151
|
Rolf L, Damoiseaux J, Hupperts R, Huitinga I, Smolders J. Network of nuclear receptor ligands in multiple sclerosis: Common pathways and interactions of sex-steroids, corticosteroids and vitamin D3-derived molecules. Autoimmun Rev 2016; 15:900-10. [DOI: 10.1016/j.autrev.2016.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/08/2016] [Indexed: 01/12/2023]
|
152
|
Abstract
ABSTRACT
Forensic science concerns the application of scientific techniques to questions of a legal nature and may also be used to address questions of historical importance. Forensic techniques are often used in legal cases that involve crimes against persons or property, and they increasingly may involve cases of bioterrorism, crimes against nature, medical negligence, or tracing the origin of food- and crop-borne disease. Given the rapid advance of genome sequencing and comparative genomics techniques, we ask how these might be used to address cases of a forensic nature, focusing on the use of microbial genome sequence analysis. Such analyses rely on the increasingly large numbers of microbial genomes present in public databases, the ability of individual investigators to rapidly sequence whole microbial genomes, and an increasing depth of understanding of their evolution and function. Suggestions are made as to how comparative microbial genomics might be applied forensically and may represent possibilities for the future development of forensic techniques. A particular emphasis is on the nascent field of genomic epidemiology, which utilizes rapid whole-genome sequencing to identify the source and spread of infectious outbreaks. Also discussed is the application of comparative microbial genomics to the study of historical epidemics and deaths and how the approaches developed may also be applicable to more recent and actionable cases.
Collapse
|
153
|
Abstract
A popular and successful strategy in semi-rational design of protein stability is the use of evolutionary information encapsulated in homologous protein sequences. Consensus design is based on the hypothesis that at a given position, the respective consensus amino acid contributes more than average to the stability of the protein than non-conserved amino acids. Here, we review the consensus design approach, its theoretical underpinnings, successes, limitations and challenges, as well as providing a detailed guide to its application in protein engineering.
Collapse
Affiliation(s)
- Benjamin T Porebski
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Clayton, Victoria 3800, Australia Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ashley M Buckle
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
154
|
Cruzeiro C, Lopes-Marques M, Ruivo R, Rodrigues-Oliveira N, Santos MM, Rocha MJ, Rocha E, Castro LFC. A mollusk VDR/PXR/CAR-like (NR1J) nuclear receptor provides insight into ancient detoxification mechanisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:61-69. [PMID: 26921727 DOI: 10.1016/j.aquatox.2016.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/18/2016] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
The origin and diversification of the metazoan endocrine systems represents a fundamental research issue in biology. Nuclear receptors are critical components of these systems. A particular group named VDR/PXR/CAR (NR1I/J) is central in the mediation of detoxification responses. While orthologues have been thoroughly characterized in vertebrates, a sparse representation is currently available for invertebrates. Here, we provide the first isolation and characterization of a lophotrochozoan protostome VDR/PXR/CAR nuclear receptor (NR1J), in the estuarine bivalve the peppery furrow shell (Scrobicularia plana). Using a reporter gene assay, we evaluated the xenobiotic receptor plasticity comparing the human PXR with the S. plana NR1Jβ. Our results show that the molluscan receptor responds to a natural toxin (okadaic acid) in a similar fashion to that reported for other invertebrates. In contrast, the pesticide esfenvalerate displayed a unique response, since it down regulated transactivation at higher concentrations, while for triclosan no response was observed. Additionally, we uncovered lineage specific gene duplications and gene loss in the gene group encoding NRs in protostomes with likely impacts on the complexity of detoxification mechanisms across different phyla. Our findings pave the way for the development of multi-specific sensor tools to screen xenobiotic compounds acting via the NR1I/J group.
Collapse
Affiliation(s)
- Catarina Cruzeiro
- ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto, Portugal; CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal.
| | - Mónica Lopes-Marques
- ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto, Portugal; CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal.
| | - Raquel Ruivo
- CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal.
| | - Nádia Rodrigues-Oliveira
- CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal.
| | - Miguel M Santos
- CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal; FCUP - Faculty of Sciences, Department of Biology, U. Porto, Portugal.
| | - Maria João Rocha
- ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto, Portugal; CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal.
| | - Eduardo Rocha
- ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto, Portugal; CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal.
| | - L Filipe C Castro
- CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto, Portugal; FCUP - Faculty of Sciences, Department of Biology, U. Porto, Portugal.
| |
Collapse
|
155
|
Functional Divergence of the Nuclear Receptor NR2C1 as a Modulator of Pluripotentiality During Hominid Evolution. Genetics 2016; 203:905-22. [PMID: 27075724 DOI: 10.1534/genetics.115.183889] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/05/2016] [Indexed: 12/13/2022] Open
Abstract
Genes encoding nuclear receptors (NRs) are attractive as candidates for investigating the evolution of gene regulation because they (1) have a direct effect on gene expression and (2) modulate many cellular processes that underlie development. We employed a three-phase investigation linking NR molecular evolution among primates with direct experimental assessment of NR function. Phase 1 was an analysis of NR domain evolution and the results were used to guide the design of phase 2, a codon-model-based survey for alterations of natural selection within the hominids. By using a series of reliability and robustness analyses we selected a single gene, NR2C1, as the best candidate for experimental assessment. We carried out assays to determine whether changes between the ancestral and extant NR2C1s could have impacted stem cell pluripotency (phase 3). We evaluated human, chimpanzee, and ancestral NR2C1 for transcriptional modulation of Oct4 and Nanog (key regulators of pluripotency and cell lineage commitment), promoter activity for Pepck (a proxy for differentiation in numerous cell types), and average size of embryological stem cell colonies (a proxy for the self-renewal capacity of pluripotent cells). Results supported the signal for alteration of natural selection identified in phase 2. We suggest that adaptive evolution of gene regulation has impacted several aspects of pluripotentiality within primates. Our study illustrates that the combination of targeted evolutionary surveys and experimental analysis is an effective strategy for investigating the evolution of gene regulation with respect to developmental phenotypes.
Collapse
|
156
|
Newton MS, Arcus VL, Patrick WM. Rapid bursts and slow declines: on the possible evolutionary trajectories of enzymes. J R Soc Interface 2016; 12:rsif.2015.0036. [PMID: 25926697 DOI: 10.1098/rsif.2015.0036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evolution of enzymes is often viewed as following a smooth and steady trajectory, from barely functional primordial catalysts to the highly active and specific enzymes that we observe today. In this review, we summarize experimental data that suggest a different reality. Modern examples, such as the emergence of enzymes that hydrolyse human-made pesticides, demonstrate that evolution can be extraordinarily rapid. Experiments to infer and resurrect ancient sequences suggest that some of the first organisms present on the Earth are likely to have possessed highly active enzymes. Reconciling these observations, we argue that rapid bursts of strong selection for increased catalytic efficiency are interspersed with much longer periods in which the catalytic power of an enzyme erodes, through neutral drift and selection for other properties such as cellular energy efficiency or regulation. Thus, many enzymes may have already passed their catalytic peaks.
Collapse
Affiliation(s)
- Matilda S Newton
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Vickery L Arcus
- School of Biology, University of Waikato, Hamilton, New Zealand
| | - Wayne M Patrick
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
157
|
Deng X, Pan L, Cai Y, Jin Q. Transcriptomic changes in the ovaries of scallop Chlamys farreri exposed to benzo[a]pyrene. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0397-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
158
|
Swetha CH, Girish BP, Reddy PS. Elucidation of the role of estradiol and progesterone in regulating reproduction in the edible crab, Oziothelphusa senex senex. RSC Adv 2016. [DOI: 10.1039/c5ra23637a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vertebrate sex steroids are ubiquitous and important bioactive mediators for many physiological functions.
