151
|
Vannini I, Ferracin M, Fabbri F, Fabbri M. Overexpression of ultraconserved region 83- induces lung cancer tumorigenesis. PLoS One 2022; 17:e0261464. [PMID: 35015757 PMCID: PMC8752010 DOI: 10.1371/journal.pone.0261464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/02/2021] [Indexed: 01/12/2023] Open
Abstract
The expression of non-coding RNAs (ncRNAs) is dysregulated in human cancers. The transcribed ultraconserved regions (T-UCRs) express long ncRNAs involved in human carcinogenesis. T-UCRs are non-coding genomic sequence that are 100% conserved across humans, rats and mice. Conservation of genomic sequences across species intrinsically implies an essential functional role and so we considered the expression of T-UCRs in lung cancer. Using a custom microarray we analyzed the global expression of T-UCRs. Among these T-UCRs, the greatest variation was observed for antisense ultraconserved element 83 (uc.83-), which was upregulated in human lung cancer tissues compared with adjacent non cancerous tissues. Even though uc.83- is located within the long intergenic non-protein coding RNA 1876 (LINC01876) gene, we found that the transcribed uc.83- is expressed independently of LINC01876 and was cloned as a 1143-bp RNA gene. In this study, functional analysis confirmed important effects of uc.83- on genes involved in cell growth of human cells. siRNA against uc.83- decreased the growth of lung cancer cells while the upregulation through a vector overexpressing the uc.83- RNA increased cell proliferation. We also show the oncogenic function of uc.83- is mediated by the phosphorylation of AKT and ERK 1/2, two important biomarkers of lung cancer cell proliferation. Based on our findings, inhibition against uc.83- could be a future therapeutic treatment for NSCLC to achieve simultaneous blockade of pathways involved in lung carcinogenesis.
Collapse
Affiliation(s)
- Ivan Vannini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine—DIMES, University of Bologna, Bologna, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Muller Fabbri
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC, United States of America
| |
Collapse
|
152
|
Aghajani Mir M, Dinmohammadi H, Moudi E, Motamed N, Daraei A. Clinical values of expression signature of circCDR1AS and circHIAT1 in prostate cancer: Two circRNAs with regulatory function in androgen receptor (AR) and PI3K/AKT signaling pathways. J Clin Lab Anal 2022; 36:e24220. [PMID: 35007362 PMCID: PMC8841177 DOI: 10.1002/jcla.24220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Background Prostate cancer (PCa) is a genetically heterogeneous disease with highly molecular aberrations. It has been revealed that a newly discovered class of non‐coding RNAs called circular RNAs (circRNAs) play key roles in dictating tumor behaviors and phenotypes of the prostate tumors. In the current study, our aim was to determine the expression profiles of circHIAT1 and circCDR1AS in PCa compared with benign prostatic hyperplasia (BPH) tissues, as well as their clinicopathological relevance. Methods The 50 prostate tissues including 25 PCa tissues and 25 BPH samples were collected for analyzing the expression levels of target circRNAs by quantitative real‐time PCR (qRT‐PCR). Results The results revealed that expression of circCDR1AS was significantly elevated in PCa compared with the BPH (p < 0.05). We also observed that PCa patients over the age of 60 had a higher expression of the circCDR1AS than patients under the age of 60 (p = 0.017). Moreover, a lower expression level of circHIAT1 was found in the PCa than BPH tissues (p < 0.05), and finally, the findings indicated that the area under the curve (AUC) of circCDR1AS was 0.848, with 92% sensitivity and 76% specificity, as well as an AUC of 0.828, with the 80% sensitivity and 76% specificity for circHIAT1. Conclusion These observations suggest that the abnormal expression of circCDR1AS and circHIAT1 can be regarded as two different types of molecular pathology with potential biomarker values for PCa, although further studies are needed.
Collapse
Affiliation(s)
- Mahsa Aghajani Mir
- Department of Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Dinmohammadi
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Emadoddin Moudi
- Department of Urology, Babol University of Medical Sciences, Babol, Iran
| | - Nima Motamed
- The Faculty Member of the Department of Social Medical, Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
153
|
Ma L, Yuan T, Li W, Guo L, Zhu D, Wang Z, Liu Z, Xue K, Wang Y, Liu J, Man W, Ye Z, Liu F, Wang J. Dynamic Functional Connectivity Alterations and Their Associated Gene Expression Pattern in Autism Spectrum Disorders. Front Neurosci 2022; 15:794151. [PMID: 35082596 PMCID: PMC8784878 DOI: 10.3389/fnins.2021.794151] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a group of heterogeneous neurodevelopmental disorders that are highly heritable and are associated with impaired dynamic functional connectivity (DFC). However, the molecular mechanisms behind DFC alterations remain largely unknown. Eighty-eight patients with ASDs and 87 demographically matched typical controls (TCs) from the Autism Brain Imaging Data Exchange II database were included in this study. A seed-based sliding window approach was then performed to investigate the DFC changes in each of the 29 seeds in 10 classic resting-state functional networks and the whole brain. Subsequently, the relationships between DFC alterations in patients with ASDs and their symptom severity were assessed. Finally, transcription-neuroimaging association analyses were conducted to explore the molecular mechanisms of DFC disruptions in patients with ASDs. Compared with TCs, patients with ASDs showed significantly increased DFC between the right dorsolateral prefrontal cortex (DLPFC) and left fusiform/lingual gyrus, between the DLPFC and the superior temporal gyrus, between the right frontal eye field (FEF) and left middle frontal gyrus, between the FEF and the right angular gyrus, and between the left intraparietal sulcus and the right middle temporal gyrus. Moreover, significant relationships between DFC alterations and symptom severity were observed. Furthermore, the genes associated with DFC changes in ASDs were identified by performing gene-wise across-sample spatial correlation analysis between gene expression extracted from six donors’ brain of the Allen Human Brain Atlas and case-control DFC difference. In enrichment analysis, these genes were enriched for processes associated with synaptic signaling and voltage-gated ion channels and calcium pathways; also, these genes were highly expressed in autistic disorder, chronic alcoholic intoxication and several disorders related to depression. These results not only demonstrated higher DFC in patients with ASDs but also provided novel insight into the molecular mechanisms underlying these alterations.
Collapse
Affiliation(s)
- Lin Ma
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Tengfei Yuan
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Dan Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Department of Radiology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Zirui Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhixuan Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaoyi Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiawei Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Weiqi Man
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Zhaoxiang Ye,
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Feng Liu,
| | - Junping Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Junping Wang,
| |
Collapse
|
154
|
Long non-coding RNA in Non-alcoholic fatty liver disease. Adv Clin Chem 2022; 110:1-35. [DOI: 10.1016/bs.acc.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
155
|
Roscito JG, Sameith K, Kirilenko BM, Hecker N, Winkler S, Dahl A, Rodrigues MT, Hiller M. Convergent and lineage-specific genomic differences in limb regulatory elements in limbless reptile lineages. Cell Rep 2022; 38:110280. [DOI: 10.1016/j.celrep.2021.110280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 01/02/2023] Open
|
156
|
Neelabh, Gautam A. Noncoding RNA. ENCYCLOPEDIA OF ANIMAL COGNITION AND BEHAVIOR 2022:4679-4683. [DOI: 10.1007/978-3-319-55065-7_192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
157
|
Ribeiro CVR, Oliveira LP, Batista R, De Sousa M. UCEasy: A software package for automating and simplifying the analysis of ultraconserved elements (UCEs). Biodivers Data J 2021; 9:e78132. [PMID: 34934383 PMCID: PMC8683391 DOI: 10.3897/bdj.9.e78132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022] Open
Abstract
Background The use of Ultraconserved Elements (UCEs) as genetic markers in phylogenomics has become popular and has provided promising results. Although UCE data can be easily obtained from targeted enriched sequencing, the protocol for in silico analysis of UCEs consist of the execution of heterogeneous and complex tools, a challenge for scientists without training in bioinformatics. Developing tools with the adoption of best practices in research software can lessen this problem by improving the execution of computational experiments, thus promoting better reproducibility. New information We present UCEasy, an easy-to-install and easy-to-use software package with a simple command line interface that facilitates the computational analysis of UCEs from sequencing samples, following the best practices of research software. UCEasy is a wrapper that standardises, automates and simplifies the quality control of raw reads, assembly and extraction and alignment of UCEs, generating at the end a data matrix with different levels of completeness that can be used to infer phylogenetic trees. We demonstrate the functionalities of UCEasy by reproducing the published results of phylogenomic studies of the bird genus Turdus (Aves) and of Adephaga families (Coleoptera) containing genomic datasets to efficiently extract UCEs.
Collapse
Affiliation(s)
- Caio V R Ribeiro
- Coordenação de Ciência da Computação, Centro Universitário do Estado do Pará (CESUPA), Belém, Brazil Coordenação de Ciência da Computação, Centro Universitário do Estado do Pará (CESUPA) Belém Brazil
| | - Lucas P Oliveira
- Instituto de Computação, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil Instituto de Computação, Universidade Estadual de Campinas (UNICAMP) Campinas Brazil
| | - Romina Batista
- Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil Instituto Nacional de Pesquisas da Amazônia (INPA) Manaus Brazil.,Gothenburg Global Biodiversity Centre, Gothenburg, Sweden Gothenburg Global Biodiversity Centre Gothenburg Sweden
| | - Marcos De Sousa
- Museu Paraense Emílio Goeldi (MPEG), Belém, Brazil Museu Paraense Emílio Goeldi (MPEG) Belém Brazil.,Coordenação de Ciência da Computação, Centro Universitário do Estado do Pará (CESUPA), Belém, Brazil Coordenação de Ciência da Computação, Centro Universitário do Estado do Pará (CESUPA) Belém Brazil
| |
Collapse
|
158
|
Corrà F, Crudele F, Baldassari F, Bianchi N, Galasso M, Minotti L, Agnoletto C, Di Leva G, Brugnoli F, Reali E, Bertagnolo V, Vecchione A, Volinia S. UC.183, UC.110, and UC.84 Ultra-Conserved RNAs Are Mutually Exclusive with miR-221 and Are Engaged in the Cell Cycle Circuitry in Breast Cancer Cell Lines. Genes (Basel) 2021; 12:genes12121978. [PMID: 34946928 PMCID: PMC8701292 DOI: 10.3390/genes12121978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
In the human genome, there are about 600 ultra-conserved regions (UCRs), long DNA sequences extremely conserved in vertebrates. We performed a large-scale study to quantify transcribed UCR (T-UCR) and miRNA levels in over 6000 cancer and normal tissue samples to find possible correlation between these kinds of regulatory molecules. Our analysis evidenced several non-coding RNAs showing negative co-regulation with miRNAs; among them, we focused on miR-221 to investigate any relationship with its pivotal role in the cell cycle. We have chosen breast cancer as model, using two cell lines with different phenotypes to carry out in vitro treatments with siRNAs against T-UCRs. Our results demonstrate that the expression of uc.183, uc.110, and uc.84 T-UCRs is mutually exclusive with miR-221 and is engaged in the regulation of CDKN1B expression. In addition, tests with a set of anticancer drugs, including BYL719, AZD5363, AZD8055, AZD7762, and XL765, revealed the modulation of specific T-UCRs without alteration of miR-221 levels.
