151
|
Zhao L, La VD, Grenier D. Antibacterial, Antiadherence, Antiprotease, and Anti-Inflammatory Activities of Various Tea Extracts: Potential Benefits for Periodontal Diseases. J Med Food 2013; 16:428-36. [PMID: 23631500 DOI: 10.1089/jmf.2012.0207] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Lei Zhao
- Oral Ecology Research Group, Faculty of Dentistry, Laval University, Quebec City, Quebec, Canada
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Vu Dang La
- Oral Ecology Research Group, Faculty of Dentistry, Laval University, Quebec City, Quebec, Canada
| | - Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
152
|
Jarry CR, Duarte PM, Freitas FF, de Macedo CG, Clemente-Napimoga JT, Saba-Chujfi E, Passador-Santos F, de Araújo VC, Napimoga MH. Secreted osteoclastogenic factor of activated T cells (SOFAT), a novel osteoclast activator, in chronic periodontitis. Hum Immunol 2013; 74:861-6. [PMID: 23619471 DOI: 10.1016/j.humimm.2013.04.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/06/2013] [Accepted: 04/12/2013] [Indexed: 11/30/2022]
Abstract
A novel activated human T cell-secreted cytokine, referred as secreted osteoclastogenic factor of activated T cells (SOFAT), that induce osteoclastogenesis in a RANKL-independent manner was recently described. This study evaluated the role of SOFAT in periodontal tissues and periodontitis. Gingival biopsies were harvested from systemically healthy non-periodontitis (n=15) and chronic periodontitis patients (n=15). The mRNA and protein levels of SOFAT were measured by qPCR and by enzyme-linked immunosorbent assay, respectively. Moreover, RAW 264.7 cells were cultured with SOFAT or Receptor activator of nuclear factor-kB ligand (RANKL) and stained for tartrate-resistant acid phosphatase (TRAP). Also, mice received a palatal injection between the first and second upper molar of SOFAT (100 ng/ml) or saline solution (0.9%). The upper jaw was removed, histologically processed and stained with hematoxilin and eosin to observe the presence of osteoclast-like cells. The mRNA and protein levels of SOFAT were significantly higher in the gingival tissue of the periodontitis group when compared to non-periodontitis one (p<0.05). In addition, SOFAT potently induced TRAP-positive multinucleated cell formation by RAW 264.7 cells as well as induced the formation of osteoclast-like cells in the periodontal ligament in mice. The present study demonstrated that SOFAT may play an important role in periodontitis.
Collapse
Affiliation(s)
- Christian Rado Jarry
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas/SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Feghali K, Grenier D. Priming effect of fibronectin fragments on the macrophage inflammatory response: potential contribution to periodontitis. Inflammation 2013; 35:1696-705. [PMID: 22696147 DOI: 10.1007/s10753-012-9487-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Fibronectin, an extracellular matrix component, is a substrate for multiple host and bacterial proteinases found in inflamed periodontal sites. In the present study, we investigated the potential contribution of various fibronectin fragments to the inflammatory process of periodontitis. Our results showed that the smaller fragments of fibronectin (30 and 45 kDa) were the most potent inflammatory inducers as they dose-dependently increased the secretion of TNF-α, IL-1β, and IL-8 by human macrophages. The 120-kDa fragment did not induce the secretion of all the cytokines tested, while intact fibronectin only increased IL-8 secretion and to a lesser extent TNF-α secretion. Cytokine secretion was associated with increased amounts of phosphorylated ERK1/2, JNK2, and p38α MAPK in treated macrophages. The combination of fibronectin or fibronectin fragments with Porphyromonas gingivalis lipopolysaccharide had an additive effect, but no synergism appeared to occur. It was also demonstrated that gingival crevicular fluid samples recovered from patients with moderate to severe periodontitis contained more fibronectin fragments than samples obtained from healthy subjects. Finally, both Arg- and Lys-gingipains purified from P. gingivalis were found to modulate fibronectin fragmentation. In conclusion, we showed that specific fibronectin fragments that may be present in diseased periodontal sites may contribute to maintaining and amplifying the inflammatory state and that P. gingivalis gingipains may be involved in the production of these fragments.
Collapse
Affiliation(s)
- Karine Feghali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, 2420 Rue de la Terrasse, Quebec City, QC, Canada, G1V 0A6
| | | |
Collapse
|
154
|
Zhou T, Chen D, Li Q, Sun X, Song Y, Wang C. Curcumin inhibits inflammatory response and bone loss during experimental periodontitis in rats. Acta Odontol Scand 2013; 71:349-56. [PMID: 22554269 DOI: 10.3109/00016357.2012.682092] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Curcumin, an active ingredient of turmeric, is proved to be a potential candidate of controlling inflammation and bone resorption, but few reports are on the periodontitis. The purpose of this study was to evaluate whether the intra-gastric administration of curcumin could inhibit the inflammation and alveolar bone resorption in rats following ligature-induced experimental periodontitis. MATERIALS AND METHOD Male Wistar rats were randomly divided into three groups: no ligature placement and administration of vehicle, ligature placement and administration of vehicle, ligature placement and administration of curcumin. After the animals were sacrificed, their mandibles were collected for morphological, histological and immunohistochemical analysis; their gingival tissues were collected for cytokine measurements. RESULTS Bone resorption was significantly higher in the experimental periodontitis animals treated with vehicle compared with the curcumin-treated group or the control group. Furthermore, receptor activator of nuclear factor-κB ligand (RANKL), receptor activator of nuclear factor-κB (RANK), osteoprotegerin (OPG), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) expression levels were higher in the experimental periodontitis animals treated with vehicle compared with the curcumin treated group or the control group. CONCLUSIONS. Curcumin may decrease alveolar bone loss in the experimental periodontitis rats via suppressing the expression of RANKL/RANK/OPG and its anti-inflammatory properties.
Collapse
Affiliation(s)
- Te Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | | | | | | | | | | |
Collapse
|
155
|
WU LIZHENG, DUAN DUOMO, LIU YINGFENG, GE XIN, ZHOU ZHIFEI, WANG XIAOJING. Nicotine favors osteoclastogenesis in human periodontal ligament cells co-cultured with CD4+ T cells by upregulating IL-1β. Int J Mol Med 2013; 31:938-42. [DOI: 10.3892/ijmm.2013.1259] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/03/2013] [Indexed: 11/06/2022] Open
|
156
|
Velusamy SK, Ganeshnarayan K, Markowitz K, Schreiner H, Furgang D, Fine DH, Velliyagounder K. Lactoferrin knockout mice demonstrates greater susceptibility to Aggregatibacter actinomycetemcomitans-induced periodontal disease. J Periodontol 2013; 84:1690-701. [PMID: 23327622 DOI: 10.1902/jop.2013.120587] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Among the innate defense mechanisms in the oral cavity, lactoferrin (LF) is a vital antimicrobial that can modify the host response against periodontopathogens. Aggregatibacter actinomycetemcomitans is the main periodontopathogen of localized aggressive periodontitis. The aim of this study is to evaluate the role of LF during A. actinomycetemcomitans-induced periodontitis. METHODS Differences in the expression levels of cytokines, chemokines, chemokine receptors, and bone loss markers between wild-type (WT) and LF knockout mice (LFKO(-/-)) were evaluated by real time-PCR. Serum IgG and LF levels were quantified by ELISA. Alveolar bone loss among the groups was estimated by measuring the distance from cemento-enamel junction (CEJ) to the alveolar bone crest (ABC) at 20 molar sites. RESULTS Oral infection with A. actinomycetemcomitans increased LF levels in periodontal tissue (P = 0.01) and saliva (P = 0.0004) of wild-type infected (WTI) mice compared to wild-type control mice. Pro-inflammatory cytokines such as interferon-γ, tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and IL-12 were increased in the infected LF knockout (LFKO(-/-)I) mice compared to the WTI mice, whereas the anti-inflammatory cytokines IL-4 and IL-10 were decreased. Chemokines and chemokine receptors showed different expression patterns between WTI and LFKO(-/-)I mice. The LFKO(-/-)I mice developed increased bone loss (P = 0.002), in conjunction with increased expression of receptor activator of nuclear factor-κB ligand and decrease in osteoprotegerin, compared to WTI mice. CONCLUSIONS These results demonstrate that the infected LFKO(-/-) mice were more susceptible to A. actinomycetemcomitans-induced alveolar bone loss, with different patterns of immune responses compared to those of WTI mice.
