151
|
Characterization and localization of the Campylobacter jejuni transformation system proteins CtsE, CtsP, and CtsX. J Bacteriol 2014; 197:636-45. [PMID: 25448813 DOI: 10.1128/jb.02434-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The human pathogen Campylobacter jejuni is naturally competent for transformation with its own DNA. Genes required for efficient transformation in C. jejuni include those similar to components of type II secretion systems found in many Gram-negative bacteria (R. S. Wiesner, D. R. Hendrixson, and V. J. DiRita, J Bacteriol 185:5408-5418, 2003, http://dx.doi.org/10.1128/JB.185.18.5408-5418.2003). Two of these, ctsE and ctsP, encode proteins annotated as putative nucleotide binding nucleoside triphosphatases (NTPases) or nucleoside triphosphate (NTP) binding proteins. Here we demonstrate that the nucleotide binding motifs of both proteins are essential for their function in transformation of C. jejuni. Localization experiments demonstrated that CtsE is a soluble protein while CtsP is membrane associated in C. jejuni. A bacterial two-hybrid screen identified an interaction between CtsP and CtsX, an integral membrane protein also required for transformation. Topological analysis of CtsX by the use of LacZ and PhoA fusions demonstrated it to be a bitopic, integral membrane protein with a cytoplasmic amino terminus and a periplasmic carboxyl terminus. Notwithstanding its interaction with membrane-localized CtsX, CtsP inherently associates with the membrane, requiring neither CtsX nor several other Cts proteins for this association.
Collapse
|
152
|
Development of a genetic system for a model manganese-oxidizing proteobacterium, Leptothrix discophora SS1. Microbiology (Reading) 2014; 160:2396-2405. [DOI: 10.1099/mic.0.079459-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the molecular underpinnings of manganese oxidation in Leptothrix discophora SS1 has been hampered by the lack of a genetic system. In this report, we describe the development of a genetic system for L. discophora SS1. The antibiotic sensitivity was characterized, and a procedure for transformation with exogenous DNA via conjugation was developed and optimized, resulting in a maximum transfer frequency of 5.2×10−1 and a typical transfer frequency of the order of 1×10−3 transconjugants per donor. Genetic manipulation of L. discophora SS1 was demonstrated by disrupting pyrF via chromosomal integration with a plasmid containing a R6Kγ origin of replication through homologous recombination. This resulted in resistance to 5-fluoroorotidine, which was abolished by complementation with an ectopically expressed copy of pyrF cloned into pBBR1MCS. This system is expected to be amenable to a systematic genetic analysis of L. discophora SS1, including those genes responsible for manganese oxidation.
Collapse
|
153
|
DNA transport across the outer and inner membranes of naturally transformable Vibrio cholerae is spatially but not temporally coupled. mBio 2014; 5:mBio.01409-14. [PMID: 25139903 PMCID: PMC4147865 DOI: 10.1128/mbio.01409-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The physiological state of natural competence for transformation allows certain bacteria to take up free DNA from the environment and to recombine such newly acquired DNA into their chromosomes. However, even though conserved components that are required to undergo natural transformation have been identified in several naturally competent bacteria, our knowledge of the underlying mechanisms of the DNA uptake process remains very limited. To better understand these mechanisms, we investigated the competence-mediated DNA transport in the naturally transformable pathogen Vibrio cholerae. Previously, we used a cell biology-based approach to experimentally address an existing hypothesis, which suggested the competence protein ComEA plays a role in the DNA uptake process across the outer membrane of Gram-negative bacteria. Here, we extended this knowledge by investigating the dynamics of DNA translocation across both membranes. More precisely, we indirectly visualized the transfer of the external DNA from outside the cell into the periplasm followed by the shuttling of the DNA into the cytoplasm. Based on these data, we conclude that for V. cholerae, the DNA translocation across the outer and inner membranes is spatially but not temporally coupled. As a mode of horizontal gene transfer, natural competence for transformation has contributed substantially to the plasticity of genomes and to bacterial evolution. Natural competence is often a tightly regulated process and is induced by diverse environmental cues. This is in contrast to the mechanistic aspects of the DNA translocation event, which are most likely conserved among naturally transformable bacteria. However, the DNA uptake process is still not well understood. We therefore investigated how external DNA reaches the cytosol of the naturally transformable bacterium V. cholerae. More specifically, we provide evidence that the DNA translocation across the membranes is spatially but not temporally coupled. We hypothesize that this model also applies to other competent Gram-negative bacteria and that our study contributes to the general understanding of this important biological process.
Collapse
|
154
|
Yadav T, Carrasco B, Serrano E, Alonso JC. Roles of Bacillus subtilis DprA and SsbA in RecA-mediated genetic recombination. J Biol Chem 2014; 289:27640-52. [PMID: 25138221 DOI: 10.1074/jbc.m114.577924] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacillus subtilis competence-induced RecA, SsbA, SsbB, and DprA are required to internalize and to recombine single-stranded (ss) DNA with homologous resident duplex. RecA, in the ATP · Mg(2+)-bound form (RecA · ATP), can nucleate and form filament onto ssDNA but is inactive to catalyze DNA recombination. We report that SsbA or SsbB bound to ssDNA blocks the RecA filament formation and fails to activate recombination. DprA facilitates RecA filamentation; however, the filaments cannot engage in DNA recombination. When ssDNA was preincubated with SsbA, but not SsbB, DprA was able to activate DNA strand exchange dependent on RecA · ATP. This work demonstrates that RecA · ATP, in concert with SsbA and DprA, catalyzes DNA strand exchange, and SsbB is an accessory factor in the reaction. In contrast, RecA · dATP efficiently catalyzes strand exchange even in the absence of single-stranded binding proteins or DprA, and addition of the accessory factors marginally improved it. We proposed that the RecA-bound nucleotide (ATP and to a lesser extent dATP) might dictate the requirement for accessory factors.
