151
|
Liu H, Chen Z, Gao G, Sun C, Li Y, Zhu Y. Characterization and comparison of gut microbiomes in nine species of parrots in captivity. Symbiosis 2019. [DOI: 10.1007/s13199-019-00613-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
152
|
Chae JP, Pajarillo EA, Hwang IC, Kang DK. Construction of a Bile-responsive Expression System in Lactobacillus plantarum. Food Sci Anim Resour 2019; 39:13-22. [PMID: 30882070 PMCID: PMC6413156 DOI: 10.5851/kosfa.2018.e58] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 12/16/2022] Open
Abstract
This study aimed to develop a bile-responsive expression system for lactobacilli. The promoters of four genes, encoding phosphoenolpyruvate-dependent sugar phosphotransferase (mannose-specific), L-lactate dehydrogenase (LDH), HPr kinase, and D-alanine-D-alanine ligase, respectively, which were highly expressed by bile addition in Lactobacillus johnsonii PF01, were chosen. Each promoter was amplified by polymerase chain reaction and fused upstream of the β-glucuronidase gene as a reporter, respectively. Then, these constructs were cloned into E. coli-Lactobacillus shuttle vector pULP2, which was generated by the fusion of pUC19 with the L. plantarum plasmid pLP27. Finally, the constructed vectors were introduced into L. plantarum for a promoter activity assay. The LDH promoter showed the highest activity and its activity increased 1.8-fold by bile addition. The constructed vector maintained in L. plantarum until 80 generations without selection pressure. A bile-responsive expression vector, pULP3-PLDH, for Lactobacillus spp. can be an effective tool for the bile-inducible expression of bioactive proteins in intestine after intake in the form of fermented dairy foods.
Collapse
Affiliation(s)
- Jong Pyo Chae
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | | | - In-Chan Hwang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
153
|
Liu S, Ma C, Liu L, Ning D, Liu Y, Dong B. β-xylosidase and β-mannosidase in combination improved growth performance and altered microbial profiles in weanling pigs fed a corn-soybean meal-based diet. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1734-1744. [PMID: 31010999 PMCID: PMC6817776 DOI: 10.5713/ajas.18.0873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/06/2019] [Indexed: 11/27/2022]
Abstract
Objective In this study, two glycosidases (XMosidases), β-xylosidase and β-mannosidase, were investigated on their in vitro hydrolysis activities of feed and on the improvement of growth performance in vivo in weanling pigs. Methods Enzyme activities of XMosidases in vitro were evaluated in test tubes and simulation of gastric and small intestinal digestion, respectively, in the presence of NSPase. In vivo study was performed in 108 weaned piglets in a 28-d treatment. Pigs were allotted to one of three dietary treatments with six replicate pens in each treatment. The three treatment groups were as follows: i) Control (basal diet); ii) CE (basal diets+CE); iii) CE-Xmosidases (basal diets+ CE+β-xylosidase at 800 U/kg and β-mannosidase at 40 U/kg). CE was complex enzymes (amylase, protease, xylanase, and mannanase). Results In vitro XMosidases displayed significant activities on hydrolysis of corn and soybean meal in the presence of non-starch polysaccharide degrading enzymes (xylanase and β-mannanase). In vitro simulation of gastric and small intestinal digestion by XMosidases showed XMosidases achieved 67.89%±0.22% of dry matter digestibility and 63.12%±0.21% of energy digestibility at 40°C for 5 hrs. In weanling pigs, additional XMosidases to CE in feed improved average daily gain, feed conversion rate (p<0.05), and apparent total tract digestibility of crude protein (p = 0.01) and dry matter (p = 0.02). XMosidases also altered the gut bacterial diversity and composition by increasing the proportion of beneficial bacteria. Conclusion Addition of a complex enzyme supplementation (contained xylanase, β-mannanase, protease and amylase), XMosidases (β-xylosidase and β-mannosidase) can further improve the growth performance and nutrient digestion of young pigs.