Collapse
Affiliation(s)
- CH. Swetha
- Department of Biotechnology
- Sri Venkateswara University
- Tirupati-517 502
- India
- Department of Zoology
| | - B. P. Girish
- Department of Biotechnology
- Sri Venkateswara University
- Tirupati-517 502
- India
- Department of Zoology
| | | |
Collapse
|
159
|
Goldstone JV, Sundaramoorthy M, Zhao B, Waterman MR, Stegeman JJ, Lamb DC. Genetic and structural analyses of cytochrome P450 hydroxylases in sex hormone biosynthesis: Sequential origin and subsequent coevolution. Mol Phylogenet Evol 2016; 94:676-687. [PMID: 26432395 PMCID: PMC4801120 DOI: 10.1016/j.ympev.2015.09.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 07/27/2015] [Accepted: 09/14/2015] [Indexed: 12/14/2022]
Abstract
Biosynthesis of steroid hormones in vertebrates involves three cytochrome P450 hydroxylases, CYP11A1, CYP17A1 and CYP19A1, which catalyze sequential steps in steroidogenesis. These enzymes are conserved in the vertebrates, but their origin and existence in other chordate subphyla (Tunicata and Cephalochordata) have not been clearly established. In this study, selected protein sequences of CYP11A1, CYP17A1 and CYP19A1 were compiled and analyzed using multiple sequence alignment and phylogenetic analysis. Our analyses show that cephalochordates have sequences orthologous to vertebrate CYP11A1, CYP17A1 or CYP19A1, and that echinoderms and hemichordates possess CYP11-like but not CYP19 genes. While the cephalochordate sequences have low identity with the vertebrate sequences, reflecting evolutionary distance, the data show apparent origin of CYP11 prior to the evolution of CYP19 and possibly CYP17, thus indicating a sequential origin of these functionally related steroidogenic CYPs. Co-occurrence of the three CYPs in early chordates suggests that the three genes may have coevolved thereafter, and that functional conservation should be reflected in functionally important residues in the proteins. CYP19A1 has the largest number of conserved residues while CYP11A1 sequences are less conserved. Structural analyses of human CYP11A1, CYP17A1 and CYP19A1 show that critical substrate binding site residues are highly conserved in each enzyme family. The results emphasize that the steroidogenic pathways producing glucocorticoids and reproductive steroids are several hundred million years old and that the catalytic structural elements of the enzymes have been conserved over the same period of time. Analysis of these elements may help to identify when precursor functions linked to these enzymes first arose.
Collapse
Affiliation(s)
- Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | - Bin Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Michael R Waterman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | - David C Lamb
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
160
|
Abstract
Steroid hormones have been in use for more than a half a century as contraceptive agents, and only now are researchers elucidating the biochemical mechanisms of action and non-target effects. Progesterone and synthetic progestins, critical for women's health in the US and internationally, appear to have important effects on immune functioning and other diverse systems. Apart from the contraceptive world is a separate field that is devoted to understanding progesterone in other contexts. Based on research following a development timeline parallel to hormonal contraception, progesterone and 17-hydroxyprogesterone caproate are now administered to prevent preterm birth in high-risk pregnant women. Preterm birth researchers are similarly working to determine the precise biochemical actions and immunological effects of progesterone. Progesterone research in both areas could benefit from increased collaboration and bringing these two bodies of literature together. Progesterone, through actions on various hormone receptors, has lifelong importance in different organ systems and researchers have much to learn about this molecule from the combination of existing literatures, and from future studies that build on this combined knowledge base.
Collapse
Affiliation(s)
- Elizabeth Micks
- Department of Obstetrics and GynecologyUniversity of Washington, Box 356460, 1959 NE Pacific Street, Seattle, Washington, USADepartment of ResearchAmerican College of Obstetricians and Gynecologists, 409 12th Street SW, Washington, District of Columbia, USA
| | - Greta B Raglan
- Department of Obstetrics and GynecologyUniversity of Washington, Box 356460, 1959 NE Pacific Street, Seattle, Washington, USADepartment of ResearchAmerican College of Obstetricians and Gynecologists, 409 12th Street SW, Washington, District of Columbia, USA
| | - Jay Schulkin
- Department of Obstetrics and GynecologyUniversity of Washington, Box 356460, 1959 NE Pacific Street, Seattle, Washington, USADepartment of ResearchAmerican College of Obstetricians and Gynecologists, 409 12th Street SW, Washington, District of Columbia, USA Department of Obstetrics and GynecologyUniversity of Washington, Box 356460, 1959 NE Pacific Street, Seattle, Washington, USADepartment of ResearchAmerican College of Obstetricians and Gynecologists, 409 12th Street SW, Washington, District of Columbia, USA
| |
Collapse
|
161
|
Santiago-Ortiz J, Ojala DS, Westesson O, Weinstein JR, Wong SY, Steinsapir A, Kumar S, Holmes I, Schaffer DV. AAV ancestral reconstruction library enables selection of broadly infectious viral variants. Gene Ther 2015; 22:934-46. [PMID: 26186661 PMCID: PMC4509550 DOI: 10.1038/gt.2015.74] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/22/2015] [Accepted: 07/08/2015] [Indexed: 01/19/2023]
Abstract
Adeno-associated virus (AAV) vectors have achieved clinical efficacy in treating several diseases. However, enhanced vectors are required to extend these landmark successes to other indications and protein engineering approaches may provide the necessary vector improvements to address such unmet medical needs. To generate new capsid variants with potentially enhanced infectious properties and to gain insights into AAV's evolutionary history, we computationally designed and experimentally constructed a putative ancestral AAV library. Combinatorial variations at 32 amino acid sites were introduced to account for uncertainty in their identities. We then analyzed the evolutionary flexibility of these residues, the majority of which have not been previously studied, by subjecting the library to iterative selection on a representative cell line panel. The resulting variants exhibited transduction efficiencies comparable to the most efficient extant serotypes and, in general, ancestral libraries were broadly infectious across the cell line panel, indicating that they favored promiscuity over specificity. Interestingly, putative ancestral AAVs were more thermostable than modern serotypes and did not use sialic acids, galactose or heparan sulfate proteoglycans for cellular entry. Finally, variants mediated 19- to 31-fold higher gene expression in the muscle compared with AAV1, a clinically used serotype for muscle delivery, highlighting their promise for gene therapy.
Collapse
Affiliation(s)
- J Santiago-Ortiz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - D S Ojala
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - O Westesson
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - J R Weinstein
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - S Y Wong
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - A Steinsapir
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - S Kumar
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - I Holmes
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - D V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
162
|
Need EF, Selth LA, Trotta AP, Leach DA, Giorgio L, O'Loughlin MA, Smith E, Gill PG, Ingman WV, Graham JD, Buchanan G. The unique transcriptional response produced by concurrent estrogen and progesterone treatment in breast cancer cells results in upregulation of growth factor pathways and switching from a Luminal A to a Basal-like subtype. BMC Cancer 2015; 15:791. [PMID: 26498662 PMCID: PMC4620010 DOI: 10.1186/s12885-015-1819-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 10/16/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In breast cancer, progesterone receptor (PR) positivity or abundance is positively associated with survival and treatment response. It was initially believed that PR was a useful diagnostic marker of estrogen receptor activity, but increasingly PR has been recognised to play an important biological role in breast homeostasis, carcinogenesis and metastasis. Although PR expression is almost exclusively observed in estrogen receptor positive tumors, few studies have investigated the cellular mechanisms of PR action in the context of ongoing estrogen signalling. METHODS In this study, we contrast PR function in estrogen pretreated ZR-75-1 breast cancer cells with vehicle treated ZR-75-1 and T-47D breast cancer cells using expression microarrays and chromatin immunoprecipitation-sequencing. RESULTS Estrogen cotreatment caused a dramatic increase in the number of genes regulated by progesterone in ZR-75-1 cells. In T-47D cells that have naturally high levels of PR, estrogen and progesterone cotreatment resulted in a reduction in the number of regulated genes in comparison to treatment with either hormone alone. At a genome level, estrogen pretreatment of ZR-75-1 cells led to a 10-fold increase in the number of PR DNA binding sites detected using ChIP-sequencing. Time course assessment of progesterone regulated genes in the context of estrogen pretreatment highlighted a series of important regulatory pathways, including those driven by epithelial growth factor receptor (EGFR). Importantly, progesterone applied to cells pretreated with estradiol resulted in switching of the PAM50-determined intrinsic breast cancer subtype from Luminal A to Basal-like, and increased the Oncotype DX® Unscaled Recurrence Score. CONCLUSION Estrogen pretreatment of breast cancer cells increases PR steady state levels, resulting in an unequivocal progesterone response that upregulates key members of growth factor pathways. The transformative changes progesterone exerts on the breast cancer subtype suggest that these subtyping tools should be used with caution in premenopausal women.
Collapse
Affiliation(s)
- Eleanor F Need
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, The University of Adelaide, DX465701, 28 Woodville Road, Woodville South, 5011, South Australia, Australia.