Collapse
Affiliation(s)
- S K Velusamy
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | | | | | | | | | | | | |
Collapse
|
157
|
Abstract
Periodontitis is a highly prevalent, biofilm-mediated chronic inflammatory disease that results in the loss of the tooth-supporting tissues. It features two major clinical entities: chronic periodontitis, which is more common, and aggressive periodontitis, which usually has an early onset and a rapid progression. Natural killer (NK) cells are a distinct subgroup of lymphocytes that play a major role in the ability of the innate immune system to steer immune responses. NK cells are abundant in periodontitis lesions, and NK cell activation has been causally linked to periodontal tissue destruction. However, the exact mechanisms of their activation and their role in the pathophysiology of periodontitis are elusive. Here, we show that the predominant NK cell-activating molecule in periodontitis is CD2-like receptor activating cytotoxic cells (CRACC). We show that CRACC induction was significantly more pronounced in aggressive than chronic periodontitis and correlated positively with periodontal disease severity, subgingival levels of specific periodontal pathogens, and NK cell activation in vivo. We delineate how Aggregatibacter actinomycetemcomitans, an oral pathogen that is causally associated with aggressive periodontitis, indirectly induces CRACC on NK cells via activation of dendritic cells and subsequent interleukin 12 (IL-12) signaling. In contrast, we demonstrate that fimbriae from Porphyromonas gingivalis, a principal pathogen in chronic periodontitis, actively attenuate CRACC induction on NK cells. Our data suggest an involvement of CRACC-mediated NK cell activation in periodontal tissue destruction and point to a plausible distinction in the pathobiology of aggressive and chronic periodontitis that may help explain the accelerated tissue destruction in aggressive periodontitis.
Collapse
|
158
|
Luo W, Wang CY, Jin L. Baicalin downregulates Porphyromonas gingivalis lipopolysaccharide-upregulated IL-6 and IL-8 expression in human oral keratinocytes by negative regulation of TLR signaling. PLoS One 2012; 7:e51008. [PMID: 23239998 PMCID: PMC3519831 DOI: 10.1371/journal.pone.0051008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
Periodontal (gum) disease is one of the main global oral health burdens and severe periodontal disease (periodontitis) is a leading cause of tooth loss in adults globally. It also increases the risk of cardiovascular disease and diabetes mellitus. Porphyromonas gingivalis lipopolysaccharide (LPS) is a key virulent attribute that significantly contributes to periodontal pathogenesis. Baicalin is a flavonoid from Scutellaria radix, an herb commonly used in traditional Chinese medicine for treating inflammatory diseases. The present study examined the modulatory effect of baicalin on P. gingivalis LPS-induced expression of IL-6 and IL-8 in human oral keratinocytes (HOKs). Cells were pre-treated with baicalin (0–80 µM) for 24 h, and subsequently treated with P. gingivalis LPS at 10 µg/ml with or without baicalin for 3 h. IL-6 and IL-8 transcripts and proteins were detected by real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The expression of nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) proteins was analyzed by western blot. A panel of genes related to toll-like receptor (TLR) signaling was examined by PCR array. We found that baicalin significantly downregulated P. gingivalis LPS-stimulated expression of IL-6 and IL-8, and inhibited P. gingivalis LPS-activated NF-κB, p38 MAPK and JNK. Furthermore, baicalin markedly downregulated P. gingivalis LPS-induced expression of genes associated with TLR signaling. In conclusion, the present study shows that baicalin may significantly downregulate P. gingivalis LPS-upregulated expression of IL-6 and IL-8 in HOKs via negative regulation of TLR signaling.
Collapse
Affiliation(s)
- Wei Luo
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Cun-Yu Wang
- University of California Los Angeles, School of Dentistry, Los Angeles, California, United States of America
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
159
|
Lerner UH. Osteoblasts, Osteoclasts, and Osteocytes: Unveiling Their Intimate-Associated Responses to Applied Orthodontic Forces. Semin Orthod 2012. [DOI: 10.1053/j.sodo.2012.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
160
|
Peptidoglycan of Actinomyces naeslundii induces inflammatory cytokine production and stimulates osteoclastogenesis in alveolar bone resorption. Arch Oral Biol 2012; 57:1522-8. [DOI: 10.1016/j.archoralbio.2012.07.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/01/2012] [Accepted: 07/25/2012] [Indexed: 11/19/2022]
|
161
|
Bisson C, Massin F, Lefevre PA, Thilly N, Miller N, Gibot S. Increased gingival crevicular fluid levels of soluble triggering receptor expressed on myeloid cells (sTREM) -1 in severe periodontitis. J Clin Periodontol 2012; 39:1141-8. [PMID: 23067264 DOI: 10.1111/jcpe.12008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2012] [Indexed: 01/22/2023]
Abstract
AIM This study was designed to evaluate the presence of a new regulator of innate immunity in periodontitis: the soluble form of triggering receptor on myeloid cells-1 (sTREM-1) in gingival crevicular fluid (GCF). MATERIAL AND METHODS GCF was collected at four sites, three pathological and one healthy from 17 patients with periodontitis, and at one healthy site from 23 control patients. An enzyme-linked immunosorbent assay (ELISA) kit was used to quantify sTREM-1 levels in collected crevicular fluid. Recorded clinical parameters were probing pocket depth (PPD), bleeding upon probing, tooth mobility, plaque index (PlI), and gingival index (GI). RESULTS The mean sTREM-1 level in collected fluid was significantly higher in pathological sites than in healthy sites from either periodontal or control patients: 353.9 pg/ml, 50.2 pg/ml and 25.4 pg/ml respectively. Soluble TREM-1 concentration was significantly correlated with PPD. The sTREM-1 levels increased with the augmentation of the PlI and GI scores and levelled off at score 2 for both indexes. In multivariate analysis, periodontal pocket depth and smoking status were statistically associated with highest sTREM-1 concentrations. CONCLUSION sTREM-1 was detected in crevicular fluid and its concentration was higher in pathological sites. It could be a marker of periodontal tissue destruction.
Collapse
Affiliation(s)
- Catherine Bisson
- Département de parodontologie, Université Henri Poincaré, Nancy, France.
| | | | | | | | | | | |
Collapse
|
162
|
Papantonopoulos G, Takahashi K, Bountis T, Loos BG. Aggressive periodontitis defined by recursive partitioning analysis of immunologic factors. J Periodontol 2012; 84:974-84. [PMID: 23003914 DOI: 10.1902/jop.2012.120444] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The present study aims to extend recent findings of a non-linear model of the progression of periodontitis supporting the notion that aggressive periodontitis (AgP) and chronic periodontitis (CP) are distinct clinical entities. This approach is based on the implementation of recursive partitioning analysis (RPA) to evaluate a series of immunologic parameters acting as predictors of AgP and CP. METHODS RPA was applied to three population samples, that were retrieved from previous studies, using 17 immunologic parameters. The mean values of the parameters in control subjects were used as the cut-off points. Leave-one-out cross-validation (LOOCV) prediction errors were estimated in the proposed models, as well as the Kullback-Leibler divergence (DKL) of the distribution of positive results in AgP compared to CP and negative results in CP compared to AgP. RESULTS Seven classification trees were derived showing that the relationship of interleukin (IL)-4, IL-1, IL-2 has the highest potential to rule out or rule in AgP. On the other hand, immunoglobulin (Ig)A, IgM used to rule out AgP and cluster of differentiation 4 (CD4)/CD8, CD20 used to rule in AgP showed the least LOOCV cost. Penalizing DKL with LOOCV cost promotes the IL-4, IL-1, IL-2 model for ruling out AgP, whereas the single CD4/CD8 ratio with a lowered discrimination cut-off point was used to rule in AgP. CONCLUSIONS Although a test is unlikely to have both high sensitivity and high specificity, the use of immunologic parameters in the right model can efficiently complement a clinical examination for ruling out or ruling in AgP.