Collapse
Affiliation(s)
- Tribhuwan Yadav
- From the Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Begoña Carrasco
- From the Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Ester Serrano
- From the Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Juan C Alonso
- From the Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| |
Collapse
|
155
|
Lorenzo-Díaz F, Fernández-López C, Garcillán-Barcia MP, Espinosa M. Bringing them together: plasmid pMV158 rolling circle replication and conjugation under an evolutionary perspective. Plasmid 2014; 74:15-31. [PMID: 24942190 PMCID: PMC7103276 DOI: 10.1016/j.plasmid.2014.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 11/29/2022]
Abstract
Rolling circle-replicating plasmids constitute a vast family that is particularly abundant in, but not exclusive of, Gram-positive bacteria. These plasmids are constructed as cassettes that harbor genes involved in replication and its control, mobilization, resistance determinants and one or two origins of lagging strand synthesis. Any given plasmid may contain all, some, or just only the replication cassette. We discuss here the family of the promiscuous streptococcal plasmid pMV158, with emphasis on its mobilization functions: the product of the mobM gene, prototype of the MOBV relaxase family, and its cognate origin of transfer, oriT. Amongst the subfamily of MOBV1 plasmids, three groups of oriT sequences, represented by plasmids pMV158, pT181, and p1414 were identified. In the same subfamily, we found four types of single-strand origins, namely ssoA, ssoU, ssoW, and ssoT. We found that plasmids of the rolling-circle Rep_2 family (to which pMV158 belongs) are more frequently found in Lactobacillales than in any other bacterial order, whereas Rep_1 initiators seemed to prefer hosts included in the Bacillales order. In parallel, MOBV1 relaxases associated with Rep_2 initiators tended to cluster separately from those linked to Rep_1 plasmids. The updated inventory of MOBV1 plasmids still contains exclusively mobilizable elements, since no genes associated with conjugative transfer (other than the relaxase) were detected. These plasmids proved to have a great plasticity at using a wide variety of conjugative apparatuses. The promiscuous recognition of non-cognate oriT sequences and the role of replication origins for lagging-strand origin in the host range of these plasmids are also discussed.
Collapse
Affiliation(s)
- Fabián Lorenzo-Díaz
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria and Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
| | - Cris Fernández-López
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, E-28040 Madrid, Spain.
| | - M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria - CSIC-SODERCAN, Santander, Cantabria, Spain.
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, E-28040 Madrid, Spain.
| |
Collapse
|
156
|
Diarra MS, Malouin F. Antibiotics in Canadian poultry productions and anticipated alternatives. Front Microbiol 2014; 5:282. [PMID: 24987390 PMCID: PMC4060556 DOI: 10.3389/fmicb.2014.00282] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/22/2014] [Indexed: 12/31/2022] Open
Abstract
The use of antibiotics in food-producing animals has significantly increased animal health by lowering mortality and the incidence of diseases. Antibiotics also have largely contributed to increase productivity of farms. However, antibiotic usage in general and relevance of non-therapeutic antibiotics (growth promoters) in feed need to be reevaluated especially because bacterial pathogens of humans and animals have developed and shared a variety of antibiotic resistance mechanisms that can easily be spread within microbial communities. In Canada, poultry production involves more than 2600 regulated chicken producers who have access to several antibiotics approved as feed additives for poultry. Feed recipes and mixtures vary greatly geographically and from one farm to another, making links between use of a specific antibiotic feed additive and production yields or selection of specific antibiotic-resistant bacteria difficult to establish. Many on-farm studies have revealed the widespread presence of antibiotic-resistant bacteria in broiler chickens. While some reports linked the presence of antibiotic-resistant organisms to the use of feed supplemented with antibiotics, no recent studies could clearly demonstrate the benefit of antimicrobial growth promoters on performance and production yields. With modern biosecurity and hygienic practices, there is a genuine concern that intensive utilization of antibiotics or use of antimicrobial growth promoters in feed might no longer be useful. Public pressure and concerns about food and environmental safety (antibiotic residues, antibiotic-resistant pathogens) have driven researchers to actively look for alternatives to antibiotics. Some of the alternatives include pre- and probiotics, organic acids and essential oils. We will describe here the properties of some bioactive molecules, like those found in cranberry, which have shown interesting polyvalent antibacterial and immuno-stimulatory activities.