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories and Adelaide Prostate Cancer Research Centre, The University of Adelaide, Adelaide, South Australia, Australia. .,Freemasons Foundation Centre for Men's Health, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Andrew P Trotta
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, The University of Adelaide, DX465701, 28 Woodville Road, Woodville South, 5011, South Australia, Australia. .,Present address: Icahn School of Medicine at Mount Sinai, Department of Oncological Sciences, Manhattan, New York, USA.
| | - Damien A Leach
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, The University of Adelaide, DX465701, 28 Woodville Road, Woodville South, 5011, South Australia, Australia.
| | - Lauren Giorgio
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, The University of Adelaide, DX465701, 28 Woodville Road, Woodville South, 5011, South Australia, Australia.
| | - Melissa A O'Loughlin
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, The University of Adelaide, DX465701, 28 Woodville Road, Woodville South, 5011, South Australia, Australia.
| | - Eric Smith
- Solid Cancer Regulation Research Group, The Basil Hetzel Institute for Translational Health Research Discipline of Surgery, The University of Adelaide, South Australia, Australia.
| | - Peter G Gill
- School of Medicine, Department of Surgery, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Wendy V Ingman
- School of Medicine at The Queen Elizabeth Hospital, University of Adelaide, South Australia, Australia. .,Robinson Research Institute, University of Adelaide, South Australia, Australia.
| | - J Dinny Graham
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney Medical School, Westmead, New South Wales, 2145, Australia.
| | - Grant Buchanan
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, The University of Adelaide, DX465701, 28 Woodville Road, Woodville South, 5011, South Australia, Australia. .,Freemasons Foundation Centre for Men's Health, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
163
|
Campbell K, Hofreiter M. Resurrecting phenotypes from ancient DNA sequences: promises and perspectives. CAN J ZOOL 2015. [DOI: 10.1139/cjz-2014-0337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anatomical changes in extinct mammalian lineages over evolutionary time, such as the loss of fingers and teeth and the rapid increase in body size that accompanied the late Miocene dispersal of the progenitors of Steller’s sea cows (Hydrodamalis gigas (Zimmermann, 1780)) into North Pacific waters and the convergent development of a thick pelage and accompanying reductions in ear and tail surface area of woolly mammoths (Mammuthus primigenius (Blumenbach, 1799)) and woolly rhinoceros (Coelodonta antiquitatis (Blumenbach, 1799)), are prime examples of adaptive evolution underlying the exploitation of new habitats. It is likely, however, that biochemical specializations adopted during these evolutionary transitions were of similar or even greater biological importance. As these “living” processes do not fossilize, direct information regarding the physiological attributes of extinct species has largely remained beyond the range of scientific inquiry. However, the ability to retrieve genomic sequences from ancient DNA samples, combined with ectopic expression systems, now permit the evolutionary origins and structural and functional properties of authentic prehistoric proteins to be examined in great detail. Exponential technical advances in ancient DNA retrieval, enrichment, and sequencing will soon permit targeted generation of complete genomes from hundreds of extinct species across the last one million years that, in combination with emerging in vitro expression, genome engineering, and cell differentiation techniques, promises to herald an exciting new trajectory of evolutionary research at the interface of biochemistry, genomics, palaeontology, and cell biology.
Collapse
Affiliation(s)
- K.L. Campbell
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - M. Hofreiter
- Faculty of Mathematics and Life Sciences, Institute of Biochemistry and Biology, Unit of General Zoology–Evolutionary Adaptive Genomics, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| |
Collapse
|
164
|
Bar-Rogovsky H, Stern A, Penn O, Kobl I, Pupko T, Tawfik DS. Assessing the prediction fidelity of ancestral reconstruction by a library approach. Protein Eng Des Sel 2015; 28:507-18. [DOI: 10.1093/protein/gzv038] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 07/20/2015] [Indexed: 11/13/2022] Open
|
165
|
Storz JF, Bridgham JT, Kelly SA, Garland T. Genetic approaches in comparative and evolutionary physiology. Am J Physiol Regul Integr Comp Physiol 2015; 309:R197-214. [PMID: 26041111 PMCID: PMC4525326 DOI: 10.1152/ajpregu.00100.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/23/2015] [Indexed: 01/04/2023]
Abstract
Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska;
| | - Jamie T Bridgham
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon
| | - Scott A Kelly
- Department of Zoology, Ohio Wesleyan University, Delaware, Ohio; and
| | - Theodore Garland
- Department of Biology, University of California, Riverside, Riverside, California
| |
Collapse
|
166
|
Prossnitz ER, Arterburn JB. International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators. Pharmacol Rev 2015; 67:505-40. [PMID: 26023144 PMCID: PMC4485017 DOI: 10.1124/pr.114.009712] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein-coupled receptor (GPCR) family (GPR30/G protein-coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| | - Jeffrey B Arterburn
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| |
Collapse
|
167
|
Abstract
Research on bisphenol A (BPA) as an environmental contaminant has now major regulatory implications toward the ecosystem health, and hence it is incumbent on scientists to do their research to the highest standards possible, in order that the most appropriate decisions are made to mitigate the impacts to aquatic wildlife. However, the contribution given so far appears rather fragmented. The present overview aims to collect available information on the effects of BPA on aquatic vertebrates and invertebrates to provide a general scenario and to suggest future developments toward more comprehensive approaches useful for aquatic species protection.
Collapse
Affiliation(s)
- Laura Canesi
- Department of Earth, Environment and Life Sciences, University of Genoa, Genova, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Campus of Ravenna, Ravenna, Italy
| |
Collapse
|
168
|
Abstract
High-throughput sequencing has enabled many powerful approaches in biological research. Here, we review sequencing approaches to measure frequency changes within engineered mutational libraries subject to selection. These analyses can provide direct estimates of biochemical and fitness effects for all individual mutations across entire genes (and likely compact genomes in the near future) in genetically tractable systems such as microbes, viruses, and mammalian cells. The effects of mutations on experimental fitness can be assessed using sequencing to monitor time-dependent changes in mutant frequency during bulk competitions. The impact of mutations on biochemical functions can be determined using reporters or other means of separating variants based on individual activities (e.g., binding affinity for a partner molecule can be interrogated using surface display of libraries of mutant proteins and isolation of bound and unbound populations). The comprehensive investigation of mutant effects on both biochemical function and experimental fitness provide promising new avenues to investigate the connections between biochemistry, cell physiology, and evolution. We summarize recent findings from systematic mutational analyses; describe how they relate to a field rich in both theory and experimentation; and highlight how they may contribute to ongoing and future research into protein structure-function relationships, systems-level descriptions of cell physiology, and population-genetic inferences on the relative contributions of selection and drift.
Collapse
|
169
|
Merlin J, Mohanlal D, Balasubramanian C, Sherly T, Subramoniam T, Syamadayal J, Ravichandran P, Ponniah A, Gopal C, Vijayan K. Induction of vitellogenesis and reproductive maturation in tiger shrimp,Penaeus monodonby 17ß-estradiol and 17α-hydroxyprogesterone:in vivoandin vitrostudies. INVERTEBR REPROD DEV 2015. [DOI: 10.1080/07924259.2015.1051192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
170
|
Agafonov RV, Wilson C, Kern D. Evolution and intelligent design in drug development. Front Mol Biosci 2015; 2:27. [PMID: 26052517 PMCID: PMC4440380 DOI: 10.3389/fmolb.2015.00027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/08/2015] [Indexed: 12/15/2022] Open
Abstract
Sophisticated protein kinase networks, empowering complexity in higher organisms, are also drivers of devastating diseases such as cancer. Accordingly, these enzymes have become major drug targets of the twenty-first century. However, the holy grail of designing specific kinase inhibitors aimed at specific cancers has not been found. Can new approaches in cancer drug design help win the battle with this multi-faced and quickly evolving enemy? In this perspective we discuss new strategies and ideas that were born out of a recent breakthrough in understanding the molecular basis underlying the clinical success of the cancer drug Gleevec. An "old" method, stopped-flow kinetics, combined with old enzymes, the ancestors dating back up to about billion years, provides an unexpected outlook for future intelligent design of drugs.
Collapse
Affiliation(s)
| | | | - Dorothee Kern
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis UniversityWaltham, MA, USA
| |
Collapse
|
171
|
Morange M. Synthetic Biology: A Bridge Between Functional and Evolutionary Biology. ACTA ACUST UNITED AC 2015. [DOI: 10.1162/biot_a_00003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
172
|
Nagasawa K, Treen N, Kondo R, Otoki Y, Itoh N, Rotchell JM, Osada M. Molecular characterization of an estrogen receptor and estrogen-related receptor and their autoregulatory capabilities in two Mytilus species. Gene 2015; 564:153-9. [PMID: 25862924 DOI: 10.1016/j.gene.2015.03.073] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/27/2015] [Accepted: 03/03/2015] [Indexed: 12/23/2022]
Abstract
Vertebrate-like sex steroid hormones have been widely detected in mollusks, and numerous experiments have shown the importance of steroids in gonad development. Nevertheless, their signaling pathways in invertebrates have not been uncovered yet. Steroid receptors are an ancient class of transcription factors with multiple roles in not only vertebrates but also invertebrates. Estrogen signaling is thought to have major roles in mollusk physiology, but the full repertoire of estrogen receptors is unknown. We presented the successful cloning of two novel forms of estrogen receptor-like genes. These receptors are present in two closely related species of Mytilus: Mytilus edulis and Mytilus galloprovincialis, commonly known and widely distributed sentinel species. Our phylogenetic analysis revealed that one of these receptors is an estrogen receptor (ER) and the other one is an estrogen-related receptor (ERR). Studies of expression analysis showed that both receptor mRNAs were localized in the oocytes and follicle cells in contact with developing oocytes in the ovary and Sertoli cells in the testis, and in the ciliated cells of the gill. In addition, we have evidence that one (ER) of these may have a capacity to autoregulate its own expression in the gonadal cells by estrogen (E2) and that this gene is responsive to estrogenic compounds.
