151
|
Huang N, Chelliah Y, Shan Y, Taylor CA, Yoo SH, Partch C, Green CB, Zhang H, Takahashi JS. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science 2012; 337:189-94. [PMID: 22653727 PMCID: PMC3694778 DOI: 10.1126/science.1222804] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The circadian clock in mammals is driven by an autoregulatory transcriptional feedback mechanism that takes approximately 24 hours to complete. A key component of this mechanism is a heterodimeric transcriptional activator consisting of two basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) domain protein subunits, CLOCK and BMAL1. Here, we report the crystal structure of a complex containing the mouse CLOCK:BMAL1 bHLH-PAS domains at 2.3 Å resolution. The structure reveals an unusual asymmetric heterodimer with the three domains in each of the two subunits--bHLH, PAS-A, and PAS-B--tightly intertwined and involved in dimerization interactions, resulting in three distinct protein interfaces. Mutations that perturb the observed heterodimer interfaces affect the stability and activity of the CLOCK:BMAL1 complex as well as the periodicity of the circadian oscillator. The structure of the CLOCK:BMAL1 complex is a starting point for understanding at an atomic level the mechanism driving the mammalian circadian clock.
Collapse
Affiliation(s)
- Nian Huang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yogarany Chelliah
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yongli Shan
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Clinton A. Taylor
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Molecular Biophysics Graduate Program, Division of Basic Science, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Seung-Hee Yoo
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carrie Partch
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carla B. Green
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hong Zhang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph S. Takahashi
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
152
|
Padmanabhan K, Robles MS, Westerling T, Weitz CJ. Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex. Science 2012; 337:599-602. [PMID: 22767893 DOI: 10.1126/science.1221592] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Eukaryotic circadian clocks are built on transcriptional feedback loops. In mammals, the PERIOD (PER) and CRYPTOCHROME (CRY) proteins accumulate, form a large nuclear complex (PER complex), and repress their own transcription. We found that mouse PER complexes included RNA helicases DDX5 and DHX9, active RNA polymerase II large subunit, Per and Cry pre-mRNAs, and SETX, a helicase that promotes transcriptional termination. During circadian negative feedback, RNA polymerase II accumulated near termination sites on Per and Cry genes but not on control genes. Recruitment of PER complexes to the elongating polymerase at Per and Cry termination sites inhibited SETX action, impeding RNA polymerase II release and thereby repressing transcriptional reinitiation. Circadian clock negative feedback thus includes direct control of transcriptional termination.
Collapse
Affiliation(s)
- Kiran Padmanabhan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
153
|
Abstract
For 20 years, researchers have thought that circadian clocks are defined by feedback loops of transcription and translation. The rediscovery of posttranslational circadian oscillators in diverse organisms forces us to rethink this paradigm. Meanwhile, the original "basic" feedback loops of canonical circadian clocks have swelled to include dozens of additional proteins acting in interlocked loops. We review several self-sustained clock mechanisms and propose that minimum requirements for diurnal timekeeping might be simpler than those of actual free-running circadian oscillators. Thus, complex mechanisms of circadian timekeeping might have evolved from random connections between unrelated feedback loops with independent but limited time-telling capability.
Collapse
Affiliation(s)
- Steven A Brown
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland.
| | | | | |
Collapse
|
154
|
Berndt A, Wilkinson KA, Henley JM. Regulation of Neuronal Protein Trafficking and Translocation by SUMOylation. Biomolecules 2012; 2:256-68. [PMID: 24970136 PMCID: PMC4030841 DOI: 10.3390/biom2020256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 04/24/2012] [Accepted: 04/24/2012] [Indexed: 01/15/2023] Open
Abstract
Post-translational modifications of proteins are essential for cell function. Covalent modification by SUMO (small ubiquitin-like modifier) plays a role in multiple cell processes, including transcriptional regulation, DNA damage repair, protein localization and trafficking. Factors affecting protein localization and trafficking are particularly crucial in neurons because of their polarization, morphological complexity and functional specialization. SUMOylation has emerged as a major mediator of intranuclear and nucleo-cytoplasmic translocations of proteins involved in critical pathways such as circadian rhythm, apoptosis and protein degradation. In addition, SUMO-regulated re-localization of extranuclear proteins is required to sustain neuronal excitability and synaptic transmission. Thus, SUMOylation is a key arbiter of neuronal viability and function. Here, we provide an overview of recent advances in our understanding of regulation of neuronal protein localization and translocation by SUMO and highlight exciting areas of ongoing research.
Collapse
Affiliation(s)
- Anja Berndt
- School of Biochemistry, Medical Research Council Centre for Synaptic Plasticity, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Medical Research Council Centre for Synaptic Plasticity, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jeremy M Henley
- School of Biochemistry, Medical Research Council Centre for Synaptic Plasticity, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
155
|
Silver AC, Arjona A, Walker WE, Fikrig E. The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity. Immunity 2012; 36:251-61. [PMID: 22342842 DOI: 10.1016/j.immuni.2011.12.017] [Citation(s) in RCA: 343] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/16/2011] [Accepted: 12/09/2011] [Indexed: 12/22/2022]
Abstract
Circadian rhythms refer to biologic processes that oscillate with a period of ~24 hr. These rhythms are sustained by a molecular clock and provide a temporal matrix that ensures the coordination of homeostatic processes with the periodicity of environmental challenges. We demonstrate the circadian molecular clock controls the expression and function of Toll-like receptor 9 (TLR9). In a vaccination model using TLR9 ligand as adjuvant, mice immunized at the time of enhanced TLR9 responsiveness presented weeks later with an improved adaptive immune response. In a TLR9-dependent mouse model of sepsis, we found that disease severity was dependent on the timing of sepsis induction, coinciding with the daily changes in TLR9 expression and function. These findings unveil a direct molecular link between the circadian and innate immune systems with important implications for immunoprophylaxis and immunotherapy.
Collapse
Affiliation(s)
- Adam C Silver
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | |
Collapse
|
156
|
Lee Y, Kim K. Posttranslational and epigenetic regulation of the CLOCK/BMAL1 complex in the mammalian. Anim Cells Syst (Seoul) 2012. [DOI: 10.1080/19768354.2011.603749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
157
|
van der Spek R, Kreier F, Fliers E, Kalsbeek A. Circadian rhythms in white adipose tissue. PROGRESS IN BRAIN RESEARCH 2012; 199:183-201. [DOI: 10.1016/b978-0-444-59427-3.00011-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
158
|
Mora E, Guglielmotti A, Biondi G, Sassone-Corsi P. Bindarit: an anti-inflammatory small molecule that modulates the NFκB pathway. Cell Cycle 2012; 11:159-69. [PMID: 22189654 DOI: 10.4161/cc.11.1.18559] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The activation of nuclear factor (NF)κB pathway and its transducing signaling cascade has been associated with the pathogenesis of many inflammatory diseases. The central role that IκBα and p65 phosphorylation play in regulating NFκB signalling in response to inflammatory stimuli made these proteins attractive targets for therapeutic strategies. Although several chemical classes of NFκB inhibitors have been identified, it is only for a few of those that a safety assessment based on a comprehensive understanding of their pharmacologic mechanism of action has been reported. Here, we describe the specific anti-inflammatory effect of bindarit, an indazolic derivative that has been proven to have anti-inflammatory activity in a variety of models of inflammatory diseases (including lupus nephritis, arthritis and pancreatitis). The therapeutic effects of bindarit have been associated with its ability to selectively interfere with monocyte recruitment and the "early inflammatory response," although its specific molecular mechanisms have remained ill-defined. For this purpose, we investigated the effect of bindarit on the LPS-induced production of inflammatory cytokines (MCP-1 and MCPs, IL-12β/p40, IL-6 and IL-8/KC) in both a mouse leukaemic monocyte-macrophage cell line and bone marrow derived macrophages (BMDM). Bindarit inhibits the LPS-induced MCP-1 and IL-12β/p40 expression without affecting other analyzed cytokines. The effect of bindarit is mediated by the downregulation of the classical NFκB pathway, involving a reduction of IκBα and p65 phosphorylation, a reduced activation of NFκB dimers and a subsequently reduced nuclear translocation and DNA binding. Bindarit showed a specific inhibitory effect on the p65 and p65/p50 induced MCP-1 promoter activation, with no effect on other tested activated promoters. We conclude that bindarit acts on a specific subpopulation of NFκB isoforms and selects its targets wihtin the whole NFκB inflammatory pathway. These findings pave the way for future applications of bindarit as modulator of the inflammatory response.