Collapse
Affiliation(s)
- G Papantonopoulos
- Department of Conservative Dentistry, School of Dentistry, Ohu University, Fukushima, Japan
| | | | | | | |
Collapse
|
163
|
Occlusal adjustment associated with periodontal therapy--a systematic review. J Dent 2012; 40:1025-35. [PMID: 22982113 DOI: 10.1016/j.jdent.2012.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Occlusal adjustment as part of periodontal therapy has been controversial for years, mostly because the literature does not provide enough evidence regarding the influence of trauma from occlusion (TfO) on periodontitis. The need for occlusal adjustment in periodontal therapy is considered uncertain and requires investigation. The aim of this systematic review was to identify and analyse those studies that investigated the effects of occlusal adjustment, associated with periodontal therapy, on periodontal parameters. DATA A protocol was developed that included all aspects of a systematic review: search strategy, selection criteria, selection methods, data collection and data extraction. SOURCES A literature search was conducted using MEDLINE via PubMed, the Cochrane Central Register of Controlled Trials, and EMBASE. STUDY SELECTION Three reviewers screened the titles and abstracts of articles according to the established criteria. Every article that indicated a possible match, or could not be excluded based on the information given in the title or abstract, was considered and evaluated. On final selection, four articles were included. CONCLUSIONS Although the selected studies suggest an association between occlusal adjustment and an improvement in periodontal parameters, their methodological issues (explored in this review) suggest the need for new trials of a higher quality. There is insufficient evidence at present to presume that occlusal adjustment is necessary to reduce the progression of periodontal disease. CLINICAL SIGNIFICANCE Although it is still not possible to determine the role of occlusal adjustment in periodontal treatment, adverse effects have not been related to occlusal adjustment. This means that the decision made by clinicians whether or not to use occlusal adjustment in conjunction with periodontal therapy hinges upon clinical evaluation, patient comfort, and tooth function.
Collapse
|
164
|
Houshmand B, Rafiei A, Hajilooi M. Influence of cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphisms in periodontitis. Arch Oral Biol 2012; 57:1218-24. [DOI: 10.1016/j.archoralbio.2012.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/04/2012] [Accepted: 03/11/2012] [Indexed: 10/28/2022]
|
165
|
Reddi D, Belibasakis GN. Transcriptional profiling of bone marrow stromal cells in response to Porphyromonas gingivalis secreted products. PLoS One 2012; 7:e43899. [PMID: 22937121 PMCID: PMC3427182 DOI: 10.1371/journal.pone.0043899] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 07/30/2012] [Indexed: 12/18/2022] Open
Abstract
Periodontitis is an infectious inflammatory disease that destroys the tooth-supporting (periodontal) tissues. Porphyromonas gingivalis is an oral pathogen highly implicated in the pathogenesis of this disease. It can exert its effects to a number of cells, including osteogenic bone marrow stromal cells which are important for homeostastic capacity of the tissues. By employing gene microarray technology, this study aimed to describe the overall transcriptional events (>2-fold regulation) elicited by P. gingivalis secreted products in bone marrow stromal cells, and to dissect further the categories of genes involved in bone metabolism, inflammatory and immune responses. After 6 h of challenge with P. gingivalis, 271 genes were up-regulated whereas 209 genes were down-regulated, whereas after 24 h, these numbers were 259 and 109, respectively. The early (6 h) response was characterised by regulation of genes associated with inhibition of cell cycle, induction of apoptosis and loss of structural integrity, whereas the late (24 h) response was characterised by induction of chemokines, cytokines and their associated intracellular pathways (such as NF-κB), mediators of connective tissue and bone destruction, and suppression of regulators of osteogenic differentiation. The most strongly up-regulated genes were lipocalin 2 (LCN2) and serum amyloid A3 (SAA3), both encoding for proteins of the acute phase inflammatory response. Collectively, these transcriptional changes elicited by P. gingivalis denote that the fundamental cellular functions are hindered, and that the cells acquire a phenotype commensurate with propagated innate immune response and inflammatory-mediated tissue destruction. In conclusion, the global transcriptional profile of bone marrow stromal cells in response to P. gingivalis is marked by deregulated homeostatic functions, with implications in the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Durga Reddi
- Centre for Adult Oral Health, Barts and the London Institute of Dentistry, Queen Mary University of London, London, United Kingdom
| | - Georgios N. Belibasakis
- Centre for Adult Oral Health, Barts and the London Institute of Dentistry, Queen Mary University of London, London, United Kingdom
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
166
|
Belibasakis GN, Rechenberg DK, Zehnder M. The receptor activator of
NF
‐κ
B
ligand‐osteoprotegerin system in pulpal and periapical disease. Int Endod J 2012; 46:99-111. [DOI: 10.1111/j.1365-2591.2012.02105.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/03/2012] [Indexed: 01/15/2023]
Affiliation(s)
- G. N. Belibasakis
- Institute of Oral Biology University of Zürich Center of Dental Medicine ZürichSwitzerland
| | - D. K. Rechenberg
- Department of Preventive Dentistry, Periodontology, and Cariology University of Zürich Center of Dental Medicine Zürich Switzerland
| | - M. Zehnder
- Department of Preventive Dentistry, Periodontology, and Cariology University of Zürich Center of Dental Medicine Zürich Switzerland
| |
Collapse
|
167
|
Yee M, Kim A, Alpagot T, Düzgüneş N, Konopka K. Porphyromonas gingivalis stimulates IL-18 secretion in human monocytic THP-1 cells. Microbes Infect 2012; 14:684-9. [DOI: 10.1016/j.micinf.2012.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 02/29/2012] [Accepted: 03/02/2012] [Indexed: 01/01/2023]
|
168
|
Desjardins J, Tanabe S, Bergeron C, Gafner S, Grenier D. Anthocyanin-rich black currant extract and cyanidin-3-O-glucoside have cytoprotective and anti-inflammatory properties. J Med Food 2012; 15:1045-50. [PMID: 22738124 DOI: 10.1089/jmf.2011.0316] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Periodontal diseases are a group of multifactorial polymicrobial infections characterized by a progressive inflammatory destruction of the periodontium. Flavonoids, including anthocyanins, are receiving increasing attention because of their promising human health benefits. The aim of our study was to investigate the effect of anthocyanins, pure or as part of a standardized black currant extract, on nicotine-induced cytotoxicity and lipopolysaccharide (LPS)-induced inflammatory responses in human cells. Using a colorimetric assay that measures cell viability, it was found that a pretreatment with an anthocyanin-rich black currant extract or cyanidin-3-O-glucoside neutralized the cytotoxic effect of nicotine on epithelial cells and fibroblasts in a dose-dependent manner. The black currant extract and cyanidin-3-O-glucoside also inhibited the LPS-induced secretion of interleukin-6 by human macrophages. The results of the present study suggest that black currant extract and cyanidin-3-O-glucoside may be promising candidates for the development of novel therapies to prevent and/or to treat smoking-related periodontal diseases.
