151
|
Shou Y, Liang F, Xu S, Li X. The Application of Brain Organoids: From Neuronal Development to Neurological Diseases. Front Cell Dev Biol 2020; 8:579659. [PMID: 33195219 PMCID: PMC7642488 DOI: 10.3389/fcell.2020.579659] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Brain organoids are derived from induced pluripotent stem cells and embryonic stem cells under three-dimensional culture condition. The generation of an organoid requires the self-assembly of stem cells, progenitor cells, and multiple types of differentiated cells. Organoids display structures that resemble defined brain regions and simulate specific changes of neurological disorders; thus, organoids have become an excellent model for investigating brain development and neurological diseases. In the present review, we have summarized recent advances of the methods of culturing brain organoids and the applications of brain organoids in investigating neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yikai Shou
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Feng Liang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shunliang Xu
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuekun Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
152
|
Angel I, Pilo Kerman O, Rousso-Noori L, Friedmann-Morvinski D. Tenascin C promotes cancer cell plasticity in mesenchymal glioblastoma. Oncogene 2020; 39:6990-7004. [PMID: 33077835 DOI: 10.1038/s41388-020-01506-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 01/01/2023]
Abstract
Interconversion of transformed non-stem cells to cancer stem cells, termed cancer cell plasticity, contributes to intra-tumor heterogeneity and its molecular mechanisms are currently unknown. Here, we have identified Tenascin C (TNC) to be upregulated and secreted in mesenchymal glioblastoma (MES GBM) subtype with high NF-κB signaling activity. Silencing TNC decreases proliferation, migration and suppresses self-renewal of glioma stem cells. Loss of TNC in MES GBM compromises de-differentiation of transformed astrocytes and blocks the ability of glioma stem cells to differentiate into tumor derived endothelial cells (TDEC). Inhibition of NF-κB activity or TNC knockdown in tumor cells decreased their tumorigenic potential in vivo. Our results uncover a link between NF-κB activation in MES GBM and high levels of TNC in GBM extracellular matrix. We suggest that TNC plays an important role in the autocrine regulation of glioma cell plasticity and hence can be a potential molecular target for MES GBM.
Collapse
Affiliation(s)
- Inbar Angel
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Ori Pilo Kerman
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Liat Rousso-Noori
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Dinorah Friedmann-Morvinski
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel.
| |
Collapse
|
153
|
Ngo MT, Harley BAC. Angiogenic biomaterials to promote therapeutic regeneration and investigate disease progression. Biomaterials 2020; 255:120207. [PMID: 32569868 PMCID: PMC7396313 DOI: 10.1016/j.biomaterials.2020.120207] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
The vasculature is a key component of the tissue microenvironment. Traditionally known for its role in providing nutrients and oxygen to surrounding cells, the vasculature is now also acknowledged to provide signaling cues that influence biological outcomes in regeneration and disease. These cues come from the cells that comprise vasculature, as well as the dynamic biophysical and biochemical properties of the surrounding extracellular matrix that accompany vascular development and remodeling. In this review, we illustrate the larger role of the vasculature in the context of regenerative biology and cancer progression. We describe cellular, biophysical, biochemical, and metabolic components of vascularized microenvironments. Moreover, we provide an overview of multidimensional angiogenic biomaterials that have been developed to promote therapeutic vascularization and regeneration, as well as to mimic elements of vascularized microenvironments as a means to uncover mechanisms by which vasculature influences cancer progression and therapy.
Collapse
Affiliation(s)
- Mai T Ngo
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
154
|
Watanabe C, Imaizumi T, Kawai H, Suda K, Honma Y, Ichihashi M, Ema M, Mizutani KI. Aging of the Vascular System and Neural Diseases. Front Aging Neurosci 2020; 12:557384. [PMID: 33132896 PMCID: PMC7550630 DOI: 10.3389/fnagi.2020.557384] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Vertebrates have acquired complex high-order functions facilitated by the dispersion of vascular and neural networks to every corner of the body. Blood vessels deliver oxygen and nutrients to all cells and provide essential transport systems for removing waste products. For these functions, tissue vascularization must be spatiotemporally appropriate. Recent studies revealed that blood vessels create a tissue-specific niche, thus attracting attention as biologically active sites for tissue development. Each capillary network is critical for maintaining proper brain function because age-related and disease-related impairment of cognitive function is associated with the loss or diminishment of brain capillaries. This review article highlights how structural and functional alterations in the brain vessels may change with age and neurogenerative diseases. Capillaries are also responsible for filtering toxic byproducts, providing an appropriate vascular environment for neuronal function. Accumulation of amyloid β is a key event in Alzheimer’s disease pathogenesis. Recent studies have focused on associations reported between Alzheimer’s disease and vascular aging. Furthermore, the glymphatic system and meningeal lymphatic systems contribute to a functional unit for clearance of amyloid β from the brain from the central nervous system into the cervical lymph nodes. This review article will also focus on recent advances in stem cell therapies that aim at repopulation or regeneration of a degenerating vascular system for neural diseases.
Collapse
Affiliation(s)
- Chisato Watanabe
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan.,Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Tsutomu Imaizumi
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Hiromi Kawai
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Kazuma Suda
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Yoichi Honma
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Masamitsu Ichihashi
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University Institute for Advanced Study, Kyoto, Japan
| | - Ken-Ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| |
Collapse
|
155
|
Jurkowski MP, Bettio L, K. Woo E, Patten A, Yau SY, Gil-Mohapel J. Beyond the Hippocampus and the SVZ: Adult Neurogenesis Throughout the Brain. Front Cell Neurosci 2020; 14:576444. [PMID: 33132848 PMCID: PMC7550688 DOI: 10.3389/fncel.2020.576444] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022] Open
Abstract
Convincing evidence has repeatedly shown that new neurons are produced in the mammalian brain into adulthood. Adult neurogenesis has been best described in the hippocampus and the subventricular zone (SVZ), in which a series of distinct stages of neuronal development has been well characterized. However, more recently, new neurons have also been found in other brain regions of the adult mammalian brain, including the hypothalamus, striatum, substantia nigra, cortex, and amygdala. While some studies have suggested that these new neurons originate from endogenous stem cell pools located within these brain regions, others have shown the migration of neurons from the SVZ to these regions. Notably, it has been shown that the generation of new neurons in these brain regions is impacted by neurologic processes such as stroke/ischemia and neurodegenerative disorders. Furthermore, numerous factors such as neurotrophic support, pharmacologic interventions, environmental exposures, and stem cell therapy can modulate this endogenous process. While the presence and significance of adult neurogenesis in the human brain (and particularly outside of the classical neurogenic regions) is still an area of debate, this intrinsic neurogenic potential and its possible regulation through therapeutic measures present an exciting alternative for the treatment of several neurologic conditions. This review summarizes evidence in support of the classic and novel neurogenic zones present within the mammalian brain and discusses the functional significance of these new neurons as well as the factors that regulate their production. Finally, it also discusses the potential clinical applications of promoting neurogenesis outside of the classical neurogenic niches, particularly in the hypothalamus, cortex, striatum, substantia nigra, and amygdala.
Collapse
Affiliation(s)
- Michal P. Jurkowski
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
| | - Luis Bettio
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Emma K. Woo
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
| | - Anna Patten
- Centre for Interprofessional Clinical Simulation Learning (CICSL), Royal Jubilee Hospital, Victoria, BC, Canada
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Joana Gil-Mohapel
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
156
|
Zhu X, Shen J, Feng S, Huang C, Liu Z, Sun YE, Liu H. Metformin improves cognition of aged mice by promoting cerebral angiogenesis and neurogenesis. Aging (Albany NY) 2020; 12:17845-17862. [PMID: 32938817 PMCID: PMC7585073 DOI: 10.18632/aging.103693] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
Abstract
Metformin is a widely used drug for type 2 diabetes that is considered to have potential anti-aging effects. However, the beneficial effects of metformin in middle-aged normoglycemic mice are less explored. Here, we report that metformin treated by tail vein injection improved cognitive function of aged mice better than oral administration, which seem to show a dose-dependent manner. Correspondingly, long-term oral administration of metformin was associated with significant disability rates. Further, metformin restored cerebral blood flow and brain vascular density and promoted neurogenic potential of the subependymal zone/subventricular zone both in vivo and in vitro. RNA-Seq and q-PCR results indicated that metformin could enhance relative mRNA glycolysis expression in blood and hippocampal tissue, respectively. Mechanistically, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key enzyme in glycolysis pathway, may contribute to angiogenic and neurogenic potentials of NSCs. Interestingly, the relative GAPDH mRNA expression of peripheral blood mononuclear cell was gradually decreased with aging. Meanwhile its expression level positively correlated with cognitive levels. Our results indicated that metformin represents a candidate pharmacological approach for recruitment of NSCs in aged mouse brain by enhancing glycolysis and promoting neurovascular generation, a strategy that might be of therapeutic value for anti-aging in humans.
Collapse
Affiliation(s)
- Xiaoqi Zhu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Junyan Shen
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Shengyu Feng
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Ce Huang
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Zhongmin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Yi Eve Sun
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Hailiang Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| |
Collapse
|
157
|
Mizutani KI. [Neuro-vascular Interactions during Neocortical Development-Systematic and Accurate Regulatory Mechanisms of VEGF Signaling]. YAKUGAKU ZASSHI 2020; 140:521-527. [PMID: 32238635 DOI: 10.1248/yakushi.19-00221-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blood vessels supply oxygen and nutrients to all the cells in a living body, and provide essential transport routes for collecting waste products. For these functions, blood vessel networks should be appropriately formed in each tissue. Therefore, blood vessels are one of the earliest organs formed during the developmental process. Development of the blood vessel system promotes tissue differentiation and organ morphogenesis, allowing each organ to maintain its unique functions under changing metabolic conditions. Blood vessels have a relatively simple structure, consisting of endothelial cells covering the inner layer, and pericytes or smooth muscle cells surrounding the outside. The structure of the vascular network is extremely diverse, with blood vessels uniquely organized depending on the tissues they serve, to create tissue-specific microenvironments. How are such tissue-specific vascular environments generated? Over the years, anatomical findings have accumulated to confirm this vascular diversity. However, the molecular basis for this diversity has remained unclear. In the present article, we review the mechanisms of coordinated developmental control of the vascular and neural systems in the cerebral cortex from the viewpoint of the accurate expression control of vascular endothelial growth factor (VEGF) signaling, and describe future perspectives.