Collapse
Affiliation(s)
- Eugenio Mora
- Center for Epigenetics and Metabolism, School of Medicine, University of California at Irvine, Irvine, CA, USA
| | | | | | | |
Collapse
|
159
|
Abstract
A wide variety of endocrine, physiological, and metabolic functions follow daily oscillations. Most of these regulations are controlled at the level of gene expression by the circadian clock and, a remarkably coordinated transcription-translation machinery that exerts its function in virtually all mammalian cells. A large fraction of the genome is under control of the circadian clock, a regulation that is achieved through dynamic changes in chromatin states. Recent findings have demonstrated intimate connections between the circadian clock and epigenetic control. The case of nicotinamide adenine dinucleotide, which modulates the circadian activity of the deacetylase sirtuin 1, constitutes a paradigmatic example of the link between cyclic cellular metabolism and chromatin remodeling. Indeed, the clock transcriptional feedback loop is interlocked with the enzymatic loop of the nicotinamide adenine dinucleotide salvage pathway.
Collapse
Affiliation(s)
- Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, University of California, Irvine, School of Medicine, Irvine, California 92697, USA.
| |
Collapse
|
160
|
Durgan DJ, Pat BM, Laczy B, Bradley JA, Tsai JY, Grenett MH, Ratcliffe WF, Brewer RA, Nagendran J, Villegas-Montoya C, Zou C, Zou L, Johnson RL, Dyck JRB, Bray MS, Gamble KL, Chatham JC, Young ME. O-GlcNAcylation, novel post-translational modification linking myocardial metabolism and cardiomyocyte circadian clock. J Biol Chem 2011; 286:44606-19. [PMID: 22069332 PMCID: PMC3247942 DOI: 10.1074/jbc.m111.278903] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 10/21/2011] [Indexed: 01/02/2023] Open
Abstract
The cardiomyocyte circadian clock directly regulates multiple myocardial functions in a time-of-day-dependent manner, including gene expression, metabolism, contractility, and ischemic tolerance. These same biological processes are also directly influenced by modification of proteins by monosaccharides of O-linked β-N-acetylglucosamine (O-GlcNAc). Because the circadian clock and protein O-GlcNAcylation have common regulatory roles in the heart, we hypothesized that a relationship exists between the two. We report that total cardiac protein O-GlcNAc levels exhibit a diurnal variation in mouse hearts, peaking during the active/awake phase. Genetic ablation of the circadian clock specifically in cardiomyocytes in vivo abolishes diurnal variations in cardiac O-GlcNAc levels. These time-of-day-dependent variations appear to be mediated by clock-dependent regulation of O-GlcNAc transferase and O-GlcNAcase protein levels, glucose metabolism/uptake, and glutamine synthesis in an NAD-independent manner. We also identify the clock component Bmal1 as an O-GlcNAc-modified protein. Increasing protein O-GlcNAcylation (through pharmacological inhibition of O-GlcNAcase) results in diminished Per2 protein levels, time-of-day-dependent induction of bmal1 gene expression, and phase advances in the suprachiasmatic nucleus clock. Collectively, these data suggest that the cardiomyocyte circadian clock increases protein O-GlcNAcylation in the heart during the active/awake phase through coordinated regulation of the hexosamine biosynthetic pathway and that protein O-GlcNAcylation in turn influences the timing of the circadian clock.
Collapse
Affiliation(s)
- David J. Durgan
- From the Division of Cardiovascular Diseases, Department of Medicine
| | - Betty M. Pat
- From the Division of Cardiovascular Diseases, Department of Medicine
| | - Boglarka Laczy
- the Division of Molecular and Cellular Pathology, Department of Pathology
| | - Jerry A. Bradley
- From the Division of Cardiovascular Diseases, Department of Medicine
| | - Ju-Yun Tsai
- the United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, and
| | | | | | - Rachel A. Brewer
- From the Division of Cardiovascular Diseases, Department of Medicine
| | - Jeevan Nagendran
- the Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Carolina Villegas-Montoya
- the United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, and
| | - Chenhang Zou
- the Division of Molecular and Cellular Pathology, Department of Pathology
| | - Luyun Zou
- the Division of Molecular and Cellular Pathology, Department of Pathology
| | | | - Jason R. B. Dyck
- the Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Molly S. Bray
- the Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Karen L. Gamble
- the Division of Behavioral Neurobiology, Department of Psychiatry, and
| | - John C. Chatham
- the Division of Molecular and Cellular Pathology, Department of Pathology
| | - Martin E. Young
- From the Division of Cardiovascular Diseases, Department of Medicine
| |
Collapse
|
161
|
Son GH, Chung S, Kim K. The adrenal peripheral clock: glucocorticoid and the circadian timing system. Front Neuroendocrinol 2011; 32:451-65. [PMID: 21802440 DOI: 10.1016/j.yfrne.2011.07.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/25/2011] [Accepted: 07/06/2011] [Indexed: 12/27/2022]
Abstract
The mammalian circadian timing system is organized in a hierarchy, with the master clock residing in the suprachiasmatic nucleus (SCN) of the hypothalamus and subsidiary peripheral clocks in other brain regions as well as peripheral tissues. Since the local oscillators in most cells contain a similar molecular makeup to that in the central pacemaker, determining the role of the peripheral clocks in the regulation of rhythmic physiology and behavior is an important issue. Glucocorticoids (GCs) are a class of multi-functional adrenal steroid hormones, which exhibit a robust circadian rhythm, with a peak linked with the onset of the daily activity phase. It has long been believed that the production and secretion of GC is primarily governed through the hypothalamus-pituitary-adrenal (HPA) neuroendocrine axis in mammals. Growing evidence, however, strongly supports the notion that the periodicity of GC involves the integrated activity of multiple regulatory mechanisms related to circadian timing system along with the classical HPA neuroendocrine regulation. The adrenal-intrinsic oscillator as well as the central pacemaker plays a pivotal role in its rhythmicity. GC influences numerous biological processes, such as metabolic, cardiovascular, immune and even higher brain functions, and also acts as a resetting signal for the ubiquitous peripheral clocks, suggesting its importance in harmonizing circadian physiology and behavior. In this review, we will therefore focus on the recent advances in our understanding of the circadian regulation of adrenal GC and its functional relevance.
Collapse
Affiliation(s)
- Gi Hoon Son
- Department of Biological Sciences, Seoul National University, Brain Research Center for the 21st Century Frontier Program in Neuroscience, Seoul 151-742, Republic of Korea
| | | | | |
Collapse
|
162
|
Scoma HD, Humby M, Yadav G, Zhang Q, Fogerty J, Besharse JC. The de-ubiquitinylating enzyme, USP2, is associated with the circadian clockwork and regulates its sensitivity to light. PLoS One 2011; 6:e25382. [PMID: 21966515 PMCID: PMC3179520 DOI: 10.1371/journal.pone.0025382] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 09/02/2011] [Indexed: 11/18/2022] Open
Abstract
We have identified a novel component of the circadian clock that regulates its sensitivity to light at the evening light to dark transition. USP2 (Ubiquitin Specific Protease 2), which de-ubiquitinylates and stabilizes target proteins, is rhythmically expressed in multiple tissues including the SCN. We have developed a knockout model of USP2 and found that exposure to low irradiance light at ZT12 increases phase delays of USP2(-/-) mice compared to wildtype. We additionally show that USP2b is in a complex with several clock components and regulates the stability and turnover of BMAL1, which in turn alters the expression of several CLOCK/BMAL1 controlled genes. Rhythmic expression of USP2 in the SCN and other tissues offers a new level of control of the clock machinery through de-ubiqutinylation and suggests a role for USP2 during circadian adaptation to environmental day length changes.