Collapse
Affiliation(s)
- Moussa S. Diarra
- Pacific Agri-Food Research Center, Agriculture and Agri-Food CanadaAgassiz, BC, Canada
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Centre d'Étude et de Valorisation de la Diversité Microbienne, Université de SherbrookeSherbrooke, QC, Canada
| |
Collapse
|
157
|
Restriction on Conjugational Transfer of pLS20 inBacillus subtilis168. Biosci Biotechnol Biochem 2014; 72:2472-5. [DOI: 10.1271/bbb.80315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
158
|
Chimileski S, Dolas K, Naor A, Gophna U, Papke RT. Extracellular DNA metabolism in Haloferax volcanii. Front Microbiol 2014; 5:57. [PMID: 24600440 PMCID: PMC3929857 DOI: 10.3389/fmicb.2014.00057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/29/2014] [Indexed: 11/29/2022] Open
Abstract
Extracellular DNA is found in all environments and is a dynamic component of the microbial ecosystem. Microbial cells produce and interact with extracellular DNA through many endogenous mechanisms. Extracellular DNA is processed and internalized for use as genetic information and as a major source of macronutrients, and plays several key roles within prokaryotic biofilms. Hypersaline sites contain some of the highest extracellular DNA concentrations measured in nature–a potential rich source of carbon, nitrogen, and phosphorus for halophilic microorganisms. We conducted DNA growth studies for the halophilic archaeon Haloferax volcanii DS2 and show that this model Halobacteriales strain is capable of using exogenous double-stranded DNA as a nutrient. Further experiments with varying medium composition, DNA concentration, and DNA types revealed that DNA is utilized primarily as a phosphorus source, that growth on DNA is concentration-dependent, and that DNA isolated from different sources is metabolized selectively, with a bias against highly divergent methylated DNA. Additionally, fluorescence microscopy showed that labeled DNA co-localized with H. volcanii cells. The gene Hvo_1477 was also identified using a comparative genomic approach as a factor likely to be involved in DNA processing at the cell surface, and deletion of Hvo_1477 created a strain deficient in the ability to grow on extracellular DNA. Widespread distribution of Hvo_1477 homologs in archaea suggests metabolism of extracellular DNA may be of broad ecological and physiological relevance in this domain of life.
Collapse
Affiliation(s)
- Scott Chimileski
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Kunal Dolas
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Adit Naor
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University Tel Aviv, Israel
| | - Uri Gophna
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University Tel Aviv, Israel
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
159
|
Jansen G, Barbosa C, Schulenburg H. Experimental evolution as an efficient tool to dissect adaptive paths to antibiotic resistance. Drug Resist Updat 2014; 16:96-107. [PMID: 24594007 DOI: 10.1016/j.drup.2014.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibiotic treatments increasingly fail due to rapid dissemination of drug resistance. Comparative genomics of clinical isolates highlights the role of de novo adaptive mutations and horizontal gene transfer (HGT) in the acquisition of resistance. Yet it cannot fully describe the selective pressures and evolutionary trajectories that yielded today's problematic strains. Experimental evolution offers a compelling addition to such studies because the combination of replicated experiments under tightly controlled conditions with genomics of intermediate time points allows real-time reconstruction of evolutionary trajectories. Recent studies thus established causal links between antibiotic deployment therapies and the course and timing of mutations, the cost of resistance and the likelihood of compensating mutations. They particularly underscored the importance of long-term effects. Similar investigations incorporating horizontal gene transfer (HGT) are wanting, likely because of difficulties associated with its integration into experiments. In this review, we describe current advances in experimental evolution of antibiotic resistance and reflect on ways to incorporate horizontal gene transfer into the approach. We contend it provides a powerful tool for systematic and highly controlled dissection of evolutionary paths to antibiotic resistance that needs to be taken into account for the development of sustainable anti-bacterial treatment strategies.
Collapse
Affiliation(s)
- Gunther Jansen
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University of Kiel, Germany.
| | - Camilo Barbosa
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University of Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University of Kiel, Germany
| |
Collapse
|
160
|
Metzger LC, Blokesch M. Composition of the DNA-uptake complex of Vibrio cholerae.. Mob Genet Elements 2014; 4:e28142. [PMID: 24558639 PMCID: PMC3919817 DOI: 10.4161/mge.28142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 12/20/2022] Open
Abstract
Natural competence for transformation is a developmental program that allows certain bacteria to take up free extracellular DNA from the environment and integrate this DNA into their genome. Thereby, natural transformation acts as mode of horizontal gene transfer and impacts bacterial evolution. The number of genes induced upon competence induction varies significantly between organisms. However, all of the naturally competent bacteria possess competence genes that encode so-called DNA-uptake machineries. Some components of these multi-protein complexes resemble subunits of type IV pili and type II secretion systems. However, knowledge on the mechanistic aspects of such DNA-uptake complexes is still very limited. Here, we discuss some new findings regarding the DNA-uptake machinery of the naturally transformable human pathogen Vibrio cholerae. The potential of this organism to initiate the competence program was discovered less than a decade ago. However, recent studies have provided new insight into both the regulatory pathways of competence induction and into the DNA uptake dynamics.