Collapse
Affiliation(s)
- Jacynthe Desjardins
- Oral Ecology Research Group, Faculty of Dentistry, Laval University, Quebec City, Quebec, Canada
| | | | | | | | | |
Collapse
|
169
|
Yoshida K, Okamura H, Hoshino Y, Shono M, Yoshioka M, Hinode D, Yoshida H. Interaction between PKR and PACT mediated by LPS-inducible NF-κB in human gingival cells. J Cell Biochem 2012; 113:165-73. [PMID: 21882225 DOI: 10.1002/jcb.23340] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The double-stranded RNA-dependent protein kinase (PKR) is a serine/threonine kinase expressed constitutively in mammalian cells. PKR is activated upon virus infection by double-stranded RNA (dsRNA), and plays a critical role in host antiviral defense mechanisms. PKR is also known to regulate various biological responses, including cell differentiation and apoptosis. However, whether PKR is involved in the progress of periodontitis is not clear. The present study explained the phosphorylation of PKR by LPS in the human gingival cell line, Sa3. Expression of genes encoding LPS receptors was detected in Sa3 cells and treatment of cells with 1 µg/mL LPS for 6 h caused PKR phosphorylation. LPS elevated the expression of the protein activator of PKR (PACT) mRNA and protein, followed by the enhanced association between PACT and PKR within 3 h. In addition, LPS treatment induced the translocation of NF-κB to the nucleus after 30 min, and inhibition of NF-κB decreased the PACT-PKR interaction induced by LPS. The level of pro-inflammatory cytokine mRNA, including interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα), appeared within 45 min and reached at the maximal levels by 90 min after the addition of LPS. This induction of pro-inflammatory cytokines was not affected by RNAi-mediated silencing of PKR and a pharmacological inhibitor of PKR, whereas the inhibition of NF-κB decreased it. These results indicated that LPS induces PKR phosphorylation and the PACT-PKR association in Sa3 cells. Our results also suggest that NF-κB is involved in the PACT-PKR interaction and the production of pro-inflammatory cytokines in periodontitis.
Collapse
Affiliation(s)
- Kaya Yoshida
- Departments of Fundamental Oral Health Science, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan.
| | | | | | | | | | | | | |
Collapse
|
170
|
Hasturk H, Kantarci A, Van Dyke TE. Oral inflammatory diseases and systemic inflammation: role of the macrophage. Front Immunol 2012; 3:118. [PMID: 22623923 PMCID: PMC3353263 DOI: 10.3389/fimmu.2012.00118] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 04/24/2012] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a complex reaction to injurious agents and includes vascular responses, migration, and activation of leukocytes. Inflammation starts with an acute reaction, which evolves into a chronic phase if allowed to persist unresolved. Acute inflammation is a rapid process characterized by fluid exudation and emigration of leukocytes, primarily neutrophils, whereas chronic inflammation extends over a longer time and is associated with lymphocyte and macrophage infiltration, blood vessel proliferation, and fibrosis. Inflammation is terminated when the invader is eliminated, and the secreted mediators are removed; however, many factors modify the course and morphologic appearance as well as the termination pattern and duration of inflammation. Chronic inflammatory illnesses such as diabetes, arthritis, and heart disease are now seen as problems that might have an impact on the periodontium. Reciprocal effects of periodontal diseases are potential factors modifying severity in the progression of systemic inflammatory diseases. Macrophages are key cells for the inflammatory processes as regulators directing inflammation to chronic pathological changes or resolution with no damage or scar tissue formation. As such, macrophages are involved in a remarkably diverse array of homeostatic processes of vital importance to the host. In addition to their critical role in immunity, macrophages are also widely recognized as ubiquitous mediators of cellular turnover and maintenance of extracellular matrix homeostasis. In this review, our objective is to identify macrophage-mediated events central to the inflammatory basis of chronic diseases, with an emphasis on how control of macrophage function can be used to prevent or treat harmful outcomes linked to uncontrolled inflammation.
Collapse
Affiliation(s)
- Hatice Hasturk
- Department of Periodontology, The Forsyth InstituteCambridge, MA, USA
| | - Alpdogan Kantarci
- Department of Periodontology, The Forsyth InstituteCambridge, MA, USA
| | | |
Collapse
|
171
|
Yoshinaga Y, Ukai T, Kaneko T, Nakatsu S, Shiraishi C, Kuramoto A, Oshino K, Ichimura I, Hara Y. Topical application of lipopolysaccharide into gingival sulcus promotes periodontal destruction in rats immunized with lipopolysaccharide. J Periodontal Res 2012; 47:674-80. [DOI: 10.1111/j.1600-0765.2012.01486.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
172
|
Belstrøm D, Damgaard C, Nielsen CH, Holmstrup P. Does a causal relation between cardiovascular disease and periodontitis exist? Microbes Infect 2012; 14:411-8. [DOI: 10.1016/j.micinf.2011.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/01/2011] [Accepted: 12/04/2011] [Indexed: 10/14/2022]
|
173
|
Lima HG, Pinke KH, Gardizani TP, Souza-Júnior DA, Carlos D, Avila-Campos MJ, Lara VS. Mast cells act as phagocytes against the periodontopathogen Aggregatibacter actinomycetemcomitans. J Periodontol 2012; 84:265-72. [PMID: 22524328 DOI: 10.1902/jop.2012.120087] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Evidence to date shows that mast cells play a critical role in immune defenses against infectious agents, but there have been no reports about involvement of these cells in eliminating periodontopathogens. In this study, the phagocytic ability of mast cells against Aggregatibacter actinomycetemcomitans compared with macrophages is evaluated. METHODS In vitro phagocytic assays were conducted using murine mast cells and macrophages, incubated with A. actinomycetemcomitans, either opsonized or not, with different bacterial load ratios. After 1 hour, cells were stained with acridine orange and assessed by confocal laser-scanning electron microscopy. RESULTS Phagocytic ability of murine mast cells against A. actinomycetemcomitans was confirmed. In addition, the percentage of mast cells with internalized bacteria was higher in the absence of opsonization than in the presence of opsonization. Both cell types showed significant phagocytic activity against A. actinomycetemcomitans. However, the percentage of mast cells with non-opsonized bacteria was higher than that of macrophages with opsonized bacteria in one of the ratios (1:10). CONCLUSIONS This is the first report about the participation of murine mast cells as phagocytes against A. actinomycetemcomitans, mainly in the absence of opsonization with human serum. Our results may indicate that mast cells act as professional phagocytes in the pathogenesis of biofilm-associated periodontal disease.
Collapse
Affiliation(s)
- Heliton G Lima
- Department of Stomatology, Bauru School of Dentistry, São Paulo University, Bauru, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
174
|
Fiorini T, Vianna P, Weidlich P, Musskopf ML, Moreira CHC, Chies JAB, Rösing CK, Oppermann RV, Susin C. Relationship between cytokine levels in serum and gingival crevicular fluid (GCF) in pregnant women. Cytokine 2012; 58:34-9. [DOI: 10.1016/j.cyto.2011.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 11/24/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
|
175
|
Lee SH, Baek DH. Antibacterial and neutralizing effect of human β-defensins on Enterococcus faecalis and Enterococcus faecalis lipoteichoic acid. J Endod 2012; 38:351-6. [PMID: 22341073 DOI: 10.1016/j.joen.2011.12.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/12/2011] [Accepted: 12/19/2011] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Enterococcus faecalis is frequently found in the root canal of teeth, is a major microorganism of endodontic therapy failure, and is associated with chronic apical periodontitis. Human β-defensins (HBDs) are known to play critical roles in defending the host against infectious microbes and producing dental pulp in healthy and patients. The purpose of the present study was to investigate the bactericidal and neutralizing effects of HBDs on E. faecalis and E. faecalis lipoteichoic acid (Ef LTA) as a major virulence factor of E. faecalis. METHODS HBD-1, -2, -3, and -4 were synthesized and investigated the susceptibility against E. faecalis. Also, the neutralizing effects of HBDs on cytokine and intercellular adhesion molecule 1 (ICAM-1) expression by activity of E. faecalis and Ef LTA were analyzed using enzyme-linked immunosorbent assay and flow cytometry. RESULTS HBD-1 and -2 were weakly susceptible, and HBD-3 and HBD-4 were strongly susceptible to E. faecalis. All of the HBDs exhibited neutralizing effects on the activity of Ef LTA, and HBD-3 strongly neutralized the activity of E. faecalis in tumor necrosis factor-α, interleukin-8, and ICAM-1 expression. The neutralizing effects of HBDs were to inhibit E. faecalis or Ef LTA binding to the host cells. CONCLUSIONS These results suggest that the induction of HBDs might have great potential as endodontic therapeutic agents.