Collapse
Affiliation(s)
- Heather Dehlin Scoma
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Monica Humby
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Geetha Yadav
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Qingjiong Zhang
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Joseph Fogerty
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Joseph C. Besharse
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
163
|
McClung CA. Circadian rhythms and mood regulation: insights from pre-clinical models. Eur Neuropsychopharmacol 2011; 21 Suppl 4:S683-93. [PMID: 21835596 PMCID: PMC3179573 DOI: 10.1016/j.euroneuro.2011.07.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/06/2011] [Accepted: 07/13/2011] [Indexed: 12/13/2022]
Abstract
Affective disorders such as major depression, bipolar disorder, and seasonal affective disorder are associated with major disruptions in circadian rhythms. Indeed, altered sleep/wake cycles are a critical feature for diagnosis in the DSM IV and several of the therapies used to treat these disorders have profound effects on rhythm length and stabilization in human populations. Furthermore, multiple human genetic studies have identified polymorphisms in specific circadian genes associated with these disorders. Thus, there appears to be a strong association between the circadian system and mood regulation, although the mechanisms that underlie this association are unclear. Recently, a number of studies in animal models have begun to shed light on the complex interactions between circadian genes and mood-related neurotransmitter systems, the effects of light manipulation on brain circuitry, the impact of chronic stress on rhythms, and the ways in which antidepressant and mood-stabilizing drugs alter the clock. This review will focus on the recent advances that have been gleaned from the use of pre-clinical models to further our understanding of how the circadian system regulates mood.
Collapse
Affiliation(s)
- Colleen A McClung
- Department of Psychiatry, University of Pittsburgh Medical School, 450 Technology Dr. Suite 223, Pittsburgh, PA 15219, United States.
| |
Collapse
|
164
|
Ketamine influences CLOCK:BMAL1 function leading to altered circadian gene expression. PLoS One 2011; 6:e23982. [PMID: 21887357 PMCID: PMC3161090 DOI: 10.1371/journal.pone.0023982] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/01/2011] [Indexed: 01/13/2023] Open
Abstract
Major mood disorders have been linked to abnormalities in circadian rhythms, leading to disturbances in sleep, mood, temperature, and hormonal levels. We provide evidence that ketamine, a drug with rapid antidepressant effects, influences the function of the circadian molecular machinery. Ketamine modulates CLOCK:BMAL1-mediated transcriptional activation when these regulators are ectopically expressed in NG108-15 neuronal cells. Inhibition occurs in a dose-dependent manner and is attenuated after treatment with the GSK3β antagonist SB21673. We analyzed the effect of ketamine on circadian gene expression and observed a dose-dependent reduction in the amplitude of circadian transcription of the Bmal1, Per2, and Cry1 genes. Finally, chromatin-immunoprecipitation analyses revealed that ketamine altered the recruitment of the CLOCK:BMAL1 complex on circadian promoters in a time-dependent manner. Our results reveal a yet unsuspected molecular mode of action of ketamine and thereby may suggest possible pharmacological antidepressant strategies.
Collapse
|
165
|
Tian R, Alvarez-Saavedra M, Cheng HYM, Figeys D. Uncovering the proteome response of the master circadian clock to light using an AutoProteome system. Mol Cell Proteomics 2011; 10:M110.007252. [PMID: 21859948 DOI: 10.1074/mcp.m110.007252] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In mammals, the suprachiasmatic nucleus (SCN) is the central circadian pacemaker that governs rhythmic fluctuations in behavior and physiology in a 24-hr cycle and synchronizes them to the external environment by daily resetting in response to light. The bilateral SCN is comprised of a mere ~20,000 neurons serving as cellular oscillators, a fact that has, until now, hindered the systematic study of the SCN on a global proteome level. Here we developed a fully automated and integrated proteomics platform, termed AutoProteome system, for an in-depth analysis of the light-responsive proteome of the murine SCN. All requisite steps for a large-scale proteomic study, including preconcentration, buffer exchanging, reduction, alkylation, digestion and online two-dimensional liquid chromatography-tandem MS analysis, are performed automatically on a standard liquid chromatography-MS system. As low as 2 ng of model protein bovine serum albumin and up to 20 μg and 200 μg of SCN proteins can be readily processed and analyzed by this system. From the SCN tissue of a single mouse, we were able to confidently identify 2131 proteins, of which 387 were light-regulated based on a spectral counts quantification approach. Bioinformatics analysis of the light-inducible proteins reveals their diverse distribution in different canonical pathways and their heavy connection in 19 protein interaction networks. The AutoProteome system identified vasopressin-neurophysin 2-copeptin and casein kinase 1 delta, both of which had been previously implicated in clock timing processes, as light-inducible proteins in the SCN. Ras-specific guanine nucleotide-releasing factor 1, ubiquitin protein ligase E3A, and X-linked ubiquitin specific protease 9, none of which had previously been implicated in SCN clock timing processes, were also identified in this study as light-inducible proteins. The AutoProteome system opens a new avenue to systematically explore the proteome-wide events that occur in the SCN, either in response to light or other stimuli, or as a consequence of its intrinsic pacemaker capacity.
Collapse
Affiliation(s)
- Ruijun Tian
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | |
Collapse
|
166
|
Chaves I, Nijman RM, Biernat MA, Bajek MI, Brand K, da Silva AC, Saito S, Yagita K, Eker APM, van der Horst GTJ. The Potorous CPD photolyase rescues a cryptochrome-deficient mammalian circadian clock. PLoS One 2011; 6:e23447. [PMID: 21858120 PMCID: PMC3156801 DOI: 10.1371/journal.pone.0023447] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/17/2011] [Indexed: 11/21/2022] Open
Abstract
Despite the sequence and structural conservation between cryptochromes and photolyases, members of the cryptochrome/photolyase (flavo)protein family, their functions are divergent. Whereas photolyases are DNA repair enzymes that use visible light to lesion-specifically remove UV-induced DNA damage, cryptochromes act as photoreceptors and circadian clock proteins. To address the functional diversity of cryptochromes and photolyases, we investigated the effect of ectopically expressed Arabidopsis thaliana (6-4)PP photolyase and Potorous tridactylus CPD-photolyase (close and distant relatives of mammalian cryptochromes, respectively), on the performance of the mammalian cryptochromes in the mammalian circadian clock. Using photolyase transgenic mice, we show that Potorous CPD-photolyase affects the clock by shortening the period of behavioral rhythms. Furthermore, constitutively expressed CPD-photolyase is shown to reduce the amplitude of circadian oscillations in cultured cells and to inhibit CLOCK/BMAL1 driven transcription by interacting with CLOCK. Importantly, we show that Potorous CPD-photolyase can restore the molecular oscillator in the liver of (clock-deficient) Cry1/Cry2 double knockout mice. These data demonstrate that a photolyase can act as a true cryptochrome. These findings shed new light on the importance of the core structure of mammalian cryptochromes in relation to its function in the circadian clock and contribute to our further understanding of the evolution of the cryptochrome/photolyase protein family.
Collapse
Affiliation(s)
- Inês Chaves
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Romana M. Nijman
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Monika I. Bajek
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Karl Brand
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - António Carvalho da Silva
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Shoko Saito
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kazuhiro Yagita
- Department of Neuroscience and Cell Biology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - André P. M. Eker
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
167
|
Monecke S, Brewer JM, Krug S, Bittman EL. Duper: a mutation that shortens hamster circadian period. J Biol Rhythms 2011; 26:283-92. [PMID: 21775287 DOI: 10.1177/0748730411411569] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three animals born to homozygous tau mutant (τ(ss), "super short") Syrian hamsters showed extremely short free-running periods of locomotor activity (τ(DD) of approximately 17.8 hours). Inbreeding produced 33 such "super duper" animals, which had a τ(DD) of 18.09 ± 0.05 hours, which was shorter than that of τ(ss) hamsters (20.66 ± 0.07 hours, p < 0.001). To test the hypothesis that a gene (Duper) is responsible for a 2-hour shortening of τ(DD), we backcrossed super duper hamsters to unrelated τ(ss) animals. The F(1) pups uniformly had a τ(DD) similar to that of τ(ss) hamsters (19.89 ± 0.15 hours), but F(2) animals showed a 1:1 ratio of the 18- to 20-hour phenotypes. In contrast, the F(1) of a cross between super duper hamsters and τ(ss) animals presumed heterozygous for duper showed a 1:1 ratio of 18- to 20-hour phenotypes, and inbreeding of the super duper F(1) offspring uniformly produced F(2) pups with extremely short τ(DD) (17.86 ± 0.5 hours). We isolated the duper mutation on a wild-type background through crossing of super duper with wild-type animals. Restriction digests identified short-period F(2) pups that lack the mutant CK1ε allele, and these animals had a mean τ(DD) of 23.11 ± 0.04 hours. τ(DD) of duper hamsters born and raised in DD was significantly shorter than in hamsters raised in 14L:10D (21.92 ± 0.12 hours, p < 0.0001). τ(DD) shortened twice as much in τ(s) and τ(ss) hamsters than in wild-type animals that were homozygous for duper, indicating the presence of epistatic interactions. Assortment of phenotypes in the F(2) generation fit the expected distribution for expression of duper as recessive (χ(2) = 6.41, p > 0.1). Neither CK1ε nor CK1δ coding region base sequences differed between super duper and τ(ss) hamsters. The growth rate of super duper mutants is similar to that of τ(ss) animals but slightly but significantly reduced at particular postweaning time points. We conclude that duper represents a new mutation that substantially reduces τ(DD) and has significant effects on physiology and metabolism.