Collapse
Affiliation(s)
- Ken-Ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
158
|
|
159
|
Hu W, Zhu S, Fanai ML, Wang J, Cai J, Feng J. 3D co-culture model of endothelial colony-forming cells (ECFCs) reverses late passage adipose-derived stem cell senescence for wound healing. Stem Cell Res Ther 2020; 11:355. [PMID: 32795343 PMCID: PMC7427858 DOI: 10.1186/s13287-020-01838-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022] Open
Abstract
Background Extensive passage of adipose-derived stem cells (ASCs) in vitro leads to loss of function. Endothelial colony-forming cells (ECFCs) can be isolated from adult peripheral blood. A 3D co-culture system may rescue in vitro ASC senescence. Methods A 3D co-culture model was successfully established using hyaluronic acid (HA) gel and a 10:1 ratio of late-passage ASCs and ECFCs. Cell density and culture conditions were optimized. Stem cell phenotype was characterized by flow cytometry. ELISA was used to measure the trophic effect of angiogenic growth factors and compare the effects of these factors between the 3-D co-culture and single-cell culture. Therapeutic potential of ASC/ECFC 3-D co-cultures was evaluated in a mouse chronic injury model. Results Following incubation in a HA substrate 3D co-culture system, ASC morphology, phenotype, secretory profile, and differentiation capacity were restored. The ASC/ECFC co-culture increased the secretion of cytokines, such as hepatocyte growth factor, compared with single-cell 3D culture or monolayer culture. Mice radiation-ulcer wounds treated with ASC/ECFC 3-D co-cultures (spheroids) showed epithelialization and improved healing compared with wounds treated with ASCs or ECFCs alone. Further, transplanted ASC/ECFC spheroids exhibited superior angiogenic potential due to the ability of the ASCs to transdifferentiate into pericytes. Conclusion 3D co-culture of ECFCs and ASCs in vitro restored native ASC properties by reversing cellular senescence and loss of trophic function. Transplant of ASC/ECFC 3D spheroids in vivo demonstrated pro-angiogenic capacity with improved therapeutic potential.
Collapse
Affiliation(s)
- Wansheng Hu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shengqian Zhu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mimi Lalrimawii Fanai
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jing Wang
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junrong Cai
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jingwei Feng
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
160
|
Protective Mechanism and Treatment of Neurogenesis in Cerebral Ischemia. Neurochem Res 2020; 45:2258-2277. [PMID: 32794152 DOI: 10.1007/s11064-020-03092-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Stroke is the fifth leading cause of death worldwide and is a main cause of disability in adults. Neither currently marketed drugs nor commonly used treatments can promote nerve repair and neurogenesis after stroke, and the repair of neurons damaged by ischemia has become a research focus. This article reviews several possible mechanisms of stroke and neurogenesis and introduces novel neurogenic agents (fibroblast growth factors, brain-derived neurotrophic factor, purine nucleosides, resveratrol, S-nitrosoglutathione, osteopontin, etc.) as well as other treatments that have shown neuroprotective or neurogenesis-promoting effects.
Collapse
|
161
|
Segarra M, Aburto MR, Hefendehl J, Acker-Palmer A. Neurovascular Interactions in the Nervous System. Annu Rev Cell Dev Biol 2020; 35:615-635. [PMID: 31590587 DOI: 10.1146/annurev-cellbio-100818-125142] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular cross talk between the nervous and vascular systems is necessary to maintain the correct coupling of organ structure and function. Molecular pathways shared by both systems are emerging as major players in the communication of the neuronal compartment with the endothelium. Here we review different aspects of this cross talk and how vessels influence the development and homeostasis of the nervous system. Beyond the classical role of the vasculature as a conduit to deliver oxygen and metabolites needed for the energy-demanding neuronal compartment, vessels emerge as powerful signaling systems that control and instruct a variety of cellular processes during the development of neurons and glia, such as migration, differentiation, and structural connectivity. Moreover, a broad spectrum of mild to severe vascular dysfunctions occur in various pathologies of the nervous system, suggesting that mild structural and functional changes at the neurovascular interface may underlie cognitive decline in many of these pathological conditions.
Collapse
Affiliation(s)
- Marta Segarra
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany; , .,Institute of Cell Biology and Neuroscience, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Maria R Aburto
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany; , .,Institute of Cell Biology and Neuroscience, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Jasmin Hefendehl
- Neurovascular Disorders, Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany.,Institute of Cell Biology and Neuroscience, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany; , .,Institute of Cell Biology and Neuroscience, University of Frankfurt, D-60438 Frankfurt am Main, Germany.,Max Planck Institute for Brain Research, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
162
|
Abstract
Stroke remains a major unmet clinical need that warrants novel therapies. Following an ischemic insult, the cerebral vasculature secretes inflammatory molecules, creating the stroke vasculome profile. The present study evaluated the therapeutic effects of endothelial cells on the inflammation-associated stroke vasculome. qRT-PCR analysis revealed that specific inflammation-related vasculome genes BRM, IκB, Foxf1, and ITIH-5 significantly upregulated by oxygen glucose deprivation (OGD. Interestingly, co-culture of human endothelial cells (HEN6) with human endothelial cells (EPCs) during OGD significantly blocked the elevations of BRM, IκB, and Foxf1, but not ITIH-5. Next, employing the knockdown/antisense technology, silencing the inflammation-associated stroke vasculome gene, IκB, as opposed to scrambled knockdown, blocked the EPC-mediated protection of HEN6 against OGD. In vivo, stroke animals transplanted with intracerebral human EPCs (300,000 cells) into the striatum and cortex 4 h post ischemic stroke displayed significant behavioral recovery up to 30 days post-transplantation compared to vehicle-treated stroke animals. At 7 days post-transplantation, quantification of the fluorescent staining intensity in the cortex and striatum revealed significant upregulation of the endothelial marker RECA1 and a downregulation of the stroke-associated vasculome BRM, IKB, Foxf1, ITIH-5 and PMCA2 in the ipsilateral side of cortex and striatum of EPC-transplanted stroke animals relative to vehicle-treated stroke animals. Altogether, these results demonstrate that EPCs exert therapeutic effects in experimental stroke possibly by modulating the inflammation-plagued vasculome.
Collapse
|
163
|
Park S, Lee JY, Park H, Song G, Lim W. Haloxyfop-P-methyl induces developmental defects in zebrafish embryos through oxidative stress and anti-vasculogenesis. Comp Biochem Physiol C Toxicol Pharmacol 2020; 233:108761. [PMID: 32289526 DOI: 10.1016/j.cbpc.2020.108761] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 01/19/2023]
Abstract
Haloxyfop-P-methyl, an aryloxyphenoxypropionate herbicide, is widely used to eliminate unwanted plants by inhibiting lipid synthesis and inducing oxidative stress. Since haloxyfop-P-methyl targets are limited within plants, few negative side effects on non-target crops have been reported. However, dissolved haloxyfop-P-methyl in rain or groundwater contaminates aquatic environments and affects marine ecosystems. In the present study, treatment with haloxyfop-P-methyl for 48 h induced developmental deficiencies in the eyes and bodies of the zebrafish embryos as a whole and was also linked to increases in the incidence of pericardial edema. Additionally, haloxyfop-P-methyl treatment decreased hatching ratio, embryo viability, and heart rate, while simultaneously increasing the expression levels of apoptotic and inflammatory genes. Moreover, haloxyfop-P-methyl hampered vasculogenesis in the embryos through down-regulation of functional genes, and disruption of vessel formation caused neurodegeneration in the olig2-positive notochord. Collectively, this study newly discovered the oxidative stress-related toxic mechanism of haloxyfop-P-methyl during embryonic development through anti-vasculogenesis, which suppresses neurogenesis of the notochord. This toxicity assessment of haloxyfop-P-methyl on embryogenesis may contribute to establishment of safety profiling of herbicide and to support hazard control in aquatic environment.
Collapse
Affiliation(s)
- Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
164
|
Heinrich A, DeFalco T. Essential roles of interstitial cells in testicular development and function. Andrology 2020; 8:903-914. [PMID: 31444950 PMCID: PMC7036326 DOI: 10.1111/andr.12703] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Testicular architecture and sperm production are supported by a complex network of communication between various cell types. These signals ensure fertility by: regulating spermatogonial stem/progenitor cells; promoting steroidogenesis; and driving male-specific differentiation of the gonad. Sertoli cells have long been assumed to be the major cellular player in testis organogenesis and spermatogenesis. However, cells in the interstitial compartment, such as Leydig, vascular, immune, and peritubular cells, also play prominent roles in the testis but are less well understood. OBJECTIVES Here, we aim to outline our current knowledge of the cellular and molecular mechanisms by which interstitial cell types contribute to spermatogenesis and testicular development, and how these diverse constituents of the testis play essential roles in ensuring male sexual differentiation and fertility. METHODS We surveyed scientific literature and summarized findings in the field that address how interstitial cells interact with other interstitial cell populations and seminiferous tubules (i.e., Sertoli and germ cells) to support spermatogenesis, male-specific differentiation, and testicular function. These studies focused on 4 major cell types: Leydig cells, vascular cells, immune cells, and peritubular cells. RESULTS AND DISCUSSION A growing number of studies have demonstrated that interstitial cells play a wide range of functions in the fetal and adult testis. Leydig cells, through secretion of hormones and growth factors, are responsible for steroidogenesis and progression of spermatogenesis. Vascular, immune, and peritubular cells, apart from their traditionally acknowledged physiological roles, have a broader importance than previously appreciated and are emerging as essential players in stem/progenitor cell biology. CONCLUSION Interstitial cells take part in complex signaling interactions with both interstitial and tubular cell populations, which are required for several biological processes, such as steroidogenesis, Sertoli cell function, spermatogenesis, and immune regulation. These various processes are essential for testicular function and demonstrate how interstitial cells are indispensable for male fertility.