Collapse
Affiliation(s)
- Fabio Corrà
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Francesca Crudele
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Federica Baldassari
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Nicoletta Bianchi
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Marco Galasso
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Linda Minotti
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Chiara Agnoletto
- Advanced Translational Research Laboratory, Veneto Institute of Oncology IOV-IRCCS, 35127 Padua, Italy;
| | - Gianpiero Di Leva
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Stoke-on-Trent ST4 7QB, UK;
| | - Federica Brugnoli
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Eva Reali
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy;
| | - Valeria Bertagnolo
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Andrea Vecchione
- Department of Medical Surgical Science and Translational Medicine-c/o Azienda Ospedaliera Sant’Andrea, Via di Grottarossa 1035, 00189 Rome, Italy;
| | - Stefano Volinia
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
- Correspondence: ; Tel.: +39-0532-455-714
| |
Collapse
|
159
|
Non-coding RNAs-EZH2 regulatory mechanisms in cervical cancer: The current state of knowledge. Biomed Pharmacother 2021; 146:112123. [PMID: 34915417 DOI: 10.1016/j.biopha.2021.112123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
Cervical cancer (CC) is among the leading causes of death in women worldwide. Both genetic and epigenetic regulators are required for the tumorigenesis and progression of CC. Non-coding RNAs (ncRNAs) are a group of RNAs that don't code for proteins yet constitute a large part of the human transcriptome, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), circular RNAs (circRNA), and other forms of non-coding RNAs. Deregulation of lncRNA, miRNA, and circRNA is implicated in the oncogenesis and development of cervical malignancies, acting as oncogenic drivers or tumor suppressors. Enhancer of zeste homolog 2 (EZH2) is the enzymatic subunit of Polycomb Repressive Complex 2 (PRC2), which functions to methylate histone H3 lysine 27 to silence gene transcription. Converging lines of evidence have revealed the oncogenic role played by EZH2 in cancers. EZH2 is upregulated in CC tissues with a robust correlation to the advanced stage, metastasis, and poor survival rate in patients. The elucidation of the roles of EZH2 in cancer has driven the development of therapeutic EZH2 inhibitors, which are approaching phase I or phase I/II clinical trials. Here we review the ncRNA-EZH2 regulatory pathways in CC that unify EZH2 and ncRNAs as an integrated system in the development of CC. Given the emerging findings for the role of the ncRNA-EZH2 regulatory axis in CC, it will be of great interest to develop novel therapeutic strategies based on their relationship.
Collapse
|
160
|
Shi X, Huang X, Chen R, Li Y, Xu Y, Zhang W, Zhu Q, Zha X, Wang J. The transcribed ultraconserved element uc.51 promotes the proliferation and metastasis of breast cancer by stabilizing NONO. Clin Exp Metastasis 2021; 38:551-571. [PMID: 34714466 DOI: 10.1007/s10585-021-10128-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022]
Abstract
Long noncoding RNAs have recently emerged as significant contributors to cancers, including breast cancer (BC). One class of long noncoding RNAs called transcribed ultraconserved regions (T-UCRs) is highly conserved in many species and closely related to diverse physiological and pathological processes. However, the function of T-UCRs in BC remains largely unclear. In this study, we identified uc.51, a T-UCR that is overexpressed in both BC tissues and cell lines and is correlated with larger tumor size. Loss- and gain-of-function assays were performed in vitro and demonstrated that uc.51 promotes the proliferation, migration, and invasion of BC cells. Mechanistically, non-POU domain-containing octamer-binding protein (NONO) was found to physically interact with uc.51 by RNA pulldown followed by mass spectrometry. This interaction was further verified by RNA immunoprecipitation. Moreover, uc.51 positively regulated the expression of NONO, maintained its stability through the ubiquitin-proteasome system, and activated the phosphorylation of CREB. Rescue experiments demonstrated that NONO overexpression compensated for the attenuated influence on BC progression resulting from downregulation of uc.51, indicating that NONO functions downstream of uc.51. In vivo functional experiments also revealed a positive correlation between uc.51 expression and tumor size. Ki-67 and NONO levels in the lv-uc.51-shRNA group were decreased compared with those in the lv-con-shRNA group, according to the immunohistochemical staining results, and a decreased incidence of distant metastasis was observed in the lv-uc.51-shRNA group in the xenograft model. Collectively, our results reveal a substantial role for the uc.51-NONO axis in BC progression and indicate that the uc.51-NONO axis has potential to be a therapeutic target for BC.
Collapse
Affiliation(s)
- Xiaoqing Shi
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Xiaofeng Huang
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Rui Chen
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Yan Li
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Yinggang Xu
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Weiwei Zhang
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Qiannan Zhu
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Xiaoming Zha
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210000, China.
| | - Jue Wang
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210000, China.
| |
Collapse
|
161
|
Chai P, Jia R, Li Y, Zhou C, Gu X, Yang L, Shi H, Tian H, Lin H, Yu J, Zhuang A, Ge S, Jia R, Fan X. Regulation of epigenetic homeostasis in uveal melanoma and retinoblastoma. Prog Retin Eye Res 2021; 89:101030. [PMID: 34861419 DOI: 10.1016/j.preteyeres.2021.101030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
Uveal melanoma (UM) and retinoblastoma (RB), which cause blindness and even death, are the most frequently observed primary intraocular malignancies in adults and children, respectively. Epigenetic studies have shown that changes in the epigenome contribute to the rapid progression of both UM and RB following classic genetic changes. The loss of epigenetic homeostasis plays an important role in oncogenesis by disrupting the normal patterns of gene expression. The targetable nature of epigenetic modifications provides a unique opportunity to optimize treatment paradigms and establish new therapeutic options for both UM and RB with these aberrant epigenetic modifications. We aimed to review the research findings regarding relevant epigenetic changes in UM and RB. Herein, we 1) summarize the literature, with an emphasis on epigenetic alterations, including DNA methylation, histone modifications, RNA modifications, noncoding RNAs and an abnormal chromosomal architecture; 2) elaborate on the regulatory role of epigenetic modifications in biological processes during tumorigenesis; and 3) propose promising therapeutic candidates for epigenetic targets and update the list of epigenetic drugs for the treatment of UM and RB. In summary, we endeavour to depict the epigenetic landscape of primary intraocular malignancy tumorigenesis and provide potential epigenetic targets in the treatment of these tumours.
Collapse
Affiliation(s)
- Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ruobing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Chuandi Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Hanhan Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Huimin Lin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China.
| |
Collapse
|
162
|
Revealing the role of miRNA-489 as a new onco-suppressor factor in different cancers based on pre-clinical and clinical evidence. Int J Biol Macromol 2021; 191:727-737. [PMID: 34562537 DOI: 10.1016/j.ijbiomac.2021.09.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/17/2023]
Abstract
Recently, microRNAs (miRNAs) have shown to be potential therapeutic, diagnostic and prognostic targets in disease therapy. These endogenous non-coding RNAs contribute to regulation of different cellular events that are necessary for maintaining physiological condition. Dysregulation of miRNAs is correlated with development of various pathological events such as neurological disorders, cardiovascular diseases, and cancer. miRNA-489 is a new emerging miRNA and studies are extensively investigating its role in pathological conditions. Herein, potential function of miRNA-489 as tumor-suppressor in various cancers is described. miRNA-489 is able to sensitize cancer cells into chemotherapy by disrupting molecular pathways involved in cancer growth such as PI3K/Akt, and induction of apoptosis. The PROX1 and SUZ12 as oncogenic pathways, are affected by miRNA-489 in suppressing metastasis of cancer cells. Wnt/β-catenin as an oncogenic factor ensuring growth and malignancy of tumors is inhibited via miRNA-489 function. For enhancing drug sensitivity of tumors, restoring miRNA-489 expression is a promising strategy. The lncRNAs can modulate miRNA-489 expression in tumors and studies about circRNA role in miRNA-489 modulation should be performed. The expression level of miRNA-489 is a diagnostic tool for tumor detection. Besides, down-regulation of miRNA-489 in tumors provides unfavorable prognosis.
Collapse
|
163
|
Chen D, Hosner PA, Dittmann DL, O'Neill JP, Birks SM, Braun EL, Kimball RT. Divergence time estimation of Galliformes based on the best gene shopping scheme of ultraconserved elements. BMC Ecol Evol 2021; 21:209. [PMID: 34809586 PMCID: PMC8609756 DOI: 10.1186/s12862-021-01935-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Divergence time estimation is fundamental to understanding many aspects of the evolution of organisms, such as character evolution, diversification, and biogeography. With the development of sequence technology, improved analytical methods, and knowledge of fossils for calibration, it is possible to obtain robust molecular dating results. However, while phylogenomic datasets show great promise in phylogenetic estimation, the best ways to leverage the large amounts of data for divergence time estimation has not been well explored. A potential solution is to focus on a subset of data for divergence time estimation, which can significantly reduce the computational burdens and avoid problems with data heterogeneity that may bias results. RESULTS In this study, we obtained thousands of ultraconserved elements (UCEs) from 130 extant galliform taxa, including representatives of all genera, to determine the divergence times throughout galliform history. We tested the effects of different "gene shopping" schemes on divergence time estimation using a carefully, and previously validated, set of fossils. Our results found commonly used clock-like schemes may not be suitable for UCE dating (or other data types) where some loci have little information. We suggest use of partitioning (e.g., PartitionFinder) and selection of tree-like partitions may be good strategies to select a subset of data for divergence time estimation from UCEs. Our galliform time tree is largely consistent with other molecular clock studies of mitochondrial and nuclear loci. With our increased taxon sampling, a well-resolved topology, carefully vetted fossil calibrations, and suitable molecular dating methods, we obtained a high quality galliform time tree. CONCLUSIONS We provide a robust galliform backbone time tree that can be combined with more fossil records to further facilitate our understanding of the evolution of Galliformes and can be used as a resource for comparative and biogeographic studies in this group.
