prepatent phase of the disease), and the high-inoculum rats received a 4-day treatment of 50 mg/kg cefquinome beginning when the animals expressed clinical signs of infection (patent phase of the disease). The dose of 50 mg/kg targeting the high K. pneumoniae inoculum cured all the treated rats and resulted in a massive amplification of CTX-M-producing Enterobacteriaceae. A dose of 5 mg/kg targeting the low K. pneumoniae inoculum cured all the rats and averted an outbreak of clinical disease, all without any amplification of CTX-M-producing Enterobacteriaceae. These findings might have implications for the development of new antimicrobial treatment strategies that ensure a cure for bacterial infections while avoiding the amplification of resistance genes of human concern in the gut microbiota of food-producing animals.
Collapse
|
188
|
Zhang QG. Exposure to phages has little impact on the evolution of bacterial antibiotic resistance on drug concentration gradients. Evol Appl 2014; 7:394-402. [PMID: 24665341 PMCID: PMC3962299 DOI: 10.1111/eva.12136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/31/2013] [Indexed: 01/05/2023] Open
Abstract
The use of phages for treating bacterial pathogens has recently been advocated as an alternative to antibiotic therapy. Here, we test a hypothesis that bacteria treated with phages may show more limited evolution of antibiotic resistance as the fitness costs of resistance to phages may add to those of antibiotic resistance, further reducing the growth performance of antibiotic-resistant bacteria. We did this by studying the evolution of phage-exposed and phage-free Pseudomonas fluorescens cultures on concentration gradients of single drugs, including cefotaxime, chloramphenicol, and kanamycin. During drug treatment, the level of bacterial antibiotic resistance increased through time and was not affected by the phage treatment. Exposure to phages did not cause slower growth in antibiotic-resistant bacteria, although it did so in antibiotic-susceptible bacteria. We observed significant reversion of antibiotic resistance after drug use being terminated, and the rate of reversion was not affected by the phage treatment. The results suggest that the fitness costs caused by resistance to phages are unlikely to be an important constraint on the evolution of bacterial antibiotic resistance in heterogeneous drug environments. Further studies are needed for the interaction of fitness costs of antibiotic resistance with other factors.
Collapse
Affiliation(s)
- Quan-Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University Beijing, China
| |
Collapse
|
189
|
Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O. Antibiotic resistance-the need for global solutions. THE LANCET. INFECTIOUS DISEASES 2013; 13:1057-98. [PMID: 24252483 DOI: 10.1016/s1473-3099(13)70318-9] [Citation(s) in RCA: 2709] [Impact Index Per Article: 225.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The causes of antibiotic resistance are complex and include human behaviour at many levels of society; the consequences affect everybody in the world. Similarities with climate change are evident. Many efforts have been made to describe the many different facets of antibiotic resistance and the interventions needed to meet the challenge. However, coordinated action is largely absent, especially at the political level, both nationally and internationally. Antibiotics paved the way for unprecedented medical and societal developments, and are today indispensible in all health systems. Achievements in modern medicine, such as major surgery, organ transplantation, treatment of preterm babies, and cancer chemotherapy, which we today take for granted, would not be possible without access to effective treatment for bacterial infections. Within just a few years, we might be faced with dire setbacks, medically, socially, and economically, unless real and unprecedented global coordinated actions are immediately taken. Here, we describe the global situation of antibiotic resistance, its major causes and consequences, and identify key areas in which action is urgently needed.
Collapse
Affiliation(s)
- Ramanan Laxminarayan
- Center for Disease Dynamics, Economics and Policy, Washington, DC, USA; Princeton University, Princeton NJ, USA; Public Health Foundation of India, New Delhi, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Strategies to minimize antibiotic resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:4274-305. [PMID: 24036486 PMCID: PMC3799537 DOI: 10.3390/ijerph10094274] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 02/07/2023]
Abstract
Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs) and various data such as pharmacokinetic (PK) and pharmacodynamic (PD) properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST), clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care), the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students) regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing). The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics.