Collapse
Affiliation(s)
- Anna Heinrich
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7045, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7045, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Suite E-870, Cincinnati, OH, 45267, USA
| |
Collapse
|
165
|
Zhou S, Gao B, Sun C, Bai Y, Cheng D, Zhang Y, Li X, Zhao J, Xu D. Vascular Endothelial Cell-derived Exosomes Protect Neural Stem Cells Against Ischemia/reperfusion Injury. Neuroscience 2020; 441:184-196. [PMID: 32502570 DOI: 10.1016/j.neuroscience.2020.05.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Vascular endothelial cells were activated during acute ischemic brain injury, which could induce neural progenitor cell proliferation and migration. However, the mechanism was still unknown. In the current study, we explored whether vascular endothelial cells promoted neural progenitor cell proliferation and whether migration occurs via exosome communication. The acute middle cerebral artery occlusion (MCAO) model was prepared, and exosomes were isolated from bEnd.3 cells by ultracentrifugation. In the exosome injection (Exos) group and PBS injection (control) group, exosomes or PBS were injected intraventricularly into rats' brains 2 h after MCAO surgery, respectively. Sham group rats received the same surgical but did not cause middle cerebral artery occlusion. The infarct volume was reduced on day 21 after ischemic brain injury by MRI, and neurobehavioral outcomes were improved on day 7, 14, and 21 by exosome injection compared with the control (p < 0.05). On the 21st day after MCAO, the animals were euthanized, and the number of BrdU/nestin-positive cells was measured by immunofluorescence. BrdU/nestin-positive cells in Exos group rats were significantly increased (p < 0.05) in the peri infarct area, the ipsilateral DG zone of the hippocampus, and the ventral sub-regions of SVZ when compared with the rats in the control group. Further, in vitro study demonstrated that neural progenitor cell proliferation and migration were activated after exosomes treatment, and cell apoptosis was attenuated compared to the control (p < 0.05). Our study suggested that exosomes should be essential for the reconstruction of neuronal vascular units and brain protection in an acute ischemic injured brain.
Collapse
Affiliation(s)
- Shaoting Zhou
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, Shanghai 201100, China
| | - Beiyao Gao
- Department of Rehabilitation, Huashan Hospital Affiliated to Fudan University, Shanghai 200041, China
| | - Chengcheng Sun
- Rehabilitation Center, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Yulong Bai
- Department of Rehabilitation, Huashan Hospital Affiliated to Fudan University, Shanghai 200041, China
| | - Dandan Cheng
- Department of Rehabilitation, Huashan Hospital Affiliated to Fudan University, Shanghai 200041, China
| | - Ye Zhang
- Rehabilitation Center, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Xutong Li
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, Shanghai 201100, China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, Shanghai 201100, China.
| | - Dongsheng Xu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
166
|
Brown A, He H, Trumper E, Valdez J, Hammond P, Griffith LG. Engineering PEG-based hydrogels to foster efficient endothelial network formation in free-swelling and confined microenvironments. Biomaterials 2020; 243:119921. [PMID: 32172030 PMCID: PMC7203641 DOI: 10.1016/j.biomaterials.2020.119921] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
In vitro tissue engineered models are poised to have significant impact on disease modeling and preclinical drug development. Reliable methods to induce microvascular networks in such microphysiological systems are needed to improve the size and physiological function of these models. By systematically engineering several physical and biomolecular properties of the cellular microenvironment (including crosslinking density, polymer density, adhesion ligand concentration, and degradability), we establish design principles that describe how synthetic matrix properties influence vascular morphogenesis in modular and tunable hydrogels based on commercial 8-arm poly (ethylene glycol) (PEG8a) macromers. We apply these design principles to generate endothelial networks that exhibit consistent morphology throughout depths of hydrogel greater than 1 mm. These PEG8a-based hydrogels have relatively high volumetric swelling ratios (>1.5), which limits their utility in confined environments such as microfluidic devices. To overcome this limitation, we mitigate swelling by incorporating a highly functional PEG-grafted alpha-helical poly (propargyl-l-glutamate) (PPLGgPEG) macromer along with the canonical 8-arm PEG8a macromer in gel formation. This hydrogel platform supports enhanced endothelial morphogenesis in neutral-swelling environments. Finally, we incorporate PEG8a-PPLGgPEG gels into microfluidic devices and demonstrate improved diffusion kinetics and microvascular network formation in situ compared to PEG8a-based gels.
Collapse
Affiliation(s)
- Alexander Brown
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hongkun He
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ella Trumper
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jorge Valdez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Paula Hammond
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
167
|
Abdulkadir RR, Alwjwaj M, Othman OA, Rakkar K, Bayraktutan U. Outgrowth endothelial cells form a functional cerebral barrier and restore its integrity after damage. Neural Regen Res 2020; 15:1071-1078. [PMID: 31823887 PMCID: PMC7034270 DOI: 10.4103/1673-5374.269029] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Breakdown of blood-brain barrier, formed mainly by brain microvascular endothelial cells (BMECs), represents the major cause of mortality during early phases of ischemic strokes. Hence, discovery of novel agents that can effectively replace dead or dying endothelial cells to restore blood-brain barrier integrity is of paramount importance in stroke medicine. Although endothelial progenitor cells (EPCs) represent one such agents, their rarity in peripheral blood severely limits their adequate isolation and therapeutic use for acute ischemic stroke which necessitate their ex vivo expansion and generate early EPCs and outgrowth endothelial cells (OECs) as a result. Functional analyses of these cells, in the present study, demonstrated that only OECs endocytosed DiI-labelled acetylated low-density lipoprotein and formed tubules on matrigel, prominent endothelial cell and angiogenesis markers, respectively. Further analyses by flow cytometry demonstrated that OECs expressed specific markers for stemness (CD34), immaturity (CD133) and endothelial cells (CD31) but not for hematopoietic cells (CD45). Like BMECs, OECs established an equally tight in vitro model of human BBB with astrocytes and pericytes, suggesting their capacity to form tight junctions. Ischemic injury mimicked by concurrent deprivation of oxygen and glucose (4 hours) or deprivation of oxygen and glucose followed by reperfusion (20 hours) affected both barrier integrity and function in a similar fashion as evidenced by decreases in transendothelial electrical resistance and increases in paracellular flux, respectively. Wound scratch assays comparing the vasculoreparative capacity of cells revealed that, compared to BMECs, OECs possessed a greater proliferative and directional migratory capacity. In a triple culture model of BBB established with astrocytes, pericytes and BMEC, exogenous addition of OECs effectively repaired the damage induced on endothelial layer in serum-free conditions. Taken together, these data demonstrate that OECs may effectively home to the site of vascular injury and repair the damage to maintain (neuro)vascular homeostasis during or after a cerebral ischemic injury.
Collapse
Affiliation(s)
- Rais Reskiawan Abdulkadir
- Stroke, Division of Clinical Neuroscience, Clinical Sciences Building, School of Medicine, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Mansour Alwjwaj
- Stroke, Division of Clinical Neuroscience, Clinical Sciences Building, School of Medicine, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Othman Ahmad Othman
- Stroke, Division of Clinical Neuroscience, Clinical Sciences Building, School of Medicine, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Kamini Rakkar
- Stroke, Division of Clinical Neuroscience, Clinical Sciences Building, School of Medicine, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Stroke, Division of Clinical Neuroscience, Clinical Sciences Building, School of Medicine, Hucknall Road, Nottingham, NG5 1PB, UK
- Correspondence to: Ulvi Bayraktutan, .
| |
Collapse
|
168
|
Wörsdörfer P, I T, Asahina I, Sumita Y, Ergün S. Do not keep it simple: recent advances in the generation of complex organoids. J Neural Transm (Vienna) 2020; 127:1569-1577. [PMID: 32385575 PMCID: PMC7577912 DOI: 10.1007/s00702-020-02198-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/20/2020] [Indexed: 01/08/2023]
Abstract
3D cell culture models which closely resemble real human tissues are of high interest for disease modelling, drug screening as well as a deeper understanding of human developmental biology. Such structures are termed organoids. Within the last years, several human organoid models were described. These are usually stem cell derived, arise by self-organization, mimic mechanisms of normal tissue development, show typical organ morphogenesis and recapitulate at least some organ specific functions. Many tissues have been reproduced in vitro such as gut, liver, lung, kidney and brain. The resulting entities can be either derived from an adult stem cell population, or generated from pluripotent stem cells using a specific differentiation protocol. However, many organoid models only recapitulate the organs parenchyma but are devoid of stromal components such as blood vessels, connective tissue and inflammatory cells. Recent studies show that the incorporation of endothelial and mesenchymal cells into organoids improved their maturation and might be required to create fully functional micro-tissues, which will allow deeper insights into human embryogenesis as well as disease development and progression. In this review article, we will summarize and discuss recent works trying to incorporate stromal components into organoids, with a special focus on neural organoid models.
Collapse
Affiliation(s)
- Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.
| | - Takashi I
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.,Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University, Nagasaki, Japan
| | - Izumi Asahina
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University, Nagasaki, Japan
| | - Yoshinori Sumita
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University, Nagasaki, Japan
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
169
|
Duarte Campos DF, Lindsay CD, Roth JG, LeSavage BL, Seymour AJ, Krajina BA, Ribeiro R, Costa PF, Blaeser A, Heilshorn SC. Bioprinting Cell- and Spheroid-Laden Protein-Engineered Hydrogels as Tissue-on-Chip Platforms. Front Bioeng Biotechnol 2020; 8:374. [PMID: 32411691 PMCID: PMC7198818 DOI: 10.3389/fbioe.2020.00374] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/06/2020] [Indexed: 12/24/2022] Open
Abstract
Human tissues, both in health and disease, are exquisitely organized into complex three-dimensional architectures that inform tissue function. In biomedical research, specifically in drug discovery and personalized medicine, novel human-based three-dimensional (3D) models are needed to provide information with higher predictive value compared to state-of-the-art two-dimensional (2D) preclinical models. However, current in vitro models remain inadequate to recapitulate the complex and heterogenous architectures that underlie biology. Therefore, it would be beneficial to develop novel models that could capture both the 3D heterogeneity of tissue (e.g., through 3D bioprinting) and integrate vascularization that is necessary for tissue viability (e.g., through culture in tissue-on-chips). In this proof-of-concept study, we use elastin-like protein (ELP) engineered hydrogels as bioinks for constructing such tissue models, which can be directly dispensed onto endothelialized on-chip platforms. We show that this bioprinting process is compatible with both single cell suspensions of neural progenitor cells (NPCs) and spheroid aggregates of breast cancer cells. After bioprinting, both cell types remain viable in incubation for up to 14 days. These results demonstrate a first step toward combining ELP engineered hydrogels with 3D bioprinting technologies and on-chip platforms comprising vascular-like channels for establishing functional tissue models.