Collapse
Affiliation(s)
- Stefanie Monecke
- Department of Biology and Program in Neuroscience and Behavior, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
168
|
Pandey D, Chen F, Patel A, Wang CY, Dimitropoulou C, Patel VS, Rudic RD, Stepp DW, Fulton DJ. SUMO1 negatively regulates reactive oxygen species production from NADPH oxidases. Arterioscler Thromb Vasc Biol 2011; 31:1634-42. [PMID: 21527745 PMCID: PMC3464053 DOI: 10.1161/atvbaha.111.226621] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 04/08/2011] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Increased protein SUMOylation (small ubiquitin-related modifier [SUMO]) provides protection from cellular stress, including oxidative stress, but the mechanisms involved are incompletely understood. The NADPH oxidases (Nox) are a primary source of reactive oxygen species (ROS) and oxidative stress, and thus our goal was to determine whether SUMO regulates NADPH oxidase activity. METHODS AND RESULTS Increased expression of SUMO1 potently inhibited the activity of Nox1 to Nox5. In contrast, inhibition of endogenous SUMOylation with small interfering RNA to SUMO1 or ubiquitin conjugating enzyme 9 or with the inhibitor anacardic acid increased ROS production from human embryonic kidney-Nox5 cells, human vascular smooth muscle cells, and neutrophils. The suppression of ROS production was unique to SUMO1, and it required a C-terminal diglycine and the SUMO-specific conjugating enzyme ubiquitin conjugating enzyme 9. SUMO1 did not modify intracellular calcium or Nox5 phosphorylation but reduced ROS output in an isolated enzyme assay, suggesting direct effects of SUMOylation on enzyme activity. However, we could not detect the presence of SUMO1 conjugation on Nox5 using a variety of approaches. Moreover, the mutation of more than 17 predicted and conserved lysine residues on Nox5 did not alter the inhibitory actions of SUMO1. CONCLUSIONS Together, these results suggest that SUMO is an important regulatory mechanism that indirectly represses the production of ROS to ameliorate cellular stress.
Collapse
Affiliation(s)
- Deepesh Pandey
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Chung S, Son GH, Kim K. Circadian rhythm of adrenal glucocorticoid: Its regulation and clinical implications. Biochim Biophys Acta Mol Basis Dis 2011; 1812:581-91. [DOI: 10.1016/j.bbadis.2011.02.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 01/31/2011] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
|
170
|
Weber F, Zorn D, Rademacher C, Hung HC. Post-translational timing mechanisms of the Drosophila circadian clock. FEBS Lett 2011; 585:1443-9. [PMID: 21486567 DOI: 10.1016/j.febslet.2011.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/29/2011] [Accepted: 04/04/2011] [Indexed: 11/20/2022]
Abstract
Circadian clocks allow a temporal coordination and segregation of physiological, metabolic, and behavioural processes as well as their synchronization with the environmental cycles of day and night. Circadian regulation thereby provides a vital advantage, improving an organisms' adaptation to its environment. The molecular clock can be synchronized with environmental cycles of day and night, but is able to maintain a self-sustained molecular oscillation also in the absence of environmental stimuli. Interlocked transcriptional-translational feedback loops were shown to form the basis of circadian clock function in all phyla from bacteria, fungi, plants, insects to humans. More recently post-translational regulation was identified to be equally important, if not sufficient for molecular clock function and accurate timing of circadian transcription. Here we review recent insights into post-translational timing mechanisms that control the circadian clock, with a particular focus on Drosophila. Analogous to transcriptional feedback regulation, circadian clock function in Drosophila appears to rely on inter-connected post-translational timers. Post-translational regulation of clock proteins illustrates mechanisms that allow a precise temporal control of transcription factors in general and of circadian transcription in particular.
Collapse
Affiliation(s)
- Frank Weber
- University of Heidelberg Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
171
|
Bellet MM, Sassone-Corsi P. Mammalian circadian clock and metabolism - the epigenetic link. J Cell Sci 2011; 123:3837-48. [PMID: 21048160 DOI: 10.1242/jcs.051649] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Circadian rhythms regulate a wide variety of physiological and metabolic processes. The clock machinery comprises complex transcriptional-translational feedback loops that, through the action of specific transcription factors, modulate the expression of as many as 10% of cellular transcripts. This marked change in gene expression necessarily implicates a global regulation of chromatin remodeling. Indeed, various descriptive studies have indicated that histone modifications occur at promoters of clock-controlled genes (CCGs) in a circadian manner. The finding that CLOCK, a transcription factor crucial for circadian function, has intrinsic histone acetyl transferase (HAT) activity has paved the way to unraveling the molecular mechanisms that govern circadian chromatin remodeling. A search for the histone deacetylase (HDAC) that counterbalances CLOCK activity revealed that SIRT1, a nicotinamide adenin dinucleotide (NAD(+))-dependent HDAC, functions in a circadian manner. Importantly, SIRT1 is a regulator of aging, inflammation and metabolism. As many transcripts that oscillate in mammalian peripheral tissues encode proteins that have central roles in metabolic processes, these findings establish a functional and molecular link between energy balance, chromatin remodeling and circadian physiology. Here we review recent studies that support the existence of this link and discuss their implications for understanding mammalian physiology and pathology.
Collapse
Affiliation(s)
- Marina Maria Bellet
- Department of Pharmacology, Unite 904 Inserm Epigenetics and Neuronal Plasticity, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
172
|
Kwon I, Choe HK, Son GH, Kim K. Mammalian molecular clocks. Exp Neurobiol 2011; 20:18-28. [PMID: 22110358 PMCID: PMC3213736 DOI: 10.5607/en.2011.20.1.18] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 01/05/2011] [Indexed: 11/19/2022] Open
Abstract
As a consequence of the Earth's rotation, almost all organisms experience day and night cycles within a 24-hr period. To adapt and synchronize biological rhythms to external daily cycles, organisms have evolved an internal time-keeping system. In mammals, the master circadian pacemaker residing in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus generates circadian rhythmicity and orchestrates numerous subsidiary local clocks in other regions of the brain and peripheral tissues. Regardless of their locations, these circadian clocks are cell-autonomous and self-sustainable, implicating rhythmic oscillations in a variety of biochemical and metabolic processes. A group of core clock genes provides interlocking molecular feedback loops that drive the circadian rhythm even at the single-cell level. In addition to the core transcription/translation feedback loops, post-translational modifications also contribute to the fine regulation of molecular circadian clocks. In this article, we briefly review the molecular mechanisms and post-translational modifications of mammalian circadian clock regulation. We also discuss the organization of and communication between central and peripheral circadian oscillators of the mammalian circadian clock.
Collapse
Affiliation(s)
- Ilmin Kwon
- Department of Biological Sciences, Seoul National University and the Brain Research Center for the 21 Century Frontier Program in Neuroscience, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
173
|
Phosphorylations: making the Neurospora
crassa
circadian clock tick. FEBS Lett 2011; 585:1461-6. [DOI: 10.1016/j.febslet.2011.03.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 03/09/2011] [Accepted: 03/23/2011] [Indexed: 11/19/2022]
|
174
|
Lee Y, Chen R, Lee HM, Lee C. Stoichiometric relationship among clock proteins determines robustness of circadian rhythms. J Biol Chem 2011; 286:7033-42. [PMID: 21199878 PMCID: PMC3044960 DOI: 10.1074/jbc.m110.207217] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 12/22/2010] [Indexed: 01/23/2023] Open
Abstract
The mammalian circadian oscillator is primarily driven by an essential negative feedback loop comprising a positive component, the CLOCK-BMAL1 complex, and a negative component, the PER-CRY complex. Numerous studies suggest that feedback inhibition of CLOCK-BMAL1 is mediated by time-dependent physical interaction with its direct target gene products PER and CRY, suggesting that the ratio between the negative and positive complexes must be important for the molecular oscillator and rhythm generation. We explored this idea by altering expression of clock components in fibroblasts derived from Per2(Luc) and Per mutant mice, a cell system extensively used to study in vivo clock mechanisms. Our data demonstrate that the stoichiometric relationship between clock components is critical for the robustness of circadian rhythms and provide insights into the mechanistic organization of the negative feedback loop. Our findings may explain why certain mutant mice or cells are arrhythmic, whereas others are rhythmic, and suggest that robustness of circadian rhythms can be increased even in wild-type cells by modulating the stoichiometry.