Collapse
Affiliation(s)
- Sung-Hoon Lee
- Department of Oral Microbiology and Immunology, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | | |
Collapse
|
176
|
Mullangi PK, Shahani L, Koirala J. Role of endogenous biological response modifiers in pathogenesis of infectious diseases. Infect Dis Clin North Am 2012; 25:733-54. [PMID: 22054753 DOI: 10.1016/j.idc.2011.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biologic response modifiers (BRMs) interact with the host immune system and modify the immune response. BRMs can be therapeutically used to restore, augment, or dampen the host immune response. Although they have been used for decades, their clinical applications have been expanded in the past decade for diagnosis and treatment of many diseases including cancers, immunologic disorders, and infections. This article discusses endogenous biological response modifiers (ie, naturally occurring immunomodulators as a part of the host immune system), which play vital roles as regulators of both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Praveen K Mullangi
- Division of Infectious Diseases, Springfield Clinic, Springfield, IL 62701, USA
| | | | | |
Collapse
|
177
|
Peyyala R, Kirakodu SS, Novak KF, Ebersole JL. Oral microbial biofilm stimulation of epithelial cell responses. Cytokine 2012; 58:65-72. [PMID: 22266273 DOI: 10.1016/j.cyto.2011.12.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/09/2011] [Accepted: 12/22/2011] [Indexed: 01/23/2023]
Abstract
Oral bacterial biofilms trigger chronic inflammatory responses in the host that can result in the tissue destructive events of periodontitis. However, the characteristics of the capacity of specific host cell types to respond to these biofilms remain ill-defined. This report describes the use of a novel model of bacterial biofilms to stimulate oral epithelial cells and profile select cytokines and chemokines that contribute to the local inflammatory environment in the periodontium. Monoinfection biofilms were developed with Streptococcus sanguinis, Streptococcus oralis, Streptococcus gordonii, Actinomyces naeslundii, Fusobacterium nucleatum, and Porphyromonas gingivalis on rigid gas-permeable contact lenses. Biofilms, as well as planktonic cultures of these same bacterial species, were incubated under anaerobic conditions with a human oral epithelial cell line, OKF4, for up to 24h. Gro-1α, IL1α, IL-6, IL-8, TGFα, Fractalkine, MIP-1α, and IP-10 were shown to be produced in response to a range of the planktonic or biofilm forms of these species. P. gingivalis biofilms significantly inhibited the production of all of these cytokines and chemokines, except MIP-1α. Generally, the biofilms of all species inhibited Gro-1α, TGFα, and Fractalkine production, while F. nucleatum biofilms stimulated significant increases in IL-1α, IL-6, IL-8, and IP-10. A. naeslundii biofilms induced elevated levels of IL-6, IL-8 and IP-10. The oral streptococcal species in biofilms or planktonic forms were poor stimulants for any of these mediators from the epithelial cells. The results of these studies demonstrate that oral bacteria in biofilms elicit a substantially different profile of responses compared to planktonic bacteria of the same species. Moreover, certain oral species are highly stimulatory when in biofilms and interact with host cell receptors to trigger pathways of responses that appear quite divergent from individual bacteria.
Collapse
Affiliation(s)
- Rebecca Peyyala
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | |
Collapse
|
178
|
Becerik S, Öztürk VÖ, Atmaca H, Atilla G, Emingil G. Gingival crevicular fluid and plasma acute-phase cytokine levels in different periodontal diseases. J Periodontol 2012; 83:1304-13. [PMID: 22248224 DOI: 10.1902/jop.2012.110616] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The aim of the present study is to investigate gingival crevicular fluid (GCF) and plasma acute-phase cytokines, interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-11 (IL-11), oncostatin M (OSM), and leukemia inhibitory factor (LIF) levels in patients with different periodontal diseases. METHODS Eighty individuals were included in this study; 20 with chronic periodontitis (CP), 20 with generalized aggressive periodontitis (GAgP), 20 with gingivitis, and 20 classified as healthy (H). Probing depth, clinical attachment level, plaque index, and papilla bleeding index were recorded. Plasma and GCF IL-1β, IL-6, IL-11, OSM, and LIF levels were analyzed by enzyme-linked immunosorbent assay. RESULTS CP and GAgP groups had significantly higher GCF IL-1β, IL-6, and IL-11 levels when compared with the H group (P <0.05). Conversely, GCF LIF levels of the CP and GAgP groups were lower than those of the H group (P <0.05). GCF OSM levels did not differ significantly among study groups. Plasma levels of all the cytokines studied were not significantly different among the study groups. CONCLUSIONS Based on the present data, elevated IL-1β, IL-6, and IL-11 GCF levels, but not plasma levels, are suggested as reliable inflammatory biomarkers in periodontal diseases. Decreased LIF levels in diseased groups might reflect the possible beneficial effects of LIF in the modulation of inflammatory response in gingiva.
Collapse
Affiliation(s)
- Sema Becerik
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey.
| | | | | | | | | |
Collapse
|
179
|
Interleukin-4 and interleukin-13 inhibit the expression of leukemia inhibitory factor and interleukin-11 in fibroblasts. Mol Immunol 2012; 49:601-10. [DOI: 10.1016/j.molimm.2011.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/20/2011] [Accepted: 10/26/2011] [Indexed: 11/20/2022]
|
180
|
Belibasakis GN, Guggenheim B. Induction of prostaglandin E2and interleukin-6 in gingival fibroblasts by oral biofilms. ACTA ACUST UNITED AC 2011; 63:381-6. [DOI: 10.1111/j.1574-695x.2011.00863.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 01/27/2023]
|
181
|
Belibasakis GN, Bostanci N. The RANKL-OPG system in clinical periodontology. J Clin Periodontol 2011; 39:239-48. [PMID: 22092994 DOI: 10.1111/j.1600-051x.2011.01810.x] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2011] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND OBJECTIVES The receptor activator of NF-κB ligand-osteoprotegerin (RANKL-OPG) bi-molecular system is the "bottle-neck" regulator of osteoclastogenesis and bone resorption, both in physiological and pathological conditions. This review aims to elaborate the current knowledge on RANKL and OPG in periodontal disease, and to evaluate their diagnostic and prognostic potential as biomarkers of the disease. MATERIALS AND METHODS To pursue this aim, electronic and manual searches were performed for identifying clinical and in vivo studies on RANKL and OPG in gingival tissue, gingival crevicular fluid, saliva and blood. Smoking and diabetes mellitus were also considered for their potential effects. RESULTS Papers fulfilling the inclusion criteria demonstrate that RANKL is up-regulated, whereas OPG is down-regulated in periodontitis, compared to periodontal health, resulting in an increased RANKL/OPG ratio. This ratio is further up-regulated in smokers and diabetics, and is not affected by conventional periodontal treatment. CONCLUSIONS The increased RANKL/OPG ratio may serve as a biomarker that denotes the occurrence of periodontitis, but may not necessarily predict on-going disease activity. Its steadily elevated levels post treatment may indicate that the molecular mechanisms of bone resorption are still active, holding an imminent risk for relapse of the disease. Additional adjunct treatment modalities that would "switch-off" the RANKL/OPG ratio may therefore be required.