Collapse
Affiliation(s)
- Daniela F Duarte Campos
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, United States
| | - Christopher D Lindsay
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, United States
| | - Julien G Roth
- Stanford Medical School, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States
| | - Bauer L LeSavage
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Alexis J Seymour
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Brad A Krajina
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, United States
| | | | | | - Andreas Blaeser
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - Sarah C Heilshorn
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
170
|
Gadomski S, Singh SK, Singh S, Sarkar T, Klarmann KD, Berenschot M, Seaman S, Jakubison B, Gudmundsson KO, Lockett S, Keller JR. Id1 and Id3 Maintain Steady-State Hematopoiesis by Promoting Sinusoidal Endothelial Cell Survival and Regeneration. Cell Rep 2020; 31:107572. [PMID: 32348770 PMCID: PMC8459380 DOI: 10.1016/j.celrep.2020.107572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/19/2020] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
Investigating mechanisms that regulate endothelial cell (EC) growth and survival is important for understanding EC homeostasis and how ECs maintain stem cell niches. We report here that targeted loss of Id genes in adult ECs results in dilated, leaky sinusoids and a pro-inflammatory state that increases in severity over time. Disruption in sinusoidal integrity leads to increased hematopoietic stem cell (HSC) proliferation, differentiation, migration, and exhaustion. Mechanistically, sinusoidal ECs (SECs) show increased apoptosis because of reduced Bcl2-family gene expression following Id gene ablation. Furthermore, Id1-/-Id3-/- SECs and upstream type H vessels show increased expression of cyclin-dependent kinase inhibitors p21 and p27 and impaired ability to proliferate, which is rescued by reducing E2-2 expression. Id1-/-Id3-/- mice do not survive sublethal irradiation because of impaired vessel regeneration and hematopoietic failure. Thus, Id genes are required for the survival and regeneration of BM SECs during homeostasis and stress to maintain HSC development.
Collapse
Affiliation(s)
- Stephen Gadomski
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Satyendra K Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Shweta Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Tanmoy Sarkar
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Kimberly D Klarmann
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Maximillian Berenschot
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Steven Seaman
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Brad Jakubison
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Kristbjorn O Gudmundsson
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Stephen Lockett
- Optical Microscopy and Analysis Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jonathan R Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
171
|
Nagai M, Kato K, Soga S, Santra TS, Shibata T. Scalable Parallel Manipulation of Single Cells Using Micronozzle Array Integrated with Bidirectional Electrokinetic Pumps. MICROMACHINES 2020; 11:mi11040442. [PMID: 32331468 PMCID: PMC7231381 DOI: 10.3390/mi11040442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/27/2022]
Abstract
High throughput reconstruction of in vivo cellular environments allows for efficient investigation of cellular functions. If one-side-open multi-channel microdevices are integrated with micropumps, the devices will achieve higher throughput in the manipulation of single cells while maintaining flexibility and open accessibility. This paper reports on the integration of a polydimethylsiloxane (PDMS) micronozzle array and bidirectional electrokinetic pumps driven by DC-biased AC voltages. Pt/Ti and indium tin oxide (ITO) electrodes were used to study the effect of DC bias and peak-to-peak voltage and electrodes in a low conductivity isotonic solution. The flow was bidirectionally controlled by changing the DC bias. A pump integrated with a micronozzle array was used to transport single HeLa cells into nozzle holes. The application of DC-biased AC voltage (100 kHz, 10 Vpp, and VDC: -4 V) provided a sufficient electroosmotic flow outside the nozzle array. This integration method of nozzle and pumps is anticipated to be a standard integration method. The operating conditions of DC-biased AC electrokinetic pumps in a biological buffer was clarified and found useful for cell manipulation.
Collapse
Affiliation(s)
- Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (K.K.); (S.S.); (T.S.)
- Correspondence: ; Tel.: +81-532-44-6701
| | - Keita Kato
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (K.K.); (S.S.); (T.S.)
| | - Satoshi Soga
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (K.K.); (S.S.); (T.S.)
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India;
| | - Takayuki Shibata
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (K.K.); (S.S.); (T.S.)
| |
Collapse
|
172
|
van Sloten TT, Sedaghat S, Carnethon MR, Launer LJ, Stehouwer CDA. Cerebral microvascular complications of type 2 diabetes: stroke, cognitive dysfunction, and depression. Lancet Diabetes Endocrinol 2020; 8:325-336. [PMID: 32135131 DOI: 10.1016/s2213-8587(19)30405-x] [Citation(s) in RCA: 365] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/29/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022]
Abstract
Adults with type 2 diabetes are at an increased risk of developing certain brain or mental disorders, including stroke, dementia, and depression. Although these disorders are not usually considered classic microvascular complications of diabetes, evidence is growing that microvascular dysfunction is one of the key underlying mechanisms. Microvascular dysfunction is a widespread phenomenon in people with diabetes, including effects on the brain. Cerebral microvascular dysfunction is also apparent in adults with prediabetes, suggesting that cerebral microvascular disease processes start before the onset of diabetes. The microvasculature is involved in the regulation of many cerebral processes that when impaired predispose to lacunar and haemorrhagic stroke, cognitive dysfunction, and depression. Main drivers of diabetes-related cerebral microvascular dysfunction are hyperglycaemia, obesity and insulin resistance, and hypertension. Increasing amounts of data from observational studies suggest that diabetes-related microvascular dysfunction is associated with a higher risk of stroke, cognitive dysfunction, and depression. Cerebral outcomes in diabetes might be improved following treatments targeting the pathways through which diabetes damages the microcirculation. These treatments might include drugs that reduce dicarbonyl compounds, augment cerebral insulin signalling, or improve blood-brain barrier permeability and cerebral vasoreactivity.
Collapse
Affiliation(s)
- Thomas T van Sloten
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Sanaz Sedaghat
- Department of Preventive Medicine and Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mercedes R Carnethon
- Department of Preventive Medicine and Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Coen D A Stehouwer
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands.
| |
Collapse
|
173
|
Yao Y, Yang L, Feng LF, Yue ZW, Zhao NH, Li Z, He ZX. IGF-1C domain-modified hydrogel enhanced the efficacy of stem cells in the treatment of AMI. Stem Cell Res Ther 2020; 11:136. [PMID: 32216819 PMCID: PMC7098145 DOI: 10.1186/s13287-020-01637-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/15/2020] [Accepted: 03/06/2020] [Indexed: 01/22/2023] Open
Abstract
Background Due to the low survival rate of cell transplantation, stem cell has not been widely used in clinical treatment of acute myocardial infarction (AMI). In this study, we immobilized the C domain peptide of insulin-like growth factor-1 on chitosan (CS-IGF-1C) to obtain bioactive hydrogel. The purpose was to investigate whether CS-IGF-1C hydrogel incorporated with human placenta–derived mesenchymal stem cells (hP-MSCs) can boost the survival of hP-MSCs and enhance their therapeutic effects. Methods hP-MSCs, which continuously expressed green fluorescent protein (GFP) and firefly luciferase (Fluc), were transplanted with CS-IGF-1C hydrogel into a mouse myocardial infarction model. Cell survival was detected by bioluminescence imaging (BLI), and cardiac function was measured by echocardiogram. Real-time PCR and histological analysis were used to explore the therapeutic mechanism of CS-IGF-1C hydrogel. Results CS-IGF-1C hydrogel could induce the proliferation of hP-MSCs and exert anti-apoptotic effects in vitro. The Calcine-AM/PI staining results showed that hP-MSCs seeded on CS-IGF-1C hydrogel could protect neonatal mouse ventricular cardiomyocytes (NMVCs) against oxidative stress. It was observed by BLI that CS-IGF-1C hydrogel injected into ischemic myocardium could improve the survival rate of hP-MSCs. Histology analysis indicated that co-transplantation of the CS-IGF-1C hydrogel and hP-MSCs could increase angiogenesis, reduce collagen deposition, ameliorate left ventricular expanded, and further promote the recovery of cardiac function. Besides, we found that the inflammatory response was inhibited and the expression of apoptosis-related genes was downregulated by CS-IGF-1C hydrogel. Conclusions CS-IGF-1C hydrogel provides a conducive microenvironment for cells and significantly boosts the survival of hP-MSCs in mouse myocardial infarction model, which suggest that it may be a potential candidate for prolonging the therapeutic effect of hP-MSCs during AMI.
Collapse
Affiliation(s)
- Yong Yao
- Nankai University School of Medicine, Tianjin, China.,Department of Nuclear Medicine, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, Guangdong, China
| | - Liang Yang
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Li-Feng Feng
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Zhi-Wei Yue
- Nankai University School of Medicine, Tianjin, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, the College of Life Science, Nankai University, Tianjin, China
| | - Nian-Huan Zhao
- Department of Nuclear Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, China. .,The Key Laboratory of Bioactive Materials, Ministry of Education, the College of Life Science, Nankai University, Tianjin, China. .,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Zuo-Xiang He
- Department of Nuclear Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
174
|
Kullmann JA, Trivedi N, Howell D, Laumonnerie C, Nguyen V, Banerjee SS, Stabley DR, Shirinifard A, Rowitch DH, Solecki DJ. Oxygen Tension and the VHL-Hif1α Pathway Determine Onset of Neuronal Polarization and Cerebellar Germinal Zone Exit. Neuron 2020; 106:607-623.e5. [PMID: 32183943 DOI: 10.1016/j.neuron.2020.02.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/04/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Postnatal brain circuit assembly is driven by temporally regulated intrinsic and cell-extrinsic cues that organize neurogenesis, migration, and axo-dendritic specification in post-mitotic neurons. While cell polarity is an intrinsic organizer of morphogenic events, environmental cues in the germinal zone (GZ) instructing neuron polarization and their coupling during postnatal development are unclear. We report that oxygen tension, which rises at birth, and the von Hippel-Lindau (VHL)-hypoxia-inducible factor 1α (Hif1α) pathway regulate polarization and maturation of post-mitotic cerebellar granule neurons (CGNs). At early postnatal stages with low GZ vascularization, Hif1α restrains CGN-progenitor cell-cycle exit. Unexpectedly, cell-intrinsic VHL-Hif1α pathway activation also delays the timing of CGN differentiation, germinal zone exit, and migration initiation through transcriptional repression of the partitioning-defective (Pard) complex. As vascularization proceeds, these inhibitory mechanisms are downregulated, implicating increasing oxygen tension as a critical switch for neuronal polarization and cerebellar GZ exit.