Collapse
Affiliation(s)
- Yongjin Lee
- From the Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32312
| | - Rongmin Chen
- From the Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32312
| | - Hyeong-min Lee
- From the Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32312
| | - Choogon Lee
- From the Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32312
| |
Collapse
|
175
|
Abstract
In mammals, most metabolic processes are influenced by biological clocks and feeding rhythms. The mechanisms that couple metabolism to circadian oscillators are just emerging. NAD-dependent enzymes (e.g., Sirtuins and poly[ADP-ribose] polymerases), redox- and/or temperature-dependent transcription factors (e.g., CLOCK, NPAS2, and HSF1), nutrient-sensing transcriptional regulatory proteins (e.g., CREB-CBP-CRCT2, FOXO-p300, nuclear receptors, PGC-1, and SP1 family members) and protein kinases (e.g., AMPK), are plausible candidates for conveying a cell's metabolic state to the core clock circuitry. The intertwining between these acute regulators and circadian clock components is so tight that the discrimination between metabolic and circadian oscillations may be somewhat arbitrary.
Collapse
|
176
|
Pegoraro M, Tauber E. Animal clocks: a multitude of molecular mechanisms for circadian timekeeping. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:312-20. [PMID: 21957012 DOI: 10.1002/wrna.58] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studies in various model organisms reveal that the expression level of a substantial part of the transcriptome and the proteome exhibits regular daily oscillations. These oscillations are translated to physiological and behavioral rhythms allowing organisms to efficiently anticipate and respond to the daily and seasonally changing environment (e.g., temperature and light). A rather small subset of evolutionary conserved genes drives these oscillations and constitutes the core molecular circadian clock. Here, we review the multiple mechanisms that coexist at various molecular and cellular levels and are involved in the metazoan circadian clock, including transcription/translation negative feedback loops, post-transcriptional and post-translational modifications, intracellular translocation, and intercellular signaling.
Collapse
Affiliation(s)
- Mirko Pegoraro
- Department of Genetics, University of Leicester, Leicester, UK
| | | |
Collapse
|
177
|
Abstract
The mammalian circadian system is a complex hierarchical temporal network which is organized around an ensemble of uniquely coupled cells comprising the principal circadian pacemaker in the suprachiasmatic nucleus of the hypothalamus. This central pacemaker is entrained each day by the environmental light/dark cycle and transmits synchronizing cues to cell-autonomous oscillators in tissues throughout the body. Within cells of the central pacemaker and the peripheral tissues, the underlying molecular mechanism by which oscillations in gene expression occur involves interconnected feedback loops of transcription and translation. Over the past 10 years, we have learned much regarding the genetics of this system, including how it is particularly resilient when challenged by single-gene mutations, how accessory transcriptional loops enhance the robustness of oscillations, how epigenetic mechanisms contribute to the control of circadian gene expression, and how, from coupled neuronal networks, emergent clock properties arise. Here, we will explore the genetics of the mammalian circadian system from cell-autonomous molecular oscillations, to interactions among central and peripheral oscillators and ultimately, to the daily rhythms of behavior observed in the animal.
Collapse
|
178
|
Froy O, Miskin R. Effect of feeding regimens on circadian rhythms: implications for aging and longevity. Aging (Albany NY) 2010; 2:7-27. [PMID: 20228939 PMCID: PMC2837202 DOI: 10.18632/aging.100116] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Accepted: 01/09/2010] [Indexed: 01/19/2023]
Abstract
Increased longevity and improved health can be achieved in mammals by two feeding regimens, caloric restriction (CR), which limits the amount of daily calorie intake, and intermittent fasting (IF), which allows the food to be available ad libitum every other day. The precise mechanisms mediating these beneficial effects are still unresolved. Resetting the circadian clock is another intervention that can lead to increased life span and well being, while clock disruption is associated with aging and morbidity. Currently, a large body of evidence links circadian rhythms with metabolism and feeding regimens. In particular, CR, and possibly also IF, can entrain the master clock located in the suprachiasmatic nuclei (SCN) of the brain hypothalamus. These findings raise the hypothesis that the beneficial effects exerted by these feeding regimens could be mediated, at least in part, through resetting of the circadian clock, thus leading to synchrony in metabolism and physiology. This hypothesis is reinforced by a transgenic mouse model showing spontaneously reduced eating alongside robust circadian rhythms and increased life span. This review will summarize recent findings concerning the relationships between feeding regimens, circadian rhythms, and metabolism with implications for ageing attenuation and life span extension.
Collapse
Affiliation(s)
- Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | |
Collapse
|
179
|
Katada S, Sassone-Corsi P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 2010; 17:1414-21. [PMID: 21113167 PMCID: PMC6501791 DOI: 10.1038/nsmb.1961] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 10/25/2010] [Indexed: 12/16/2022]
Abstract
The classical view of the molecular clock is based on interlocked transcriptional-translational feedback loops. Because a substantial fraction of the mammalian genome is expressed in a circadian manner, chromatin remodeling has been proposed to be crucial in clock function. Here we show that Lys4 (K4) trimethylation of histone H3 is rhythmic and follows the same profile as previously described H3 acetylation on circadian promoters. MLL1, a mammalian homolog of Drosophila trithorax, is an H3K4-specific methyltransferase implicated in transcriptional control. We demonstrate that MLL1 is essential for circadian transcription and cyclic H3K4 trimethylation. MLL1 is in a complex with CLOCK-BMAL1 and contributes to its rhythmic recruitment to circadian promoters and to H3 acetylation. Yet MLL1 fails to interact with CLOCKΔ19, providing an explanation for this mutation's dominant negative phenotype. Our results favor a scenario in which H3K4 trimethylation by MLL1 is required to establish a permissive chromatin state for circadian transcription.
Collapse
Affiliation(s)
- Sayako Katada
- Unite 904 'Epigenetic Control and Neuronal Plasticity', Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, California, 92697, USA
| | - Paolo Sassone-Corsi
- Unite 904 'Epigenetic Control and Neuronal Plasticity', Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, California, 92697, USA
| |
Collapse
|
180
|
Yamada Y, Forger D. Multiscale complexity in the mammalian circadian clock. Curr Opin Genet Dev 2010; 20:626-33. [PMID: 20934868 PMCID: PMC3042735 DOI: 10.1016/j.gde.2010.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/02/2010] [Accepted: 09/15/2010] [Indexed: 01/08/2023]
Abstract
The field of systems biology studies how the interactions among individual components (e.g. genes and proteins) yield interesting and complex behavior. The circadian (daily) timekeeping system in mammals is an ideal system to study complexity because of its many biological scales (from genes to animal behavior). A wealth of data at each of these scales has recently been discovered. Within each scale, modeling can advance our understanding of challenging problems that arise in studying mammalian timekeeping. However, future work must focus on bridging the multiple spatial and temporal scales in the modeling of SCN network. Here we review recent advances, and then delve into a few areas that are promising research directions. We also discuss the flavor of modeling needed (simple or detailed) as well as new techniques that are needed to meet the challenges in modeling data across scales.
Collapse
Affiliation(s)
- Yr Yamada
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, United States
| | | |
Collapse
|
181
|
Sumoylation activates the transcriptional activity of Pax-6, an important transcription factor for eye and brain development. Proc Natl Acad Sci U S A 2010; 107:21034-9. [PMID: 21084637 DOI: 10.1073/pnas.1007866107] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pax-6 is an evolutionarily conserved transcription factor regulating brain and eye development. Four Pax-6 isoforms have been reported previously. Although the longer Pax-6 isoforms (p46 and p48) bear two DNA-binding domains, the paired domain (PD) and the homeodomain (HD), the shorter Pax-6 isoform p32 contains only the HD for DNA binding. Although a third domain, the proline-, serine- and threonine-enriched activation (PST) domain, in the C termini of all Pax-6 isoforms mediates their transcriptional modulation via phosphorylation, how p32 Pax-6 could regulate target genes remains to be elucidated. In the present study, we show that sumoylation at K91 is required for p32 Pax-6 to bind to a HD-specific site and regulate expression of target genes. First, in vitro-synthesized p32 Pax-6 alone cannot bind the P3 sequence, which contains the HD recognition site, unless it is preincubated with nuclear extracts precleared by anti-Pax-6 but not by anti-small ubiquitin-related modifier 1 (anti-SUMO1) antibody. Second, in vitro-synthesized p32 Pax-6 can be sumoylated by SUMO1, and the sumoylated p32 Pax-6 then can bind to the P3 sequence. Third, Pax-6 and SUMO1 are colocalized in the embryonic optic and lens vesicles and can be coimmunoprecipitated. Finally, SUMO1-conjugated p32 Pax-6 exists in both the nucleus and cytoplasm, and sumoylation significantly enhances the DNA-binding ability of p32 Pax-6 and positively regulates gene expression. Together, our results demonstrate that sumoylation activates p32 Pax-6 in both DNA-binding and transcriptional activities. In addition, our studies demonstrate that p32 and p46 Pax-6 possess differential DNA-binding and regulatory activities.