Collapse
Affiliation(s)
- De Chen
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Peter A Hosner
- Department of Biology, University of Florida, Gainesville, FL, USA
- Natural History Museum of Denmark and Center for Global Mountain Biodiversity, University of Copenhagen, Copenhagen, Denmark
| | - Donna L Dittmann
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| | - John P O'Neill
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| | - Sharon M Birks
- Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
164
|
Welt RS, Raxworthy CJ. Dispersal, not vicariance, explains the biogeographic origin of iguanas on Madagascar. Mol Phylogenet Evol 2021; 167:107345. [PMID: 34748875 DOI: 10.1016/j.ympev.2021.107345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/23/2021] [Accepted: 11/02/2021] [Indexed: 11/19/2022]
Abstract
Lizards of the clade Iguanidae (sensu lato) are primarily a New World group. Thus, the remarkable presence of an endemic lineage of iguanas (family Opluridae) on the isolated Indian Ocean island of Madagascar has long been considered a biogeographic anomaly. Previous work attributed this disjunct extant distribution to: (1) vicariance at about 140-165 Ma, caused by the breakup of Gondwana and the separation of South America, Africa, and Madagascar (with subsequent extinction of iguanas on Africa, and potentially other Gondwanan landmasses), (2) vicariance at about 80-90 Ma, caused by the sundering of hypothesized land-bridge connections between South America, Antarctica, India, and Madagascar, or (3) long-distance overwater dispersal from South America to Madagascar. Each hypothesis has been supported with molecular divergence dating analyses, and thus the biogeographic origin of the Opluridae is not yet well resolved. Here we utilize genetic sequences of ultraconserved elements for all Iguania families and the majority of Iguanidae (s.l.) genera, and morphological data for extant and fossil taxa (used for divergence dating analyses), to produce the most comprehensive dataset applied to date to test these origin hypotheses. We find strong support for a sister relationship between the Opluridae (Madagascar) and Leiosauridae (South America). Divergence of the Opluridae from Leiosauridae is dated to between the late Cretaceous and mid-Paleogene, at a time when Madagascar was already an island and was isolated from all other Gondwanan landmasses. Consequently, our results support a hypothesis of long-distance overwater dispersal of the Opluridae lineage, either directly from South America to Madagascar or potentially via Antarctica or Africa, leading to this radiation of iguanas in the Indian Ocean.
Collapse
Affiliation(s)
- Rachel S Welt
- Department of Herpetology, American Museum of Natural History, USA.
| | | |
Collapse
|
165
|
Soler M, Davalos V, Sánchez-Castillo A, Mora-Martinez C, Setién F, Siqueira E, Castro de Moura M, Esteller M, Guil S. The transcribed ultraconserved region uc.160+ enhances processing and A-to-I editing of the miR-376 cluster: hypermethylation improves glioma prognosis. Mol Oncol 2021; 16:648-664. [PMID: 34665919 PMCID: PMC8807354 DOI: 10.1002/1878-0261.13121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 11/11/2022] Open
Abstract
Transcribed ultraconserved regions (T‐UCRs) are noncoding RNAs derived from DNA sequences that are entirely conserved across species. Their expression is altered in many tumor types, and, although a role for T‐UCRs as regulators of gene expression has been proposed, their functions remain largely unknown. Herein, we describe the epigenetic silencing of the uc.160+ T‐UCR in gliomas and mechanistically define a novel RNA–RNA regulatory network in which uc.160+ modulates the biogenesis of several members of the miR‐376 cluster. This includes the positive regulation of primary microRNA (pri‐miRNA) cleavage and an enhanced A‐to‐I editing on its mature sequence. As a consequence, the expression of uc.160+ affects the downstream, miR‐376‐regulated genes, including the transcriptional coregulators RING1 and YY1‐binding protein (RYBP) and forkhead box P2 (FOXP2). Finally, we elucidate the clinical impact of our findings, showing that hypermethylation of the uc.160+ CpG island is an independent prognostic factor associated with better overall survival in lower‐grade gliomas, highlighting the importance of T‐UCRs in cancer pathophysiology.
Collapse
Affiliation(s)
- Marta Soler
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Veronica Davalos
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Anaís Sánchez-Castillo
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands
| | - Carlos Mora-Martinez
- Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Finland
| | - Fernando Setién
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Edilene Siqueira
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq), Brasilia, Brazil
| | | | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Spain
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Germans Trias i Pujol Health Science Research Institute, Barcelona, Spain
| |
Collapse
|
166
|
Pereira Zambalde E, Bayraktar R, Schultz Jucoski T, Ivan C, Rodrigues AC, Mathias C, knutsen E, Silveira de Lima R, Fiori Gradia D, de Souza Fonseca Ribeiro EM, Hannash S, Adrian Calin G, Carvalhode Oliveira J. A novel lncRNA derived from an ultraconserved region: lnc- uc.147, a potential biomarker in luminal A breast cancer. RNA Biol 2021; 18:416-429. [PMID: 34387142 PMCID: PMC8677017 DOI: 10.1080/15476286.2021.1952757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/02/2021] [Accepted: 07/04/2021] [Indexed: 02/06/2023] Open
Abstract
The human genome contains 481 ultraconserved regions (UCRs), which are genomic stretches of over 200 base pairs conserved among human, rat, and mouse. The majority of these regions are transcriptionally active (T-UCRs), and several have been found to be differentially expressed in tumours. Some T-UCRs have been functionally characterized, but of those few have been associated to breast cancer (BC). Using TCGA data, we found 302 T-UCRs related to clinical features in BC: 43% were associated with molecular subtypes, 36% with oestrogen-receptor positivity, 17% with HER2 expression, 12% with stage, and 10% with overall survival. The expression levels of 12 T-UCRs were further analysed in a cohort of 82 Brazilian BC patients using RT-qPCR. We found that uc.147 is high expressed in luminal A and B patients. For luminal A, a subtype usually associated with better prognosis, high uc.147 expression was associated with a poor prognosis and suggested as an independent prognostic factor. The lncRNA from uc.147 (lnc-uc.147) is located in the nucleus. Northern blotting results show that uc.147 is a 2,8 kb monoexonic trancript, and its sequence was confirmed by RACE. The silencing of uc.147 increases apoptosis, arrests cell cycle, and reduces cell viability and colony formation in BC cell lines. Additionally, we identifed 19 proteins that interact with lnc-uc.147 through mass spectrometry and demonstrated a high correlation of lnc-uc.147 with the neighbour gene expression and miR-18 and miR-190b. This is the first study to analyse the expression of all T-UCRs in BC and to functionally assess the lnc-uc.147.
Collapse
Affiliation(s)
- Erika Pereira Zambalde
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Recep Bayraktar
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Tayana Schultz Jucoski
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Cristina Ivan
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Carolina Rodrigues
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Carolina Mathias
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Erik knutsen
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Department of Medical Biology, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway
| | | | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | | | - Samir Hannash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Adrian Calin
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaqueline Carvalhode Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
167
|
Houston DD, Satler JD, Stack TK, Carroll HM, Bevan AM, Moya AL, Alexander KD. A phylogenomic perspective on the evolutionary history of the stonefly genus Suwallia (Plecoptera: Chloroperlidae) revealed by ultraconserved genomic elements. Mol Phylogenet Evol 2021; 166:107320. [PMID: 34626810 DOI: 10.1016/j.ympev.2021.107320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022]
Abstract
Evolutionary biologists have long sought to disentangle phylogenetic relationships among taxa spanning the tree of life, an increasingly important task as anthropogenic influences accelerate population declines and species extinctions, particularly in insects. Phylogenetic analyses are commonly used to identify unique evolutionary lineages, to clarify taxonomic designations of the focal taxa, and to inform conservation decisions. Advances in DNA sequencing techniques have increasingly facilitated the ability of researchers to apply genomic methods to phylogenetic analyses, even for non-model organisms. Stoneflies are non-model insects that are important bioindicators of the quality of freshwater habitats and landscape disturbance as they spend the immature stages of their life cycles in fresh water, and the adult stages in terrestrial environments. Phylogenetic relationships within the stonefly genus Suwallia (Insecta: Plecoptera: Chloroperlidae) are poorly understood, and have never been assessed using molecular data. We used DNA sequence data from genome-wide ultraconserved element loci to generate the first molecular phylogeny for the group and assess its monophyly. We found that Palearctic and Nearctic Suwallia do not form reciprocally monophyletic clades, and that a biogeographic history including dispersal, vicariance, and founder event speciation via jump dispersal best explains the geographic distribution of this group. Our results also strongly suggest that Neaviperla forcipata (Neave, 1929) is nested within Suwallia, and the concept of the genus Suwallia should be revised to include it. Thus, we formally propose a new taxonomic combination wherein Neaviperla forcipata (Neave, 1929) is reclassified as Suwallia forcipata (Neave, 1929). Moreover, some Suwallia species (e.g., S. amoenacolens, S. kerzhneri, S. marginata, S. pallidula, and S. starki) exhibit pronounced cryptic diversity that is worthy of further investigation. These findings provide a first glimpse into the evolutionary history of Suwallia, improve our understanding of stonefly diversity in the tribe Suwallini, and highlight areas where additional research is needed.
Collapse
Affiliation(s)
- Derek D Houston
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| | - Jordan D Satler
- Department of Ecology Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Taylor K Stack
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| | - Hannah M Carroll
- Department of Ecology Evolution and Organismal Biology, Iowa State University, Ames, IA, USA; Department of Earth Planetary and Space Sciences, University of California-Los Angeles, CA, USA.
| | - Alissa M Bevan
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| | - Autumn L Moya
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| | - Kevin D Alexander
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| |
Collapse
|
168
|
Sarropoulos I, Sepp M, Frömel R, Leiss K, Trost N, Leushkin E, Okonechnikov K, Joshi P, Giere P, Kutscher LM, Cardoso-Moreira M, Pfister SM, Kaessmann H. Developmental and evolutionary dynamics of cis-regulatory elements in mouse cerebellar cells. Science 2021; 373:eabg4696. [PMID: 34446581 PMCID: PMC7611596 DOI: 10.1126/science.abg4696] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022]
Abstract
Organ development is orchestrated by cell- and time-specific gene regulatory networks. In this study, we investigated the regulatory basis of mouse cerebellum development from early neurogenesis to adulthood. By acquiring snATAC-seq (single-nucleus assay for transposase accessible chromatin using sequencing) profiles for ~90,000 cells spanning 11 stages, we mapped cerebellar cell types and identified candidate cis-regulatory elements (CREs). We detected extensive spatiotemporal heterogeneity among progenitor cells and a gradual divergence in the regulatory programs of cerebellar neurons during differentiation. Comparisons to vertebrate genomes and snATAC-seq profiles for ∼20,000 cerebellar cells from the marsupial opossum revealed a shared decrease in CRE conservation during development and differentiation as well as differences in constraint between cell types. Our work delineates the developmental and evolutionary dynamics of gene regulation in cerebellar cells and provides insights into mammalian organ development.
Collapse
Affiliation(s)
- Ioannis Sarropoulos
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany.
| | - Mari Sepp
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany.
| | - Robert Frömel
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Kevin Leiss
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Nils Trost
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Evgeny Leushkin
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center (KiTZ) Heidelberg, Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Piyush Joshi
- Hopp Children's Cancer Center (KiTZ) Heidelberg, Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Peter Giere
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Lena M Kutscher
- Hopp Children's Cancer Center (KiTZ) Heidelberg, Developmental Origins of Pediatric Cancer Group, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Margarida Cardoso-Moreira
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
- Evolutionary Developmental Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ) Heidelberg, Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany.