Collapse
Affiliation(s)
- Shaoshuai Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ling Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dong Ning
- Asiapac Limited Company, Dongguan, Guangdong 523808, China
| | - Yajing Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
154
|
Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I, Drider D. Benefits and Inputs From Lactic Acid Bacteria and Their Bacteriocins as Alternatives to Antibiotic Growth Promoters During Food-Animal Production. Front Microbiol 2019; 10:57. [PMID: 30804896 PMCID: PMC6378274 DOI: 10.3389/fmicb.2019.00057] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/14/2019] [Indexed: 12/27/2022] Open
Abstract
Resistance to antibiotics is escalating and threatening humans and animals worldwide. Different countries have legislated or promoted the ban of antibiotics as growth promoters in livestock and aquaculture to reduce this phenomenon. Therefore, to improve animal growth and reproduction performance and to control multiple bacterial infections, there is a potential to use probiotics as non-antibiotic growth promoters. Lactic acid bacteria (LAB) offer various advantages as potential probiotics and can be considered as alternatives to antibiotics during food-animal production. LAB are safe microorganisms with abilities to produce different inhibitory compounds such as bacteriocins, organic acids as lactic acid, hydrogen peroxide, diacetyl, and carbon dioxide. LAB can inhibit harmful microorganisms with their arsenal, or through competitive exclusion mechanism based on competition for binding sites and nutrients. LAB endowed with specific enzymatic functions (amylase, protease…) can improve nutrients acquisition as well as animal immune system stimulation. This review aimed at underlining the benefits and inputs from LAB as potential alternatives to antibiotics in poultry, pigs, ruminants, and aquaculture production.
Collapse
Affiliation(s)
- Nuria Vieco-Saiz
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
- Phileo Lesaffre Animal Care, Marcq-en-Barœul, France
| | - Yanath Belguesmia
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
| | - Ruth Raspoet
- Phileo Lesaffre Animal Care, Marcq-en-Barœul, France
| | - Eric Auclair
- Phileo Lesaffre Animal Care, Marcq-en-Barœul, France
| | - Frédérique Gancel
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
| | - Isabelle Kempf
- Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), Ploufragan, France
- Université Bretagne Loire, Rennes, France
| | - Djamel Drider
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
| |
Collapse
|
155
|
Wang T, Teng K, Liu Y, Shi W, Zhang J, Dong E, Zhang X, Tao Y, Zhong J. Lactobacillus plantarum PFM 105 Promotes Intestinal Development Through Modulation of Gut Microbiota in Weaning Piglets. Front Microbiol 2019; 10:90. [PMID: 30804899 PMCID: PMC6371750 DOI: 10.3389/fmicb.2019.00090] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
Lactobacillus plantarum is a widespread bacterial species and is commonly used as a probiotic. L. plantarum PFM105 was isolated from the rectum of a healthy sow. Here we found that L. plantarum PFM105 showed probiotic effect on weaning piglets in which intestinal inflammation and unbalanced gut microbiota happened frequently. L. plantarum PFM105 was identified to improve the growth of weaning piglet and promote the development of small intestinal villi. Antibiotics are often used in weaning piglet to prevent intestinal infection and promote the growth of animal. We found that weaning piglets feeding with L. plantarum PFM105 showed similar growth promotion but decreased diarrhea incidence compared with those feeding with antibiotics. High-throughput sequencing was used to analyze the gut microbiota in weaning piglets treated with L. plantarum PFM105 or antibiotics. The relative abundance of beneficial microbes Prevotellaceae and Bifidobacteriaceae were increased in colon of weaning piglet feeding L. plantarum PFM105, while antibiotics increased the relative abundance of bacteria associated with pathogenicity, such as Spirochaeta and Campylobacteraceae. L. plantarum PFM 105 increased indicators of intestinal health including serum levels of IgM, IL-10, and TGF-β, and colonic levels of SCFAs. We found strong correlations between the alterations in gut microbiota composition caused by feeding antibiotics and probiotics and the measured growth and health parameters in weaning piglets. The addition of L. plantarum PFM105 could significantly increase the relative abundance of metabolic genes which may important to intestinal microbiota maturation. Altogether, we demonstrated here that L. plantarum PFM 105 could promote intestinal development through modulation of gut microbiota in weaning piglets.