Collapse
Affiliation(s)
- Kazue Nagasawa
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Sendai 981-8555, Japan
| | - Nicholas Treen
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Reki Kondo
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Sendai 981-8555, Japan
| | - Yurika Otoki
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Sendai 981-8555, Japan
| | - Naoki Itoh
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Sendai 981-8555, Japan
| | - Jeanette M Rotchell
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Cottingham Rd, Hull HU6 7RX, UK
| | - Makoto Osada
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Sendai 981-8555, Japan.
| |
Collapse
|
173
|
Kaur S, Jobling S, Jones CS, Noble LR, Routledge EJ, Lockyer AE. The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: implications for developing new model organisms. PLoS One 2015; 10:e0121259. [PMID: 25849443 PMCID: PMC4388693 DOI: 10.1371/journal.pone.0121259] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/29/2015] [Indexed: 02/01/2023] Open
Abstract
Nuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.
Collapse
Affiliation(s)
- Satwant Kaur
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Susan Jobling
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Catherine S. Jones
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Leslie R. Noble
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Edwin J. Routledge
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Anne E. Lockyer
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
- * E-mail:
| |
Collapse
|
174
|
Janesick A, Wu SC, Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 2015; 72:1559-76. [PMID: 25558812 PMCID: PMC11113123 DOI: 10.1007/s00018-014-1815-9] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 01/13/2023]
Abstract
The identification of neurological symptoms caused by vitamin A deficiency pointed to a critical, early developmental role of vitamin A and its metabolite, retinoic acid (RA). The ability of RA to induce post-mitotic, neural phenotypes in various stem cells, in vitro, served as early evidence that RA is involved in the switch between proliferation and differentiation. In vivo studies have expanded this "opposing signal" model, and the number of primary neurons an embryo develops is now known to depend critically on the levels and spatial distribution of RA. The proneural and neurogenic transcription factors that control the exit of neural progenitors from the cell cycle and allow primary neurons to develop are partly elucidated, but the downstream effectors of RA receptor (RAR) signaling (many of which are putative cell cycle regulators) remain largely unidentified. The molecular mechanisms underlying RA-induced primary neurogenesis in anamniote embryos are starting to be revealed; however, these data have been not been extended to amniote embryos. There is growing evidence that bona fide RARs are found in some mollusks and other invertebrates, but little is known about their necessity or functions in neurogenesis. One normal function of RA is to regulate the cell cycle to halt proliferation, and loss of RA signaling is associated with dedifferentiation and the development of cancer. Identifying the genes and pathways that mediate cell cycle exit downstream of RA will be critical for our understanding of how to target tumor differentiation. Overall, elucidating the molecular details of RAR-regulated neurogenesis will be decisive for developing and understanding neural proliferation-differentiation switches throughout development.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
| | - Stephanie Cherie Wu
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
- Department of Pharmaceutical Sciences, University of California, Irvine, USA
| |
Collapse
|
175
|
Lei K, Liu R, An LH, Luo YF, LeBlanc GA. Estrogen alters the profile of the transcriptome in river snail Bellamya aeruginosa. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:330-338. [PMID: 25398503 DOI: 10.1007/s10646-014-1381-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
We evaluated the transcriptome dynamics of the freshwater river snail Bellamya aeruginosa exposed to 17β-estradiol (E2) using the Roche/454 GS-FLX platform. In total, 41,869 unigenes, with an average length of 586 bp, representing 36,181 contigs and 5,688 singlets were obtained. Among them, 18.08, 36.85, and 25.47 % matched sequences in the GenBank non-redundant nucleic acid database, non-redundant protein database, and Swiss protein database, respectively. Annotation of the unigenes with gene ontology, and then mapping them to biological pathways, revealed large groups of genes related to growth, development, reproduction, signal transduction, and defense mechanisms. Significant differences were found in gene expression in both liver and testicular tissues between control and E2-exposed organisms. These changes in gene expression will help in understanding the molecular mechanisms of the response to physiological stress in the river snail exposed to estrogen, and will facilitate research into biological processes and underlying physiological adaptations to xenoestrogen exposure in gastropods.
Collapse
Affiliation(s)
- Kun Lei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, No. 8, Da-Yang-Fang, An-Wai-Bei-Yuan Rd., Chao-yang District, Beijing, 100012, China
| | | | | | | | | |
Collapse
|
176
|
Abstract
The molecular mechanisms controlling human birth timing at term, or resulting in preterm birth, have been the focus of considerable investigation, but limited insights have been gained over the past 50 years. In part, these processes have remained elusive because of divergence in reproductive strategies and physiology shown by model organisms, making extrapolation to humans uncertain. Here, we summarize the evolution of progesterone signaling and variation in pregnancy maintenance and termination. We use this comparative physiology to support the hypothesis that selective pressure on genomic loci involved in the timing of parturition have shaped human birth timing, and that these loci can be identified with comparative genomic strategies. Previous limitations imposed by divergence of mechanisms provide an important new opportunity to elucidate fundamental pathways of parturition control through increasing availability of sequenced genomes and associated reproductive physiology characteristics across diverse organisms.
Collapse
Affiliation(s)
- Kayleigh A Swaggart
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Mihaela Pavlicev
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Louis J Muglia
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| |
Collapse
|
177
|
Bennesch MA, Picard D. Minireview: Tipping the balance: ligand-independent activation of steroid receptors. Mol Endocrinol 2015; 29:349-63. [PMID: 25625619 DOI: 10.1210/me.2014-1315] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Steroid receptors are prototypical ligand-dependent transcription factors and a textbook example for allosteric regulation. According to this canonical model, binding of cognate steroid is an absolute requirement for transcriptional activation. Remarkably, the simple one ligand-one receptor model could not be farther from the truth. Steroid receptors, notably the sex steroid receptors, can receive multiple inputs. Activation of steroid receptors by other signals, working through their own signaling pathways, in the absence of the cognate steroids, represents the most extreme form of signaling cross talk. Compared with cognate steroids, ligand-independent activation pathways produce similar but not identical outputs. Here we review the phenomena and discuss what is known about the underlying molecular mechanisms and the biological significance. We hypothesize that steroid receptors may have evolved to be trigger happy. In addition to their cognate steroids, many posttranslational modifications and interactors, modulated by other signals, may be able to tip the balance.
Collapse
Affiliation(s)
- Marcela A Bennesch
- Département de Biologie Cellulaire, Université de Genève, Sciences III, CH-1211 Genève 4, Switzerland
| | | |
Collapse
|
178
|
Nikoleris L, Hansson MC. Unraveling the estrogen receptor (er) genes in Atlantic salmon (Salmo salar) reveals expression differences between the two adult life stages but little impact from polychlorinated biphenyl (PCB) load. Mol Cell Endocrinol 2015; 400:10-20. [PMID: 25451980 DOI: 10.1016/j.mce.2014.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 11/30/2022]
Abstract
Estrogen receptors (ers) not only are activated by hormones but also interact with many human-derived environmental contaminants. Here, we present evidence for four expressed er genes in Atlantic salmon cDNA - two more ers (erα2 and erβ2) than previously published. To determine if er gene expression differs between two adult life-stages we sampled 20 adult salmon from the feeding phase in the Baltic Sea and during migration in the River Mörrum, Sweden. Results show that all four er genes are present in the investigated tissues, except for erα2 not appearing in the spleen. Overall, a profile analysis reveals the erα1 gene to be the most highly expressed er gene in both female and male Baltic Sea salmon tissues, and also in female River Mörrum salmon. In contrast, this gene has the lowest gene expression level of the four er genes in male salmon from the River Mörrum. The erα2 gene is expressed at the lowest levels in both female/male Baltic Sea salmon and in female River Mörrum salmon. Statistical analyses indicate a significant and complex interaction where both sex and adult life stage can impact er gene expression. Regression analyses did not demonstrate any significant relationship between polychlorinated biphenyl (PCB) body burden and er gene expression level, suggesting that accumulated pollutants from the Baltic Sea may be deactivated inside the salmon's lipid tissues and have limited impact on er activity. This study is the first comprehensive analysis of four er gene expression levels in two wild salmon populations from two different adult life stages where information about PCB load is also available.