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany.
| |
Collapse
|
169
|
Literman R, Schwartz R. Genome-Scale Profiling Reveals Noncoding Loci Carry Higher Proportions of Concordant Data. Mol Biol Evol 2021; 38:2306-2318. [PMID: 33528497 PMCID: PMC8136493 DOI: 10.1093/molbev/msab026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many evolutionary relationships remain controversial despite whole-genome sequencing data. These controversies arise, in part, due to challenges associated with accurately modeling the complex phylogenetic signal coming from genomic regions experiencing distinct evolutionary forces. Here, we examine how different regions of the genome support or contradict well-established relationships among three mammal groups using millions of orthologous parsimony-informative biallelic sites (PIBS) distributed across primate, rodent, and Pecora genomes. We compared PIBS concordance percentages among locus types (e.g. coding sequences (CDS), introns, intergenic regions), and contrasted PIBS utility over evolutionary timescales. Sites derived from noncoding sequences provided more data and proportionally more concordant sites compared with those from CDS in all clades. CDS PIBS were also predominant drivers of tree incongruence in two cases of topological conflict. PIBS derived from most locus types provided surprisingly consistent support for splitting events spread across the timescales we examined, although we find evidence that CDS and intronic PIBS may, respectively and to a limited degree, inform disproportionately about older and younger splits. In this era of accessible wholegenome sequence data, these results:1) suggest benefits to more intentionally focusing on noncoding loci as robust data for tree inference and 2) reinforce the importance of accurate modeling, especially when using CDS data.
Collapse
Affiliation(s)
- Robert Literman
- Department of Biological Sciences, University of Rhode Island, South Kingstown, RI, USA.,Center for Food Safety and Applied Nutrition, Office of Regulatory Science, U.S. Food and Drug Administration, College Park, MD, USA
| | - Rachel Schwartz
- Department of Biological Sciences, University of Rhode Island, South Kingstown, RI, USA
| |
Collapse
|
170
|
Ferrer Obiol J, James HF, Chesser RT, Bretagnolle V, González-Solís J, Rozas J, Riutort M, Welch AJ. Integrating Sequence Capture and Restriction Site-Associated DNA Sequencing to Resolve Recent Radiations of Pelagic Seabirds. Syst Biol 2021; 70:976-996. [PMID: 33512506 PMCID: PMC8357341 DOI: 10.1093/sysbio/syaa101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/13/2020] [Accepted: 12/15/2020] [Indexed: 01/01/2023] Open
Abstract
The diversification of modern birds has been shaped by a number of radiations. Rapid diversification events make reconstructing the evolutionary relationships among taxa challenging due to the convoluted effects of incomplete lineage sorting (ILS) and introgression. Phylogenomic data sets have the potential to detect patterns of phylogenetic incongruence, and to address their causes. However, the footprints of ILS and introgression on sequence data can vary between different phylogenomic markers at different phylogenetic scales depending on factors such as their evolutionary rates or their selection pressures. We show that combining phylogenomic markers that evolve at different rates, such as paired-end double-digest restriction site-associated DNA (PE-ddRAD) and ultraconserved elements (UCEs), allows a comprehensive exploration of the causes of phylogenetic discordance associated with short internodes at different timescales. We used thousands of UCE and PE-ddRAD markers to produce the first well-resolved phylogeny of shearwaters, a group of medium-sized pelagic seabirds that are among the most phylogenetically controversial and endangered bird groups. We found that phylogenomic conflict was mainly derived from high levels of ILS due to rapid speciation events. We also documented a case of introgression, despite the high philopatry of shearwaters to their breeding sites, which typically limits gene flow. We integrated state-of-the-art concatenated and coalescent-based approaches to expand on previous comparisons of UCE and RAD-Seq data sets for phylogenetics, divergence time estimation, and inference of introgression, and we propose a strategy to optimize RAD-Seq data for phylogenetic analyses. Our results highlight the usefulness of combining phylogenomic markers evolving at different rates to understand the causes of phylogenetic discordance at different timescales. [Aves; incomplete lineage sorting; introgression; PE-ddRAD-Seq; phylogenomics; radiations; shearwaters; UCEs.].
Collapse
Affiliation(s)
- Joan Ferrer Obiol
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
| | - Helen F James
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - R Terry Chesser
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, MD, USA
| | - Vincent Bretagnolle
- Centre d’Études Biologiques de Chizé, CNRS & La Rochelle Université, 79360, Villiers en Bois, France
| | - Jacob González-Solís
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
| | - Marta Riutort
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
| | | |
Collapse
|
171
|
The Role of lncRNA in the Development of Tumors, including Breast Cancer. Int J Mol Sci 2021; 22:ijms22168427. [PMID: 34445129 PMCID: PMC8395147 DOI: 10.3390/ijms22168427] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are the largest groups of ribonucleic acids, but, despite the increasing amount of literature data, the least understood. Given the involvement of lncRNA in basic cellular processes, especially in the regulation of transcription, the role of these noncoding molecules seems to be of great importance for the proper functioning of the organism. Studies have shown a relationship between disturbed lncRNA expression and the pathogenesis of many diseases, including cancer. The present article presents a detailed review of the latest reports and data regarding the importance of lncRNA in the development of cancers, including breast carcinoma.
Collapse
|
172
|
Alda F, Ludt WB, Elías DJ, McMahan CD, Chakrabarty P. Comparing Ultraconserved Elements and Exons for Phylogenomic Analyses of Middle American Cichlids: When Data Agree to Disagree. Genome Biol Evol 2021; 13:evab161. [PMID: 34272856 PMCID: PMC8369075 DOI: 10.1093/gbe/evab161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
Choosing among types of genomic markers to be used in a phylogenomic study can have a major influence on the cost, design, and results of a study. Yet few attempts have been made to compare categories of next-generation sequence markers limiting our ability to compare the suitability of these different genomic fragment types. Here, we explore properties of different genomic markers to find if they vary in the accuracy of component phylogenetic trees and to clarify the causes of conflict obtained from different data sets or inference methods. As a test case, we explore the causes of discordance between phylogenetic hypotheses obtained using a novel data set of ultraconserved elements (UCEs) and a recently published exon data set of the cichlid tribe Heroini. Resolving relationships among heroine cichlids has historically been difficult, and the processes of colonization and diversification in Middle America and the Greater Antilles are not yet well understood. Despite differences in informativeness and levels of gene tree discordance between UCEs and exons, the resulting phylogenomic hypotheses generally agree on most relationships. The independent data sets disagreed in areas with low phylogenetic signal that were overwhelmed by incomplete lineage sorting and nonphylogenetic signals. For UCEs, high levels of incomplete lineage sorting were found to be the major cause of gene tree discordance, whereas, for exons, nonphylogenetic signal is most likely caused by a reduced number of highly informative loci. This paucity of informative loci in exons might be due to heterogeneous substitution rates that are problematic to model (i.e., computationally restrictive) resulting in systematic errors that UCEs (being less informative individually but more uniform) are less prone to. These results generally demonstrate the robustness of phylogenomic methods to accommodate genomic markers with different biological and phylogenetic properties. However, we identify common and unique pitfalls of different categories of genomic fragments when inferring enigmatic phylogenetic relationships.
Collapse
Affiliation(s)
- Fernando Alda
- Department of Biology, Geology and Environmental Science, University of Tennessee at Chattanooga, Tennessee, USA
| | - William B Ludt
- Department of Ichthyology, Natural History Museum of Los Angeles County, Los Angeles, California, USA
| | - Diego J Elías
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | | | - Prosanta Chakrabarty
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
173
|
Liu Y, Wang X, Yang F, Zheng Y, Ye T, Yang L. Immunomodulatory Role and Therapeutic Potential of Non-Coding RNAs Mediated by Dendritic Cells in Autoimmune and Immune Tolerance-Related Diseases. Front Immunol 2021; 12:678918. [PMID: 34394079 PMCID: PMC8360493 DOI: 10.3389/fimmu.2021.678918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that act as a bridge between innate immunity and adaptive immunity. After activation, DCs differentiate into subtypes with different functions, at which point they upregulate co-stimulatory molecules and produce various cytokines and chemokines. Activated DCs also process antigens for presentation to T cells and regulate the differentiation and function of T cells to modulate the immune state of the body. Non-coding RNAs, RNA transcripts that are unable to encode proteins, not only participate in the pathological mechanisms of autoimmune-related diseases but also regulate the function of immune cells in these diseases. Accumulating evidence suggests that dysregulation of non-coding RNAs contributes to DC differentiation, functions, and so on, consequently producing effects in various autoimmune diseases. In this review, we summarize the main non-coding RNAs (miRNAs, lncRNAs, circRNAs) that regulate DCs in pathological mechanisms and have tremendous potential to give rise to novel therapeutic targets and strategies for multiple autoimmune diseases and immune tolerance-related diseases.
Collapse
Affiliation(s)
- Yifeng Liu
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
174
|
Zhang M, Zhou J, Jiao L, Xu L, Hou L, Yin B, Qiang B, Lu S, Shu P, Peng X. Long Non-coding RNA T-uc.189 Modulates Neural Progenitor Cell Fate by Regulating Srsf3 During Mouse Cerebral Cortex Development. Front Neurosci 2021; 15:709684. [PMID: 34354569 PMCID: PMC8329457 DOI: 10.3389/fnins.2021.709684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/28/2021] [Indexed: 11/29/2022] Open
Abstract
Neurogenesis is a complex process that depends on the delicate regulation of spatial and temporal gene expression. In our previous study, we found that transcribed ultra-conserved regions (T-UCRs), a class of long non-coding RNAs that contain UCRs, are expressed in the developing nervous systems of mice, rhesus monkeys, and humans. In this study, we first detected the full-length sequence of T-uc.189, revealing that it was mainly concentrated in the ventricular zone (VZ) and that its expression decreased as the brain matured. Moreover, we demonstrated that knockdown of T-uc.189 inhibited neurogenesis. In addition, we found that T-uc.189 positively regulated the expression of serine-arginine-rich splicing factor 3 (Srsf3). Taken together, our results are the first to demonstrate that T-uc.189 regulates the expression of Srsf3 to maintain normal neurogenesis during cortical development.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China
| | - Junjie Zhou
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Jiao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China
| | - Longjiang Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China
| | - Lin Hou
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Yin
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Boqin Qiang
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China
| | - Pengcheng Shu
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaozhong Peng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China.,The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
175
|
Crispatzu G, Rehimi R, Pachano T, Bleckwehl T, Cruz-Molina S, Xiao C, Mahabir E, Bazzi H, Rada-Iglesias A. The chromatin, topological and regulatory properties of pluripotency-associated poised enhancers are conserved in vivo. Nat Commun 2021; 12:4344. [PMID: 34272393 PMCID: PMC8285398 DOI: 10.1038/s41467-021-24641-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Poised enhancers (PEs) represent a genetically distinct set of distal regulatory elements that control the expression of major developmental genes. Before becoming activated in differentiating cells, PEs are already bookmarked in pluripotent cells with unique chromatin and topological features that could contribute to their privileged regulatory properties. However, since PEs were originally characterized in embryonic stem cells (ESC), it is currently unknown whether PEs are functionally conserved in vivo. Here, we show that the chromatin and 3D structural features of PEs are conserved among mouse pluripotent cells both in vitro and in vivo. We also uncovered that the interactions between PEs and their target genes are globally controlled by the combined action of Polycomb, Trithorax and architectural proteins. Moreover, distal regulatory sequences located close to developmental genes and displaying the typical genetic (i.e. CpG islands) and chromatin (i.e. high accessibility and H3K27me3 levels) features of PEs are commonly found across vertebrates. These putative PEs show high sequence conservation within specific vertebrate clades, with only a few being evolutionary conserved across all vertebrates. Lastly, by genetically disrupting PEs in mouse and chicken embryos, we demonstrate that these regulatory elements play essential roles during the induction of major developmental genes in vivo.