Collapse
|
191
|
|
192
|
Beaume M, Monina N, Schrenzel J, François P. Bacterial genome evolution within a clonal population: from in vitro investigations to in vivo observations. Future Microbiol 2013; 8:661-74. [PMID: 23642119 DOI: 10.2217/fmb.13.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacteria are faced with a diversity of environmental stresses that include high salt concentrations, heavy metals and pH fluctuations. Adaptation to resist such stresses is a complex phenomenon that involves global pathways and simultaneous acquisition of multiple unrelated properties. During the last 3 years, the development of new technologies in the field of molecular biology has led to numerous fundamental and quantitative in vitro and in vivo evolutionary studies that have improved our understanding of the principles underlying bacterial adaptations, and helped us develop strategies to cope with the health burden of bacterial virulence. In this review, the authors discuss the evolution of bacteria in the laboratory and in human patients.
Collapse
Affiliation(s)
- Marie Beaume
- Genomic Research Laboratory, Infectious Diseases Service, University of Geneva Hospitals, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva 14, Switzerland
| | | | | | | |
Collapse
|
193
|
|
194
|
Kacelnik O, Alberg T, Mjaland O, Eriksen H, Skjeldestad FE. Guidelines for antibiotic prophylaxis of cholecystectomies in Norwegian hospitals. Surg Infect (Larchmt) 2013; 14:188-91. [PMID: 23530809 DOI: 10.1089/sur.2012.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Antibiotic resistance is a global problem that affects the surgical patient population. Guidelines for antibiotic use have been shown to be effective both in terms of protecting individuals undergoing surgery and ensuring appropriate prescribing. More than 5,000 cholecystectomies are performed each year in Norway. However, there are no national guidelines for prophylactic antibiotics. The aim of this study was to chart the existence of local guidelines and whether they were updated and used. This was in order to inform practice and contribute to a rational approach to antibiotic prophylaxis for cholecystectomies. METHODS An online questionnaire was sent to consultant surgeons from every hospital conducting cholecystectomies in Norway. Questions were related to the existence, content, and evaluation of any guidelines concerning prophylactic antibiotic treatment. RESULTS Thirty-seven of 47 hospitals responded. Overall, 17 of 37 had written guidelines, although this was higher in university hospitals (71%) than in local ones (39%). Not all hospitals with guidelines had them for both laparoscopic and open surgical methods. Most hospitals gave prophylaxis to patients undergoing open cholecystectomies. Guidelines for laparoscopic patients advised no prophylaxis in six institutions, four hospitals recommended prophylaxis of all their patients and others restricted their use to specific subpopulations. The majority with guidelines had revised their information within the last five years. CONCLUSIONS The presence and contents of guidelines vary greatly among Norwegian hospitals. Although many used guidelines to highlight at-risk patients needing antibiotics, there were cases that advocated antibiotics to patients where the benefit is doubtful. We recommend the establishment of a national protocol to optimize antibiotic use, raise awareness of resistance, and promote the treatment of patients at high risk of developing a health care-associated infection.
Collapse
Affiliation(s)
- Oliver Kacelnik
- Division for Infectious Disease Epidemiology, Norwegian Institute of Public Health, Oslo, Norway.
| | | | | | | | | |
Collapse
|
195
|
Rational design of engineered cationic antimicrobial peptides consisting exclusively of arginine and tryptophan, and their activity against multidrug-resistant pathogens. Antimicrob Agents Chemother 2013; 57:2511-21. [PMID: 23507278 DOI: 10.1128/aac.02218-12] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) pathogens underscores the need for new antimicrobial agents to overcome the resistance mechanisms of these organisms. Cationic antimicrobial peptides (CAPs) provide a potential source of new antimicrobial therapeutics. We previously characterized a lytic base unit (LBU) series of engineered CAPs (eCAPs) of 12 to 48 residues demonstrating maximum antibacterial selectivity at 24 residues. Further, Trp substitution in LBU sequences increased activity against both P. aeruginosa and S. aureus under challenging conditions (e.g., saline, divalent cations, and serum). Based on these findings, we hypothesized that the optimal length and, therefore, the cost for maximum eCAP activity under physiologically relevant conditions could be significantly reduced using only Arg and Trp arranged to form idealized amphipathic helices. Hence, we developed a novel peptide series, composed only of Arg and Trp, in a sequence predicted and verified by circular dichroism to fold into optimized amphipathic helices. The most effective antimicrobial activity was achieved at 12 residues in length (WR12) against a panel of both Gram-negative and Gram-positive clinical isolates, including extensively drug-resistant strains, in saline and broth culture and at various pH values. The results demonstrate that the rational design of CAPs can lead to a significant reduction in the length and the number of amino acids used in peptide design to achieve optimal potency and selectivity against specific pathogens.