Collapse
Affiliation(s)
- Lisa C Metzger
- Global Health Institute; School of Life Sciences; Swiss Federal Institute of Technology Lausanne (Ecole Polytechnique Fédérale de Lausanne, EPFL); Lausanne, Switzerland
| | - Melanie Blokesch
- Global Health Institute; School of Life Sciences; Swiss Federal Institute of Technology Lausanne (Ecole Polytechnique Fédérale de Lausanne, EPFL); Lausanne, Switzerland
| |
Collapse
|
161
|
|
162
|
Abstract
Many bacteria are naturally competent, able to actively transport environmental DNA fragments across their cell envelope and into their cytoplasm. Because incoming DNA fragments can recombine with and replace homologous segments of the chromosome, competence provides cells with a potent mechanism of horizontal gene transfer as well as access to the nutrients in extracellular DNA. This review starts with an introductory overview of competence and continues with a detailed consideration of the DNA uptake specificity of competent proteobacteria in the Pasteurellaceae and Neisseriaceae. Species in these distantly related families exhibit strong preferences for genomic DNA from close relatives, a self-specificity arising from the combined effects of biases in the uptake machinery and genomic overrepresentation of the sequences this machinery prefers. Other competent species tested lack obvious uptake bias or uptake sequences, suggesting that strong convergent evolutionary forces have acted on these two families. Recent results show that uptake sequences have multiple "dialects," with clades within each family preferring distinct sequence variants and having corresponding variants enriched in their genomes. Although the genomic consensus uptake sequences are 12 and 29 to 34 bp, uptake assays have found that only central cores of 3 to 4 bp, conserved across dialects, are crucial for uptake. The other bases, which differ between dialects, make weaker individual contributions but have important cooperative interactions. Together, these results make predictions about the mechanism of DNA uptake across the outer membrane, supporting a model for the evolutionary accumulation and stability of uptake sequences and suggesting that uptake biases may be more widespread than currently thought.
Collapse
|
163
|
Karttunen J, Mäntynen S, Ihalainen TO, Lehtivuori H, Tkachenko NV, Vihinen-Ranta M, Ihalainen JA, Bamford JKH, Oksanen HM. Subcellular localization of bacteriophage PRD1 proteins in Escherichia coli. Virus Res 2014; 179:44-52. [PMID: 24291253 DOI: 10.1016/j.virusres.2013.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 11/19/2022]
Abstract
Bacteria possess an intricate internal organization resembling that of the eukaryotes. The complexity is especially prominent at the bacterial cell poles, which are also known to be the preferable sites for some bacteriophages to infect. Bacteriophage PRD1 is a well-known model serving as an ideal system to study structures and functions of icosahedral internal membrane-containing viruses. Our aim was to analyze the localization and interactions of individual PRD1 proteins in its native host Escherichia coli. This was accomplished by constructing a vector library for production of fluorescent fusion proteins. Analysis of solubility and multimericity of the fusion proteins, as well as their localization in living cells by confocal microscopy, indicated that multimeric PRD1 proteins were prone to localize in the cell poles. Furthermore, PRD1 spike complex proteins P5 and P31, as fusion proteins, were shown to be functional in the virion assembly. In addition, they were shown to co-localize in the specific polar area of the cells, which might have a role in the multimerization and formation of viral protein complexes.
Collapse
Affiliation(s)
- Jenni Karttunen
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, 40014 University of Jyväskylä, Finland
| | - Sari Mäntynen
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, 40014 University of Jyväskylä, Finland
| | - Teemu O Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, P.O. Box 35, 40014 University of Jyväskylä, Finland
| | - Heli Lehtivuori
- Nanoscience Center, Department of Biological and Environmental Science, P.O. Box 35, 40014 University of Jyväskylä, Finland
| | - Nikolai V Tkachenko
- Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland
| | - Maija Vihinen-Ranta
- Nanoscience Center, Department of Biological and Environmental Science, P.O. Box 35, 40014 University of Jyväskylä, Finland
| | - Janne A Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, P.O. Box 35, 40014 University of Jyväskylä, Finland
| | - Jaana K H Bamford
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, 40014 University of Jyväskylä, Finland
| | - Hanna M Oksanen
- Institute of Biotechnology and Department of Biosciences, P.O. Box 56, 00014 University of Helsinki, Finland.
| |
Collapse
|
164
|
Nielsen KM, Bøhn T, Townsend JP. Detecting rare gene transfer events in bacterial populations. Front Microbiol 2014; 4:415. [PMID: 24432015 PMCID: PMC3882822 DOI: 10.3389/fmicb.2013.00415] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/16/2013] [Indexed: 11/23/2022] Open
Abstract
Horizontal gene transfer (HGT) enables bacteria to access, share, and recombine genetic variation, resulting in genetic diversity that cannot be obtained through mutational processes alone. In most cases, the observation of evolutionary successful HGT events relies on the outcome of initially rare events that lead to novel functions in the new host, and that exhibit a positive effect on host fitness. Conversely, the large majority of HGT events occurring in bacterial populations will go undetected due to lack of replication success of transformants. Moreover, other HGT events that would be highly beneficial to new hosts can fail to ensue due to lack of physical proximity to the donor organism, lack of a suitable gene transfer mechanism, genetic compatibility, and stochasticity in tempo-spatial occurrence. Experimental attempts to detect HGT events in bacterial populations have typically focused on the transformed cells or their immediate offspring. However, rare HGT events occurring in large and structured populations are unlikely to reach relative population sizes that will allow their immediate identification; the exception being the unusually strong positive selection conferred by antibiotics. Most HGT events are not expected to alter the likelihood of host survival to such an extreme extent, and will confer only minor changes in host fitness. Due to the large population sizes of bacteria and the time scales involved, the process and outcome of HGT are often not amenable to experimental investigation. Population genetic modeling of the growth dynamics of bacteria with differing HGT rates and resulting fitness changes is therefore necessary to guide sampling design and predict realistic time frames for detection of HGT, as it occurs in laboratory or natural settings. Here we review the key population genetic parameters, consider their complexity and highlight knowledge gaps for further research.