Collapse
Affiliation(s)
- Giuliano Crispatzu
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Department of Internal Medicine II, University Hospital Cologne, Cologne, Germany.
- Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany.
| | - Rizwan Rehimi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Tomas Pachano
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Tore Bleckwehl
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sara Cruz-Molina
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Cally Xiao
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany
- Department of Dermatology and Venereology, University Hospital Cologne, Cologne, Germany
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Esther Mahabir
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hisham Bazzi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany
- Department of Dermatology and Venereology, University Hospital Cologne, Cologne, Germany
| | - Alvaro Rada-Iglesias
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany.
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN, Santander, Spain.
| |
Collapse
|
176
|
Beaulieu JM, O'Meara BC, Gilchrist MA. A Spatially Explicit Model of Stabilizing Selection for Improving Phylogenetic Inference. Mol Biol Evol 2021; 38:1641-1652. [PMID: 33306127 PMCID: PMC8042768 DOI: 10.1093/molbev/msaa318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ultraconserved elements (UCEs) are stretches of hundreds of nucleotides with highly conserved cores flanked by variable regions. Although the selective forces responsible for the preservation of UCEs are unknown, they are nonetheless believed to contain phylogenetically meaningful information from deep to shallow divergence events. Phylogenetic applications of UCEs assume the same degree of rate heterogeneity applies across the entire locus, including variable flanking regions. We present a Wright–Fisher model of selection on nucleotides (SelON) which includes the effects of mutation, drift, and spatially varying, stabilizing selection for an optimal nucleotide sequence. The SelON model assumes the strength of stabilizing selection follows a position-dependent Gaussian function whose exact shape can vary between UCEs. We evaluate SelON by comparing its performance to a simpler and spatially invariant GTR+Γ model using an empirical data set of 400 vertebrate UCEs used to determine the phylogenetic position of turtles. We observe much improvement in model fit of SelON over the GTR+Γ model, and support for turtles as sister to lepidosaurs. Overall, the UCE-specific parameters SelON estimates provide a compact way of quantifying the strength and variation in selection within and across UCEs. SelON can also be extended to include more realistic mapping functions between sequence and stabilizing selection as well as allow for greater levels of rate heterogeneity. By more explicitly modeling the nature of selection on UCEs, SelON and similar approaches can be used to better understand the biological mechanisms responsible for their preservation across highly divergent taxa and long evolutionary time scales.
Collapse
Affiliation(s)
- Jeremy M Beaulieu
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Brian C O'Meara
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Michael A Gilchrist
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
177
|
Abstract
We developed dbCNS (http://yamasati.nig.ac.jp/dbcns), a new database for conserved noncoding sequences (CNSs). CNSs exist in many eukaryotes and are assumed to be involved in protein expression control. Version 1 of dbCNS, introduced here, includes a powerful and precise CNS identification pipeline for multiple vertebrate genomes. Mutations in CNSs may induce morphological changes and cause genetic diseases. For this reason, many vertebrate CNSs have been identified, with special reference to primate genomes. We integrated ∼6.9 million CNSs from many vertebrate genomes into dbCNS, which allows users to extract CNSs near genes of interest using keyword searches. In addition to CNSs, dbCNS contains published genome sequences of 161 species. With purposeful taxonomic sampling of genomes, users can employ CNSs as queries to reconstruct CNS alignments and phylogenetic trees, to evaluate CNS modifications, acquisitions, and losses, and to roughly identify species with CNSs having accelerated substitution rates. dbCNS also produces links to dbSNP for searching pathogenic single-nucleotide polymorphisms in human CNSs. Thus, dbCNS connects morphological changes with genetic diseases. A test analysis using 38 gnathostome genomes was accomplished within 30 s. dbCNS results can evaluate CNSs identified by other stand-alone programs using genome-scale data.
Collapse
Affiliation(s)
- Jun Inoue
- Population Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan.,Center for Earth Surface System Dynamics, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan
| | - Naruya Saitou
- Population Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan.,Department of Okinawa Bioinformation Bank, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
178
|
Leypold NA, Speicher MR. Evolutionary conservation in noncoding genomic regions. Trends Genet 2021; 37:903-918. [PMID: 34238591 DOI: 10.1016/j.tig.2021.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 12/28/2022]
Abstract
Humans may share more genomic commonalities with other species than previously thought. According to current estimates, ~5% of the human genome is functionally constrained, which is a much larger fraction than the ~1.5% occupied by annotated protein-coding genes. Hence, ~3.5% of the human genome comprises likely functional conserved noncoding elements (CNEs) preserved among organisms, whose common ancestors existed throughout hundreds of millions of years of evolution. As whole-genome sequencing emerges as a standard procedure in genetic analyses, interpretation of variations in CNEs, including the elucidation of mechanistic and functional roles, becomes a necessity. Here, we discuss the phenomenon of noncoding conservation via four dimensions (sequence, regulatory conservation, spatiotemporal expression, and structure) and the potential significance of CNEs in phenotype variation and disease.
Collapse
Affiliation(s)
- Nicole A Leypold
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria.
| | - Michael R Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
179
|
Bella F, Campo S. Long non-coding RNAs and their involvement in bipolar disorders. Gene 2021; 796-797:145803. [PMID: 34175394 DOI: 10.1016/j.gene.2021.145803] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/22/2021] [Indexed: 01/22/2023]
Abstract
Non-coding RNAs (nc-RNAs) can be defined as RNA molecules that are not translated into proteins. Although the functional meaning of many nc-RNAs remains still to be verified, several of these molecules have a clear biological importance, which goes from translation of mRNAs to DNA replication. Indeed, regulatory nc-RNAs can be classified into two groups: short non-coding RNAs (sncRNAs) and long-non coding RNAs (lncRNAs). In the last years, lncRNAs have gained increasing importance in the study of gene regulation, helping authors understand the molecular mechanisms underlying cellular physiology and pathology. LncRNAs are greater than 200 bp and accumulate in nucleus, cytoplasm and exosomes with high tissue specificity, acting in cis or in trans in order to exert enhancer or silencer modulation on gene expression. Such regulatory features, which are widespread in human cells and tissues, can be disrupted in several morbid states. Recent evidences may suggest a disruption of lncRNAs in bipolar disorders, a cluster of severe, chronic and disabling psychiatric diseases, which are characterized by major depressive states cyclically alternating with manic episodes. Here, the authors reviewed genes, classification, biogenesis, structures, functions and databases regarding lncRNAs, and also focused on bipolar disorders, in which some lncRNAs, especially those involved in inflammation and neuronal development, has reported to be dysregulated.
Collapse
Affiliation(s)
- Fabrizio Bella
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, via Consolare Valeria, 1, Messina 98125 Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, via Consolare Valeria, 1, Messina 98125 Italy.
| |
Collapse
|
180
|
Barrientos LS, Streicher JW, Miller EC, Pie MR, Wiens JJ, Crawford AJ. Phylogeny of terraranan frogs based on 2,665 loci and impacts of missing data on phylogenomic analyses. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1933249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Lucas S. Barrientos
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Jeffrey W. Streicher
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 85721-0088, AZ, USA
- Department of Life Sciences, The Natural History Museum, South Kensington, London, SW7 5BD, England, UK
| | - Elizabeth C. Miller
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 85721-0088, AZ, USA
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, 98195-5020, WA, USA
| | - Marcio R. Pie
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, 81531-980, Paraná, Brazil
| | - John J. Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 85721-0088, AZ, USA
| | - Andrew J. Crawford
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
| |
Collapse
|
181
|
Ni P, Su Z. Accurate prediction of cis-regulatory modules reveals a prevalent regulatory genome of humans. NAR Genom Bioinform 2021; 3:lqab052. [PMID: 34159315 PMCID: PMC8210889 DOI: 10.1093/nargab/lqab052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/01/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
cis-regulatory modules(CRMs) formed by clusters of transcription factor (TF) binding sites (TFBSs) are as important as coding sequences in specifying phenotypes of humans. It is essential to categorize all CRMs and constituent TFBSs in the genome. In contrast to most existing methods that predict CRMs in specific cell types using epigenetic marks, we predict a largely cell type agonistic but more comprehensive map of CRMs and constituent TFBSs in the gnome by integrating all available TF ChIP-seq datasets. Our method is able to partition 77.47% of genome regions covered by available 6092 datasets into a CRM candidate (CRMC) set (56.84%) and a non-CRMC set (43.16%). Intriguingly, the predicted CRMCs are under strong evolutionary constraints, while the non-CRMCs are largely selectively neutral, strongly suggesting that the CRMCs are likely cis-regulatory, while the non-CRMCs are not. Our predicted CRMs are under stronger evolutionary constraints than three state-of-the-art predictions (GeneHancer, EnhancerAtlas and ENCODE phase 3) and substantially outperform them for recalling VISTA enhancers and non-coding ClinVar variants. We estimated that the human genome might encode about 1.47M CRMs and 68M TFBSs, comprising about 55% and 22% of the genome, respectively; for both of which, we predicted 80%. Therefore, the cis-regulatory genome appears to be more prevalent than originally thought.
Collapse
Affiliation(s)
- Pengyu Ni
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| |
Collapse
|
182
|
Epigenetic Regulation of Hepatocellular Carcinoma Progression through the mTOR Signaling Pathway. Can J Gastroenterol Hepatol 2021; 2021:5596712. [PMID: 34123955 PMCID: PMC8169250 DOI: 10.1155/2021/5596712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/11/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of primary liver cancer, is an aggressive tumor with a high mortality rate because of the limited systemic and locoregional treatment modalities. The development and progression of HCC depend on epigenetic changes that result in the activation or inhibition of some signaling pathways. The mTOR signaling pathway is essential for many pathophysiological processes and is considered a major regulator of cancer. Increasing evidence has shown that epigenetics plays a key role in HCC biology by regulating the mTOR signaling pathway. Therefore, epigenetic regulation through the mTOR signaling pathway to diagnose and treat HCC will become a very promising strategy.
Collapse
|
183
|
Ding Z, Yan Y, Guo YL, Wang C. Esophageal carcinoma cell-excreted exosomal uc.189 promotes lymphatic metastasis. Aging (Albany NY) 2021; 13:13846-13858. [PMID: 34024769 PMCID: PMC8202844 DOI: 10.18632/aging.202979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/16/2021] [Indexed: 04/12/2023]
Abstract
Most cancers are old age-related diseases. Patients with lymphatic metastasis have an extremely poor prognosis in esophageal cancers (ECs). Previous studies showed ultraconserved RNAs are involved in tumorigenesis and ultraconserved RNA 189 (uc.189) served as an oncogene in cervical cancer, but the effect of exosomal uc.189 in esophageal squamous cell carcinoma (ESCC) remains undefined. This study revealed that uc.189 is closely correlated with lymph node (LN) metastasis and the number of lymphatic vessels in ESCC. ESCC-secreted exosomal uc.189 is transferred into human lymphatic endothelial cells (HLECs) to promote its proliferation, migration and tube formation to facilitate lymph node metastasis. Mechanistically, uc.189 regulated EPHA2 expression by directly binding to its 3'UTR region through dual-luciferase reporter assay. Over-expression and knockdown of EPHA2 could respectively rescue and simulate the effects induced by exosomal uc.189. Especially, the uc.189-EPHA2 axis activates the P38MAPK/VEGF-C pathway in HLECs. Finally, ESCC-secreted exosomal of uc.189 promotes HLECs sprouting in vitro, migration, and lymphangiogenesis. Thus, these findings suggested that exosomal uc.189 targets the EPHA2 of HLECs to promote lymphangiogenesis, and may represent a novel marker of diagnosis and treatment for ESCC patients in early stages.