Collapse
Affiliation(s)
- Jan A Kullmann
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps University of Marburg, 35032 Marburg, Germany
| | - Niraj Trivedi
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Danielle Howell
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christophe Laumonnerie
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Vien Nguyen
- Department of Pediatrics and Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shalini S Banerjee
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Daniel R Stabley
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David H Rowitch
- Department of Pediatrics and Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pediatrics and Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0AN, UK
| | - David J Solecki
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
175
|
McCarthy N, Manieri E, Storm EE, Saadatpour A, Luoma AM, Kapoor VN, Madha S, Gaynor LT, Cox C, Keerthivasan S, Wucherpfennig K, Yuan GC, de Sauvage FJ, Turley SJ, Shivdasani RA. Distinct Mesenchymal Cell Populations Generate the Essential Intestinal BMP Signaling Gradient. Cell Stem Cell 2020; 26:391-402.e5. [PMID: 32084389 DOI: 10.1016/j.stem.2020.01.008] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/27/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
Intestinal stem cells (ISCs) are confined to crypt bottoms and their progeny differentiate near crypt-villus junctions. Wnt and bone morphogenic protein (BMP) gradients drive this polarity, and colorectal cancer fundamentally reflects disruption of this homeostatic signaling. However, sub-epithelial sources of crucial agonists and antagonists that organize this BMP gradient remain obscure. Here, we couple whole-mount high-resolution microscopy with ensemble and single-cell RNA sequencing (RNA-seq) to identify three distinct PDGFRA+ mesenchymal cell types. PDGFRA(hi) telocytes are especially abundant at the villus base and provide a BMP reservoir, and we identified a CD81+ PDGFRA(lo) population present just below crypts that secretes the BMP antagonist Gremlin1. These cells, referred to as trophocytes, are sufficient to expand ISCs in vitro without additional trophic support and contribute to ISC maintenance in vivo. This study reveals intestinal mesenchymal structure at fine anatomic, molecular, and functional detail and the cellular basis for a signaling gradient necessary for tissue self-renewal.
Collapse
Affiliation(s)
- Neil McCarthy
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Elisa Manieri
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Elaine E Storm
- Department of Molecular Oncology, Genentech, South San Francisco, CA 94080, USA
| | - Assieh Saadatpour
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Adrienne M Luoma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Varun N Kapoor
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Shariq Madha
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Liam T Gaynor
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Christian Cox
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Shilpa Keerthivasan
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Kai Wucherpfennig
- Department of Molecular Oncology, Genentech, South San Francisco, CA 94080, USA; Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Guo-Cheng Yuan
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | | | - Shannon J Turley
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
176
|
András IE, Garcia-Contreras M, Yanick C, Perez P, Sewell B, Durand L, Toborek M. Extracellular vesicle-mediated amyloid transfer to neural progenitor cells: implications for RAGE and HIV infection. Mol Brain 2020; 13:21. [PMID: 32066471 PMCID: PMC7027073 DOI: 10.1186/s13041-020-0562-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
Amyloid beta (Aβ) deposition was demonstrated to be elevated in the brains of HIV-infected patients and associated with neurocognitive decline; however, the mechanisms of these processes are poorly understood. The goal of the current study was to address the hypothesis that Aβ can be transferred via extracellular vesicles (ECVs) from brain endothelial cells to neural progenitor cells (NPCs) and that this process can contribute to abnormal NPC differentiation. Mechanistically, we focused on the role of the receptor for advanced glycation end products (RAGE) and activation of the inflammasome in these events. ECVs loaded with Aβ (Aβ-ECVs) were readily taken up by NPCs and Aβ partly colocalized with the inflammasome markers ASC and NLRP3 in the nuclei of the recipient NPCs. This colocalization was affected by HIV and RAGE inhibition by a high-affinity specific inhibitor FPS-ZM1. Blocking RAGE resulted also in an increase in ECV number produced by brain endothelial cells, decreased Aβ content in ECVs, and diminished Aβ-ECVs transfer to NPC nuclei. Interestingly, both Aβ-ECVs and RAGE inhibition altered NPC differentiation. Overall, these data indicate that RAGE inhibition affects brain endothelial ECV release and Aβ-ECVs transfer to NPCs. These events may modulate ECV-mediated amyloid pathology in the HIV-infected brain and contribute to the development of HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Ibolya E. András
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Marta Garcia-Contreras
- Diabetes Research Institute, University of Miami School of Medicine, 1450 NW 10th Ave, Miami, FL 33136-1011 USA
| | - Christopher Yanick
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Paola Perez
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Brice Sewell
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Leonardo Durand
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| |
Collapse
|
177
|
Jia J, Ma B, Wang S, Feng L. Therapeutic Potential of Endothelial Colony Forming Cells Derived from Human Umbilical Cord Blood. Curr Stem Cell Res Ther 2020; 14:460-465. [PMID: 30767752 DOI: 10.2174/1574888x14666190214162453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/06/2019] [Accepted: 01/24/2019] [Indexed: 02/08/2023]
Abstract
Endothelial progenitor cells (EPCs) are implicated in multiple biologic processes such as vascular homeostasis, neovascularization and tissue regeneration, and tumor angiogenesis. A subtype of EPCs is referred to as endothelial colony-forming cells (ECFCs), which display robust clonal proliferative potential and can form durable and functional blood vessels in animal models. In this review, we provide a brief overview of EPCs' characteristics, classification and origins, a summary of the progress in preclinical studies with regard to the therapeutic potential of human umbilical cord blood derived ECFCs (CB-ECFCs) for ischemia repair, tissue engineering and tumor, and highlight the necessity to select high proliferative CB-ECFCs and to optimize their recovery and expansion conditions.
Collapse
Affiliation(s)
- Jing Jia
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R., China
| | - Baitao Ma
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R., China
| | - Shaoshuai Wang
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R., China
| | - Ling Feng
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R., China
| |
Collapse
|
178
|
Pasquier J, Ghiabi P, Chouchane L, Razzouk K, Rafii S, Rafii A. Angiocrine endothelium: from physiology to cancer. J Transl Med 2020; 18:52. [PMID: 32014047 PMCID: PMC6998193 DOI: 10.1186/s12967-020-02244-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/28/2020] [Indexed: 02/08/2023] Open
Abstract
The concept of cancer as a cell-autonomous disease has been challenged by the wealth of knowledge gathered in the past decades on the importance of tumor microenvironment (TM) in cancer progression and metastasis. The significance of endothelial cells (ECs) in this scenario was initially attributed to their role in vasculogenesis and angiogenesis that is critical for tumor initiation and growth. Nevertheless, the identification of endothelial-derived angiocrine factors illustrated an alternative non-angiogenic function of ECs contributing to both physiological and pathological tissue development. Gene expression profiling studies have demonstrated distinctive expression patterns in tumor-associated endothelial cells that imply a bilateral crosstalk between tumor and its endothelium. Recently, some of the molecular determinants of this reciprocal interaction have been identified which are considered as potential targets for developing novel anti-angiocrine therapeutic strategies.
Collapse
Affiliation(s)
- Jennifer Pasquier
- Nice Breast Institute, 57 bld de la Californie, 06000, Nice, France.
- Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar.
| | - Pegah Ghiabi
- Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Kais Razzouk
- Nice Breast Institute, 57 bld de la Californie, 06000, Nice, France
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Arash Rafii
- Nice Breast Institute, 57 bld de la Californie, 06000, Nice, France
- Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
179
|
PRDM16 orchestrates angiogenesis via neural differentiation in the developing brain. Cell Death Differ 2020; 27:2313-2329. [PMID: 32015502 DOI: 10.1038/s41418-020-0504-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis plays crucial roles in maintaining the complex operation of central nervous system (CNS) development. The architecture of communication between neurogenesis and angiogenesis is essential to maintain normal brain development and function. Hence, any disruption of neuron-vascular communications may lead to the pathophysiology of cerebrovascular diseases and blood-brain barrier (BBB) dysfunction. Here we demonstrate that neural differentiation and communication are required for vascular development. Regarding the cellular and molecular mechanism, our results show that PRDM16 activity determines the production of mature neurons and their specific positions in the neocortex. In the cortical plate (CP), aberrant neurons fail to secrete modular calcium-binding protein 1 (SMOC1), an important neuronal signal that participates in neurovascular communication to regulate CNS angiogenesis. Neuronal SMOC1 interacts with TGFBR1 by activating the transcription factors phospho-Smad2/3 to convey intercellular signals to endothelial cells (ECs) in the TGF-β-Smad signaling pathway. Together, our results highlight a crucial coordinated neurovascular development process orchestrated by PRDM16 and reveal the importance of intimate communication for building the neurovascular network during brain development.
Collapse
|
180
|
Pous L, Deshpande SS, Nath S, Mezey S, Malik SC, Schildge S, Bohrer C, Topp K, Pfeifer D, Fernández-Klett F, Doostkam S, Galanakis DK, Taylor V, Akassoglou K, Schachtrup C. Fibrinogen induces neural stem cell differentiation into astrocytes in the subventricular zone via BMP signaling. Nat Commun 2020; 11:630. [PMID: 32005867 PMCID: PMC6994610 DOI: 10.1038/s41467-020-14466-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/09/2020] [Indexed: 12/30/2022] Open
Abstract
Neural stem/progenitor cells (NSPCs) originating from the subventricular zone (SVZ) contribute to brain repair during CNS disease. The microenvironment within the SVZ stem cell niche controls NSPC fate. However, extracellular factors within the niche that trigger astrogliogenesis over neurogenesis during CNS disease are unclear. Here, we show that blood-derived fibrinogen is enriched in the SVZ niche following distant cortical brain injury in mice. Fibrinogen inhibited neuronal differentiation in SVZ and hippocampal NSPCs while promoting astrogenesis via activation of the BMP receptor signaling pathway. Genetic and pharmacologic depletion of fibrinogen reduced astrocyte formation within the SVZ after cortical injury, reducing the contribution of SVZ-derived reactive astrocytes to lesion scar formation. We propose that fibrinogen is a regulator of NSPC-derived astrogenesis from the SVZ niche via BMP receptor signaling pathway following injury.