Collapse
|
182
|
Uchida Y, Hirayama J, Nishina H. A common origin: signaling similarities in the regulation of the circadian clock and DNA damage responses. Biol Pharm Bull 2010; 33:535-44. [PMID: 20410582 DOI: 10.1248/bpb.33.535] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Circadian clocks are intrinsic, time-tracking systems that endow organisms with a survival advantage. Studies of animal models and human tumor samples have revealed that the disruption of circadian rhythms is an important endogenous factor that can contribute to mammalian cancer development. The core of the circadian clock mechanism is a cell-autonomous and self-sustained oscillator system mediated by a transcription/translation-based negative feedback loop that relies on positive and negative elements. Recent studies have implicated these core circadian components in the regulation of both the cell cycle and DNA damage responses (DDR). Indeed, the circadian feedback loop controls the timing of cell proliferation by regulating the expression of key cell cycle genes. Conversely, several intracellular signaling cascades and post-translational modifications that play important roles in the cell cycle and DDR are also essential for circadian clock regulation. Importantly, alteration of a cell's reduction-oxidation (redox) state triggers the transduction of photic signals that regulate circadian clock gene transcription, suggesting that cellular responses to photo-oxidative stress may have been the evolutionary origin of the circadian clock. This review describes selected regulatory aspects of circadian machinery that are evidence of a molecular link between the circadian clock and DDR, focusing particularly on the signaling cascades involved in the light entrainment of the zebrafish circadian clock.
Collapse
Affiliation(s)
- Yoshimi Uchida
- Department of Developmental and Regenerative Biology, Tokyo Medical and Dental University, Japan
| | | | | |
Collapse
|
183
|
Abstract
Evolution has selected a system of two intertwined cell cycles: the cell division cycle (CDC) and the daily (circadian) biological clock. The circadian clock keeps track of solar time and programs biological processes to occur at environmentally appropriate times. One of these processes is the CDC, which is often gated by the circadian clock. The intermeshing of these two cell cycles is probably responsible for the observation that disruption of the circadian system enhances susceptibility to some kinds of cancer. The core mechanism underlying the circadian clockwork has been thought to be a transcription & translation feedback loop (TTFL), but recent evidence from studies with cyanobacteria, synthetic oscillators and immortalized cell lines suggests that the core circadian pacemaking mechanism that gates cell division in mammalian cells could be a post-translational oscillator (PTO).
Collapse
|
184
|
de la Fuente IM. Quantitative analysis of cellular metabolic dissipative, self-organized structures. Int J Mol Sci 2010; 11:3540-99. [PMID: 20957111 PMCID: PMC2956111 DOI: 10.3390/ijms11093540] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/11/2010] [Accepted: 09/12/2010] [Indexed: 11/16/2022] Open
Abstract
One of the most important goals of the postgenomic era is understanding the metabolic dynamic processes and the functional structures generated by them. Extensive studies during the last three decades have shown that the dissipative self-organization of the functional enzymatic associations, the catalytic reactions produced during the metabolite channeling, the microcompartmentalization of these metabolic processes and the emergence of dissipative networks are the fundamental elements of the dynamical organization of cell metabolism. Here we present an overview of how mathematical models can be used to address the properties of dissipative metabolic structures at different organizational levels, both for individual enzymatic associations and for enzymatic networks. Recent analyses performed with dissipative metabolic networks have shown that unicellular organisms display a singular global enzymatic structure common to all living cellular organisms, which seems to be an intrinsic property of the functional metabolism as a whole. Mathematical models firmly based on experiments and their corresponding computational approaches are needed to fully grasp the molecular mechanisms of metabolic dynamical processes. They are necessary to enable the quantitative and qualitative analysis of the cellular catalytic reactions and also to help comprehend the conditions under which the structural dynamical phenomena and biological rhythms arise. Understanding the molecular mechanisms responsible for the metabolic dissipative structures is crucial for unraveling the dynamics of cellular life.
Collapse
Affiliation(s)
- Ildefonso Martínez de la Fuente
- Institute of Parasitology and Biomedicine "López-Neyra" (CSIC), Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento s/n, 18100 Armilla (Granada), Spain; E-Mail: ; Tel.: +34-958-18-16-21
| |
Collapse
|
185
|
Wilkinson KA, Nakamura Y, Henley JM. Targets and consequences of protein SUMOylation in neurons. BRAIN RESEARCH REVIEWS 2010; 64:195-212. [PMID: 20382182 PMCID: PMC3310160 DOI: 10.1016/j.brainresrev.2010.04.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/24/2010] [Accepted: 04/01/2010] [Indexed: 11/26/2022]
Abstract
The post-translational modification of proteins is critical for the spatial and temporal regulation of signalling cascades. This is especially important in the CNS where the processes affecting differentiation, growth, targeting and communication between neurones are highly complex and very tightly regulated. In recent years it has emerged that modification of proteins by members of the SUMO (small ubiquitin-related modifier) family of proteins play key roles in neuronal function. SUMOylation involves the covalent conjugation of a member of the SUMO family to lysine residues in target proteins. Multiple nuclear and perinuclear SUMOylation targets have been reported to be involved in nuclear organisation and transcriptional regulation. In addition, a growing number of extranuclear SUMO substrates have been identified that can have important acute effects on neuronal function. The SUMOylation of both intra- and extranuclear proteins have been implicated in a diverse array of processes that have far-reaching implications for neuronal function and pathophysiology. Here we review the current understanding of the targets and consequences of protein SUMOylation in the brain and examine its established and potential involvement in a wide range of neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kevin A. Wilkinson
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Yasuko Nakamura
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jeremy M. Henley
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
186
|
Khapre RV, Samsa WE, Kondratov RV. Circadian regulation of cell cycle: Molecular connections between aging and the circadian clock. Ann Med 2010; 42:404-15. [PMID: 20568980 DOI: 10.3109/07853890.2010.499134] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The circadian clock generates oscillations in physiology and behavior, known as circadian rhythms. Links between the circadian clock genes Periods, Bmal1, and Cryptochromes and aging and cancer are emerging. Circadian clock gene expression is changed in human pathologies, and transgenic mice with mutations in clock genes develop cancer and premature aging. Control of genome integrity and cell proliferation play key roles in the development of age-associated pathologies and carcinogenesis. Here, we review recent data on the connection between the circadian clock and control of the cell cycle. The circadian clock regulates the activity and expression of several critical cell cycle and cell cycle check-point-related proteins, and in turn cell cycle-associated proteins regulate circadian clock proteins. DNA damage can reset the circadian clock, which provides a molecular mechanism for reciprocal regulation between the circadian clock and the cell cycle. This circadian clock-dependent control of cell proliferation, together with other known physiological functions of the circadian clock such as the control of metabolism, oxidative and genotoxic stress response, and DNA repair, opens new horizons for understanding the mechanisms behind aging and carcinogenesis.
Collapse
Affiliation(s)
- Rohini V Khapre
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44143, USA
| | | | | |
Collapse
|
187
|
Sancar A, Lindsey-Boltz LA, Kang TH, Reardon JT, Lee JH, Ozturk N. Circadian clock control of the cellular response to DNA damage. FEBS Lett 2010; 584:2618-25. [PMID: 20227409 PMCID: PMC2878924 DOI: 10.1016/j.febslet.2010.03.017] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 03/08/2010] [Accepted: 03/10/2010] [Indexed: 11/18/2022]
Abstract
Mammalian cells possess a cell-autonomous molecular clock which controls the timing of many biochemical reactions and hence the cellular response to environmental stimuli including genotoxic stress. The clock consists of an autoregulatory transcription-translation feedback loop made up of four genes/proteins, BMal1, Clock, Cryptochrome, and Period. The circadian clock has an intrinsic period of about 24 h, and it dictates the rates of many biochemical reactions as a function of the time of the day. Recently, it has become apparent that the circadian clock plays an important role in determining the strengths of cellular responses to DNA damage including repair, checkpoints, and apoptosis. These new insights are expected to guide development of novel mechanism-based chemotherapeutic regimens.