Collapse
Affiliation(s)
- Zhiyan Ding
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, PR China
| | - Yun Yan
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, PR China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Yu Lian Guo
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Chenghai Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China
| |
Collapse
|
184
|
Zheng Z, Hong D, Zhang X, Chang Y, Sun N, Lin Z, Li H, Huang S, Zhang R, Xie Q, Huang H, Jin H. uc.77- Downregulation Promotes Colorectal Cancer Cell Proliferation by Inhibiting FBXW8-Mediated CDK4 Protein Degradation. Front Oncol 2021; 11:673223. [PMID: 34094975 PMCID: PMC8172171 DOI: 10.3389/fonc.2021.673223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/06/2021] [Indexed: 01/15/2023] Open
Abstract
Transcribed ultraconserved regions (T-UCRs) are a new type of long non-coding RNA, and the UCR has 481 segments longer than 200 base pairs that are 100% conserved between humans, rats, and mice. T-UCRs involved in colorectal cancer (CRC) have not been studied in detail. We performed T-UCR microarray analysis and found that uc.77- was significantly downregulated in CRC tissues and cell lines. Ectopic expression of uc.77- significantly inhibited the proliferation of CRC cells in vitro and the growth of xenograft tumors in nude mice in vivo. Mechanistic studies showed that uc.77- competed with FBXW8 mRNA for binding to microRNA (miR)-4676-5p through a competing endogenous RNA mechanism and inhibited the proliferation of CRC cells by negatively regulating CDK4. The present findings highlight the role of the uc.77-/miR-4676-5p/FBXW8 axis in CRC and identify uc.77- as a potential novel target for the treatment of CRC.
Collapse
Affiliation(s)
- Zhijian Zheng
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dan Hong
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Zhang
- Department of Colorectal Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yixin Chang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ning Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhenni Lin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongyan Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shirui Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruirui Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qipeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
185
|
Chen D, Cremona MA, Qi Z, Mitra RD, Chiaromonte F, Makova KD. Human L1 Transposition Dynamics Unraveled with Functional Data Analysis. Mol Biol Evol 2021; 37:3576-3600. [PMID: 32722770 DOI: 10.1093/molbev/msaa194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Long INterspersed Elements-1 (L1s) constitute >17% of the human genome and still actively transpose in it. Characterizing L1 transposition across the genome is critical for understanding genome evolution and somatic mutations. However, to date, L1 insertion and fixation patterns have not been studied comprehensively. To fill this gap, we investigated three genome-wide data sets of L1s that integrated at different evolutionary times: 17,037 de novo L1s (from an L1 insertion cell-line experiment conducted in-house), and 1,212 polymorphic and 1,205 human-specific L1s (from public databases). We characterized 49 genomic features-proxying chromatin accessibility, transcriptional activity, replication, recombination, etc.-in the ±50 kb flanks of these elements. These features were contrasted between the three L1 data sets and L1-free regions using state-of-the-art Functional Data Analysis statistical methods, which treat high-resolution data as mathematical functions. Our results indicate that de novo, polymorphic, and human-specific L1s are surrounded by different genomic features acting at specific locations and scales. This led to an integrative model of L1 transposition, according to which L1s preferentially integrate into open-chromatin regions enriched in non-B DNA motifs, whereas they are fixed in regions largely free of purifying selection-depleted of genes and noncoding most conserved elements. Intriguingly, our results suggest that L1 insertions modify local genomic landscape by extending CpG methylation and increasing mononucleotide microsatellite density. Altogether, our findings substantially facilitate understanding of L1 integration and fixation preferences, pave the way for uncovering their role in aging and cancer, and inform their use as mutagenesis tools in genetic studies.
Collapse
Affiliation(s)
- Di Chen
- Intercollege Graduate Degree Program in Genetics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Marzia A Cremona
- Department of Statistics, The Pennsylvania State University, University Park, PA.,Department of Operations and Decision Systems, Université Laval, Québec, Canada
| | - Zongtai Qi
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Robi D Mitra
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Francesca Chiaromonte
- Department of Statistics, The Pennsylvania State University, University Park, PA.,EMbeDS, Sant'Anna School of Advanced Studies, Pisa, Italy.,The Huck Institutes of the Life Sciences, Center for Medical Genomics, The Pennsylvania State University, University Park, PA
| | - Kateryna D Makova
- The Huck Institutes of the Life Sciences, Center for Medical Genomics, The Pennsylvania State University, University Park, PA.,Department of Biology, The Pennsylvania State University, University Park, PA
| |
Collapse
|
186
|
Aziz MC, Schneider PN, Carvill GL. Targeting Poison Exons to Treat Developmental and Epileptic Encephalopathy. Dev Neurosci 2021; 43:241-246. [PMID: 33971653 DOI: 10.1159/000516143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/16/2021] [Indexed: 11/19/2022] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) describe a subset of neurodevelopmental disorders categorized by refractory epilepsy that is often associated with intellectual disability and autism spectrum disorder. The majority of DEEs are now known to have a genetic basis with de novo coding variants accounting for the majority of cases. More recently, a small number of individuals have been identified with intronic SCN1A variants that result in alternative splicing events that lead to ectopic inclusion of poison exons (PEs). PEs are short highly conserved exons that contain a premature truncation codon, and when spliced into the transcript, lead to premature truncation and subsequent degradation by nonsense-mediated decay. The reason for the inclusion/exclusion of these PEs is not entirely clear, but research suggests an autoregulatory role in gene expression and protein abundance. This is seen in proteins such as RNA-binding proteins and serine/arginine-rich proteins. Recent studies have focused on targeting these PEs as a method for therapeutic intervention. Targeting PEs using antisense oligonucleotides (ASOs) has shown to be effective in modulating alternative splicing events by decreasing the amount of transcripts harboring PEs, thus increasing the abundance of full-length transcripts and thereby the amount of protein in haploinsufficient genes implicated in DEE. In the age of personalized medicine, cellular and animal models of the genetic epilepsies have become essential in developing and testing novel precision therapeutics, including PE-targeting ASOs in a subset of DEEs.
Collapse
Affiliation(s)
- Miriam C Aziz
- Ken and Ruth Davee Department of Neurology, Northwestern University School of Medicine, Chicago, Illinois, USA
| | - Patricia N Schneider
- Ken and Ruth Davee Department of Neurology, Northwestern University School of Medicine, Chicago, Illinois, USA.,Instituto de Ciencias Biologicas, Universidade Federal do Para, Belem, Brazil
| | - Gemma L Carvill
- Ken and Ruth Davee Department of Neurology, Northwestern University School of Medicine, Chicago, Illinois, USA.,Department of Pharmacology and Pediatrics, Northwestern University School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
187
|
Evolution of host use in fungivorous ciid beetles (Coleoptera: Ciidae): Molecular phylogeny focusing on Japanese taxa. Mol Phylogenet Evol 2021; 162:107197. [PMID: 33962008 DOI: 10.1016/j.ympev.2021.107197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 11/22/2022]
Abstract
Consumer-resource interactions between trophic levels are ubiquitous and important factors in shaping the diversity of insects. However, dietary patterns such as host specificity and conservatism have been insufficiently examined in fungivorous insects. Here we reconstructed the evolutionary history of host use in fungivorous ciid beetles (Coleoptera: Ciidae) and tested for host conservatism. Phylogenetic relationships among 49 species from Japan were inferred by using a large sequence data set from ultraconserved elements (UCEs). In addition, sequences of three genes (COI, 28S rRNA, 18S rRNA) were analyzed to reconstruct the phylogeny for 130 OTUs from a broader range of taxa and geographic regions using the UCE tree as a backbone topology. We found that Ciini and Orophiini are not recovered as reciprocally monophyletic groups. As previously suggested, the largest genus Cis Latreille was also not monophyletic. Ancestral-state reconstruction of host use in both datasets showed that Ciidae species were clustered by host-use group across the tree. This pattern was confirmed by the significantly lower transition rate compared with expectations under the random shift hypothesis. The observed conservatism in host use implied these beetles possess unique adaptations to specific fungal taxa, just as herbivorous insects are adapted to specific plant taxa.
Collapse
|
188
|
Mancini M, Cappello A, Pecorari R, Lena AM, Montanaro M, Fania L, Ricci F, Di Lella G, Piro MC, Abeni D, Dellambra E, Mauriello A, Melino G, Candi E. Involvement of transcribed lncRNA uc.291 and SWI/SNF complex in cutaneous squamous cell carcinoma. Discov Oncol 2021; 12:14. [PMID: 35201472 PMCID: PMC8777507 DOI: 10.1007/s12672-021-00409-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
While non-melanoma skin cancers (NMSCs) are the most common tumours in humans, only the sub-type cutaneous squamous cell carcinoma (cSCC), might become metastatic with high lethality. We have recently identified a regulatory pathway involving the lncRNA transcript uc.291 in controlling the expression of epidermal differentiation complex genes via the interaction with ACTL6A, a component of the chromatin remodelling complex SWI/SNF. Since transcribed ultra-conserved regions (T-UCRs) are expressed in normal tissues and are deregulated in tumorigenesis, here we hypothesize a potential role for dysregulation of this axis in cSCC, accounting for the de-differentiation process observed in aggressive poorly differentiated cutaneous carcinomas. We therefore analysed their expression patterns in human tumour biopsies at mRNA and protein levels. The results suggest that by altering chromatin accessibility of the epidermal differentiation complex genes, down-regulation of uc.291 and BRG1 expression contribute to the de-differentiation process seen in keratinocyte malignancy. This provides future direction for the identification of clinical biomarkers in cutaneous SCC. Analysis of publicly available data sets indicates that the above may also be a general feature for SCCs of different origins.