Collapse
Affiliation(s)
- Lauriane Pous
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Sachin S Deshpande
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Suvra Nath
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Szilvia Mezey
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Subash C Malik
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Sebastian Schildge
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Christian Bohrer
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Könül Topp
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, University of Freiburg, 79106, Freiburg, Germany
| | - Francisco Fernández-Klett
- Department of Neuropsychiatry & Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Soroush Doostkam
- Institute of Neuropathology, University Medical Center Freiburg, University of Freiburg, 79104, Freiburg, Germany
| | - Dennis K Galanakis
- Department of Pathology, State University of New York, Stony Brook, NY, 11794, USA
| | - Verdon Taylor
- Department of Biomedicine, Embryology and Stem Cell Biology, University of Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland
| | - Katerina Akassoglou
- Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Christian Schachtrup
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
181
|
Johansson U, Shalaly ND, Hjelm LC, Ria M, Berggren PO, Hedhammar M. Integration of Primary Endocrine Cells and Supportive Cells Using Functionalized Silk Promotes the Formation of Prevascularized Islet-like Clusters. ACS Biomater Sci Eng 2020; 6:1186-1195. [PMID: 33464872 DOI: 10.1021/acsbiomaterials.9b01573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pancreatic islet transplantation has not yet succeeded as an overall treatment for type 1 diabetes because of limited access to donor islets, as well as low efficacy and poor reproducibility of the current procedure. Herein, a method to create islets-like composite clusters (coclusters) from dispersed endocrine cells and supportive cells is described, attempting to improve compatibility with the recipient and more efficiently make use of the donor-derived material. To mimic the extracellular matrix environment, recombinant spider silk functionalized with cell binding motifs are used as 3D support for the coclusters. A cell binding motif derived from fibronectin (FN) was found superior in promoting cell adherence, while a plain RGD-motif incorporated in the repetitive part of the silk protein (2R) increased the mobility and cluster formation of endocrine cells. Self-assembly of a mixture of FN/2R silk is utilized to integrate endocrine cells together with endothelial and mesenchymal cells into islet-like coclusters. Both xenogenic and allogenic versions of these coclusters were found to be viable and were able to respond to dynamic glucose stimulation with insulin release. Moreover, the endothelial cells were found to be colocalized with the endocrine cells, showing that the silk combined with supportive cells may promote vascularization. This method to engineer combined islet-like coclusters allows donor-derived endocrine cells to be surrounded by supportive cells from the recipient, which have the potential to further promote engraftment in the host and considerably reduce risk of rejection.
Collapse
Affiliation(s)
- Ulrika Johansson
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden.,Linnæus Center of Biomaterials Chemistry, Linnæus University, Kalmar, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Nancy Dekki Shalaly
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Linnea Charlotta Hjelm
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Massimiliano Ria
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, S-17176 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, S-17176 Stockholm, Sweden
| | - My Hedhammar
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
182
|
Zhang S, Wang HJ, Li J, Hu XL, Shen Q. Radial Glial Cell-Derived VCAM1 Regulates Cortical Angiogenesis Through Distinct Enrichments in the Proximal and Distal Radial Processes. Cereb Cortex 2020; 30:3717-3730. [PMID: 31907535 DOI: 10.1093/cercor/bhz337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/27/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis in the developing cerebral cortex accompanies cortical neurogenesis. However, the precise mechanisms underlying cortical angiogenesis at the embryonic stage remain largely unknown. Here, we show that radial glia-derived vascular cell adhesion molecule 1 (VCAM1) coordinates cortical vascularization through different enrichments in the proximal and distal radial glial processes. We found that VCAM1 was highly enriched around the blood vessels in the inner ventricular zone (VZ), preventing the ingrowth of blood vessels into the mitotic cell layer along the ventricular surface. Disrupting the enrichment of VCAM1 surrounding the blood vessels by a tetraspanin-blocking peptide or conditional deletion of Vcam1 gene in neural progenitor cells increased angiogenesis in the inner VZ. Conversely, VCAM1 expressed in the basal endfeet of radial glial processes promoted angiogenic sprouting from the perineural vascular plexus (PNVP). In utero, overexpression of VCAM1 increased the vessel density in the cortical plate, while knockdown of Vcam1 accomplished the opposite. In vitro, we observed that VCAM1 bidirectionally affected endothelial cell proliferation in a concentration-dependent manner. Taken together, our findings identify that distinct concentrations of VCAM1 around VZ blood vessels and the PNVP differently organize cortical angiogenesis during late embryogenesis.
Collapse
Affiliation(s)
- Sanguo Zhang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China.,Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Huanhuan Joyce Wang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China.,Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jia Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China.,Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiao-Ling Hu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Qin Shen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China.,Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.,Brain and Spinal Cord Clinical Research Center, Tongji University Shanghai 200092, China
| |
Collapse
|
183
|
Abstract
Increased microvessel density in the peri-infarct region has been reported and has been correlated with longer survival times in ischemic stroke patients and has improved outcomes in ischemic animal models. This raises the possibility that enhancement of angiogenesis is one of the strategies to facilitate functional recovery after ischemic stroke. Blood vessels and neuronal cells communicate with each other using various mediators and contribute to the pathophysiology of cerebral ischemia as a unit. In this mini-review, we discuss how angiogenesis might couple with axonal outgrowth/neurogenesis and work for functional recovery after cerebral ischemia. Angiogenesis occurs within 4 to 7 days after cerebral ischemia in the border of the ischemic core and periphery. Post-ischemic angiogenesis may contribute to neuronal remodeling in at least two ways and is thought to contribute to functional recovery. First, new blood vessels that are formed after ischemia are thought to have a role in the guidance of sprouting axons by vascular endothelial growth factor and laminin/β1-integrin signaling. Second, blood vessels are thought to enhance neurogenesis in three stages: 1) Blood vessels enhance proliferation of neural stem/progenitor cells by expression of several extracellular signals, 2) microvessels support the migration of neural stem/progenitor cells toward the peri-infarct region by supplying oxygen, nutrients, and soluble factors as well as serving as a scaffold for migration, and 3) oxygenation induced by angiogenesis in the ischemic core is thought to facilitate the differentiation of migrated neural stem/progenitor cells into mature neurons. Thus, the regions of angiogenesis and surrounding tissue may be coupled, representing novel treatment targets.
Collapse
Affiliation(s)
- Masahiro Hatakeyama
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Itaru Ninomiya
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
184
|
Bacigaluppi M, Sferruzza G, Butti E, Ottoboni L, Martino G. Endogenous neural precursor cells in health and disease. Brain Res 2019; 1730:146619. [PMID: 31874148 DOI: 10.1016/j.brainres.2019.146619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
Abstract
Neurogenesis persists in the adult brain of mammals in the subventricular zone (SVZ) of the lateral ventricles and in the subgranular zone (SGZ) of the dentate gyrus (DG). The complex interactions between intrinsic and extrinsic signals provided by cells in the niche but also from distant sources regulate the fate of neural stem/progenitor cells (NPCs) in these sites. This fine regulation is perturbed in aging and in pathological conditions leading to a different NPC behavior, tailored to the specific physio-pathological features. Indeed, NPCs exert in physiological and pathological conditions important neurogenic and non-neurogenic regulatory functions and participate in maintaining and protecting brain tissue homeostasis. In this review, we discuss intrinsic and extrinsic signals that regulate NPC activation and NPC functional role in various homeostatic and non-homeostatic conditions.
Collapse
Affiliation(s)
- Marco Bacigaluppi
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy.
| | - Giacomo Sferruzza
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Erica Butti
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Linda Ottoboni
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Gianvito Martino
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| |
Collapse
|
185
|
Abstract
The symptoms of Alzheimer disease reflect a loss of neural circuit integrity in the brain, but neurons do not work in isolation. Emerging evidence suggests that the intricate balance of interactions between neurons, astrocytes, microglia and vascular cells required for healthy brain function becomes perturbed during the disease, with early changes likely protecting neural circuits from damage, followed later by harmful effects when the balance cannot be restored. Moving beyond a neuronal focus to understand the complex cellular interactions in Alzheimer disease and how these change throughout the course of the disease may provide important insight into developing effective therapeutics.
Collapse
|
186
|
Single-Cell Transcriptomics Characterizes Cell Types in the Subventricular Zone and Uncovers Molecular Defects Impairing Adult Neurogenesis. Cell Rep 2019; 25:2457-2469.e8. [PMID: 30485812 DOI: 10.1016/j.celrep.2018.11.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/13/2018] [Accepted: 10/31/2018] [Indexed: 12/26/2022] Open
Abstract
Neural stem cells (NSCs) contribute to plasticity and repair of the adult brain. Niches harboring NSCs regulate stem cell self-renewal and differentiation. We used comprehensive and untargeted single-cell RNA profiling to generate a molecular cell atlas of the largest germinal region of the adult mouse brain, the subventricular zone (SVZ). We characterized >20 neural and non-neural cell types and gained insights into the dynamics of neurogenesis by predicting future cell states based on computational analysis of RNA kinetics. Furthermore, we applied our single-cell approach to document decreased numbers of NSCs, reduced proliferation activity of progenitors, and perturbations in Wnt and BMP signaling pathways in mice lacking LRP2, an endocytic receptor required for SVZ maintenance. Our data provide a valuable resource to study adult neurogenesis and a proof of principle for the power of single-cell RNA sequencing to elucidate neural cell-type-specific alterations in loss-of-function models.
Collapse
|
187
|
Peng X, Song J, Li B, Zhu C, Wang X. Umbilical cord blood stem cell therapy in premature brain injury: Opportunities and challenges. J Neurosci Res 2019; 98:815-825. [PMID: 31797400 DOI: 10.1002/jnr.24548] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 12/25/2022]
Abstract
Preterm birth and associated brain injury are the primary cause of cerebral palsy and developmental disabilities and are among the most serious global health issues that modern society faces. Current therapy for infants suffering from premature brain injury is still mainly supportive, and there are no effective treatments. Thus there is a pressing need for comparative and translational studies on how to reduce brain injury and to increase regeneration and brain repair in preterm infants. There is strong supporting evidence for the use of umbilical cord blood (UCB)-derived stem cell therapy for treating preterm brain injury and neurological sequelae. UCB-derived stem cell therapy is effective in many animal models and has been shown to be feasible in clinical trials. Most of these therapies are still experimental, however. In this review, we focus on recent advances on the efficacy of UCB-derived stem cell therapy in preterm infants with brain injury, and discuss the potential mechanisms behind their therapeutic effects as well as application strategies for future preclinical and clinical trials.