Collapse
Affiliation(s)
- Georgios N Belibasakis
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, Faculty of Medicine, University of Zürich, Switzerland.
| | | |
Collapse
|
182
|
Reddi D, Brown SJ, Belibasakis GN. Porphyromonas gingivalis induces RANKL in bone marrow stromal cells: involvement of the p38 MAPK. Microb Pathog 2011; 51:415-20. [PMID: 21939752 DOI: 10.1016/j.micpath.2011.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/27/2011] [Accepted: 09/06/2011] [Indexed: 11/19/2022]
Abstract
Periodontitis is a bacterially-induced oral inflammatory disease that is characterised by tissue degradation and bone loss. Porphyromonas gingivalis is a gram negative bacterial species highly associated with the pathogenesis of chronic periodontitis. Receptor activator of nuclear factor-kB ligand (RANKL) induces bone resorption whilst osteoprotegerin (OPG) is a decoy receptor that blocks this process. Cyclooxygenase-2 (COX-2) is an enzyme responsible for the production of prostaglandin (PGE)(2,) which is a major inflammatory mediator of bone resorption. Mitogen-activated protein kinases (MAPK) are intracellular signalling molecules involved in various cell processes, including inflammation. This study aimed to investigate the effect of P. gingivalis on MAPKs and their involvement in the regulation of RANKL, OPG and COX-2 expression in bone marrow stromal cells. P. gingivalis challenge resulted in the phosphorylation of primarily the p38 MAPK. RANKL and COX-2 mRNA expressions were up-regulated, whereas OPG was down-regulated by P. gingivalis. The p38 synthetic inhibitor SB203580 abolished the P. gingivalis-induced RANKL and COX-2 expression, but did not affect OPG. Collectively, these results suggest that the p38 MAPK pathway is involved in the induction of RANKL and COX-2 by P. gingivalis, providing further insights into the pathogenic mechanisms of periodontitis.
Collapse
Affiliation(s)
- Durga Reddi
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | | | | |
Collapse
|
183
|
The capsule of Porphyromonas gingivalis leads to a reduction in the host inflammatory response, evasion of phagocytosis, and increase in virulence. Infect Immun 2011; 79:4533-42. [PMID: 21911459 DOI: 10.1128/iai.05016-11] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Periodontal disease is a chronic oral inflammatory disease that is triggered by bacteria such as Porphyromonas gingivalis. P. gingivalis strains exhibit great heterogeneity, with some strains being encapsulated while others are nonencapsulated. Although the encapsulated strains have been shown to be more virulent in a mouse abscess model, so far the role of the capsule in P. gingivalis interactions with host cells is not well understood and its role in virulence has not been defined. Here, we investigated the contribution of the capsule to triggering a host response following microbial infection, as well as its protective role following bacterial internalization by host phagocytic cells with subsequent killing, using the encapsulated P. gingivalis strain W50 and its isogenic nonencapsulated mutant, PgC. Our study shows significant time-dependent upregulation of the expression of various groups of genes in macrophages challenged with both the encapsulated and nonencapsulated P. gingivalis strains. However, cells infected with the nonencapsulated strain showed significantly higher upregulation of 9 and 29 genes at 1 h and 8 h postinfection, respectively, than cells infected with the encapsulated strain. Among the genes highly upregulated by the nonencapsulated PgC strain were ones coding for cytokines and chemokines. Maturation markers were induced at a 2-fold higher rate in dendritic cells challenged with the nonencapsulated strain for 4 h than in dendritic cells challenged with the encapsulated strain. The rates of phagocytosis of the nonencapsulated P. gingivalis strain by both macrophages and dendritic cells were 4.5-fold and 7-fold higher, respectively, than the rates of phagocytosis of the encapsulated strain. On the contrary, the survival of the nonencapsulated P. gingivalis strain was drastically reduced compared to the survival of the encapsulated strain. Finally, the encapsulated strain exhibited greater virulence in a mouse abscess model. Our results indicate that the P. gingivalis capsule plays an important role in aiding evasion of host immune system activation, promoting survival of the bacterium within host cells, and increasing virulence. As such, it is a major virulence determinant of P. gingivalis.
Collapse
|
184
|
Nagahama Y, Obama T, Usui M, Kanazawa Y, Iwamoto S, Suzuki K, Miyazaki A, Yamaguchi T, Yamamoto M, Itabe H. Oxidized low-density lipoprotein-induced periodontal inflammation is associated with the up-regulation of cyclooxygenase-2 and microsomal prostaglandin synthase 1 in human gingival epithelial cells. Biochem Biophys Res Commun 2011; 413:566-71. [PMID: 21925143 DOI: 10.1016/j.bbrc.2011.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 09/01/2011] [Indexed: 11/28/2022]
Abstract
Periodontitis is characterized by chronic gingival tissue inflammation, and inflammatory mediators such as IL-8 and prostaglandin E(2) (PGE(2)) are associated with disease progression. Previously we showed that oxidatively modified low-density lipoprotein (oxLDL) was present in gingival crevicular fluid. In this study, the role of oxLDL in the gingival epithelial cell inflammatory response was further investigated using Ca9-22 cells and primary human oral keratinocytes (HOK). Treatment of Ca9-22 cells and HOK with oxLDL induced an up-regulation of IL-8 and the PGE(2)-producing enzymes, cyclooxygenase-2 and microsomal PGE(2) synthase-1. These responses induced by oxLDL were significantly suppressed by a nuclear factor-kappa B (NF-κB) inhibitor. However, unlike the result in macrophages, oxLDL did not lead to an increase in CD36 expression in these two cells. These results suggest that oxLDL elicits gingival epithelial cell inflammatory responses through an activation of the NF-κB pathway. These data suggest a mechanistic link between periodontal disease and lipid metabolism-related disorders, including atherosclerosis.
Collapse
Affiliation(s)
- Yu Nagahama
- Department of Periodontology, School of Dentistry, Showa University Dental Hospital, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Conaway HH, Pirhayati A, Persson E, Pettersson U, Svensson O, Lindholm C, Henning P, Tuckermann J, Lerner UH. Retinoids stimulate periosteal bone resorption by enhancing the protein RANKL, a response inhibited by monomeric glucocorticoid receptor. J Biol Chem 2011; 286:31425-36. [PMID: 21715325 DOI: 10.1074/jbc.m111.247734] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Increased vitamin A (retinol) intake has been suggested to increase bone fragility. In the present study, we investigated effects of retinoids on bone resorption in cultured neonatal mouse calvarial bones and their interaction with glucocorticoids (GC). All-trans-retinoic acid (ATRA), retinol, retinalaldehyde, and 9-cis-retinoic acid stimulated release of (45)Ca from calvarial bones. The resorptive effect of ATRA was characterized by mRNA expression of genes associated with osteoclast differentiation, enhanced osteoclast number, and bone matrix degradation. In addition, the RANKL/OPG ratio was increased by ATRA, release of (45)Ca stimulated by ATRA was blocked by exogenous OPG, and mRNA expression of genes associated with bone formation was decreased by ATRA. All retinoid acid receptors (RARα/β/γ) were expressed in calvarial bones. Agonists with affinity to all receptor subtypes or specifically to RARα enhanced the release of (45)Ca and mRNA expression of Rankl, whereas agonists with affinity to RARβ/γ or RARγ had no effects. Stimulation of Rankl mRNA by ATRA was competitively inhibited by the RARα antagonist GR110. Exposure of calvarial bones to GC inhibited the stimulatory effects of ATRA on (45)Ca release and Rankl mRNA and protein expression. This inhibitory effect was reversed by the glucocorticoid receptor (GR) antagonist RU 486. Increased Rankl mRNA stimulated by ATRA was also blocked by GC in calvarial bones from mice with a GR mutation that blocks dimerization (GR(dim) mice). The data suggest that ATRA enhances periosteal bone resorption by increasing the RANKL/OPG ratio via RARα receptors, a response that can be inhibited by monomeric GR.