Collapse
Affiliation(s)
- Tianwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Kunling Teng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yayong Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Weixiong Shi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Enqiu Dong
- LongDa Foodstuff Group Co., Ltd, Laiyang, China
| | - Xin Zhang
- LongDa Foodstuff Group Co., Ltd, Laiyang, China
| | - Yong Tao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
156
|
Li CL, Wang J, Zhang HJ, Wu SG, Hui QR, Yang CB, Fang RJ, Qi GH. Intestinal Morphologic and Microbiota Responses to Dietary Bacillus spp. in a Broiler Chicken Model. Front Physiol 2019; 9:1968. [PMID: 30705639 PMCID: PMC6344408 DOI: 10.3389/fphys.2018.01968] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/31/2018] [Indexed: 12/12/2022] Open
Abstract
Dietary inclusion of probiotic Bacillus spp. beneficially affect the broiler chickens by balancing the properties of the indigenous microbiota causing better growth performance. The effects of three Bacillus spp. on the growth performance, intestinal morphology and the compositions of jejunal microflora were investigated in broiler chickens. A total of 480 1-day-old male Arbor Acres broilers were randomly divided into four groups. All groups had six replicates and 20 birds were included in each replicate. The control birds were fed with a corn-soybean basal diet, while three treatment diets were supplemented with Bacillus coagulans TBC169, B. subtilis PB6, and B. subtilis DSM32315 with a dosage of 1 × 109 cfu/kg, respectively. The experiment lasted for 42 days. The compositions and diversity of jejunal microflora were analyzed by MiSeq high-throughput sequencing. The B. coagulans TBC169 group showed marked improvements of growth performance, nutrient digestibility and intestinal morphology compared with the other B. subtilis treatments. B. coagulans TBC169 supplementation improved the average body weight (BW), average daily weight gain (ADG), total tract apparent digestibility of crude protein and gross energy (GE), and reduced feed conversion rate (FCR) compared with the control group (P < 0.05). The villus height to crypt depth ratio (VH/CD) of jejunum and duodenum was increased in the birds fed with B. coagulans TBC169 compared with the control group (P < 0.05). However, two B. subtilis treatments presented more positive variation of the jejunum microflora of chickens than that in the B. coagulans TBC169 group. B. subtilis PB6 and B. subtilis DSM32315 treatments improved the diversity of jejunal microbiota on day 21 compared with the control (P < 0.05), while which were decreased on day 42 (P < 0.05). The supplementation with B. coagulans TBC169 significantly improved the proportion of Firmicutes, otherwise two B. subtilis significantly improved the proportion of Proteobacteria, Bacteroidetes, Actinobacteria, and Acidobacteria at the phylum level during starter phase and decreased the proportion of Bacteroidetes during growing phase compared with the control. The supplementation with B.subtilis DSM32315 significantly improved the proportion of Clostridiales during starter phase, whereas two B. subtilis significantly improved the proportion of Pseudomonas, Burkholderia, Prevotella, DA101 during growing phase at the genus level compared with the control. In conclusion, the dietary supplementation with probiotic Bacillus spp. strains improved body weight and intestinal morphology in broiler chickens, which might be associated with the gut microbiota.
Collapse
Affiliation(s)
- Cheng-liang Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-jun Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-geng Wu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian-ru Hui
- Department of Animal Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Cheng-bo Yang
- Department of Animal Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Re-jun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Guang-hai Qi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
157
|
Comparative genomic analysis of Lactobacillus mucosae LM1 identifies potential niche-specific genes and pathways for gastrointestinal adaptation. Genomics 2019; 111:24-33. [DOI: 10.1016/j.ygeno.2017.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 01/02/2023]
|
158
|
Lactobacillus reuteri HCM2 protects mice against Enterotoxigenic Escherichia coli through modulation of gut microbiota. Sci Rep 2018; 8:17485. [PMID: 30504833 PMCID: PMC6269427 DOI: 10.1038/s41598-018-35702-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of infectious diarrhea in children and postweaning piglets. ETEC infection results in induced pro-inflammatory responses in intestinal epithelial cells and dysbiosis of intestinal microbiota. Here, a Lactobacillus reuteri strain, HCM2, isolated from a healthy piglet showed a high survival rate in the harsh gastrointestinal tract environment and inhibited the growth of ETEC and its adherence to intestinal epithelial cells. Pre-supplementation with L. reuteri HCM2 for 14 days reduced the ETEC load in the jejunum of ETEC-infected mice and prevented the disruption of intestinal morphology by ETEC. The colonic microbiota of mice with or without HCM2 pre-supplementation were analyzed, and this analysis revealed that HCM2 could prevent dysbiosis caused by ETEC infection by stabilizing the relative abundance of dominant bacteria. These results indicate that L. reuteri HCM2 has the potential to attenuate the effect of ETEC on the colonic microbiota in infected mice.