Collapse
Affiliation(s)
- Lina Nikoleris
- Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden; Center for Environmental and Climate Research (CEC), Lund University, SE-223 62 Lund, Sweden.
| | - Maria C Hansson
- Center for Environmental and Climate Research (CEC), Lund University, SE-223 62 Lund, Sweden
| |
Collapse
|
179
|
Huerta B, Jakimska A, Llorca M, Ruhí A, Margoutidis G, Acuña V, Sabater S, Rodriguez-Mozaz S, Barcelò D. Development of an extraction and purification method for the determination of multi-class pharmaceuticals and endocrine disruptors in freshwater invertebrates. Talanta 2015; 132:373-81. [DOI: 10.1016/j.talanta.2014.09.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/03/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
|
180
|
An LH, Zheng BH, Liu RZ, Fan Q, Wang QK, Luo YF. Transcriptomic response to estrogen exposure in the male Zhikong scallop, Chlamys farreri. MARINE POLLUTION BULLETIN 2014; 89:59-66. [PMID: 25455372 DOI: 10.1016/j.marpolbul.2014.10.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/10/2014] [Accepted: 10/16/2014] [Indexed: 06/04/2023]
Abstract
The transcriptomes of Zhikong scallop exposed to 17β-estradiol were determined using the Roche/454. A total of 51,997 unigenes, representing 45,030 contigs and 6967 singlets were obtained. And 14,028, 19,798 and 14,981 of these unigenes were annotated from the non-redundant nucleic acid database, non-redundant protein database and Swiss protein database, respectively. A total of 10,699 unigenes were further annotated to biological processes (9080), molecular functions (8692) and cellular components (7829) using the GO, and 8945 unigenes were mapped to biological pathways including the metabolism (2862) and genetic information processing (2263). Most importantly, 16,692 unigenes and 18,686 unigenes in testis, and 10,492 unigenes and 13,186 unigenes in digestive gland were up-regulated significantly after exposure to 50 and 500 ng E2/L; while 10,212 unigenes and 9409 unigenes in testis and 10,629 unigenes and 9463 unigenes in digestive gland were down-regulated. These valuable information provides insights into the mechanisms in invertebrate exposure to EDCs.
Collapse
Affiliation(s)
- Li-Hui An
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bing-Hui Zheng
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Rui-Zhi Liu
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiang Fan
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Tianjin Agricultural College, Tianjin 300384, China
| | | | - Ying-Feng Luo
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
181
|
Carter CJ, Rand C, Mohammad I, Lepp A, Vesprini N, Wiebe O, Carlone R, Spencer GE. Expression of a retinoic acid receptor (RAR)-like protein in the embryonic and adult nervous system of a protostome species. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:51-67. [DOI: 10.1002/jez.b.22604] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/18/2014] [Indexed: 01/08/2023]
Affiliation(s)
| | - Christopher Rand
- Department of Biological Sciences; Brock University; Ontario Canada
| | - Imtiaz Mohammad
- Department of Biological Sciences; Brock University; Ontario Canada
| | - Amanda Lepp
- Department of Biological Sciences; Brock University; Ontario Canada
| | | | - Olivia Wiebe
- Department of Biological Sciences; Brock University; Ontario Canada
| | - Robert Carlone
- Department of Biological Sciences; Brock University; Ontario Canada
| | | |
Collapse
|
182
|
Gutierrez-Mazariegos J, Schubert M, Laudet V. Evolution of retinoic acid receptors and retinoic acid signaling. Subcell Biochem 2014; 70:55-73. [PMID: 24962881 DOI: 10.1007/978-94-017-9050-5_4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Retinoic acid (RA) is a vitamin A-derived morphogen controlling important developmental processes in vertebrates, and more generally in chordates, including axial patterning and tissue formation and differentiation. In the embryo, endogenous RA levels are controlled by RA synthesizing and degrading enzymes and the RA signal is transduced by two retinoid receptors: the retinoic acid receptor (RAR) and the retinoid X receptor (RXR). Both RAR and RXR are members of the nuclear receptor superfamily of ligand-activated transcription factors and mainly act as heterodimers to activate the transcription of target genes in the presence of their ligand, all-trans RA. This signaling pathway was long thought to be a chordate innovation, however, recent findings of gene homologs involved in RA signaling in the genomes of a wide variety of non-chordate animals, including ambulacrarians (sea urchins and acorn worms) and lophotrochozoans (annelids and mollusks), challenged this traditional view and suggested that the RA signaling pathway might have a more ancient evolutionary origin than previously thought. In this chapter, we discuss the evolutionary history of the RA signaling pathway, and more particularly of the RARs, which might have experienced independent gene losses and duplications in different animal lineages. In sum, the available data reveal novel insights into the origin of the RA signaling pathway as well as into the evolutionary history of the RARs.
Collapse
Affiliation(s)
- Juliana Gutierrez-Mazariegos
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364, Lyon Cedex 07, France,
| | | | | |
Collapse
|
183
|
Gutierrez-Mazariegos J, Nadendla EK, Lima D, Pierzchalski K, Jones JW, Kane M, Nishikawa JI, Hiromori Y, Nakanishi T, Santos MM, Castro LFC, Bourguet W, Schubert M, Laudet V. A mollusk retinoic acid receptor (RAR) ortholog sheds light on the evolution of ligand binding. Endocrinology 2014; 155:4275-86. [PMID: 25116705 PMCID: PMC4197984 DOI: 10.1210/en.2014-1181] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/06/2014] [Indexed: 11/19/2022]
Abstract
Nuclear receptors are transcription factors that regulate networks of target genes in response to small molecules. There is a strong bias in our knowledge of these receptors because they were mainly characterized in classical model organisms, mostly vertebrates. Therefore, the evolutionary origins of specific ligand-receptor couples still remain elusive. Here we present the identification and characterization of a retinoic acid receptor (RAR) from the mollusk Nucella lapillus (NlRAR). We show that this receptor specifically binds to DNA response elements organized in direct repeats as a heterodimer with retinoid X receptor. Surprisingly, we also find that NlRAR does not bind all-trans retinoic acid or any other retinoid we tested. Furthermore, NlRAR is unable to activate the transcription of reporter genes in response to stimulation by retinoids and to recruit coactivators in the presence of these compounds. Three-dimensional modeling of the ligand-binding domain of NlRAR reveals an overall structure that is similar to vertebrate RARs. However, in the ligand-binding pocket (LBP) of the mollusk receptor, the alteration of several residues interacting with the ligand has apparently led to an overall decrease in the strength of the interaction with the ligand. Accordingly, mutations of NlRAR at key positions within the LBP generate receptors that are responsive to retinoids. Altogether our data suggest that, in mollusks, RAR has lost its affinity for all-trans retinoic acid, highlighting the evolutionary plasticity of its LBP. When put in an evolutionary context, our results reveal new structural and functional features of nuclear receptors validated by millions of years of evolution that were impossible to reveal in model organisms.
Collapse
Affiliation(s)
- Juliana Gutierrez-Mazariegos
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Eswar Kumar Nadendla
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Daniela Lima
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Keely Pierzchalski
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Jace W. Jones
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Maureen Kane
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Jun-Ichi Nishikawa
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Youhei Hiromori
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Tsuyoshi Nakanishi
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Miguel M. Santos
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - L. Filipe C. Castro
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - William Bourguet
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | | | | |
Collapse
|
184
|
Howard CJ, Hanson-Smith V, Kennedy KJ, Miller CJ, Lou HJ, Johnson AD, Turk BE, Holt LJ. Ancestral resurrection reveals evolutionary mechanisms of kinase plasticity. eLife 2014; 3:e04126. [PMID: 25310241 PMCID: PMC4228266 DOI: 10.7554/elife.04126] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/09/2014] [Indexed: 01/02/2023] Open
Abstract
Protein kinases have evolved diverse specificities to enable cellular information processing. To gain insight into the mechanisms underlying kinase diversification, we studied the CMGC protein kinases using ancestral reconstruction. Within this group, the cyclin dependent kinases (CDKs) and mitogen activated protein kinases (MAPKs) require proline at the +1 position of their substrates, while Ime2 prefers arginine. The resurrected common ancestor of CDKs, MAPKs, and Ime2 could phosphorylate substrates with +1 proline or arginine, with preference for proline. This specificity changed to a strong preference for +1 arginine in the lineage leading to Ime2 via an intermediate with equal specificity for proline and arginine. Mutant analysis revealed that a variable residue within the kinase catalytic cleft, DFGx, modulates +1 specificity. Expansion of Ime2 kinase specificity by mutation of this residue did not cause dominant deleterious effects in vivo. Tolerance of cells to new specificities likely enabled the evolutionary divergence of kinases.