Collapse
Affiliation(s)
- H Herschel Conaway
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Schulz S, Stein JM, Altermann W, Klapproth J, Zimmermann U, Reichert Y, Gläser C, Schaller HG, Reichert S. Single nucleotide polymorphisms in interleukin-1gene cluster and subgingival colonization with Aggregatibacter actinomycetemcomitans in patients with aggressive periodontitis. Hum Immunol 2011; 72:940-6. [PMID: 21672595 DOI: 10.1016/j.humimm.2011.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 05/02/2011] [Accepted: 05/13/2011] [Indexed: 12/12/2022]
Abstract
Periodontitis is initiated by the subgingival occurrence of periodontopathogens. It is triggered by a specific host-dependent immune response that is influenced by genetic predisposition. Polymorphisms in the interleukin-1 (IL-1) gene cluster have been suggested to influence the pathogenesis of periodontitis. A total of 159 periodontitis patients (chronic disease: n = 73, aggressive disease: n = 86) and 89 periodontitis-free controls were included in the study. Polymorphisms IL-1α (rs1800587), IL-1β (rs16944, rs1143634), IL-1 receptor (rs2234650), and IL-1 receptor antagonist (rs315952) were determined by polymerase chain reaction with sequence-specific primers (PCR-SSP). Subgingival bacterial colonization was assessed using a polymerase chain reaction/DNA probe test (micro-Ident). Haplotype block structure was determined using Haploview 4.2. Statistical analyses were performed applying SPSS 17.0 considering dominant, recessive, and codominant genetic models. In this case-control study, no association between genomic variants of the IL-1 gene cluster and the incidence of severe periodontitis could be shown. Carriers of the rare genotypes of rs1800587 (p(corr) = 0.009), rs1143634 (p(corr) = 0.009) and composite genotype (rs1800587+rs1143634) (p(corr) = 0.031) had a twofold higher risk for subgingival occurrence of Aggregatibacter actinomycetemcomitans. In forward stepwise binary logistic regression analyses considering age, gender, smoking, and approximal plaque index as potential confounders these significant associations were demonstrated. Despite the genetic background of IL-1 gene cluster could be shown to be associated with subgingival colonization of A actinomycetemcomitans, there is no evidence that it is an independent risk indicator for periodontitis.
Collapse
Affiliation(s)
- Susanne Schulz
- Department of Operative Dentistry and Periodontology, University School of Dental Medicine, Martin-Luther University, Halle-Wittenberg, Halle, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Diverse effects of Porphyromonas gingivalis on human osteoclast formation. Microb Pathog 2011; 51:149-55. [PMID: 21539907 DOI: 10.1016/j.micpath.2011.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/12/2011] [Accepted: 04/20/2011] [Indexed: 11/21/2022]
Abstract
Porphyromonas gingivalis is associated with periodontitis, a chronic inflammatory disease of the tooth-supporting tissues. A major clinical symptom is alveolar bone loss due to excessive resorption by osteoclasts. P. gingivalis may influence osteoclast formation in diverse ways; by interacting directly with osteoclast precursors that likely originate from peripheral blood, or indirectly by activating gingival fibroblasts, cells that can support osteoclast formation. In the present study we investigated these possibilities. Conditioned medium from viable or dead P. gingivalis, or from gingival fibroblasts challenged with viable or dead P. gingivalis were added to human mononuclear osteoclast precursors. After 21 days of culture the number of multinucleated (≥3 nuclei) tartrate resistant acid phosphatase (TRACP)-positive cells was determined as a measure for osteoclast formation. Conditioned medium from viable P. gingivalis, and from fibroblasts with viable P. gingivalis stimulated osteoclast formation (1.6-fold increase p < 0.05). Conditioned medium from dead bacteria had no effect on osteoclast formation, whereas conditioned medium from fibroblasts with dead bacteria stimulated formation (1.4-fold increase, p < 0.05). Inhibition of P. gingivalis LPS activity by Polymyxin B reduced the stimulatory effect of conditioned medium. Interestingly, when RANKL and M-CSF were added to cultures, conditioned media inhibited osteoclast formation (0.6-0.7-fold decrease, p < 0.05). Our results indicate that P. gingivalis influences osteoclast formation in vitro in different ways. Directly, by bacterial factors, likely LPS, or indirectly, by cytokines produced by gingival fibroblasts in response to P. gingivalis. Depending on the presence of RANKL and M-CSF, the effect of P. gingivalis is either stimulatory or inhibitory.
Collapse
|
188
|
Sadik CD, Noack B, Schacher B, Pfeilschifter J, Mühl H, Eickholz P. Cytokine production by leukocytes of Papillon-Lefèvre syndrome patients in whole blood cultures. Clin Oral Investig 2011; 16:591-7. [PMID: 21380503 DOI: 10.1007/s00784-011-0532-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 02/18/2011] [Indexed: 12/18/2022]
Abstract
Papillon-Lefèvre syndrome (PLS) is characterised by aggressively progressive periodontitis combined with palmo-plantar hyperkeratosis. It is caused by "loss of function" mutations in the cathepsin C gene. The hypothesis behind this study is that PLS patients' polymorphonuclear leukocytes (PMNs) produce more proinflammatory cytokines to compensate for their reduced capacity to neutralize leukotoxin and to eliminate Aggregatibacter actinomycetemcomitans. Production of more interleukin (IL)-8 would result in the attraction of more PMNs. The aim of this study was to evaluate the cytokine profile in PLS patients' blood cultures. Blood was sampled from eight PLS patients (one female) from six families (antiinfective therapy completed: six; edentulous: two) with confirmed cathepsin C mutations and deficient enzyme activity. Nine healthy males served as controls. Whole blood cultures were stimulated with highly pure lipopolysaccharide (LPS) from Escherichia coli R515 and IL-1β plus tumor necrosis factor (TNF)-α. Thereafter, release of IL-1β (stimulation: LPS and LPS plus adenosine triphosphate), IL-6, IL-8, interferon-inducible protein (IP)-10, and interferon (IFN)-γ (stimulation: LPS, IL-1β/TNFα) were detected by ELISA. Medians of cytokine release were, with the exception of IP-10, slightly higher for PLS than for controls' cultures. None of these differences reached statistical significance. Increased production of IL-1β, IL-6, IL-8, IP-10, or IFNγ as a significant means to compensate for diminished activity and stability of polymorphonuclear leukocyte-derived proteases could not be confirmed in this study. Cytokine profiles in blood cultures may not be used to identify PLS patients.
Collapse
Affiliation(s)
- Christian D Sadik
- Institute of General Pharmacology and Toxicology, Center for Pharmacology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
189
|
Pesevska S, Nakova M, Gjorgoski I, Angelov N, Ivanovski K, Nares S, Andreana S. Effect of laser on TNF-alpha expression in inflamed human gingival tissue. Lasers Med Sci 2011; 27:377-81. [DOI: 10.1007/s10103-011-0898-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 02/14/2011] [Indexed: 11/29/2022]
|
190
|
Preshaw PM, Taylor JJ. How has research into cytokine interactions and their role in driving immune responses impacted our understanding of periodontitis? J Clin Periodontol 2011; 38 Suppl 11:60-84. [DOI: 10.1111/j.1600-051x.2010.01671.x] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
191
|
Culshaw S, McInnes IB, Liew FY. What can the periodontal community learn from the pathophysiology of rheumatoid arthritis? J Clin Periodontol 2011; 38 Suppl 11:106-13. [DOI: 10.1111/j.1600-051x.2010.01669.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
192
|
|
193
|
Polymicrobial infection with periodontal pathogens specifically enhances microRNA miR-146a in ApoE-/- mice during experimental periodontal disease. Infect Immun 2011; 79:1597-605. [PMID: 21263019 DOI: 10.1128/iai.01062-10] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia are periodontal pathogens associated with the etiology of adult periodontitis as polymicrobial infections. Recent studies demonstrated that oral infection with P. gingivalis induces both periodontal disease and atherosclerosis in hyperlipidemic and proatherogenic ApoE(-/-) mice. In this study, we explored the expression of microRNAs (miRNAs) in maxillas (periodontium) and spleens isolated from ApoE(-/-) mice infected with P. gingivalis, T. denticola, and T. forsythia as a polymicrobial infection. miRNA expression levels, including miRNA miR-146a, and associated mRNA expression levels of the inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) were measured in the maxillas and spleens from mice infected with periodontal pathogens and compared to those in the maxillas and spleens from sham-infected controls. Furthermore, in response to these periodontal pathogens (as mono- and polymicrobial heat-killed and live bacteria), human THP-1 monocytes demonstrated similar miRNA expression patterns, including that of miR-146a, in vitro. Strikingly, miR-146a had a negative correlation with TNF-α secretion in vitro, reducing levels of the adaptor kinases IL-1 receptor-associated kinase 1 (IRAK-1) and TNF receptor-associated factor 6 (TRAF6). Thus, our studies revealed a persistent association of miR-146a expression with these periodontal pathogens, suggesting that miR-146a may directly or indirectly modulate or alter the chronic periodontal pathology induced by these microorganisms.