Collapse
Affiliation(s)
- M. Mancini
- Istituto Dermopatico Dell’Immacolata-IRCCS, via dei Monti di Creta 104, 00167 Rome, Italy
| | - A. Cappello
- Department of Experimental Medicine, University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy
| | - R. Pecorari
- Department of Experimental Medicine, University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy
| | - A. M. Lena
- Department of Experimental Medicine, University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy
| | - M. Montanaro
- Department of Experimental Medicine, University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy
| | - L. Fania
- Istituto Dermopatico Dell’Immacolata-IRCCS, via dei Monti di Creta 104, 00167 Rome, Italy
| | - F. Ricci
- Istituto Dermopatico Dell’Immacolata-IRCCS, via dei Monti di Creta 104, 00167 Rome, Italy
| | - G. Di Lella
- Istituto Dermopatico Dell’Immacolata-IRCCS, via dei Monti di Creta 104, 00167 Rome, Italy
| | - M. C. Piro
- Department of Experimental Medicine, University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy
| | - D. Abeni
- Istituto Dermopatico Dell’Immacolata-IRCCS, via dei Monti di Creta 104, 00167 Rome, Italy
| | - E. Dellambra
- Istituto Dermopatico Dell’Immacolata-IRCCS, via dei Monti di Creta 104, 00167 Rome, Italy
| | - A. Mauriello
- Department of Experimental Medicine, University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy
| | - G. Melino
- Department of Experimental Medicine, University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy
| | - E. Candi
- Istituto Dermopatico Dell’Immacolata-IRCCS, via dei Monti di Creta 104, 00167 Rome, Italy
- Department of Experimental Medicine, University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
189
|
Zhang J, Wei J, Yu H, Dong B. Genome-Wide Identification, Comparison, and Expression Analysis of Transcription Factors in Ascidian Styela clava. Int J Mol Sci 2021; 22:4317. [PMID: 33919240 PMCID: PMC8122590 DOI: 10.3390/ijms22094317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022] Open
Abstract
Tunicates include diverse species, as they are model animals for evolutionary developmental biology study. The embryonic development of tunicates is known to be extensively regulated by transcription factors (TFs). Styela clava, the globally distributed invasive tunicate, exhibits a strong capacity for environmental adaptation. However, the TFs were not systematically identified and analyzed. In this study, we reported 553 TFs categorized into 60 families from S. clava, based on the whole genome data. Comparison of TFs analysis among the tunicate species revealed that the gene number in the zinc finger superfamily displayed the most significant discrepancy, indicating this family was under the highly evolutionary selection and might be related to species differentiation and environmental adaptation. The greatest number of TFs was discovered in the Cys2His2-type zinc finger protein (zf-C2H2) family in S. clava. From the point of temporal view, more than half the TFs were expressed at the early embryonic stage. The expression correlation analysis revealed the existence of a transition for TFs expression from early embryogenesis to the later larval development in S. clava. Eight Hox genes were identified to be located on one chromosome, exhibiting different arrangement and expression patterns, compared to Ciona robusta (C. intestinalis type A). In addition, a total of 23 forkhead box (fox) genes were identified in S. clava, and their expression profiles referred to their potential roles in neurodevelopment and sensory organ development. Our data, thus, provides crucial clues to the potential functions of TFs in development and environmental adaptation in the leathery sea squirt.
Collapse
Affiliation(s)
- Jin Zhang
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (J.Z.); (J.W.)
| | - Jiankai Wei
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (J.Z.); (J.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Haiyan Yu
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (J.Z.); (J.W.)
| | - Bo Dong
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (J.Z.); (J.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
190
|
Overexpression of the transcribed ultraconserved region Uc.138 accelerates colon cancer progression. Sci Rep 2021; 11:8667. [PMID: 33883665 PMCID: PMC8060298 DOI: 10.1038/s41598-021-88123-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
Ultraconserved regions (UCRs) are 481 genomic sequences with 100% identity across humans, rats, and mice. Increasing evidence suggests that non-coding RNAs transcribed from UCRs are involved in various diseases, especially cancers. The human transformer 2β gene (TRA2B) encodes a UCR (uc.138) that spans exon 2 and its neighboring introns. TRA2B4 RNA is the only transcript that contains the whole exon 2 among five spliced TRA2B RNA variants (TRA2B1-5). TRA2B4 is upregulated in colon cancer cell lines, although it is not translated to Tra2β protein because of its nuclear retention. Nevertheless, the clinical significance and biological functions of uc.138 in colon cancer cells remain unclear. In this study, RNA in situ hybridization showed that TRA2B4 was predominantly overexpressed in the nucleus of colon adenocarcinoma and adenoma. Overexpression of TRA2B4 in colon cancer HCT116 cells promoted cell proliferation by changing the expression of G2/M-related cell cycle regulators. Moreover, TRA2B4 increased migration and cell viability in a uc.138 sequence-dependent manner. TRA2B4 significantly enhanced tumorigenesis in vivo. Taken together, uc.138 encoded in TRA2B4 plays an oncogenic role in tumor progression and may become a potential biomarker and therapeutic target in colon cancer.
Collapse
|
191
|
Lopes AM, Dahms HU, Converti A, Mariottini GL. Role of model organisms and nanocompounds in human health risk assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:285. [PMID: 33876320 DOI: 10.1007/s10661-021-09066-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Safeguarding the environment is one of the most serious modern challenges, as increasing amounts of chemical compounds are produced and released into the environment, causing a serious threat to the future health of the Earth as well as organisms and humans on a global scale. Ecotoxicology is an integrative science involving different physical, chemical, biological, and social aspects concerned with the study of toxic effects caused by natural or synthetic pollutants on any constituents of ecosystems, including animals (including humans), plants, or microorganisms, in an integral context. In recent decades, this science has undergone considerable development by addressing environmental risk assessments through the biomonitoring of indicator species using biomarkers, model organisms, and nanocompounds in toxicological assays. Since a single taxon cannot be representative of complex ecotoxicological effects and mechanisms of action of a chemical, the use of test batteries is widely accepted in ecotoxicology. Test batteries include properly chosen organisms that are easy to breed, adapt easily to laboratory conditions, and are representative of the environmental compartment under consideration. One of the main issues of toxicological and ecotoxicological research is to gain a deeper understanding of how data should be obtained through laboratory and field approaches using experimental models and how they could be extrapolated to humans. There is a tendency to replace animal tests with in vitro systems and to perform them according to standardized analytical methods and the rules of the so-called good laboratory practice (GLP). This paper aims to review this topic to stimulate both efforts to understand the toxicological and ecotoxicological properties of natural and synthetic chemicals and the possible use of such data for application to humans.
Collapse
Affiliation(s)
- André Moreni Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, Campinas, Brazil.
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shin-Chuan 1st Road, Kaohsiung, 80708, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, University of Genova, Genova, 16145, Italy
| | - Gian Luigi Mariottini
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, 16132, Italy
| |
Collapse
|
192
|
Pittman M, Pollard KS. Ultraconservation of enhancers is not ultranecessary. Nat Genet 2021; 53:429-430. [PMID: 33782604 DOI: 10.1038/s41588-021-00839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maureen Pittman
- University of California, San Francisco, San Francisco, CA, USA.,Gladstone Institute of Data Science & Biotechnology, San Francisco, CA, USA
| | - Katherine S Pollard
- University of California, San Francisco, San Francisco, CA, USA. .,Gladstone Institute of Data Science & Biotechnology, San Francisco, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
193
|
Feng Z, Duren Z, Xiong Z, Wang S, Liu F, Wong WH, Wang Y. hReg-CNCC reconstructs a regulatory network in human cranial neural crest cells and annotates variants in a developmental context. Commun Biol 2021; 4:442. [PMID: 33824393 PMCID: PMC8024315 DOI: 10.1038/s42003-021-01970-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Cranial Neural Crest Cells (CNCC) originate at the cephalic region from forebrain, midbrain and hindbrain, migrate into the developing craniofacial region, and subsequently differentiate into multiple cell types. The entire specification, delamination, migration, and differentiation process is highly regulated and abnormalities during this craniofacial development cause birth defects. To better understand the molecular networks underlying CNCC, we integrate paired gene expression & chromatin accessibility data and reconstruct the genome-wide human Regulatory network of CNCC (hReg-CNCC). Consensus optimization predicts high-quality regulations and reveals the architecture of upstream, core, and downstream transcription factors that are associated with functions of neural plate border, specification, and migration. hReg-CNCC allows us to annotate genetic variants of human facial GWAS and disease traits with associated cis-regulatory modules, transcription factors, and target genes. For example, we reveal the distal and combinatorial regulation of multiple SNPs to core TF ALX1 and associations to facial distances and cranial rare disease. In addition, hReg-CNCC connects the DNA sequence differences in evolution, such as ultra-conserved elements and human accelerated regions, with gene expression and phenotype. hReg-CNCC provides a valuable resource to interpret genetic variants as early as gastrulation during embryonic development. The network resources are available at https://github.com/AMSSwanglab/hReg-CNCC .
Collapse
Affiliation(s)
- Zhanying Feng
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing, China.,School of Mathematics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhana Duren
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, SC, USA.,Department of Statistics, Department of Biomedical Data Science, Bio-X Program, Stanford University, Stanford, CA, USA
| | - Ziyi Xiong
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Sijia Wang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Fan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China. .,China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China.
| | - Wing Hung Wong
- Department of Statistics, Department of Biomedical Data Science, Bio-X Program, Stanford University, Stanford, CA, USA.
| | - Yong Wang
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing, China. .,School of Mathematics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China. .,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
194
|
Functional and structural basis of extreme conservation in vertebrate 5' untranslated regions. Nat Genet 2021; 53:729-741. [PMID: 33821006 PMCID: PMC8825242 DOI: 10.1038/s41588-021-00830-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/26/2021] [Indexed: 01/07/2023]
Abstract
The lack of knowledge about extreme conservation in genomes remains a major gap in our understanding of the evolution of gene regulation. Here, we reveal an unexpected role of extremely conserved 5' untranslated regions (UTRs) in noncanonical translational regulation that is linked to the emergence of essential developmental features in vertebrate species. Endogenous deletion of conserved elements within these 5' UTRs decreased gene expression, and extremely conserved 5' UTRs possess cis-regulatory elements that promote cell-type-specific regulation of translation. We further developed in-cell mutate-and-map (icM2), a new methodology that maps RNA structure inside cells. Using icM2, we determined that an extremely conserved 5' UTR encodes multiple alternative structures and that each single nucleotide within the conserved element maintains the balance of alternative structures important to control the dynamic range of protein expression. These results explain how extreme sequence conservation can lead to RNA-level biological functions encoded in the untranslated regions of vertebrate genomes.
Collapse
|
195
|
Snetkova V, Ypsilanti AR, Akiyama JA, Mannion BJ, Plajzer-Frick I, Novak CS, Harrington AN, Pham QT, Kato M, Zhu Y, Godoy J, Meky E, Hunter RD, Shi M, Kvon EZ, Afzal V, Tran S, Rubenstein JLR, Visel A, Pennacchio LA, Dickel DE. Ultraconserved enhancer function does not require perfect sequence conservation. Nat Genet 2021; 53:521-528. [PMID: 33782603 PMCID: PMC8038972 DOI: 10.1038/s41588-021-00812-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 02/04/2021] [Indexed: 01/09/2023]
Abstract
Ultraconserved enhancer sequences show perfect conservation between human and rodent genomes, suggesting that their functions are highly sensitive to mutation. However, current models of enhancer function do not sufficiently explain this extreme evolutionary constraint. We subjected 23 ultraconserved enhancers to different levels of mutagenesis, collectively introducing 1,547 mutations, and examined their activities in transgenic mouse reporter assays. Overall, we find that the regulatory properties of ultraconserved enhancers are robust to mutation. Upon mutagenesis, nearly all (19/23, 83%) still functioned as enhancers at one developmental stage, as did most of those tested again later in development (5/9, 56%). Replacement of endogenous enhancers with mutated alleles in mice corroborated results of transgenic assays, including the functional resilience of ultraconserved enhancers to mutation. Our findings show that the currently known activities of ultraconserved enhancers do not necessarily require the perfect conservation observed in evolution and suggest that additional regulatory or other functions contribute to their sequence constraint.