Collapse
Affiliation(s)
- Conor J Howard
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Victor Hanson-Smith
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Kristopher J Kennedy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Chad J Miller
- Department of Pharmacology, Yale University School of Medicine, New Haven, United States
| | - Hua Jane Lou
- Department of Pharmacology, Yale University School of Medicine, New Haven, United States
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, United States
| | - Liam J Holt
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
185
|
Hapangama D, Kamal A, Bulmer J. Estrogen receptor β: the guardian of the endometrium. Hum Reprod Update 2014; 21:174-93. [DOI: 10.1093/humupd/dmu053] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
186
|
Carter CW. Urzymology: experimental access to a key transition in the appearance of enzymes. J Biol Chem 2014; 289:30213-30220. [PMID: 25210034 DOI: 10.1074/jbc.r114.567495] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Urzymes are catalysts derived from invariant cores of protein superfamilies. Urzymes from both aminoacyl-tRNA synthetase classes possess sophisticated catalytic mechanisms: pre-steady state bursts, significant transition-state stabilization of both amino acid activation, and tRNA acylation. However, they have insufficient specificity to ensure a fully developed genetic code, suggesting that they participated in synthesizing statistical proteins. They represent a robust experimental platform from which to articulate and test hypotheses both about their own ancestors and about how they, in turn, evolved into modern enzymes. They help reshape numerous paradigms from the RNA World hypothesis to protein structure databases and allostery.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260.
| |
Collapse
|
187
|
Dominguez GA, Bisesi JH, Kroll KJ, Denslow ND, Sabo-Attwood T. Control of transcriptional repression of the vitellogenin receptor gene in largemouth bass (Micropterus salmoides) by select estrogen receptors isotypes. Toxicol Sci 2014; 141:423-31. [PMID: 25061109 DOI: 10.1093/toxsci/kfu145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The vitellogenin receptor (Vtgr) plays an important role in fish reproduction. This receptor functions to incorporate vitellogenin (Vtg), a macromolecule synthesized and released from the liver in the bloodstream, into oocytes where it is processed into yolk. Although studies have focused on the functional role of Vtgr in fish, the mechanistic control of this gene is still unexplored. Here we report the identification and analysis of the first piscine 5' regulatory region of the vtgr gene which was cloned from largemouth bass (Micropterus salmoides). Using this putative promoter sequence, we investigated a role for hormones, including insulin and 17β-estradiol (E2), in transcriptional regulation through cell-based reporter assays. No effect of insulin was observed, however, E2 was able to repress transcriptional activity of the vtgr promoter through select estrogen receptor subtypes, Esr1 and Esr2a but not Esr2b. Electrophoretic mobility shift assay demonstrated that Esr1 likely interacts with the vtgr promoter region through half ERE and/or SP1 sites, in part. Finally we also show that ethinylestradiol (EE2), but not bisphenol-A (BPA), represses promoter activity similarly to E2. These results reveal for the first time that the Esr1 isoform may play an inhibitory role in the expression of LMB vtgr mRNA under the influence of E2, and potent estrogens such as EE2. In addition, this new evidence suggests that vtgr may be a target of select endocrine disrupting compounds through environmental exposures.
Collapse
Affiliation(s)
- Gustavo A Dominguez
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208 Department of Environmental and Global Health, University of Florida, Gainesville, Florida 32610
| | - Joseph H Bisesi
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208 Department of Environmental and Global Health, University of Florida, Gainesville, Florida 32610 Department of Physiological Sciences, University of Florida, Gainesville, Florida 32611
| | - Kevin J Kroll
- Department of Physiological Sciences, University of Florida, Gainesville, Florida 32611
| | - Nancy D Denslow
- Department of Physiological Sciences, University of Florida, Gainesville, Florida 32611
| | - Tara Sabo-Attwood
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208 Department of Environmental and Global Health, University of Florida, Gainesville, Florida 32610 Department of Physiological Sciences, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
188
|
Tubbs C, McDonough CE, Felton R, Milnes MR. Advances in conservation endocrinology: the application of molecular approaches to the conservation of endangered species. Gen Comp Endocrinol 2014; 203:29-34. [PMID: 24613137 DOI: 10.1016/j.ygcen.2014.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/07/2014] [Accepted: 02/09/2014] [Indexed: 01/31/2023]
Abstract
Among the numerous societal benefits of comparative endocrinology is the application of our collective knowledge of hormone signaling towards the conservation of threatened and endangered species - conservation endocrinology. For several decades endocrinologists have used longitudinal hormone profiles to monitor reproductive status in a multitude of species. Knowledge of reproductive status among individuals has been used to assist in the management of captive and free-ranging populations. More recently, researchers have begun utilizing molecular and cell-based techniques to gain a more complete understanding of hormone signaling in wildlife species, and to identify potential causes of disrupted hormone signaling. In this review we examine various in vitro approaches we have used to compare estrogen receptor binding and activation by endogenous hormones and phytoestrogens in two species of rhinoceros; southern white and greater one-horned. We have found many of these techniques valuable and practical in species where access to research subjects and/or tissues is limited due to their conservation status. From cell-free, competitive binding assays to full-length receptor activation assays; each technique has strengths and weaknesses related to cost, sensitivity, complexity of the protocols, and relevance to in vivo signaling. We then present a novel approach, in which receptor activation assays are performed in primary cell lines derived from the species of interest, to minimize the artifacts of traditional heterologous expression systems. Finally, we speculate on the promise of next generation sequencing and transcriptome profiling as tools for characterizing hormone signaling in threatened and endangered species.
Collapse
Affiliation(s)
- Christopher Tubbs
- San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92027, United States.
| | - Caitlin E McDonough
- San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92027, United States
| | - Rachel Felton
- San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92027, United States
| | - Matthew R Milnes
- Mars Hill University, PO Box 6671, 100 Athletic Street, Mars Hill, NC 28754, United States.
| |
Collapse
|
189
|
Nuclear receptors in nematode development: Natural experiments made by a phylum. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:224-37. [PMID: 24984201 DOI: 10.1016/j.bbagrm.2014.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/21/2022]
Abstract
The development of complex multicellular organisms is dependent on regulatory decisions that are necessary for the establishment of specific differentiation and metabolic cellular states. Nuclear receptors (NRs) form a large family of transcription factors that play critical roles in the regulation of development and metabolism of Metazoa. Based on their DNA binding and ligand binding domains, NRs are divided into eight NR subfamilies from which representatives of six subfamilies are present in both deuterostomes and protostomes indicating their early evolutionary origin. In some nematode species, especially in Caenorhabditis, the family of NRs expanded to a large number of genes strikingly exceeding the number of NR genes in vertebrates or insects. Nematode NRs, including the multiplied Caenorhabditis genes, show clear relation to vertebrate and insect homologues belonging to six of the eight main NR subfamilies. This review summarizes advances in research of nematode NRs and their developmental functions. Nematode NRs can reveal evolutionarily conserved mechanisms that regulate specific developmental and metabolic processes as well as new regulatory adaptations. They represent the results of a large number of natural experiments with structural and functional potential of NRs for the evolution of the phylum. The conserved and divergent character of nematode NRs adds a new dimension to our understanding of the general biology of regulation by NRs. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
|
190
|
Carter CW, Li L, Weinreb V, Collier M, Gonzalez-Rivera K, Jimenez-Rodriguez M, Erdogan O, Kuhlman B, Ambroggio X, Williams T, Chandrasekharan SN. The Rodin-Ohno hypothesis that two enzyme superfamilies descended from one ancestral gene: an unlikely scenario for the origins of translation that will not be dismissed. Biol Direct 2014; 9:11. [PMID: 24927791 PMCID: PMC4082485 DOI: 10.1186/1745-6150-9-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/19/2014] [Indexed: 01/19/2023] Open
Abstract
Background Because amino acid activation is rate-limiting for uncatalyzed protein synthesis, it is a key puzzle in understanding the origin of the genetic code. Two unrelated classes (I and II) of contemporary aminoacyl-tRNA synthetases (aaRS) now translate the code. Observing that codons for the most highly conserved, Class I catalytic peptides, when read in the reverse direction, are very nearly anticodons for Class II defining catalytic peptides, Rodin and Ohno proposed that the two superfamilies descended from opposite strands of the same ancestral gene. This unusual hypothesis languished for a decade, perhaps because it appeared to be unfalsifiable. Results The proposed sense/antisense alignment makes important predictions. Fragments that align in antiparallel orientations, and contain the respective active sites, should catalyze the same two reactions catalyzed by contemporary synthetases. Recent experiments confirmed that prediction. Invariant cores from both classes, called Urzymes after Ur = primitive, authentic, plus enzyme and representing ~20% of the contemporary structures, can be expressed and exhibit high, proportionate rate accelerations for both amino-acid activation and tRNA acylation. A major fraction (60%) of the catalytic rate acceleration by contemporary synthetases resides in segments that align sense/antisense. Bioinformatic evidence for sense/antisense ancestry extends to codons specifying the invariant secondary and tertiary structures outside the active sites of the two synthetase classes. Peptides from a designed, 46-residue gene constrained by Rosetta to encode Class I and II ATP binding sites with fully complementary sequences both accelerate amino acid activation by ATP ~400 fold. Conclusions Biochemical and bioinformatic results substantially enhance the posterior probability that ancestors of the two synthetase classes arose from opposite strands of the same ancestral gene. The remarkable acceleration by short peptides of the rate-limiting step in uncatalyzed protein synthesis, together with the synergy of synthetase Urzymes and their cognate tRNAs, introduce a new paradigm for the origin of protein catalysts, emphasize the potential relevance of an operational RNA code embedded in the tRNA acceptor stems, and challenge the RNA-World hypothesis. Reviewers This article was reviewed by Dr. Paul Schimmel (nominated by Laura Landweber), Dr. Eugene Koonin and Professor David Ardell.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, CB 7260 University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Vogeler S, Galloway TS, Lyons BP, Bean TP. The nuclear receptor gene family in the Pacific oyster, Crassostrea gigas, contains a novel subfamily group. BMC Genomics 2014; 15:369. [PMID: 24885009 PMCID: PMC4070562 DOI: 10.1186/1471-2164-15-369] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 04/30/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Nuclear receptors are a superfamily of transcription factors important in key biological, developmental and reproductive processes. Several of these receptors are ligand- activated and through their ability to bind endogenous and exogenous ligands, are potentially vulnerable to xenobiotics. Molluscs are key ecological species in defining aquatic and terrestrial habitats and are sensitive to xenobiotic compounds in the environment. However, the understanding of nuclear receptor presence, function and xenobiotic disruption in the phylum Mollusca is limited. RESULTS Here, forty-three nuclear receptor sequences were mined from the genome of the Pacific oyster, Crassostrea gigas. They include members of NR0-NR5 subfamilies, notably lacking any NR6 members. Phylogenetic analyses of the oyster nuclear receptors have been conducted showing the presence of a large novel subfamily group not previously reported, which is named NR1P. Homologues to all previous identified nuclear receptors in other mollusc species have also been determined including the putative heterodimer partner retinoid X receptor, estrogen receptor and estrogen related receptor. CONCLUSION C. gigas contains a highly diverse set of nuclear receptors including a novel NR1 group, which provides important information on presence and evolution of this transcription factor superfamily in invertebrates. The Pacific oyster possesses two members of NR3, the sex steroid hormone receptor analogues, of which there are 9 in humans. This provides increasing evidence that steroid ligand specific expansion of this family is deuterostome specific. This new knowledge on divergence and emergence of nuclear receptors in C. gigas provides essential information for studying regulation of molluscan gene expression and the potential effects of xenobiotics.