Collapse
Affiliation(s)
- Xirui Peng
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Bingbing Li
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Center of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,Center of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
188
|
Kumarasamy M, Sosnik A. The Nose-To-Brain Transport of Polymeric Nanoparticles Is Mediated by Immune Sentinels and Not by Olfactory Sensory Neurons. ADVANCED BIOSYSTEMS 2019; 3:e1900123. [PMID: 32648679 DOI: 10.1002/adbi.201900123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/02/2019] [Indexed: 11/11/2022]
Abstract
The nose-to-brain (N-to-B) transport mechanism of nanoparticles through the olfactory epithelium (OE) is not fully understood. Most research utilized nasal epithelial cell models completely deprived of olfactory cells. Aiming to shed light into key cellular pathways, in this work, for the first time, the interaction of polymeric nanoparticles in a 17-483 nm size range and with neutral and negatively and positively charged surfaces with primary olfactory sensory neurons, cortical neurons, and microglia isolated from olfactory bulb (OB), OE, and cortex of newborn rats is investigated. After demonstrating the good cell compatibility of the different nanoparticles, the nanoparticle uptake by confocal laser scanning fluorescence microscopy is monitored. Our findings reveal that neither olfactory nor forebrain neurons internalize nanoparticles. Conversely, it is demonstrated that olfactory and cortical microglia phagocytose the nanoparticles independently of their features. Overall, our findings represent the first unambiguous evidence of the possible involvement of microglia in N-to-B nanoparticle transport and the unlikely involvement of neurons. Furthermore, this approach emerges as a completely new experimental tool to screen the biocompatibility, uptake, and transport of nanomaterials by key cellular players of the N-to-B pathway in nanosafety and nanotoxicology and nanomedicine.
Collapse
Affiliation(s)
- Murali Kumarasamy
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
189
|
Wang J, Cui Y, Yu Z, Wang W, Cheng X, Ji W, Guo S, Zhou Q, Wu N, Chen Y, Chen Y, Song X, Jiang H, Wang Y, Lan Y, Zhou B, Mao L, Li J, Yang H, Guo W, Yang X. Brain Endothelial Cells Maintain Lactate Homeostasis and Control Adult Hippocampal Neurogenesis. Cell Stem Cell 2019; 25:754-767.e9. [DOI: 10.1016/j.stem.2019.09.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/24/2019] [Accepted: 09/26/2019] [Indexed: 12/29/2022]
|
190
|
Oliveira B, Çerağ Yahya A, Novarino G. Modeling cell-cell interactions in the brain using cerebral organoids. Brain Res 2019; 1724:146458. [DOI: 10.1016/j.brainres.2019.146458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/14/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022]
|
191
|
Matta R, Lee S, Genet N, Hirschi KK, Thomas JL, Gonzalez AL. Minimally Invasive Delivery of Microbeads with Encapsulated, Viable and Quiescent Neural Stem Cells to the Adult Subventricular Zone. Sci Rep 2019; 9:17798. [PMID: 31780709 PMCID: PMC6882840 DOI: 10.1038/s41598-019-54167-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 11/09/2019] [Indexed: 01/29/2023] Open
Abstract
Stem cell therapies demonstrate promising results as treatment for neurological disease and injury, owing to their innate ability to enhance endogenous neural tissue repair and promote functional recovery. However, delivery of undifferentiated and viable neuronal stem cells requires an engineered delivery system that promotes integration of transplanted cells into the inflamed and cytotoxic region of damaged tissue. Within the brain, endothelial cells (EC) of the subventricular zone play a critical role in neural stem cell (NSC) maintenance, quiescence and survival. Therefore, here, we describe the use of polyethylene glycol microbeads for the coincident delivery of EC and NSC as a means of enhancing appropriate NSC quiescence and survival during transplantation into the mouse brain. We demonstrate that EC and NSC co-encapsulation maintained NSC quiescence, enhanced NSC viability, and facilitated NSC extravasation in vitro, as compared to NSC encapsulated alone. In addition, co-encapsulated cells delivered to an in vivo non-injury model reduced inflammatory response compared to freely injected NSC. These results suggest the strong potential of a biomimetic engineered niche for NSC delivery into the brain following neurological injury.
Collapse
Affiliation(s)
- Rita Matta
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, 06511, United States
| | - Seyoung Lee
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, United States
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, 06511, United States
| | - Nafiisha Genet
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, 06511, United States
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, United States
| | - Karen K Hirschi
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, 06511, United States
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, 06511, United States
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, United States
| | - Jean-Leon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, United States.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, 06511, United States.
- Sorbonne Universités, UPMC Université Paris 06, Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique, AP-HP, Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, Paris, France.
| | - Anjelica L Gonzalez
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, 06511, United States.
| |
Collapse
|
192
|
Wang X, Wang Y, Wang L, Shi S, Yang C, Jiang W, Luan Z, Liu L, Yao R. Oligogenesis in the "oligovascular unit" involves PI3K/AKT/mTOR signaling in hypoxic-ischemic neonatal mice. Brain Res Bull 2019; 155:81-91. [PMID: 31785301 DOI: 10.1016/j.brainresbull.2019.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/15/2019] [Accepted: 11/25/2019] [Indexed: 01/05/2023]
Abstract
The "oligovascular unit" is a dynamic structural complex composed of endothelial cells (ECs) and oligodendrocyte progenitor cells (OPCs)/oligodendrocytes. By improving the microenvironment of OPCs in the "oligovascular unit" and promoting the proliferation and differentiation of OPCs, both myelination and white matter injury can be repaired. However, it is unclear what characteristic changes occur in the microenvironment of the "oligovascular unit" after preterm white matter injury (PWMI). Here, we demonstrate the changes in the "oligovascular unit" induced by hypoxia-ischemia (HI) and its underlying mechanism in PWMI mice. White matter injury and inhibited production of myelin from OPCs were observed by histopathological staining in HI neonatal mice. We further observed that the proliferation of OPCs and angiogenesis were increased after HI, which is considered the response of the body and cells to HI. HI-induced oligogenesis occurs around the vessels, indicating that "oligovascular units" exist and promote the proliferation and differentiation of OPCs after HI in the short term. We also determined that angiogenesis and oligogenesis induced by HI in the white matter are related to the PI3K/AKT/mTOR pathway. Furthermore, the myelin sheaths were shown to be disordered on the side of the surgery, and the myelin-dense layer was poorly developed at P14 and P28. Different degrees of damage to the vascular ECs and basement membrane on the surgical side were detected beginning at P4, indicating that EC injury is an early phenomenon that subsequently affects oligogenesis. Taken together, our findings indicate that the proliferation of OPCs and angiogenesis in white matter are increased in the early stage of HI involving PI3K/AKT/mTOR pathway activation. Promoting vascular endothelial function and angiogenesis may increase the proliferation and survival of OPCs via the "oligovascular unit," which suggests a potential method to repair injured white matter in the early stage of PWMI.
Collapse
Affiliation(s)
- Xiaozhou Wang
- The Center of Functional Experiment, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Yu Wang
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China; Department of Neurology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing Pukou Hospital, Nanjing 210000, PR China
| | - Lei Wang
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Senjun Shi
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Cheng Yang
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Wei Jiang
- Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing 100048, PR China
| | - Zuo Luan
- Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing 100048, PR China
| | - Lei Liu
- Department of Physiology, Xuzhou Medical University, Xuzhou 221009, PR China.
| | - Ruiqin Yao
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China.
| |
Collapse
|
193
|
Lee TH, Yen CT, Hsu SH. Preparation of Polyurethane-Graphene Nanocomposite and Evaluation of Neurovascular Regeneration. ACS Biomater Sci Eng 2019; 6:597-609. [DOI: 10.1021/acsbiomaterials.9b01473] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tsung-Han Lee
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
- Research and Development Center for Medical Devices, National Taiwan University, Taipei, Taiwan, Republic of China
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, Republic of China
| |
Collapse
|
194
|
Vengoji R, Ponnusamy MP, Rachagani S, Mahapatra S, Batra SK, Shonka N, Macha MA. Novel therapies hijack the blood-brain barrier to eradicate glioblastoma cancer stem cells. Carcinogenesis 2019; 40:2-14. [PMID: 30475990 DOI: 10.1093/carcin/bgy171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/12/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is amongst the most aggressive brain tumors with a dismal prognosis. Despite significant advances in the current multimodality therapy including surgery, postoperative radiotherapy (RT) and temozolomide (TMZ)-based concomitant and adjuvant chemotherapy (CT), tumor recurrence is nearly universal with poor patient outcomes. These limitations are in part due to poor drug penetration through the blood-brain barrier (BBB) and resistance to CT and RT by a small population of cancer cells recognized as tumor-initiating cells or cancer stem cells (CSCs). Though CT and RT kill the bulk of the tumor cells, they fail to affect CSCs, resulting in their enrichment and their development into more refractory tumors. Therefore, identifying the mechanisms of resistance and developing therapies that specifically target CSCs can improve response, prevent the development of refractory tumors and increase overall survival of GBM patients. Small molecule inhibitors that can breach the BBB and selectively target CSCs are emerging. In this review, we have summarized the recent advancements in understanding the GBM CSC-specific signaling pathways, the CSC-tumor microenvironment niche that contributes to CT and RT resistance and the use of novel combination therapies of small molecule inhibitors that may be used in conjunction with TMZ-based chemoradiation for effective management of GBM.