Collapse
Affiliation(s)
- Kaare M Nielsen
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø Tromsø, Norway ; GenØk-Centre for Biosafety, The Science Park Tromsø, Norway
| | - Thomas Bøhn
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø Tromsø, Norway ; GenØk-Centre for Biosafety, The Science Park Tromsø, Norway
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale University New Haven, CT, USA ; Program in Computational Biology and Bioinformatics, Yale University New Haven, CT, USA ; Program in Microbiology, Yale University New Haven, CT, USA
| |
Collapse
|
165
|
Seitz P, Pezeshgi Modarres H, Borgeaud S, Bulushev RD, Steinbock LJ, Radenovic A, Dal Peraro M, Blokesch M. ComEA is essential for the transfer of external DNA into the periplasm in naturally transformable Vibrio cholerae cells. PLoS Genet 2014; 10:e1004066. [PMID: 24391524 PMCID: PMC3879209 DOI: 10.1371/journal.pgen.1004066] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/12/2013] [Indexed: 11/18/2022] Open
Abstract
The DNA uptake of naturally competent bacteria has been attributed to the action of DNA uptake machineries resembling type IV pilus complexes. However, the protein(s) for pulling the DNA across the outer membrane of Gram-negative bacteria remain speculative. Here we show that the competence protein ComEA binds incoming DNA in the periplasm of naturally competent Vibrio cholerae cells thereby promoting DNA uptake, possibly through ratcheting and entropic forces associated with ComEA binding. Using comparative modeling and molecular simulations, we projected the 3D structure and DNA-binding site of ComEA. These in silico predictions, combined with in vivo and in vitro validations of wild-type and site-directed modified variants of ComEA, suggested that ComEA is not solely a DNA receptor protein but plays a direct role in the DNA uptake process. Furthermore, we uncovered that ComEA homologs of other bacteria (both Gram-positive and Gram-negative) efficiently compensated for the absence of ComEA in V. cholerae, suggesting that the contribution of ComEA in the DNA uptake process might be conserved among naturally competent bacteria. Horizontal gene transfer (HGT) plays a key role in transferring genetic information from one organism to another. Natural competence for transformation is one of three modes of HGT used by bacteria to promote the uptake of free DNA from the surrounding. The human pathogen Vibrio cholerae enters such a competence state upon growth on chitinous surfaces, which represent its natural niche in the aquatic environment. Whereas we have gained a reasonable understanding on how the competence phenotype is regulated in V. cholerae we are only at the beginning of deciphering the mechanistic aspects of the DNA uptake process. In this study, we characterize the competence protein ComEA. We show that ComEA is transported into the periplasm of V. cholerae and that it is required for the uptake of DNA across the outer membrane. We demonstrate that ComEA aggregates around incoming DNA in vivo and that the binding of DNA is dependent on specific residues within a conserved helix-hairpin-helix motif. We propose a model indicating that the DNA uptake process across the outer membrane might be driven through ratcheting and entropic forces associated with ComEA binding.
Collapse
Affiliation(s)
- Patrick Seitz
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hassan Pezeshgi Modarres
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Sandrine Borgeaud
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Roman D. Bulushev
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lorenz J. Steinbock
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
166
|
Paparoditis P, Vastermark A, Le AJ, Fuerst JA, Saier MH. Bioinformatic analyses of integral membrane transport proteins encoded within the genome of the planctomycetes species, Rhodopirellula baltica. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:193-215. [PMID: 23969110 PMCID: PMC3905805 DOI: 10.1016/j.bbamem.2013.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 02/04/2023]
Abstract
Rhodopirellula baltica (R. baltica) is a Planctomycete, known to have intracellular membranes. Because of its unusual cell structure and ecological significance, we have conducted comprehensive analyses of its transmembrane transport proteins. The complete proteome of R. baltica was screened against the Transporter Classification Database (TCDB) to identify recognizable integral membrane transport proteins. 342 proteins were identified with a high degree of confidence, and these fell into several different classes. R. baltica encodes in its genome channels (12%), secondary carriers (33%), and primary active transport proteins (41%) in addition to classes represented in smaller numbers. Relative to most non-marine bacteria, R. baltica possesses a larger number of sodium-dependent symporters but fewer proton-dependent symporters, and it has dimethylsulfoxide (DMSO) and trimethyl-amine-oxide (TMAO) reductases, consistent with its Na(+)-rich marine environment. R. baltica also possesses a Na(+)-translocating NADH:quinone dehydrogenase (Na(+)-NDH), a Na(+) efflux decarboxylase, two Na(+)-exporting ABC pumps, two Na(+)-translocating F-type ATPases, two Na(+):H(+) antiporters and two K(+):H(+) antiporters. Flagellar motility probably depends on the sodium electrochemical gradient. Surprisingly, R. baltica also has a complete set of H(+)-translocating electron transport complexes similar to those present in α-proteobacteria and eukaryotic mitochondria. The transport proteins identified proved to be typical of the bacterial domain with little or no indication of the presence of eukaryotic-type transporters. However, novel functionally uncharacterized multispanning membrane proteins were identified, some of which are found only in Rhodopirellula species, but others of which are widely distributed in bacteria. The analyses lead to predictions regarding the physiology, ecology and evolution of R. baltica.