Collapse
Affiliation(s)
- Susanne Vogeler
- />School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
- />Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Tamara S Galloway
- />School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| | - Brett P Lyons
- />Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Tim P Bean
- />Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| |
Collapse
|
192
|
Lathe R, Kotelevtsev Y. Steroid signaling: ligand-binding promiscuity, molecular symmetry, and the need for gating. Steroids 2014; 82:14-22. [PMID: 24462647 DOI: 10.1016/j.steroids.2014.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 12/03/2013] [Accepted: 01/06/2014] [Indexed: 11/28/2022]
Abstract
Steroid/sterol-binding receptors and enzymes are remarkably promiscuous in the range of ligands they can bind to and, in the case of enzymes, modify - raising the question of how specific receptor activation is achieved in vivo. Estrogen receptors (ER) are modulated by 27-hydroxycholesterol and 5α-androstane-3β,17β-diol (Adiol), in addition to estradiol (E2), and respond to diverse small molecules such as bisphenol A. Steroid-modifying enzymes are also highly promiscuous in ligand binding and metabolism. The specificity problem is compounded by the fact that the steroid core (hydrogenated cyclopentophenanthrene ring system) has several planes of symmetry. Ligand binding can be in symmetrical East-West (rotation) and North-South (inversion) orientations. Hydroxysteroid dehydrogenases (HSDs) can modify symmetrical 7 and 11, also 3 and 17/20, positions, exemplified here by yeast 3α,20β-HSD and mammalian 11β-HSD and 17β-HSD enzymes. Faced with promiscuity and symmetry, other strategies are clearly necessary to promote signaling selectivity in vivo. Gating regulates hormone access via enzymes that preferentially inactivate (or activate) a subclass of ligands, thereby governing which ligands gain receptor access - exemplified by 11β-HSD gating cortisol access to the mineralocorticoid receptor, and P450 CYP7B1 gating Adiol access to ER. Counter-intuitively, the specificity of steroid/sterol action is achieved not by intrinsic binding selectivity but by the combination of local metabolism and binding affinity.
Collapse
Affiliation(s)
- Richard Lathe
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia; Pushchino Branch of the Institute of Bio-Organic Chemistry, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia; Pieta Research, PO Box 27069, Edinburgh EH10 5YW, UK.
| | - Yuri Kotelevtsev
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia; Pushchino Branch of the Institute of Bio-Organic Chemistry, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia; Biomedical Centre for Research Education and Innovation (CREI), Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia; Queens Medical Research Institute, University of Edinburgh, Little France, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
193
|
Weng JK. The evolutionary paths towards complexity: a metabolic perspective. THE NEW PHYTOLOGIST 2014; 201:1141-9. [PMID: 23889087 DOI: 10.1111/nph.12416] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/20/2013] [Indexed: 05/22/2023]
Abstract
As sessile organisms, land plants have exploited their metabolic systems to produce a panoply of structurally and functionally diverse natural chemicals and polymers to adapt to challenging ecosystems. Many of these core and specialized metabolites confer chemical shields against a multitude of abiotic stresses, while others play important roles in plants' interactions with their biotic environments. Plant specialized metabolites can be viewed as complex traits in the sense that the biosynthesis of these molecules typically requires multistep metabolic pathways comprising numerous specific enzymes belonging to diverse protein fold families. Resolving the evolutionary trajectories underlying the emergence of these specialized metabolic pathways will impact a fundamental question in biology – how do complex traits evolve in a Darwinian fashion? Here, I discuss several general patterns observed in rapidly evolving specialized metabolic systems in plants, and surmise mechanistic features at enzyme, pathway and organismal levels that rationalize the remarkable malleability of these systems through stepwise evolution. Future studies, focused on fine sampling of metabolic enzymes and pathways in phylogenetically related plant species, or employing directed evolution strategies in synthetic systems, will significantly broaden our perspective on how biological complexity arises at the metabolic level.
Collapse
|
194
|
Lidke AK, Bannister S, Löwer AM, Apel DM, Podleschny M, Kollmann M, Ackermann CF, García-Alonso J, Raible F, Rebscher N. 17β-Estradiol induces supernumerary primordial germ cells in embryos of the polychaete Platynereis dumerilii. Gen Comp Endocrinol 2014; 196:52-61. [PMID: 24287341 DOI: 10.1016/j.ygcen.2013.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/01/2013] [Accepted: 11/14/2013] [Indexed: 01/14/2023]
Abstract
In the polychaete Platynereis dumerilii exactly four primordial germ cells (PGCs) arise in early development and are subject to a transient mitotic arrest until the animals enter gametogenesis. In order to unravel the mechanisms controlling the number of PGCs in Platynereis, we tested whether the steroid 17β-estradiol (E2) is able to induce PGC proliferation, as it had been described in other species. Our data provide strong support for such a mechanism, showing that E2 significantly increases the occurrence of larvae with supernumerary PGCs in Platynereis in a dose dependent manner. E2 responsiveness is restricted to early developmental stages, when the PGCs are specified. During these stages, embryos exhibit high expression levels of the estradiol receptor (ER). The ER transcript localizes to the yolk-free cytoplasm of unfertilized eggs and segregates into the micromeres during cleavage stages. Nuclear ER protein is found asymmetrically distributed between daughter cells. Neither transcript nor protein is detectable in PGCs at larval stages. Addition of the specific estradiol receptor inhibitor ICI-182,780 (ICI) abolishes the proliferative effect of E2, suggesting that it is mediated by ER signaling. Our study reports for the first time an ER mediated proliferative effect of E2 on PGCs in an invertebrate organism.