Collapse
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7260, USA.
| | | | | | | | | | | |
Collapse
|
188
|
Roger JE, Nellissery J, Kim DS, Swaroop A. Sumoylation of bZIP transcription factor NRL modulates target gene expression during photoreceptor differentiation. J Biol Chem 2010; 285:25637-44. [PMID: 20551322 DOI: 10.1074/jbc.m110.142810] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Development of rod photoreceptors in the mammalian retina is critically dependent on the basic motif-leucine zipper transcription factor NRL (neural retina leucine zipper). In the absence of NRL, photoreceptor precursors in mouse retina produce only cones that primarily express S-opsin. Conversely, ectopic expression of NRL in post-mitotic precursors leads to a rod-only retina. To explore the role of signaling molecules in modulating NRL function, we identified putative sites of post-translational modification in the NRL protein by in silico analysis. Here, we demonstrate the sumoylation of NRL in vivo and in vitro, with two small ubiquitin-like modifier (SUMO) molecules attached to the Lys-20 residue. NRL-K20R and NRL-K20R/K24R sumoylation mutants show reduced transcriptional activation of Nr2e3 and rhodopsin promoters (two direct targets of NRL) in reporter assays when compared with wild-type NRL. Consistent with this, in vivo electroporation of the NRL-K20R/K24R mutant into newborn Nrl(-/-) mouse retina leads to reduced Nr2e3 activation and only a partial rescue of the Nrl(-/-) phenotype in contrast to the wild-type NRL that is able to convert cones to rod photoreceptors. Although PIAS3 (protein inhibitor of activated STAT3), an E3-SUMO ligase implicated in photoreceptor differentiation, can be immunoprecipitated with NRL, there appears to be redundancy in E3 ligases, and PIAS3 does not seem to be essential for NRL sumoylation. Our studies suggest an important role of sumoylation in fine-tuning the activity of NRL and thereby incorporating yet another layer of control in gene regulatory networks involved in photoreceptor development and homeostasis.
Collapse
Affiliation(s)
- Jerome E Roger
- Neurobiology-Neurodegeneration and Repair Laboratory, NEI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
189
|
Wicht H, Laedtke E, Korf HW, Schomerus C. Spatial and temporal expression patterns ofBmaldelineate a circadian clock in the nervous system ofBranchiostoma lanceolatum. J Comp Neurol 2010; 518:1837-46. [DOI: 10.1002/cne.22306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
190
|
Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver. Mol Cell Biol 2010; 30:3059-70. [PMID: 20385766 DOI: 10.1128/mcb.01141-09] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The circadian timing system coordinates many aspects of mammalian physiology and behavior in synchrony with the external light/dark cycle. These rhythms are driven by endogenous molecular clocks present in most body cells. Many clock outputs are transcriptional regulators, suggesting that clock genes primarily control physiology through indirect pathways. Here, we show that Krüppel-like factor 10 (KLF10) displays a robust circadian expression pattern in wild-type mouse liver but not in clock-deficient Bmal1 knockout mice. Consistently, the Klf10 promoter recruited the BMAL1 core clock protein and was transactivated by the CLOCK-BMAL1 heterodimer through a conserved E-box response element. Profiling the liver transcriptome from Klf10(-/-) mice identified 158 regulated genes with significant enrichment for transcripts involved in lipid and carbohydrate metabolism. Importantly, approximately 56% of these metabolic genes are clock controlled. Male Klf10(-/-) mice displayed postprandial and fasting hyperglycemia, a phenotype accompanied by a significant time-of-day-dependent upregulation of the gluconeogenic gene Pepck and increased hepatic glucose production. Consistently, functional data showed that the proximal Pepck promoter is repressed directly by KLF10. Klf10(-/-) females were normoglycemic but displayed higher plasma triglycerides. Correspondingly, rhythmic gene expression of components of the lipogenic pathway, including Srebp1c, Fas, and Elovl6, was altered in females. Collectively, these data establish KLF10 as a required circadian transcriptional regulator that links the molecular clock to energy metabolism in the liver.
Collapse
|
191
|
Rana S, Mahmood S. Circadian rhythm and its role in malignancy. J Circadian Rhythms 2010; 8:3. [PMID: 20353609 PMCID: PMC2853504 DOI: 10.1186/1740-3391-8-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/31/2010] [Indexed: 01/04/2023] Open
Abstract
Circadian rhythms are daily oscillations of multiple biological processes directed by endogenous clocks. The circadian timing system comprises peripheral oscillators located in most tissues of the body and a central pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Circadian genes and the proteins produced by these genes constitute the molecular components of the circadian oscillator which form positive/negative feedback loops and generate circadian rhythms. The circadian regulation extends beyond clock genes to involve various clock-controlled genes (CCGs) including various cell cycle genes. Aberrant expression of circadian clock genes could have important consequences on the transactivation of downstream targets that control the cell cycle and on the ability of cells to undergo apoptosis. This may lead to genomic instability and accelerated cellular proliferation potentially promoting carcinogenesis. Different lines of evidence in mice and humans suggest that cancer may be a circadian-related disorder. The genetic or functional disruption of the molecular circadian clock has been found in various cancers including breast, ovarian, endometrial, prostate and hematological cancers. The acquisition of current data in circadian clock mechanism may help chronotherapy, which takes into consideration the biological time to improve treatments by devising new therapeutic approaches for treating circadian-related disorders, especially cancer.
Collapse
Affiliation(s)
- Sobia Rana
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore, Pakistan.
| | | |
Collapse
|
192
|
Paschos GK, Baggs JE, Hogenesch JB, FitzGerald GA. The role of clock genes in pharmacology. Annu Rev Pharmacol Toxicol 2010; 50:187-214. [PMID: 20055702 DOI: 10.1146/annurev.pharmtox.010909.105621] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The physiology of a wide variety of organisms is organized according to periodic environmental changes imposed by the earth's rotation. This way, a large number of physiological processes present diurnal rhythms regulated by an internal timing system called the circadian clock. As part of the rhythmicity in physiology, drug efficacy and toxicity can vary with time. Studies over the past four decades present diurnal oscillations in drug absorption, distribution, metabolism, and excretion. On the other hand, diurnal variations in the availability and sensitivity of drug targets have been correlated with time-dependent changes in drug effectiveness. In this review, we provide evidence supporting the regulation of drug kinetics and dynamics by the circadian clock. We also use the examples of hypertension and cancer to show current achievements and challenges in chronopharmacology.
Collapse
Affiliation(s)
- Georgios K Paschos
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA.
| | | | | | | |
Collapse
|
193
|
Abstract
In mammals, many physiological processes present diurnal variations, and most of these rhythms persist even in absence of environmental timing cues. These endogenous circadian rhythms are generated by intracellular timing mechanisms termed circadian clocks. In mammals, the master clock is located in the suprachiasmatic nuclei (SCN), but other brain regions and most peripheral tissues contain circadian clocks. These clocks are responsive to environmental cues, in particular light/dark and feeding/fasting cycles. In the last few years, tissue-specific knock-out and transgenic mouse models have helped to define the physiological roles of specific clocks. Recent reports indicate that the clock-physiology connection is bi-directional, and physiological cues, in particular the energetic status of the cell, can feed into the clockwork. This effect was discovered unexpectedly in molecular analyses of clock protein modifications. Beyond the positive and negative transcription/translation feedback loops of the molecular oscillator lies another level of complexity. Post-translational modifications of clock proteins are both critical for the timing of the clock feedback mechanism and to provide regulatory fine-tuning. This review summarizes recent advances in our understanding of the roles of peripheral clocks and of post-translational modifications occurring on clock proteins. These two matters are at the intersection of physiology, metabolism, and the circadian system.