Collapse
Affiliation(s)
- Philipp Paparoditis
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Ake Vastermark
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Andrew J. Le
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - John A. Fuerst
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| |
Collapse
|
167
|
Abstract
The agents of human treponematoses include four closely related members of the genus Treponema: three subspecies of Treponema pallidum plus Treponema carateum. T. pallidum subsp. pallidum causes venereal syphilis, while T. pallidum subsp. pertenue, T. pallidum subsp. endemicum, and T. carateum are the agents of the endemic treponematoses yaws, bejel (or endemic syphilis), and pinta, respectively. All human treponematoses share remarkable similarities in pathogenesis and clinical manifestations, consistent with the high genetic and antigenic relatedness of their etiological agents. Distinctive features have been identified in terms of age of acquisition, most common mode of transmission, and capacity for invasion of the central nervous system and fetus, although the accuracy of these purported differences is debated among investigators and no biological basis for these differences has been identified to date. In 2012, the World Health Organization (WHO) officially set a goal for yaws eradication by 2020. This challenging but potentially feasible endeavor is favored by the adoption of oral azithromycin for mass treatment and the currently focused distribution of yaws and endemic treponematoses and has revived global interest in these fascinating diseases and their causative agents.
Collapse
Affiliation(s)
- Lorenzo Giacani
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sheila A. Lukehart
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
168
|
Wang W, Ding J, Zhang Y, Hu Y, Wang DC. Structural insights into the unique single-stranded DNA-binding mode of Helicobacter pylori DprA. Nucleic Acids Res 2013; 42:3478-91. [PMID: 24369431 PMCID: PMC3950713 DOI: 10.1093/nar/gkt1334] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Natural transformation (NT) in bacteria is a complex process, including binding, uptake, transport and recombination of exogenous DNA into the chromosome, consequently generating genetic diversity and driving evolution. DNA processing protein A (DprA), which is distributed among virtually all bacterial species, is involved in binding to the internalized single-stranded DNA (ssDNA) and promoting the loading of RecA on ssDNA during NTs. Here we present the structures of DNA_processg_A (DprA) domain of the Helicobacter pylori DprA (HpDprA) and its complex with an ssDNA at 2.20 and 1.80 Å resolutions, respectively. The complex structure revealed for the first time how the conserved DprA domain binds to ssDNA. Based on structural comparisons and binding assays, a unique ssDNA-binding mode is proposed: the dimer of HpDprA binds to ssDNA through two small, positively charged binding pockets of the DprA domains with classical Rossmann folds and the key residue Arg52 is re-oriented to ‘open’ the pocket in order to accommodate one of the bases of ssDNA, thus enabling HpDprA to grasp substrate with high affinity. This mode is consistent with the oligomeric composition of the complex as shown by electrophoretic mobility-shift assays and static light scattering measurements, but differs from the direct polymeric complex of Streptococcus pneumoniae DprA–ssDNA.
Collapse
Affiliation(s)
- Wei Wang
- The National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | | | | | | | | |
Collapse
|
169
|
Radeck J, Kraft K, Bartels J, Cikovic T, Dürr F, Emenegger J, Kelterborn S, Sauer C, Fritz G, Gebhard S, Mascher T. The Bacillus BioBrick Box: generation and evaluation of essential genetic building blocks for standardized work with Bacillus subtilis. J Biol Eng 2013; 7:29. [PMID: 24295448 PMCID: PMC4177231 DOI: 10.1186/1754-1611-7-29] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/12/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Standardized and well-characterized genetic building blocks are a prerequisite for the convenient and reproducible assembly of novel genetic modules and devices. While numerous standardized parts exist for Escherichia coli, such tools are still missing for the Gram-positive model organism Bacillus subtilis. The goal of this study was to develop and thoroughly evaluate such a genetic toolbox. RESULTS We developed five BioBrick-compatible integrative B. subtilis vectors by deleting unnecessary parts and removing forbidden restriction sites to allow cloning in BioBrick (RFC10) standard. Three empty backbone vectors with compatible resistance markers and integration sites were generated, allowing the stable chromosomal integration and combination of up to three different devices in one strain. In addition, two integrative reporter vectors, based on the lacZ and luxABCDE cassettes, were BioBrick-adjusted, to enable β-galactosidase and luciferase reporter assays, respectively. Four constitutive and two inducible promoters were thoroughly characterized by quantitative, time-resolved measurements. Together, these promoters cover a range of more than three orders of magnitude in promoter strength, thereby allowing a fine-tuned adjustment of cellular protein amounts. Finally, the Bacillus BioBrick Box also provides five widely used epitope tags (FLAG, His10, cMyc, HA, StrepII), which can be translationally fused N- or C-terminally to any protein of choice. CONCLUSION Our genetic toolbox contains three compatible empty integration vectors, two reporter vectors and a set of six promoters, two of them inducible. Furthermore, five different epitope tags offer convenient protein handling and detection. All parts adhere to the BioBrick standard and hence enable standardized work with B. subtilis. We believe that our well-documented and carefully evaluated Bacillus BioBrick Box represents a very useful genetic tool kit, not only for the iGEM competition but any other BioBrick-based project in B. subtilis.