Collapse
|
196
|
Sengupta S, Chattopadhyay MK, Grossart HP. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol 2013; 4:47. [PMID: 23487476 PMCID: PMC3594987 DOI: 10.3389/fmicb.2013.00047] [Citation(s) in RCA: 309] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/20/2013] [Indexed: 12/14/2022] Open
Abstract
Antibiotics are chemotherapeutic agents, which have been a very powerful tool in the clinical management of bacterial diseases since the 1940s. However, benefits offered by these magic bullets have been substantially lost in subsequent days following the widespread emergence and dissemination of antibiotic-resistant strains. While it is obvious that excessive and imprudent use of antibiotics significantly contributes to the emergence of resistant strains, antibiotic resistance is also observed in natural bacteria of remote places unlikely to be impacted by human intervention. Both antibiotic biosynthetic genes and resistance-conferring genes have been known to evolve billions of years ago, long before clinical use of antibiotics. Hence it appears that antibiotics and antibiotics resistance determinants have some other roles in nature, which often elude our attention because of overemphasis on the therapeutic importance of antibiotics and the crisis imposed by the antibiotic resistance in pathogens. In the natural milieu, antibiotics are often found to be present in sub-inhibitory concentrations acting as signaling molecules supporting the process of quorum sensing and biofilm formation. They also play an important role in the production of virulence factors and influence host-parasite interactions (e.g., phagocytosis, adherence to the target cell, and so on). The evolutionary and ecological aspects of antibiotics and antibiotic resistance in the naturally occurring microbial community are little understood. Therefore, the actual role of antibiotics in nature warrants in-depth investigations. Studies on such an intriguing behavior of the microorganisms promise insight into the intricacies of the microbial physiology and are likely to provide some lead in controlling the emergence and subsequent dissemination of antibiotic resistance. This article highlights some of the recent findings on the role of antibiotics and the genes that confer resistance to antibiotics in nature.
Collapse
|
197
|
Fukumoto R, Cary LH, Gorbunov NV, Lombardini ED, Elliott TB, Kiang JG. Ciprofloxacin modulates cytokine/chemokine profile in serum, improves bone marrow repopulation, and limits apoptosis and autophagy in ileum after whole body ionizing irradiation combined with skin-wound trauma. PLoS One 2013; 8:e58389. [PMID: 23520506 PMCID: PMC3592826 DOI: 10.1371/journal.pone.0058389] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 02/04/2013] [Indexed: 01/21/2023] Open
Abstract
Radiation combined injury (CI) is a radiation injury (RI) combined with other types of injury, which generally leads to greater mortality than RI alone. A spectrum of specific, time-dependent pathophysiological changes is associated with CI. Of these changes, the massive release of pro-inflammatory cytokines, severe hematopoietic and gastrointestinal losses and bacterial sepsis are important treatment targets to improve survival. Ciprofloxacin (CIP) is known to have immunomodulatory effect besides the antimicrobial activity. The present study reports that CIP ameliorated pathophysiological changes unique to CI that later led to major mortality. B6D2F1/J mice received CI on day 0, by RI followed by wound trauma, and were treated with CIP (90 mg/kg p.o., q.d. within 2 h after CI through day 10). At day 10, CIP treatment not only significantly reduced pro-inflammatory cytokine and chemokine concentrations, including interleukin-6 (IL-6) and KC (i.e., IL-8 in human), but it also enhanced IL-3 production compared to vehicle-treated controls. Mice treated with CIP displayed a greater repopulation of bone marrow cells. CIP also limited CI-induced apoptosis and autophagy in ileal villi, systemic bacterial infection, and IgA production. CIP treatment led to LD0/10 compared to LD20/10 for vehicle-treated group after CI. Given the multiple beneficial activities of CIP shown in our experiments, CIP may prove to be a useful therapeutic drug for CI.