Collapse
|
159
|
Wang Y, Xie Q, Sun S, Huang B, Zhang Y, Xu Y, Zhang S, Xiang H. Probiotics-fermented Massa Medicata Fermentata ameliorates weaning stress in piglets related to improving intestinal homeostasis. Appl Microbiol Biotechnol 2018; 102:10713-10727. [PMID: 30397767 DOI: 10.1007/s00253-018-9438-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022]
Abstract
Weaning stress has serious negative effects on piglets' health and the swine industry. Probiotics-fermented Chinese herbal medicines are potential feed additives to ameliorate weaning stress. In this study, the effects of probiotics-fermented Massa Medicata Fermentata (MMFP) on intestinal homeostasis were evaluated in weaning piglets. Dietary supplementation with MMFP promoted the development of the intestinal structure and elevated the concentrations of lactic acid and short-chain fatty acids (SCFAs) in the intestinal contents and antioxidant capacities in serum. MMFP reduced the levels of inflammatory factors in the intestinal mucosa. Microbial community analysis demonstrated that MMFP led to the selective and progressive enrichment of lactic acid- and SCFA-producing bacteria along the gastrointestinal tract, in particular, OTUs corresponding to Lactobacillus, Streptococcus, Acetitomaculum, Roseburia, and Eubacterium xylanophilum group, while MMFP reduced the relative abundance of pathogenic bacteria. On the contrary, antibiotics had negative effects on intestinal histology and increased the relative abundance of pro-inflammatory bacterium, such as Marvinbryantia, Peptococcus, Turicibacter, and Blautia. Correlation analysis reflected that the bacteria enriched in MMFP group were positively correlated with enhanced intestinal homeostasis, which suggested that dietary supplementation with MMFP enhanced host intestinal homeostasis by modulating the composition of gut microbiota and the levels of beneficial SCFAs, thus ameliorating weaning stress in piglets.
Collapse
Affiliation(s)
- Yanbo Wang
- School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People's Republic of China
| | - Qiuhong Xie
- School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People's Republic of China.,National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People's Republic of China.,Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People's Republic of China
| | - Sheng Sun
- School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People's Republic of China
| | - Baojia Huang
- School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People's Republic of China
| | - Ying Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People's Republic of China
| | - Yun Xu
- School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People's Republic of China
| | - Shumin Zhang
- Jilin Academy of Agricultural Sciences, Changchun, Jilin, 130124, People's Republic of China
| | - Hongyu Xiang
- School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People's Republic of China. .,National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People's Republic of China. .,Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, People's Republic of China.
| |
Collapse
|
160
|
Zhao X, Wang W, Blaine A, Kane ST, Zijlstra RT, Gänzle MG. Impact of probiotic Lactobacillus sp. on autochthonous lactobacilli in weaned piglets. J Appl Microbiol 2018; 126:242-254. [PMID: 30276941 DOI: 10.1111/jam.14119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 12/25/2022]
Abstract
AIMS This study aimed to determine whether host-adapted lactobacilli exhibit superior survival during intestinal transit relative to nomadic and free-living organisms, and to characterize the impact of probiotic lactobacilli on autochthonous lactobacilli. METHODS AND RESULTS Mixed cultures of Lactobacillus casei K9-1 and Lactobacillus fermentum K9-2, or reutericyclin producing Lactobacillus reuteri and its isogenic mutant were fed to piglets as freeze-dried culture, or as part of fermented feed. Lactobacilli in digesta and faecal samples were quantified by strain-specific quantitative PCR (qPCR), high-resolution-melting curve qPCR, and high-throughput sequencing of 16S rRNA gene sequence tags. The abundance of the host adapted L. reuteri in digesta and faeces was higher (P < 0·05) when compared to L. casei or L. fermentum. Feed fermentation or chemical acidification of feed reduced (P < 0·05) cell counts of Lactobacillus salivarius in colonic digesta. The reutericyclin producing L. reuteri TMW1.656 transiently reduced (P < 0·05) the faecal abundance of lactobacilli. However, the overall impact of probiotic intervention on autochthonous lactobacilli was minor. CONCLUSIONS The vertebrate host-adapted L. reuteri survives better during intestinal transit of piglets compared to L. casei and L. fermentum. SIGNIFICANCE AND IMPACT OF THE STUDY Ecology and lifestyle of Lactobacillus strains may be suitable criteria for selection of probiotic strains for use in swine production.