Collapse
Affiliation(s)
- Jara Radeck
- Department Biology I, AG Synthetic Microbiology, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Korinna Kraft
- Department Biology I, AG Synthetic Microbiology, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Julia Bartels
- Department Biology I, AG Synthetic Microbiology, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Tamara Cikovic
- Department Biology I, AG Synthetic Microbiology, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Franziska Dürr
- Department Biology I, AG Synthetic Microbiology, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Jennifer Emenegger
- Department Biology I, AG Synthetic Microbiology, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Simon Kelterborn
- Department Biology I, AG Synthetic Microbiology, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Christopher Sauer
- Department Biology I, AG Synthetic Microbiology, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany.,Present affiliation: Institute of Cell and Molecular Biosciences, Newcastle University, Centre for Bacterial Cell Biology, Richardson Road, NE2 4AX Newcastle upon Tyne, UK
| | - Georg Fritz
- Department Biology I, AG Synthetic Microbiology, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany.,Ludwig-Maximilians-University Munich, Arnold Sommerfeld Center for Theoretical Physics, Theresienstr. 37, D-80333 München, Germany
| | - Susanne Gebhard
- Department Biology I, AG Synthetic Microbiology, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Thorsten Mascher
- Department Biology I, AG Synthetic Microbiology, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
170
|
Abstract
Natural competence for transformation is a mode of horizontal gene transfer that is commonly used by bacteria to take up DNA from their environment. As part of this developmental program, so-called competence genes, which encode the components of a DNA-uptake machinery, are expressed. Several models have been proposed for the DNA-uptake complexes of competent bacteria, and most include a type IV (pseudo)pilus as a core component. However, cell-biology-based approaches to visualizing competence proteins have so far been restricted to Gram-positive bacteria. Here, we report the visualization of a competence-induced pilus in the Gram-negative bacterium Vibrio cholerae. We show that piliated cells mostly contain a single pilus that is not biased toward a polar localization and that this pilus colocalizes with the outer membrane secretin PilQ. PilQ, on the other hand, forms several foci around the cell and occasionally colocalizes with the dynamic cytoplasmic-traffic ATPase PilB, which is required for pilus extension. We also determined the minimum competence regulon of V. cholerae, which includes at least 19 genes. Bacteria with mutations in those genes were characterized with respect to the presence of surface-exposed pili, DNA uptake, and natural transformability. Based on these phenotypes, we propose that DNA uptake in naturally competent V. cholerae cells occurs in at least two steps: a pilus-dependent translocation of the incoming DNA across the outer membrane and a pilus-independent shuttling of the DNA through the periplasm and into the cytoplasm.
Collapse
|
171
|
Zhang PY, Xu PP, Xia ZJ, Wang J, Xiong J, Li YZ. Combined treatment with the antibiotics kanamycin and streptomycin promotes the conjugation of Escherichia coli. FEMS Microbiol Lett 2013; 348:149-56. [PMID: 24111668 DOI: 10.1111/1574-6968.12282] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/06/2013] [Accepted: 09/17/2013] [Indexed: 12/19/2022] Open
Abstract
It is widely accepted that antibiotics provide a critical selective pressure for the horizontal transfer of antibiotic resistance between bacterial species. This study demonstrated that a combination of low doses of kanamycin and streptomycin, which inhibited the growth of recipient and donor cells, respectively, had positive effects on the transmission of the conjugation plasmids pRK2013, pSU2007, and RP4 from Escherichia coli DH5α to HB101 at their minimum inhibitory concentrations (MICs). Administration of either antibiotic alone as well as other antibiotics in combination or alone did not have this effect. Two-dimensional electrophoresis revealed that 60 proteins were downregulated and 14 proteins were upregulated in the conjugation of E. coli DH5α (pRK2013) and HB101 in the presence of kanamycin and streptomycin. Of these proteins, 64 were subsequently identified by mass spectrometry. Two antibiotic-induced genes encoding oligopeptide-binding protein (OppA) and ribose-binding protein (RbsB) were further confirmed by quantitative real-time PCR. When these genes were deleted, the number of transconjugants decreased in the same fashion as when the cells were treated with kanamycin and streptomycin. These results indicate that the process of E. coli conjugation may be promoted by combination treatment with kanamycin and streptomycin and that two proteins potentially participated in this process.