Collapse
Affiliation(s)
- Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nicole Shonka
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
195
|
Zhang B, Yao R, Li L, Wang Y, Luo R, Yang L, Wang Y. Green Tea Polyphenol Induced Mg 2+-rich Multilayer Conversion Coating: Toward Enhanced Corrosion Resistance and Promoted in Situ Endothelialization of AZ31 for Potential Cardiovascular Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41165-41177. [PMID: 31651138 DOI: 10.1021/acsami.9b17221] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As a promising biodegradable metallic material, magnesium (Mg) and its alloys have attracted special attention in the recent decade. However, challenges still remain due to its high corrosion rate and insufficient biocompatibility after implantation. In this work, we prepare a simple and versatile green tea phenol-metal induced multilayer conversion coating (Mg2+ incorporated epigallocatechin gallate (EGCG) coating) on magnesium alloys' (AZ31) substrate by layer-by-layer (LBL) method. The surface morphology results revealed that, with the incorporation of Mg2+, the as-formed EGCG/Mg coating was rich in phenol-Mg complex and presented more homogeneous and dense morphology, with far less cracks than the pure EGCG coating. The in vitro degradation rate and corrosion resistance were studied by electrochemical corrosion tests and monitoring of the changed pH value and hydrogen evolution, respectively, which revealed that the corrosion rate was effectively decreased compared to that of bare AZ31 after it was protected by EGCG/Mg coating. In vitro and ex vivo thrombogenicity test demonstrated the EGCG/Mg coatings presented an impressive improvement in decreasing the adhesion and activation of platelets and erythrocytes, in activated partial thromboplastin time (APTT), and in antithrombogenicity compared to those of bare AZ31. Owing to the mild degradation rate, in combination with the biological function of EGCG, enhanced endothelial cells' (ECs') adhesion and proliferation, suppressed smooth muscle cells' (SMCs') adhesion/proliferation, and inhibited cytokine release were observed on EGCG/Mg coated AZ31 alloy. Besides, the in vivo subcutaneous embedding experiment suggested that the EGCG/Mg coating performed more mild tissue response due to the improved corrosion resistance to the surrounding microenvironment. Moreover, for in vivo abdominal aorta assay, the EGCG/Mg coated AZ31 wire presented better corrosion resistance and enhanced re-endothelialization compared to bare AZ31 wire. These results suggested the potential of using green tea polyphenol induced Mg2+-rich multilayer conversion coating for enhanced corrosion protection and desired biocompatibility of biodegradable cardiovascular implants.
Collapse
Affiliation(s)
- Bo Zhang
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Ruijuan Yao
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Linhua Li
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Yanan Wang
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Li Yang
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
196
|
Abstract
The evolutionarily conserved Notch signalling pathway regulates the differentiation and function of mature T lymphocytes with major context-dependent consequences in host defence, autoimmunity and alloimmunity. The emerging effects of Notch signalling in T cell responses build upon a more established role for Notch in T cell development. Here, we provide a critical review of this burgeoning literature to make sense of what has been learned so far and highlight the experimental strategies that have been most useful in gleaning physiologically relevant information. We outline the functional consequences of Notch signalling in mature T cells in addition to key specific Notch ligand–receptor interactions and downstream molecular signalling pathways. Our goal is to help clarify future directions for this expanding body of work and the best approaches to answer important open questions.
Collapse
Affiliation(s)
- Joshua D Brandstadter
- Division of Hematology-Oncology, Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
197
|
Yang F, Faulkner D, Yao R, Ozturk MS, Qu Q, Intes X. System configuration optimization for mesoscopic fluorescence molecular tomography. BIOMEDICAL OPTICS EXPRESS 2019; 10:5660-5674. [PMID: 31799038 PMCID: PMC6865091 DOI: 10.1364/boe.10.005660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/05/2019] [Accepted: 10/05/2019] [Indexed: 05/04/2023]
Abstract
Tissue engineering applications demand 3D, non-invasive, and longitudinal assessment of bioprinted constructs. Current emphasis is on developing tissue constructs mimicking in vivo conditions; however, these are increasingly challenging to image as they are typically a few millimeters thick and turbid, limiting the usefulness of classical fluorescence microscopic techniques. For such applications, we developed a Mesoscopic Fluorescence Molecular Tomography methodology that collects high information content data to enable high-resolution tomographic reconstruction of fluorescence biomarkers at millimeters depths. This imaging approach is based on an inverse problem; hence, its imaging performances are dependent on critical technical considerations including optode sampling, forward model design and inverse solver parameters. Herein, we investigate the impact of the optical system configuration parameters, including detector layout, number of detectors, combination of detector and source numbers, and scanning mode with uncoupled or coupled source and detector array, on the 3D imaging performances. Our results establish that an MFMT system with a 2D detection chain implemented in a de-scanned mode provides the optimal imaging reconstruction performances.
Collapse
Affiliation(s)
- Fugang Yang
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China
| | - Denzel Faulkner
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Ruoyang Yao
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Mehmet S Ozturk
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Qinglan Qu
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, 264000, China
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| |
Collapse
|
198
|
Cakir B, Xiang Y, Tanaka Y, Kural MH, Parent M, Kang YJ, Chapeton K, Patterson B, Yuan Y, He CS, Raredon MSB, Dengelegi J, Kim KY, Sun P, Zhong M, Lee S, Patra P, Hyder F, Niklason LE, Lee SH, Yoon YS, Park IH. Engineering of human brain organoids with a functional vascular-like system. Nat Methods 2019; 16:1169-1175. [PMID: 31591580 PMCID: PMC6918722 DOI: 10.1038/s41592-019-0586-5] [Citation(s) in RCA: 583] [Impact Index Per Article: 97.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/26/2019] [Indexed: 12/27/2022]
Abstract
Human cortical organoids (hCOs), derived from human embryonic stem cells (hESCs), provide a platform to study human brain development and diseases in complex three-dimensional tissue. However, current hCOs lack microvasculature, resulting in limited oxygen and nutrient delivery to the inner-most parts of hCOs. We engineered hESCs to ectopically express human ETS variant 2 (ETV2). ETV2-expressing cells in hCOs contributed to forming a complex vascular-like network in hCOs. Importantly, the presence of vasculature-like structures resulted in enhanced functional maturation of organoids. We found that vascularized hCOs (vhCOs) acquired several blood-brain barrier characteristics, including an increase in the expression of tight junctions, nutrient transporters and trans-endothelial electrical resistance. Finally, ETV2-induced endothelium supported the formation of perfused blood vessels in vivo. These vhCOs form vasculature-like structures that resemble the vasculature in early prenatal brain, and they present a robust model to study brain disease in vitro.
Collapse
Affiliation(s)
- Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Mehmet H Kural
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Maxime Parent
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Young-Jin Kang
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Kayley Chapeton
- Department of Electrical Engineering, University of Bridgeport, Bridgeport, CT, USA
| | - Benjamin Patterson
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Yifan Yuan
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Chang-Shun He
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Micha Sam B Raredon
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jake Dengelegi
- Department of Biomedical Engineering, University of Bridgeport, Bridgeport, CT, USA
| | - Kun-Yong Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Pingnan Sun
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Mei Zhong
- Department of Cell Biology, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Sangho Lee
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, USA
| | - Prabir Patra
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, University of Bridgeport, Bridgeport, CT, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Laura E Niklason
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sang-Hun Lee
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Young-Sup Yoon
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, USA
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
199
|
Stadlbauer A, Zimmermann M, Doerfler A, Oberndorfer S, Buchfelder M, Coras R, Kitzwögerer M, Roessler K. Intratumoral heterogeneity of oxygen metabolism and neovascularization uncovers 2 survival-relevant subgroups of IDH1 wild-type glioblastoma. Neuro Oncol 2019; 20:1536-1546. [PMID: 29718366 DOI: 10.1093/neuonc/noy066] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The intratumoral heterogeneity of oxygen metabolism in combination with variable patterns of neovascularization (NV) as well as reprogramming of energy metabolism affects the landscape of tumor microenvironments (TMEs) in glioblastoma. Knowledge of the hypoxic and perivascular niches within the TME is essential for understanding treatment failure. Methods Fifty-two patients with untreated glioblastoma (isocitrate dehydrogenase 1 wild type [IDH1wt]) were examined with a physiological MRI protocol including a multiparametric quantitative blood oxygen level dependent (qBOLD) approach and vascular architecture mapping (VAM). Imaging biomarker information about oxygen metabolism (mitochondrial oxygen tension) and neovascularization (microvascular density and type) were fused for classification of 6 different TMEs: necrosis, hypoxia with/without neovascularization, oxidative phosphorylation (OxPhos), and glycolysis with/without neovascularization. Association of the different TME volume fractions with progression-free survival (PFS) was assessed using Kaplan-Meier analysis and Cox proportional hazards models. Results A common spatial structure of TMEs was detected: central necrosis surrounded by tumor hypoxia (with defective and functional neovasculature) and different TMEs with a predominance of OxPhos and glycolysis for energy production, respectively. The percentage of the different TMEs on the total tumor volume uncovered 2 clearly different subtypes of glioblastoma IDH1wt: a glycolytic dominated phenotype with predominantly functional neovasculature and a necrotic/hypoxic dominated phenotype with approximately 50% of defective neovasculature. Patients with a necrotic/hypoxic dominated phenotype showed significantly shorter PFS (P = 0.035). Conclusions Our non-invasive mapping approach allows for classification of the TME and detection of tumor-supportive niches in glioblastoma which may be helpful for both clinical patient management and research.
Collapse
Affiliation(s)
- Andreas Stadlbauer
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany.,Institute of Medical Radiology, University Clinic of St Pölten, St Pölten, Austria
| | - Max Zimmermann
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Oberndorfer
- Department of Neurology, University Clinic of St Pölten, St Pölten, Austria
| | - Michael Buchfelder
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Coras
- Department of Neuropathology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Karl Roessler
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
200
|
Treadmill Exercise Suppresses Cognitive Decline and Increases White Matter Oligodendrocyte Precursor Cells in a Mouse Model of Prolonged Cerebral Hypoperfusion. Transl Stroke Res 2019; 11:496-502. [PMID: 31606888 DOI: 10.1007/s12975-019-00734-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022]
Abstract
Clinical evidence suggests that patients with subcortical ischemic vascular dementia (SIVD) perform better at cognitive tests after exercise. However, the underlying mechanism for this effect is largely unknown. Here, we examined how treadmill exercise changes the cognitive function and white matter cellular pathology in a mouse model of SIVD. Prolonged cerebral hypoperfusion was induced in 2-month-old male C57BL/6J mice by bilateral common carotid artery stenosis. A week later, the mice were randomly divided into a group that received 6-week treadmill exercise and a sedentary group for observation. In multiple behavioral tests (Y-maze, novel object recognition, and Morris water maze tests), the treadmill exercise training was shown to ameliorate cognitive decline in the hypoperfused SIVD mice. In addition, immunohistological analyses confirmed that there was a larger population of oligodendrocyte precursor cells in the subventricular zone of exercised versus sedentary mice. Although further investigations are needed to confirm a causal link between these findings, our study establishes a model and cellular foundation for investigating the mechanisms through which exercise preserves cognitive function in SIVD.
Collapse
|