Collapse
Affiliation(s)
- X Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - W Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - A Blaine
- CanBiocin Inc., Edmonton, AB, Canada
| | - S T Kane
- CanBiocin Inc., Edmonton, AB, Canada
| | - R T Zijlstra
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - M G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
161
|
Ikeda-Ohtsubo W, Brugman S, Warden CH, Rebel JMJ, Folkerts G, Pieterse CMJ. How Can We Define "Optimal Microbiota?": A Comparative Review of Structure and Functions of Microbiota of Animals, Fish, and Plants in Agriculture. Front Nutr 2018; 5:90. [PMID: 30333981 PMCID: PMC6176000 DOI: 10.3389/fnut.2018.00090] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022] Open
Abstract
All multicellular organisms benefit from their own microbiota, which play important roles in maintaining the host nutritional health and immunity. Recently, the number of studies on the microbiota of animals, fish, and plants of economic importance is rapidly expanding and there are increasing expectations that productivity and sustainability in agricultural management can be improved by microbiota manipulation. However, optimizing microbiota is still a challenging task because of the lack of knowledge on the dominant microorganisms or significant variations between microbiota, reflecting sampling biases, different agricultural management as well as breeding backgrounds. To offer a more generalized view on microbiota in agriculture, which can be used for defining criteria of “optimal microbiota” as the goal of manipulation, we summarize here current knowledge on microbiota on animals, fish, and plants with emphasis on bacterial community structure and metabolic functions, and how microbiota can be affected by domestication, conventional agricultural practices, and use of antimicrobial agents. Finally, we discuss future tasks for defining “optimal microbiota,” which can improve host growth, nutrition, and immunity and reduce the use of antimicrobial agents in agriculture.
Collapse
Affiliation(s)
- Wakako Ikeda-Ohtsubo
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sylvia Brugman
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Craig H Warden
- Departments of Pediatrics, Neurobiology Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Johanna M J Rebel
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
162
|
Kim JS, Choe H, Kim KM, Lee YR, Rhee MS, Park DS. Lactobacillus porci sp. nov., isolated from small intestine of a swine. Int J Syst Evol Microbiol 2018; 68:3118-3124. [DOI: 10.1099/ijsem.0.002949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Ji-Sun Kim
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Hanna Choe
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Kyung Mo Kim
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
- 2Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Yu-Ri Lee
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Moon-Soo Rhee
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Doo-Sang Park
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| |
Collapse
|
163
|
Villena J, Kitazawa H, Van Wees SCM, Pieterse CMJ, Takahashi H. Receptors and Signaling Pathways for Recognition of Bacteria in Livestock and Crops: Prospects for Beneficial Microbes in Healthy Growth Strategies. Front Immunol 2018; 9:2223. [PMID: 30319660 PMCID: PMC6170637 DOI: 10.3389/fimmu.2018.02223] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/07/2018] [Indexed: 01/24/2023] Open
Abstract
Modern animal and crop production practices are associated with the regular use of antimicrobials, potentially increasing selection pressure on bacteria to become resistant. Alternative approaches are needed in order to satisfy the demands of the growing human population without the indiscriminate use of antimicrobials. Researchers have brought a different perspective to solve this problem and have emphasized the exploitation of animal- and plant-associated microorganisms that are beneficial to their hosts through the modulation of the innate immune system. There is increasing evidence that plants and animals employ microbial perception and defense pathways that closely resemble each other. Formation of pattern recognition receptor (PRR) complexes involving leucine-rich repeat (LRR)-containing proteins, mitogen-activated protein kinase (MAPK)-mediated activation of immune response genes, and subsequent production of antimicrobial products and reactive oxygen species (ROS) and nitric oxide (NO) to improve defenses against pathogens, add to the list of similarities between both systems. Recent pioneering work has identified that animal and plant cells use similar receptors for sensing beneficial commensal microbes that are important for the maintenance of the host's health. Here, we reviewed the current knowledge about the molecular mechanisms involved in the recognition of pathogenic and commensal microbes by the innate immune systems of animal and plants highlighting their differences and similarities. In addition, we discuss the idea of using beneficial microbes to modulate animal and plant immune systems in order to improve the resistance to infections and reduce the use of antimicrobial compounds.