Collapse
Affiliation(s)
- Anika K Lidke
- Morphology and Evolution of Invertebrates, Philipps-Universität Marburg, Germany
| | - Stephanie Bannister
- Max F. Perutz Laboratories and Research Platform "Marine Rhythms of Life", University of Vienna, Vienna, Austria
| | - Andreas M Löwer
- Morphology and Evolution of Invertebrates, Philipps-Universität Marburg, Germany
| | - David M Apel
- Morphology and Evolution of Invertebrates, Philipps-Universität Marburg, Germany
| | | | | | | | - Javier García-Alonso
- Biodiversity Group, Centro Universitario Regional Este, Universidad de la República, Maldonado, Uruguay
| | - Florian Raible
- Max F. Perutz Laboratories and Research Platform "Marine Rhythms of Life", University of Vienna, Vienna, Austria
| | - Nicole Rebscher
- Morphology and Evolution of Invertebrates, Philipps-Universität Marburg, Germany.
| |
Collapse
|
195
|
Bridgham JT, Keay J, Ortlund EA, Thornton JW. Vestigialization of an allosteric switch: genetic and structural mechanisms for the evolution of constitutive activity in a steroid hormone receptor. PLoS Genet 2014; 10:e1004058. [PMID: 24415950 PMCID: PMC3886901 DOI: 10.1371/journal.pgen.1004058] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/08/2013] [Indexed: 11/30/2022] Open
Abstract
An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs), a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors) activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER), and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become “stuck” in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large-effect mutations to trigger a profound evolutionary change in the protein's function and shaped the genetics of evolutionary reversibility. An important goal in evolutionary genetics is to understand how genetic mutations cause the evolution of new protein functions and how a protein's structure shapes its evolution. Here we address these questions by studying a dramatic lineage-specific shift in function in steroid hormone receptors (SRs), a physiologically important family of transcription factors. In vertebrates, SRs bind hormones and then undergo a structural change that allows them to activate gene expression. In mollusks, SRs do not bind hormone and are always active. We identified the genetic and structural mechanisms for the evolution of constitutive activity in the mollusk SRs by using X-ray crystallography, ancestral sequence reconstruction, and experimental studies of the effects of ancient mutations on protein structure and function. We found that constitutive activity evolved due to just two historical substitutions that subtly stabilized elements of the active conformation, and subsequent mutations filled the hormone-binding cavity. The structural characteristics required for a hormone-sensitive activator were thus vestigialized, much the same way that a whale's hindlimbs became vestiges of their ancestral form after they became dispensable. Our findings show how the architecture of a protein can shape its evolution, allowing radically different functions to evolve by a few large-effect mutations.
Collapse
Affiliation(s)
- Jamie T. Bridgham
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - June Keay
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Eric A. Ortlund
- Biochemistry Department, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Joseph W. Thornton
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- Departments of Human Genetics and Ecology & Evolution, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
196
|
Ogawa T, Shirai T. Tracing ancestral specificity of lectins: ancestral sequence reconstruction method as a new approach in protein engineering. Methods Mol Biol 2014; 1200:539-551. [PMID: 25117263 DOI: 10.1007/978-1-4939-1292-6_44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Protein evolution is a process of molecular design leading to the diversity of functional proteins found in nature. Recent advances in bioinformatics and structural biology, in addition to recombinant protein expression techniques, enable us to analyze more directly the molecular evolution of proteins by a new method using ancestral sequence reconstruction (ASR), the so-called experimental molecular archaeology. ASR has been used to reveal molecular properties and structures correlating with changing geology, ecology, and physiology, and to identify the structure elements important to changing physiological functions to fill substantial gaps in the processes of protein evolution. In this chapter, we describe ASR as a new method of protein engineering studies, and their application to analyzing lectins, of which evolutionary processes and structural features contributing to molecular stability, specificity, and unique functions have been elucidated. Experimental molecular archeology using ASR and crystal structures of full-length ancestral proteins is useful in understanding the evolutionary process of the functional and structural diversified lectins by tracing ancestral specificities.
Collapse
Affiliation(s)
- Tomohisa Ogawa
- Department of Biomolecular Science, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan,
| | | |
Collapse
|
197
|
Reconstructed ancestral Myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants. PLoS One 2013; 8:e84300. [PMID: 24391933 PMCID: PMC3877268 DOI: 10.1371/journal.pone.0084300] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/19/2013] [Indexed: 01/06/2023] Open
Abstract
The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS). These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT) of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants.
Collapse
|
198
|
Matsumoto T, Masaoka T, Fujiwara A, Nakamura Y, Satoh N, Awaji M. Reproduction-related genes in the pearl oyster genome. Zoolog Sci 2013; 30:826-50. [PMID: 24125647 DOI: 10.2108/zsj.30.826] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Molluscan reproduction has been a target of biological research because of the various reproductive strategies that have evolved in this phylum. It has also been studied for the development of fisheries technologies, particularly aquaculture. Although fundamental processes of reproduction in other phyla, such as vertebrates and arthropods, have been well studied, information on the molecular mechanisms of molluscan reproduction remains limited. The recently released draft genome of the pearl oyster Pinctada fucata provides a novel and powerful platform for obtaining structural information on the genes and proteins involved in bivalve reproduction. In the present study, we analyzed the pearl oyster draft genome to screen reproduction-related genes. Analysis was mainly conducted for genes reported from other molluscs for encoding orthologs of reproduction-related proteins in other phyla. The gene search in the P. fucata gene models (version 1.1) and genome assembly (version 1.0) were performed using Genome Browser and BLAST software. The obtained gene models were then BLASTP searched against a public database to confirm the best-hit sequences. As a result, more than 40 gene models were identified with high accuracy to encode reproduction-related genes reported for P. fucata and other molluscs. These include vasa, nanos, doublesex- and mab-3-related transcription factor, 5-hydroxytryptamine (5-HT) receptors, vitellogenin, estrogen receptor, and others. The set of reproduction-related genes of P. fucata identified in the present study constitute a new tool for research on bivalve reproduction at the molecular level.
Collapse
Affiliation(s)
- Toshie Matsumoto
- 1 Aquaculture Technology Division, National Research Institute of Aquaculture, Fisheries Research Agency, Minami-lse, Watarai, Mie 516-0193, Japan
| | | | | | | | | | | |
Collapse
|
199
|
Parente DJ, Swint-Kruse L. Multiple co-evolutionary networks are supported by the common tertiary scaffold of the LacI/GalR proteins. PLoS One 2013; 8:e84398. [PMID: 24391951 PMCID: PMC3877293 DOI: 10.1371/journal.pone.0084398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/15/2013] [Indexed: 11/18/2022] Open
Abstract
Protein families might evolve paralogous functions on their common tertiary scaffold in two ways. First, the locations of functionally-important sites might be "hard-wired" into the structure, with novel functions evolved by altering the amino acid (e.g. Ala vs Ser) at these positions. Alternatively, the tertiary scaffold might be adaptable, accommodating a unique set of functionally important sites for each paralogous function. To discriminate between these possibilities, we compared the set of functionally important sites in the six largest paralogous subfamilies of the LacI/GalR transcription repressor family. LacI/GalR paralogs share a common tertiary structure, but have low sequence identity (≤ 30%), and regulate a variety of metabolic processes. Functionally important positions were identified by conservation and co-evolutionary sequence analyses. Results showed that conserved positions use a mixture of the "hard-wired" and "accommodating" scaffold frameworks, but that the co-evolution networks were highly dissimilar between any pair of subfamilies. Therefore, the tertiary structure can accommodate multiple networks of functionally important positions. This possibility should be included when designing and interpreting sequence analyses of other protein families. Software implementing conservation and co-evolution analyses is available at https://sourceforge.net/projects/coevolutils/.
Collapse
Affiliation(s)
- Daniel J. Parente
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
200
|
De Castro-Català N, López-Doval J, Gorga M, Petrovic M, Muñoz I. Is reproduction of the snail Physella acuta affected by endocrine disrupting compounds? An in situ bioassay in three Iberian basins. JOURNAL OF HAZARDOUS MATERIALS 2013; 263 Pt 1:248-255. [PMID: 23972665 DOI: 10.1016/j.jhazmat.2013.07.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 06/02/2023]
Abstract
An in situ bioassay was conducted in three Iberian basins (Ebro, Llobregat and Júcar Rivers) to study the reproductive effects on the freshwater snail Physella acuta. Adult individuals were transplanted in specially designed cylindrical cages. Endpoints included mortality, number of eggs and clutches, number of eggs per clutch and embryo development after 8 days. The results were contrasted with laboratory controls. Significant changes in P. acuta reproduction parameters were detected in all of the rivers: the number of clutches or eggs per snail decreased in the Ebro and Llobregat basins downstream but the number of eggs per clutch increased. The complete development of snails was delayed at some sites downstream in the Júcar and the Ebro basins. The results were contrasted with concentrations of Endocrine Disrupting Compounds (EDCs) and their Estrogenic Equivalent Quotients (EEQs). Positive relationships (Pearson correlations) were identified between the number of eggs per clutch and the total EDC concentration, bisphenol A (BPA) and their EEQs, lipid regulators and diuretics. These endocrine-disrupting chemicals may constitute a toxicological risk for the reproductive performance of snails in the studied basins.
Collapse
Affiliation(s)
- N De Castro-Català
- Department of Ecology, University of Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain.
| | | | | | | | | |
Collapse
|