Collapse
Affiliation(s)
- Valentina Snetkova
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Athena R Ypsilanti
- Department of Psychiatry, Neuroscience Program, UCSF Weill Institute for Neurosciences, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer A Akiyama
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Brandon J Mannion
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Comparative Biochemistry Program, University of California, Berkeley, Berkeley, CA, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Catherine S Novak
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anne N Harrington
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Quan T Pham
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Momoe Kato
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yiwen Zhu
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Janeth Godoy
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eman Meky
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Riana D Hunter
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Marie Shi
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Evgeny Z Kvon
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Developmental & Cell Biology, Department of Ecology & Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Veena Afzal
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stella Tran
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program, UCSF Weill Institute for Neurosciences, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA, USA
| | - Axel Visel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
- School of Natural Sciences, University of California, Merced, Merced, CA, USA.
| | - Len A Pennacchio
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Comparative Biochemistry Program, University of California, Berkeley, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
| | - Diane E Dickel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
196
|
Giudicelli F, Roest Crollius H. On the importance of evolutionary constraint for regulatory sequence identification. Brief Funct Genomics 2021:elab015. [PMID: 33754633 DOI: 10.1093/bfgp/elab015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/15/2021] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Regulation of gene expression relies on the activity of specialized genomic elements, enhancers or silencers, distributed over sometimes large distance from their target gene promoters. A significant part of vertebrate genomes consists in such regulatory elements, but their identification and that of their target genes remains challenging, due to the lack of clear signature at the nucleotide level. For many years the main hallmark used for identifying functional elements has been their sequence conservation between genomes of distant species, indicative of purifying selection. More recently, genome-wide biochemical assays have opened new avenues for detecting regulatory regions, shifting attention away from evolutionary constraints. Here, we review the respective contributions of comparative genomics and biochemical assays for the definition of regulatory elements and their targets and advocate that both sequence conservation and preserved synteny, taken as signature of functional constraint, remain essential tools in this task.
Collapse
|
197
|
O'Loughlin SM, Forster AJ, Fuchs S, Dottorini T, Nolan T, Crisanti A, Burt A. Ultra-conserved sequences in the genomes of highly diverse Anopheles mosquitoes, with implications for malaria vector control. G3-GENES GENOMES GENETICS 2021; 11:6175102. [PMID: 33730159 PMCID: PMC8495744 DOI: 10.1093/g3journal/jkab086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/08/2021] [Indexed: 12/30/2022]
Abstract
DNA sequences that are exactly conserved over long evolutionary time scales have been observed in a variety of taxa. Such sequences are likely under strong functional constraint and they have been useful in the field of comparative genomics for identifying genome regions with regulatory function. A potential new application for these ultra-conserved elements (UCEs) has emerged in the development of gene drives to control mosquito populations. Many gene drives work by recognizing and inserting at a specific target sequence in the genome, often imposing a reproductive load as a consequence. They can therefore select for target sequence variants that provide resistance to the drive. Focusing on highly conserved, highly constrained sequences lowers the probability that variant, gene drive-resistant alleles can be tolerated. Here, we search for conserved sequences of 18 bp and over in an alignment of 21 Anopheles genomes, spanning an evolutionary timescale of 100 million years, and characterize the resulting sequences according to their location and function. Over 8000 UCEs were found across the alignment, with a maximum length of 164 bp. Length-corrected gene ontology analysis revealed that genes containing Anopheles UCEs were over-represented in categories with structural or nucleotide-binding functions. Known insect transcription factor binding sites were found in 48% of intergenic Anopheles UCEs. When we looked at the genome sequences of 1142 wild-caught mosquitoes, we found that 15% of the Anopheles UCEs contained no polymorphisms. Our list of Anopheles UCEs should provide a valuable starting point for the selection and testing of new targets for gene-drive modification in the mosquitoes that transmit malaria.
Collapse
Affiliation(s)
- Samantha M O'Loughlin
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK
| | - Annie J Forster
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK
| | - Silke Fuchs
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK
| | - Tania Dottorini
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - Tony Nolan
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK.,Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK
| |
Collapse
|
198
|
Cajigas I, Chakraborty A, Lynam M, Swyter KR, Bastidas M, Collens L, Luo H, Ay F, Kohtz JD. Sox2- Evf2 lncRNA-mediated mechanisms of chromosome topological control in developing forebrain. Development 2021; 148:dev197202. [PMID: 33593819 PMCID: PMC7990859 DOI: 10.1242/dev.197202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/07/2021] [Indexed: 12/13/2022]
Abstract
The Evf2 long non-coding RNA directs Dlx5/6 ultraconserved enhancer(UCE)-intrachromosomal interactions, regulating genes across a 27 Mb region on chromosome 6 in mouse developing forebrain. Here, we show that Evf2 long-range gene repression occurs through multi-step mechanisms involving the transcription factor Sox2. Evf2 directly interacts with Sox2, antagonizing Sox2 activation of Dlx5/6UCE, and recruits Sox2 to the Dlx5/6eii shadow enhancer and key Dlx5/6UCE interaction sites. Sox2 directly interacts with Dlx1 and Smarca4, as part of the Evf2 ribonucleoprotein complex, forming spherical subnuclear domains (protein pools, PPs). Evf2 targets Sox2 PPs to one long-range repressed target gene (Rbm28), at the expense of another (Akr1b8). Evf2 and Sox2 shift Dlx5/6UCE interactions towards Rbm28, linking Evf2/Sox2 co-regulated topological control and gene repression. We propose a model that distinguishes Evf2 gene repression mechanisms at Rbm28 (Dlx5/6UCE position) and Akr1b8 (limited Sox2 availability). Genome-wide control of RNPs (Sox2, Dlx and Smarca4) shows that co-recruitment influences Sox2 DNA binding. Together, these data suggest that Evf2 organizes a Sox2 PP subnuclear domain and, through Sox2-RNP sequestration and recruitment, regulates chromosome 6 long-range UCE targeting and activity with genome-wide consequences.
Collapse
Affiliation(s)
- Ivelisse Cajigas
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Department of Human Molecular Genetics, Stanley Manne Children's Research Institute 2430 N Halsted, Chicago, IL 60614, USA
| | - Abhijit Chakraborty
- Centers for Autoimmunity and Cancer Immunotherapy, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Madison Lynam
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Department of Human Molecular Genetics, Stanley Manne Children's Research Institute 2430 N Halsted, Chicago, IL 60614, USA
| | - Kelsey R Swyter
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Department of Human Molecular Genetics, Stanley Manne Children's Research Institute 2430 N Halsted, Chicago, IL 60614, USA
| | - Monique Bastidas
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Department of Human Molecular Genetics, Stanley Manne Children's Research Institute 2430 N Halsted, Chicago, IL 60614, USA
| | - Linden Collens
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Department of Human Molecular Genetics, Stanley Manne Children's Research Institute 2430 N Halsted, Chicago, IL 60614, USA
| | - Hao Luo
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Department of Human Molecular Genetics, Stanley Manne Children's Research Institute 2430 N Halsted, Chicago, IL 60614, USA
| | - Ferhat Ay
- Centers for Autoimmunity and Cancer Immunotherapy, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jhumku D Kohtz
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Department of Human Molecular Genetics, Stanley Manne Children's Research Institute 2430 N Halsted, Chicago, IL 60614, USA
| |
Collapse
|
199
|
Yuan X, Scott IC, Wilson MD. Heart Enhancers: Development and Disease Control at a Distance. Front Genet 2021; 12:642975. [PMID: 33777110 PMCID: PMC7987942 DOI: 10.3389/fgene.2021.642975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Bound by lineage-determining transcription factors and signaling effectors, enhancers play essential roles in controlling spatiotemporal gene expression profiles during development, homeostasis and disease. Recent synergistic advances in functional genomic technologies, combined with the developmental biology toolbox, have resulted in unprecedented genome-wide annotation of heart enhancers and their target genes. Starting with early studies of vertebrate heart enhancers and ending with state-of-the-art genome-wide enhancer discovery and testing, we will review how studying heart enhancers in metazoan species has helped inform our understanding of cardiac development and disease.
Collapse
Affiliation(s)
- Xuefei Yuan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ian C. Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael D. Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
200
|
Freitas FV, Branstetter MG, Griswold T, Almeida EAB. Partitioned Gene-Tree Analyses and Gene-Based Topology Testing Help Resolve Incongruence in a Phylogenomic Study of Host-Specialist Bees (Apidae: Eucerinae). Mol Biol Evol 2021; 38:1090-1100. [PMID: 33179746 PMCID: PMC7947843 DOI: 10.1093/molbev/msaa277] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Incongruence among phylogenetic results has become a common occurrence in analyses of genome-scale data sets. Incongruence originates from uncertainty in underlying evolutionary processes (e.g., incomplete lineage sorting) and from difficulties in determining the best analytical approaches for each situation. To overcome these difficulties, more studies are needed that identify incongruences and demonstrate practical ways to confidently resolve them. Here, we present results of a phylogenomic study based on the analysis 197 taxa and 2,526 ultraconserved element (UCE) loci. We investigate evolutionary relationships of Eucerinae, a diverse subfamily of apid bees (relatives of honey bees and bumble bees) with >1,200 species. We sampled representatives of all tribes within the group and >80% of genera, including two mysterious South American genera, Chilimalopsis and Teratognatha. Initial analysis of the UCE data revealed two conflicting hypotheses for relationships among tribes. To resolve the incongruence, we tested concatenation and species tree approaches and used a variety of additional strategies including locus filtering, partitioned gene-trees searches, and gene-based topological tests. We show that within-locus partitioning improves gene tree and subsequent species-tree estimation, and that this approach, confidently resolves the incongruence observed in our data set. After exploring our proposed analytical strategy on eucerine bees, we validated its efficacy to resolve hard phylogenetic problems by implementing it on a published UCE data set of Adephaga (Insecta: Coleoptera). Our results provide a robust phylogenetic hypothesis for Eucerinae and demonstrate a practical strategy for resolving incongruence in other phylogenomic data sets.
Collapse
Affiliation(s)
- Felipe V Freitas
- Laboratório de Biologia Comparada e Abelhas (LBCA), Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pollinating Insects Research Unit, Utah State University, Logan, UT
| | - Michael G Branstetter
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pollinating Insects Research Unit, Utah State University, Logan, UT
| | - Terry Griswold
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pollinating Insects Research Unit, Utah State University, Logan, UT
| | - Eduardo A B Almeida
- Laboratório de Biologia Comparada e Abelhas (LBCA), Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|