Collapse
Affiliation(s)
- David Duguay
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, 6875 LaSalle Blvd., Montreal, QC, Canada
| | | |
Collapse
|
194
|
Sehat B, Tofigh A, Lin Y, Trocmé E, Liljedahl U, Lagergren J, Larsson O. SUMOylation mediates the nuclear translocation and signaling of the IGF-1 receptor. Sci Signal 2010; 3:ra10. [PMID: 20145208 DOI: 10.1126/scisignal.2000628] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The insulin-like growth factor 1 receptor (IGF-1R) plays crucial roles in developmental and cancer biology. Most of its biological effects have been ascribed to its tyrosine kinase activity, which propagates signaling through the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. Here, we report that IGF-1 promotes the modification of IGF-1R by small ubiquitin-like modifier protein-1 (SUMO-1) and its translocation to the nucleus. Nuclear IGF-1R associated with enhancer-like elements and increased transcription in reporter assays. The SUMOylation sites of IGF-1R were identified as three evolutionarily conserved lysine residues-Lys(1025), Lys(1100), and Lys(1120)-in the beta subunit of the receptor. Mutation of these SUMO-1 sites abolished the ability of IGF-1R to translocate to the nucleus and activate transcription but did not alter its kinase-dependent signaling. Thus, we demonstrate a SUMOylation-mediated mechanism of IGF-1R signaling that has potential implications for gene regulation.
Collapse
Affiliation(s)
- Bita Sehat
- 1Department of Oncology and Pathology, Karolinska Institutet, Cancer Center Karolinska, R8:04, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
195
|
Abstract
Obesity has become a serious public health problem and a major risk factor for the development of illnesses, such as insulin resistance and hypertension. Human homeostatic systems have adapted to daily changes in light and dark in a way that the body anticipates the sleep and activity periods. Mammals have developed an endogenous circadian clock located in the suprachiasmatic nuclei of the anterior hypothalamus that responds to the environmental light-dark cycle. Similar clocks have been found in peripheral tissues, such as the liver, intestine, and adipose tissue, regulating cellular and physiological functions. The circadian clock has been reported to regulate metabolism and energy homeostasis in the liver and other peripheral tissues. This is achieved by mediating the expression and/or activity of certain metabolic enzymes and transport systems. In return, key metabolic enzymes and transcription activators interact with and affect the core clock mechanism. In addition, the core clock mechanism has been shown to be linked with lipogenic and adipogenic pathways. Animals with mutations in clock genes that disrupt cellular rhythmicity have provided evidence for the relationship between the circadian clock and metabolic homeostasis. In addition, clinical studies in shift workers and obese patients accentuate the link between the circadian clock and metabolism. This review will focus on the interconnection between the circadian clock and metabolism, with implications for obesity and how the circadian clock is influenced by hormones, nutrients, and timed meals.
Collapse
Affiliation(s)
- Oren Froy
- Institute of Biochemistry, Food Science, and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
196
|
Sahar S, Zocchi L, Kinoshita C, Borrelli E, Sassone-Corsi P. Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation. PLoS One 2010; 5:e8561. [PMID: 20049328 PMCID: PMC2797305 DOI: 10.1371/journal.pone.0008561] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 12/11/2009] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Circadian rhythms govern a large array of physiological and metabolic functions. To achieve plasticity in circadian regulation, proteins constituting the molecular clock machinery undergo various post-translational modifications (PTMs), which influence their activity and intracellular localization. The core clock protein BMAL1 undergoes several PTMs. Here we report that the Akt-GSK3beta signaling pathway regulates BMAL1 protein stability and activity. PRINCIPAL FINDINGS GSK3beta phosphorylates BMAL1 specifically on Ser 17 and Thr 21 and primes it for ubiquitylation. In the absence of GSK3beta-mediated phosphorylation, BMAL1 becomes stabilized and BMAL1 dependent circadian gene expression is dampened. Dopamine D2 receptor mediated signaling, known to control the Akt-GSK3beta pathway, influences BMAL1 stability and in vivo circadian gene expression in striatal neurons. CONCLUSIONS These findings uncover a previously unknown mechanism of circadian clock control. The GSK3beta kinase phosphorylates BMAL1, an event that controls the stability of the protein and the amplitude of circadian oscillation. BMAL1 phosphorylation appears to be an important regulatory step in maintaining the robustness of the circadian clock.
Collapse
Affiliation(s)
- Saurabh Sahar
- Department of Pharmacology, University of California Irvine, Irvine, California, United States of America
- Unite 904 INSERM ‘Epigenetics and Neuronal Plasticity’, University of California Irvine, Irvine, California, United States of America
| | - Loredana Zocchi
- Department of Pharmacology, University of California Irvine, Irvine, California, United States of America
| | - Chisato Kinoshita
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Emiliana Borrelli
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
- Unite 904 INSERM ‘Epigenetics and Neuronal Plasticity’, University of California Irvine, Irvine, California, United States of America
| | - Paolo Sassone-Corsi
- Department of Pharmacology, University of California Irvine, Irvine, California, United States of America
- Unite 904 INSERM ‘Epigenetics and Neuronal Plasticity’, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
197
|
Abstract
Circadian rhythms govern a remarkable variety of metabolic and physiological functions. Accumulating epidemiological and genetic evidence indicates that the disruption of circadian rhythms might be directly linked to cancer. Intriguingly, several molecular gears constituting the clock machinery have been found to establish functional interplays with regulators of the cell cycle, and alterations in clock function could lead to aberrant cellular proliferation. In addition, connections between the circadian clock and cellular metabolism have been identified that are regulated by chromatin remodelling. This suggests that abnormal metabolism in cancer could also be a consequence of a disrupted circadian clock. Therefore, a comprehensive understanding of the molecular links that connect the circadian clock to the cell cycle and metabolism could provide therapeutic benefit against certain human neoplasias.
Collapse
Affiliation(s)
- Saurabh Sahar
- Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | | |
Collapse
|
198
|
Generating specificity and diversity in the transcriptional response to hypoxia. Nat Rev Genet 2009; 10:821-32. [PMID: 19884889 DOI: 10.1038/nrg2665] [Citation(s) in RCA: 275] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The sensing of oxygen levels and maintenance of oxygen homeostasis is crucial for cells. The hypoxic-sensitive regulation of gene expression allows information about the oxygen status to be converted into appropriate cellular responses. Although there is a core transcriptional pathway, the signalling cascade can be modified to allow diversity and specificity in the transcriptional output. In this Review, we discuss recent advances in our understanding of the mechanisms and factors that contribute to the observed diversity and specificity. A deeper knowledge about how hypoxic signalling is tuned will further our understanding of the cellular hypoxic response in normal physiology and how it becomes derailed in disease.
Collapse
|
199
|
Mehra A, Baker CL, Loros JJ, Dunlap JC. Post-translational modifications in circadian rhythms. Trends Biochem Sci 2009; 34:483-90. [PMID: 19740663 DOI: 10.1016/j.tibs.2009.06.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 11/20/2022]
Abstract
The pace has quickened in circadian biology research. In particular, an abundance of results focused on post-translational modifications (PTMs) is sharpening our view of circadian molecular clockworks. PTMs affect nearly all aspects of clock biology; in some cases they are essential for clock function and in others, they provide layers of regulatory fine-tuning. Our goal is to review recent advances in clock PTMs, help make sense of emerging themes, and spotlight intriguing (and perhaps controversial) new findings. We focus on PTMs affecting the core functions of eukaryotic clocks, in particular the functionally related oscillators in Neurospora crassa, Drosophila melanogaster, and mammalian cells.
Collapse
Affiliation(s)
- Arun Mehra
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
200
|
Abstract
AbstractCircadian clocks are based on a molecular mechanism regulated at the transcriptional, translational and post-translational levels. Recent experimental data unravel a complex role of the phosphorylations in these clocks. In mammals, several kinases play differential roles in the regulation of circadian rhythmicity. A dysfunction in the phosphorylation of one clock protein could lead to sleep disorders such as the Familial Advanced Sleep Phase Disorder, FASPS. Moreover, several drugs are targeting kinases of the circadian clocks and can be used in cancer chronotherapy or to treat mood disorders. In Drosophila, recent experimental observations also revealed a complex role of the phosphorylations. Because of its high degree of homology with mammals, the Drosophila system is of particular interest. In the circadian clock of cyanobacteria, an atypical regulatory mechanism is based only on three clock proteins (KaiA, KaiB, KaiC) and ATP and is sufficient to produce robust temperature-compensated circadian oscillations of KaiC phosphorylation. This review will show how computational modeling has become a powerful and useful tool in investigating the regulatory mechanism of circadian clocks, but also how models can give rise to testable predictions or reveal unexpected results.
Collapse
|