Collapse
Affiliation(s)
- Risaku Fukumoto
- Radiation Combined Injury Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Lynnette H. Cary
- Radiation Countermeasures Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Nikolai V. Gorbunov
- Radiation Combined Injury Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Eric D. Lombardini
- Veterinary Sciences Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Thomas B. Elliott
- Radiation Combined Injury Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Juliann G. Kiang
- Radiation Combined Injury Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Department of Radiation Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
198
|
Masadeh MM, Mhaidat NM, Alzoubi KH, Hussein EI, Al-Trad EI. In vitro determination of the antibiotic susceptibility of biofilm-forming Pseudomonas aeruginosa and Staphylococcus aureus: possible role of proteolytic activity and membrane lipopolysaccharide. Infect Drug Resist 2013; 6:27-32. [PMID: 23493936 PMCID: PMC3593709 DOI: 10.2147/idr.s41501] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We carried out a comprehensive overview of inhibitory effects of selected antibiotics on planktonic and biofilm cells of Staphylococcus aureus (ATCC 29213) and Pseudomonas aeruginosa (ATCC 27853) strains. The possible involvement of protease activity and the lipopolysaccharide (LPS) profile of P. aeruginosa were also analyzed. Biofilm cells of both strains were more resistant to antibiotics than their planktonic counterparts. Protease activity was increased in both strains in the biofilm forms. Challenge with sublethal doses of antibiotics also increased proteolytic activity of biofilm cells. Additionally, the LPS profile of P. aeruginosa showed pattern alterations of the biofilm that can contribute to biofilm resistance and survival. These observations provide evidence for the involvement of bacterial proteolytic activity and LPS profile in the resistance of biofilm bacteria to antibiotics compared to their planktonic counterparts.
Collapse
Affiliation(s)
- Majed M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | | | | | | | | |
Collapse
|
199
|
Comparative antimicrobial activities of aerosolized sodium hypochlorite, chlorine dioxide, and electrochemically activated solutions evaluated using a novel standardized assay. Antimicrob Agents Chemother 2013; 57:2216-25. [PMID: 23459480 DOI: 10.1128/aac.02589-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The main aim of this study was to develop a standardized experimental assay to enable differential antimicrobial comparisons of test biocidal aerosols. This study represents the first chlorine-matched comparative assessment of the antimicrobial activities of aerosolized sodium hypochlorite, chlorine dioxide, and electrochemically activated solution (ECAS) to determine their relative abilities to decontaminate various surface-associated health care-relevant microbial challenges. Standard microbiological challenges were developed by surface-associating typed Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis spores, or a clinical methicillin-resistant S. aureus (MRSA) strain on stainless steel, polypropylene, or fabric. All test coupons were subjected to 20-min biocidal aerosols of chlorine-matched (100 ppm) sodium hypochlorite, chlorine dioxide, or ECAS within a standard aerosolization chamber using a commercial humidifier under defined conditions. Biocidal treatment type and material surface had a significant effect on the number of microorganisms recovered from various material surfaces following treatment exposure. Under the conditions of the assay, the order of antimicrobial efficacy of biocidal aerosol treatment was as follows: ECAS > chlorine dioxide > sodium hypochlorite. For all biocides, greater antimicrobial reductions were seen when treating stainless steel and fabric than when treating plastic-associated microorganisms. The experimental fogging system and assay protocol designed within this study were shown capable of differentiating the comparative efficacies of multiple chlorine-matched biocidal aerosols against a spectrum of target organisms on a range of test surface materials and would be appropriate for testing other biocidal aerosol treatments or material surfaces.
Collapse
|
200
|
Abstract
Synthesis and large-scale manufacturing technologies are now available for the commercial production of even the most complex peptide anti-infectives. Married with the potential of this class of molecule as the next generation of effective, resistance-free and safe antimicrobials, and a much better understanding of their biology, pharmacology and pharmacodynamics, the first regulatory approvals and introduction into clinical practice of these promising drug candidates will likely be soon. This is a key juncture in the history/life cycle of peptide anti-infectives and, perhaps, their commercial and therapeutic potential is about to be realized. This review highlights the promise of these agents as the next generation of therapeutics and summarizes the challenges faced in, and lessons learned from, the past.
Collapse
|