Collapse
Affiliation(s)
- Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Science4life, Utrecht University, Utrecht, Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4life, Utrecht University, Utrecht, Netherlands
| | - Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Plant Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
164
|
Bagon BB, Valeriano VDV, Oh JK, Pajarillo EAB, Cho CS, Kang DK. Comparative exoproteome analyses of Lactobacillus spp. reveals species- and strain-specific proteins involved in their extracellular interaction and probiotic potential. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
165
|
Ambrosio CMS, de Alencar SM, Moreno AM, Da Gloria EM. Evaluation of the selective antibacterial activity of Eucalyptus globulus and Pimenta pseudocaryophyllus essential oils individually and in combination on Enterococcus faecalis and Lactobacillus rhamnosus. Can J Microbiol 2018; 64:844-855. [PMID: 29894644 DOI: 10.1139/cjm-2018-0021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Essential oils (EOs), as substitutes for antibiotics in animal diets, should have selective antibacterial activity between pathogenic and beneficial bacteria from the animal gut. Thus, this study evaluated the selective antibacterial activity of Eucalyptus globulus (EG) and Pimenta pseudocaryophyllus (PP) EOs on Enterococcus faecalis as a surrogate model of pathogenic bacterium and on Lactobacillus rhamnosus as a beneficial bacterium model. The EOs antibacterial activity was evaluated by determination of minimal inhibitory concentrations (MICs), minimal bactericidal concentration (MBCs), and fractional inhibitory concentration (FIC) indices. The time-kill and sequential exposure assays were also performed, but using only the EG oil, which was the best selective EO, since it had a MIC lower on E. faecalis (7.4 mg/mL) than on L. rhamnosus (14.8 mg/mL). FIC index values showed that the combination of the two EOs had an indifferent effect (1.25 and 2.03) on E. faecalis and an additive effect (1.00) on L. rhamnosus. The time-kill assay showed that EG oil was able to kill E. faecalis within 15 min of treatment (∼5 log reduction) and caused a reduction ∼3 log of L. rhamnosus viability. The sequential exposure assay showed that EG oil (at MIC/2) produced higher reduction on E. faecalis viability (∼3 log) than on L. rhamnosus (∼2 log) as well. Therefore, L. rhamnosus presented higher tolerance to the antibacterial activity of EG oil than E. faecalis did.
Collapse
Affiliation(s)
- Carmen M S Ambrosio
- a Department of Agri-Food industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba/São Paulo 13418-900, Brazil
| | - Severino M de Alencar
- a Department of Agri-Food industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba/São Paulo 13418-900, Brazil
| | - Andrea M Moreno
- b School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | - Eduardo M Da Gloria
- a Department of Agri-Food industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba/São Paulo 13418-900, Brazil
| |
Collapse
|
166
|
Probiotic Lactobacillus Paracasei Expressing a Nucleic Acid-Hydrolyzing Minibody (3D8 Scfv) Enhances Probiotic Activities in Mice Intestine as Revealed by Metagenomic Analyses. Genes (Basel) 2018; 9:genes9060276. [PMID: 29844265 PMCID: PMC6027128 DOI: 10.3390/genes9060276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 01/13/2023] Open
Abstract
Probiotics are well known for their beneficial effects for animals, including humans and livestock. Here, we tested the probiotic activity of Lactobacillus paracasei expressing 3D8 scFv, a nucleic acid-hydrolyzing mini-antibody, in mice intestine. A total of 18 fecal samples derived from three different conditions at two different time points were subjected to high-throughput 16S ribosomal RNA (rRNA) metagenomic analyses. Bioinformatic analyses identified an average of 290 operational taxonomic units. After administration of L. paracasei, populations of the probiotics L. paracasei, Lactobacillus reuteri, and Pediococcus acidilactici increased, whereas the population of harmful bacteria such as Helicobacter species decreased. Furthermore, continuous administration of L. paracasei resulted in L. paracasei emerging as the dominant probiotic after competition with other existing probiotics. Expression of 3D8 scFv protein specifically increased the population of P. acidilactici, which is another probiotic. In summary, our results showed that L. paracasei expressing 3D8 scFv protein enhanced probiotic activity in mice intestine with no observable side effects. Thus, the system developed in this study may be a good tool for the expression of recombinant protein using probiotics.
Collapse
|
167
|
Microbiota in fermented feed and swine gut. Appl Microbiol Biotechnol 2018; 102:2941-2948. [PMID: 29453632 DOI: 10.1007/s00253-018-8829-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022]
Abstract
Development of alternatives to antibiotic growth promoters (AGP) used in swine production requires a better understanding of their impacts on the gut microbiota. Supplementing fermented feed (FF) in swine diets as a novel nutritional strategy to reduce the use of AGP and feed price, can positively affect the porcine gut microbiota, thereby improving pig productivities. Previous studies have noted the potential effects of FF on the shift in benefit of the swine microbiota in different regions of the gastrointestinal tract (GIT). The positive influences of FF on swine gut microbiota may be due to the beneficial effects of both pre- and probiotics. Necessarily, some methods should be adopted to properly ferment and evaluate the feed and avoid undesired problems. In this mini-review, we mainly discuss the microbiota in both fermented feed and swine gut and how FF influences swine gut microbiota.