Collapse
|
194
|
Bostanci N, Saygan B, Emingil G, Atilla G, Belibasakis GN. Effect of periodontal treatment on receptor activator of NF-κB ligand and osteoprotegerin levels and relative ratio in gingival crevicular fluid. J Clin Periodontol 2011; 38:428-33. [DOI: 10.1111/j.1600-051x.2011.01701.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
195
|
Chen FM, An Y, Zhang R, Zhang M. New insights into and novel applications of release technology for periodontal reconstructive therapies. J Control Release 2011; 149:92-110. [DOI: 10.1016/j.jconrel.2010.10.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 10/13/2010] [Indexed: 02/09/2023]
|
196
|
Kajiya M, Giro G, Taubman MA, Han X, Mayer MPA, Kawai T. Role of periodontal pathogenic bacteria in RANKL-mediated bone destruction in periodontal disease. J Oral Microbiol 2010; 2. [PMID: 21523224 PMCID: PMC3084575 DOI: 10.3402/jom.v2i0.5532] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/14/2010] [Accepted: 10/11/2010] [Indexed: 11/18/2022] Open
Abstract
Accumulated lines of evidence suggest that hyperimmune responses to periodontal bacteria result in the destruction of periodontal connective tissue and alveolar bone. The etiological roles of periodontal bacteria in the onset and progression of periodontal disease (PD) are well documented. However, the mechanism underlying the engagement of periodontal bacteria in RANKL-mediated alveolar bone resorption remains unclear. Therefore, this review article addresses three critical subjects. First, we discuss earlier studies of immune intervention, ultimately leading to the identification of bacteria-reactive lymphocytes as the cellular source of osteoclast-induction factor lymphokine (now called RANKL) in the context of periodontal bone resorption. Next, we consider (1) the effects of periodontal bacteria on RANKL production from a variety of adaptive immune effector cells, as well as fibroblasts, in inflamed periodontal tissue and (2) the bifunctional roles (upregulation vs. downregulation) of LPS produced from periodontal bacteria in a RANKL-induced osteoclast-signal pathway. Future studies in these two areas could lead to new therapeutic approaches for the management of PD by down-modulating RANKL production and/or RANKL-mediated osteoclastogenesis in the context of host immune responses against periodontal pathogenic bacteria.
Collapse
Affiliation(s)
- Mikihito Kajiya
- Department of Immunology, The Forsyth Institute, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
197
|
Role of Porphyromonas gingivalis phosphoserine phosphatase enzyme SerB in inflammation, immune response, and induction of alveolar bone resorption in rats. Infect Immun 2010; 78:4560-9. [PMID: 20805334 DOI: 10.1128/iai.00703-10] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis secretes a serine phosphatase enzyme, SerB, upon contact with gingival epithelial cells in vitro. The SerB protein plays a critical role in internalization and survival of the organism in epithelial cells. SerB is also responsible for the inhibition of interleukin-8 (IL-8) secretion from gingival epithelial cells infected with P. gingivalis. This study examined the ability of a P. gingivalis SerB mutant to colonize the oral cavity and induce gingival inflammation, immune responses, and alveolar bone resorption in a rat model of periodontal disease. Both P. gingivalis ATCC 33277 and an isogenic ΔSerB mutant colonized the oral cavities of rats during the 12-week experimental period. Both of the strains induced significant (P < 0.05) systemic levels of immunoglobulin G (IgG) and isotypes IgG1, IgG2a, and IgG2b, indicating the involvement of both T helper type 1 (Th1) and Th2 responses to infection. Both strains induced significantly (P < 0.05) higher levels of alveolar bone resorption in infected rats than in sham-infected control rats. However, horizontal and interproximal alveolar bone resorption induced by the SerB mutant was significantly (P < 0.05) lower than that induced by the parental strain. Rats infected with the ΔSerB mutant exhibited significantly higher levels of apical migration of the junctional epithelium (P < 0.01) and polymorphonuclear neutrophil (PMN) recruitment (P < 0.001) into the gingival tissues than rats infected with the wild type. In conclusion, in a rat model of periodontal disease, the SerB phosphatase of P. gingivalis is required for maximal alveolar bone resorption, and in the absence of SerB, more PMNs are recruited into the gingival tissues.
Collapse
|
198
|
Garlet GP. Destructive and protective roles of cytokines in periodontitis: a re-appraisal from host defense and tissue destruction viewpoints. J Dent Res 2010; 89:1349-63. [PMID: 20739705 DOI: 10.1177/0022034510376402] [Citation(s) in RCA: 493] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Periodontal diseases (PD) are chronic infectious inflammatory diseases characterized by the destruction of tooth-supporting structures, being the presence of periodontopathogens required, but not sufficient, for disease development. As a general rule, host inflammatory mediators have been associated with tissue destruction, while anti-inflammatory mediators counteract and attenuate disease progression. With the discovery of several T-cell subsets bearing distinct immunoregulatory properties, this pro- vs. anti-inflammatory scenario became more complex, and a series of studies has hypothesized protective or destructive roles for Th1, Th2, Th17, and Treg subpopulations of polarized lymphocytes. Interestingly, the "protective vs. destructive" archetype is usually considered in a framework related to tissue destruction and disease progression. However, it is important to remember that periodontal diseases are infectious inflammatory conditions, and recent studies have demonstrated that cytokines (TNF-α and IFN-γ) considered harmful in the context of tissue destruction play important roles in the control of periodontal infection. Therefore, in this review, the state-of-the-art knowledge concerning the protective and destructive roles of host inflammatory immune response will be critically evaluated and discussed from the tissue destruction and control-of-infection viewpoints.
Collapse
Affiliation(s)
- G P Garlet
- OSTEOimmunology Laboratory, Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University, FOB/USP, Al. Octávio Pinheiro Brisola, 9-75 CEP 17012-901, Bauru, SP, Brazil.
| |
Collapse
|
199
|
Cheng WC, Huang RY, Chiang CY, Chen JK, Liu CH, Chu CL, Fu E. Ameliorative effect of quercetin on the destruction caused by experimental periodontitis in rats. J Periodontal Res 2010; 45:788-95. [DOI: 10.1111/j.1600-0765.2010.01301.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
200
|
Abstract
OBJECTIVES C-reactive protein (CRP) is primarily synthesized in the liver. It is hypothesized that human gingiva per se may produce CRP and its expression could be associated with IL-6. This study elucidated the CRP expression profile in human gingiva and its possible association with IL-6. MATERIALS AND METHODS Ninety-four gingival biopsies were collected from 44 subjects with chronic periodontitis and 18 periodontally healthy subjects. CRP protein was detected by immunohistochemistry and Western blotting, while CRP and IL-6 mRNAs were examined by reverse transcriptase-polymerase chain reaction (RT-PCR) and real-time PCR. CRP protein expression in the reconstituted human gingival epithelia (RHGE) was examined by the particle-enhanced immunoturbidimetric assay and Western blotting. RESULTS CRP protein was detected in gingival tissues from patients and healthy subjects by immunohistochemistry and confirmed by Western blotting. Its expression pattern and level at 16 pairs of periodontal pocket tissues and the adjacent clinically healthy tissues from 16 patients were significantly interrelated (r(s)=0.693, p<0.01). CRP mRNA expression was strongly correlated with IL-6 (r=0.694, p<0.001). Both CRP protein and mRNA were detected in the RHGE. CONCLUSIONS The present study shows for the first time that human gingiva is able to produce CRP in situ that may be associated with IL-6 activity.
Collapse
Affiliation(s)
- Qian Lu
- Faculty of Dentistry, Periodontology, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong SAR, China
| | | |
Collapse
|