Collapse
|
168
|
Zhang W, Zhu YH, Yang GY, Liu X, Xia B, Hu X, Su JH, Wang JF. Lactobacillus rhamnosus GG Affects Microbiota and Suppresses Autophagy in the Intestines of Pigs Challenged with Salmonella Infantis. Front Microbiol 2018; 8:2705. [PMID: 29403451 PMCID: PMC5785727 DOI: 10.3389/fmicb.2017.02705] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/29/2017] [Indexed: 12/20/2022] Open
Abstract
Salmonella enterica serovar Infantis (S. Infantis) is a common source of foodborne gastroenteritis worldwide. Here, Lactobacillus rhamnosus GG (LGG) was administrated to weaned piglets for 1 week before S. Infantis challenge. S. Infantis caused decreased ileal mucosal microbiota diversity, a dramatic Lactobacillus amylovorus bloom, and decreased abundance of Arsenicicoccus, Janibacter, Kocuria, Nocardioides, Devosia, Paracoccus, Psychrobacter, and Weissella. The beneficial effect of LGG correlated with the moderate expansion of L. amylovorus, L. agilis, and several members of the phyla Proteobacteria, Firmicutes, and Bacteroidetes. S. Infantis translocation to the liver was decreased in the LGG-pretreated piglets. An in vitro model of LGG and S. Infantis co-incubation (involving the porcine intestinal epithelial cell line IPEC-J2) was established, and nalidixic acid was used to kill the extracellular S. Infantis. LGG suppressed the initial S. Infantis invasion in the IPEC-J2 cells and deceased the rate of cell death. LGG inhibited S. Infantis-induced autophagy and promoted epidermal growth factor receptor (EGFR) and Akt phosphorylation in both the ileum and IPEC-J2 cells. Our findings suggest that LGG inhibited S. Infantis-induced autophagy by promoting EGFR-mediated activation of the negative mediator Akt, which, in turn, suppressed intestinal epithelial cell death and thus restricted systemic S. Infantis infection. LGG can restore the gut microbiota balance and preserve the autophagy-related intestinal epithelial barrier, thereby controlling infections.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yao-Hong Zhu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Gui-Yan Yang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao Liu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bing Xia
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiong Hu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jin-Hui Su
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiu-Feng Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
169
|
Ma Q, Fu Y, Sun H, Huang Y, Li L, Yu Q, Dinnyes A, Sun Q. Antimicrobial resistance of Lactobacillus spp. from fermented foods and human gut. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
170
|
Effect of feed enzymes on digestibility and growth in weaned pigs: A systematic review and meta-analysis. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.04.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
171
|
Guo S, Liu D, Zhang B, Li Z, Li Y, Ding B, Guo Y. Two Lactobacillus Species Inhibit the Growth and α-Toxin Production of Clostridium perfringens and Induced Proinflammatory Factors in Chicken Intestinal Epithelial Cells in Vitro. Front Microbiol 2017; 8:2081. [PMID: 29118744 PMCID: PMC5661052 DOI: 10.3389/fmicb.2017.02081] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/11/2017] [Indexed: 01/15/2023] Open
Abstract
Clostridium perfringens is the causative pathogen of avian necrotic enteritis. Lactobacillus spp. are well-characterized probiotics with anti-microbial and immune-modulatory activities. In the present study, we investigated the effects of L. acidophilus and L. fermentum on the growth, α-toxin production and inflammatory responses of C. perfringens. In in vitro culture experiments, both lactobacilli inhibited the growth of C. perfringens (P < 0.01), accompanied with a decrease in pH (P < 0.01). Supernatants from lactobacilli cultures also suppressed the growth of C. perfringens during 24 h of incubation (P < 0.01), but this inhibitory effect disappeared after 48 h. Both lactobacilli decreased the α-toxin production of C. perfringens (P < 0.01) without influencing its biomass, and even degraded the established α-toxin (P < 0.01). Lower environmental pH reduced the α-toxin production as well (P < 0.01). Preincubation with L. acidophilus decreased the attachment of C. perfringens to cells (P < 0.01) with the cell cytotoxicity being unaffected. Both lactobacilli pretreatment reduced the up-regulation of proinflammatory factors, peptidoglycan (PGN) receptors and nuclear factor kappa B (NF-κB) p65 in C. perfringens-challenged chicken intestinal epithelial cells (P < 0.05). In conclusion, L. acidophilus and L. fermentum inhibited the pathological effects of C. perfringens in vitro conditions.
Collapse
Affiliation(s)
- Shuangshuang Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Beibei Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhui Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yehan Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Binying Ding
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
172
|
Invited review: resource allocation mismatch as pathway to disproportionate growth in farm animals - prerequisite for a disturbed health. Animal 2017; 12:528-536. [PMID: 28803599 DOI: 10.1017/s1751731117002051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The availability of resources including energy, nutrients and (developmental) time has a crucial impact on productivity of farm animals. Availability of energy and nutrients depends on voluntary feed intake and intestinal digestive and absorptive capacity at optimal feeding conditions. Availability of time is provided by the management in animal production. According to the resource allocation theory, resources have to be allocated between maintenance, ontogenic growth, production and reproduction during lifetime. Priorities for these processes are mainly determined by the genetic background, the rearing system and the feeding regimen. Aim of this review was to re-discuss the impact of a proper resource allocation for a long and healthy life span in farm animals. Using the barrel model of resource allocation, resource fluxes were explained and were implemented to specific productive life conditions of different farm animal species, dairy cows, sows and poultry. Hypothetically, resource allocation mismatch neglecting maintenance is a central process, which might be associated with morphological constraints of extracellular matrix components; evidence for that was found in the literature. A potential consequence of this limitation is a phenomenon called disproportionate growth, which counteracts the genetically determined scaling rules for body and organ proportions and could have a strong impact on farm animal health and production.
Collapse
|
173
|
Mishra B, Reiling S, Zarena D, Wang G. Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr Opin Chem Biol 2017; 38:87-96. [PMID: 28399505 PMCID: PMC5494204 DOI: 10.1016/j.cbpa.2017.03.014] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/16/2022]
Abstract
This review deals with the design and application strategies of new antibiotics based on naturally occurring antimicrobial peptides (AMPs). The initial candidate can be designed based on three-dimensional structure or selected from a library of peptides from natural or laboratory sources followed by optimization via structure-activity relationship studies. There are also advanced application strategies such as induction of AMP expression from host cells by various factors (e.g., metals, amino acids, vitamin D and sunlight), the use of engineered probiotic bacteria to deliver peptides, the design of prodrug and peptide conjugates to improve specific targeting. In addition, combined uses of newly developed AMPs with existing antimicrobial agents may provide a practical avenue for effective management of antibiotic-resistant bacteria (superbugs), including biofilms. Finally, we highlight AMPs already in use or under clinical trials.
Collapse
Affiliation(s)
- Biswajit Mishra
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Scott Reiling
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - D Zarena
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA; Department of Physics, JNTUA College of Engineering, Anantapur 515002, India
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| |
Collapse
|
174
|
O'Doherty JV, Bouwhuis MA, Sweeney T. Novel marine polysaccharides and maternal nutrition to stimulate gut health and performance in post-weaned pigs. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an17272] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Post-weaning complications in piglets are characterised by a reduction in feed intake and growth, atrophy of small-intestine architecture, upregulation of intestinal inflammatory cytokines, alterations in gastrointestinal microflora, diarrhoea and heightened susceptibility to infection. Traditional measures to reduce weaning-associated intestinal dysfunction have centred on dietary inclusion of antibiotic growth promoters in weaning pig diets, or high concentrations of dietary minerals in the form of zinc oxide. However, these strategies are under scrutiny because of their role in promoting multi-drug resistant bacteria and the accumulation of minerals in the environment. Up to recently, the main focus on finding alternatives to in-feed antibiotic growth promoters has been on dietary manipulations post-weaning, through the use of feed additives in the post-weaning diet. However, there are also other strategies that could enhance the growth and health of the newly weaned pig. One of these strategies is the use of maternal nutrition to improve growth and health in her offspring. The development of the immune system begins in utero and is further developed after the colonisation of the gastrointestinal tract with microbiota during birth and post-natal life. The early establishment of this relationship is fundamental to the development and long-term maintenance of gut homeostasis. There are significant efforts being made to identify natural alternatives to support the development of the piglet gastrointestinal tract, in particular during the weaning period. Chemodiversity in nature, including microorganisms, terrestrial plants, seaweeds and marine organisms, offers a valuable source of novel bioactives. This review will discuss the development of the intestinal tract in the pig during gestation, lactation and post-weaning periods and the factors that influence intestinal health post-weaning. It will also discuss how feeding marine bioactives in both the maternal diet and the piglet diet can be used to alleviate the negative effects associated with weaning.
Collapse
|