Collapse
Affiliation(s)
- Peng-Yi Zhang
- State Key Laboratory of Microbial Technology, school of Life Science, Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
172
|
Bergé MJ, Kamgoué A, Martin B, Polard P, Campo N, Claverys JP. Midcell recruitment of the DNA uptake and virulence nuclease, EndA, for pneumococcal transformation. PLoS Pathog 2013; 9:e1003596. [PMID: 24039578 PMCID: PMC3764208 DOI: 10.1371/journal.ppat.1003596] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/19/2013] [Indexed: 12/02/2022] Open
Abstract
Genetic transformation, in which cells internalize exogenous DNA and integrate it into their chromosome, is widespread in the bacterial kingdom. It involves a specialized membrane-associated machinery for binding double-stranded (ds) DNA and uptake of single-stranded (ss) fragments. In the human pathogen Streptococcus pneumoniae, this machinery is specifically assembled at competence. The EndA nuclease, a constitutively expressed virulence factor, is recruited during competence to play the key role of converting dsDNA into ssDNA for uptake. Here we use fluorescence microscopy to show that EndA is uniformly distributed in the membrane of noncompetent cells and relocalizes at midcell during competence. This recruitment requires the dsDNA receptor ComEA. We also show that under ‘static’ binding conditions, i.e., in cells impaired for uptake, EndA and ComEA colocalize at midcell, together with fluorescent end-labelled dsDNA (Cy3-dsDNA). We conclude that midcell clustering of EndA reflects its recruitment to the DNA uptake machinery rather than its sequestration away from this machinery to protect transforming DNA from extensive degradation. In contrast, a fraction of ComEA molecules were located at cell poles post-competence, suggesting the pole as the site of degradation of the dsDNA receptor. In uptake-proficient cells, we used Cy3-dsDNA molecules enabling expression of a GFP fusion upon chromosomal integration to identify transformed cells as GFP producers 60–70 min after initial contact between DNA and competent cells. Recording of images since initial cell-DNA contact allowed us to look back to the uptake period for these transformed cells. Cy3-DNA foci were thus detected at the cell surface 10–11 min post-initial contact, all exclusively found at midcell, strongly suggesting that active uptake of transforming DNA takes place at this position in pneumococci. We discuss how midcell uptake could influence homology search, and the likelihood that midcell uptake is characteristic of cocci and/or the growth phase-dependency of competence. Natural genetic transformation, a programmed mechanism for horizontal gene transfer, permits the passage of environmental double-stranded (ds) DNA through the bacterial membrane and its subsequent integration into the recipient chromosome by homology. In the human pathogen Streptococcus pneumoniae, it requires development of a physiological state termed competence, which develops transiently in nearly all cells of an exponentially growing culture. Expression of a specific set of genes then allows assembly of a large membrane-associated machinery for binding exogenous dsDNA and internalizing single-stranded (ss) DNA fragments. The key role of converting dsDNA into ssDNA is fulfilled by EndA, a membrane-located endonuclease which is also a pneumococcal virulence factor pre-existing in noncompetent cells. Here, we report that EndA is uniformly distributed in the membrane of noncompetent cells and relocates into clusters during competence. We show that this relocalization is dependent upon the dsDNA-receptor ComEA and that ComEA and EndA are preferentially located at midcell in cultures exhibiting maximal transformation proficiency. Finally, using fluorescence microscopy, we visualize the transformation process in living cells providing evidence that DNA binding and presumably uptake occur at midcell.
Collapse
Affiliation(s)
- Matthieu J. Bergé
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Alain Kamgoué
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
- Centre National de la Recherche Scientifique, LBME-UMR5099, Toulouse, France
| | - Bernard Martin
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Patrice Polard
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Nathalie Campo
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
- * E-mail: (NC); (JPC)
| | - Jean-Pierre Claverys
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
- * E-mail: (NC); (JPC)
| |
Collapse
|
173
|
Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell 2013; 50:488-503. [PMID: 23706818 DOI: 10.1016/j.molcel.2013.05.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/11/2013] [Accepted: 04/29/2013] [Indexed: 12/26/2022]
Abstract
CRISPR interference confers adaptive, sequence-based immunity against viruses and plasmids and is specified by CRISPR RNAs (crRNAs) that are transcribed and processed from spacer-repeat units. Pre-crRNA processing is essential for CRISPR interference in all systems studied thus far. Here, our studies of crRNA biogenesis and CRISPR interference in naturally competent Neisseria spp. reveal a unique crRNA maturation pathway in which crRNAs are transcribed from promoters that are embedded within each repeat, yielding crRNA 5' ends formed by transcription and not by processing. Although crRNA 3' end formation involves RNase III and trans-encoded tracrRNA, as in other type II CRISPR systems, this processing is dispensable for interference. The meningococcal pathway is the most streamlined CRISPR/Cas system characterized to date. Endogenous CRISPR spacers limit natural transformation, which is the primary source of genetic variation that contributes to immune evasion, antibiotic resistance, and virulence in the human pathogen N. meningitidis.
Collapse
|
174
|
Sun Y, Bernardy EE, Hammer BK, Miyashiro T. Competence and natural transformation in vibrios. Mol Microbiol 2013; 89:583-95. [PMID: 23803158 DOI: 10.1111/mmi.12307] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2013] [Indexed: 01/01/2023]
Abstract
Natural transformation is a major mechanism of horizontal gene transfer in bacteria. By incorporating exogenous DNA elements into chromosomes, bacteria are able to acquire new traits that can enhance their fitness in different environments. Within the past decade, numerous studies have revealed that natural transformation is prevalent among members of the Vibrionaceae, including the pathogen Vibrio cholerae. Four environmental factors: (i) nutrient limitation, (ii) availability of extracellular nucleosides, (iii) high cell density and (iv) the presence of chitin, promote genetic competence and natural transformation in Vibrio cholerae by co-ordinating expression of the regulators CRP, CytR, HapR and TfoX respectively. Studies of other Vibrionaceae members highlight the general importance of natural transformation within this bacterial family.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biochemistry and Molecular Biology Eberly College of Science The Pennsylvania State University 219 Wartik Lab University Park, PA 16802, USA
| | - Eryn E Bernardy
- School of Biology Georgia Institute of Technology 310 Ferst Drive, Atlanta, GA 30332-0230
| | - Brian K Hammer
- School of Biology Georgia Institute of Technology 310 Ferst Drive, Atlanta, GA 30332-0230
| | - Tim Miyashiro
- Department of Biochemistry and Molecular Biology Eberly College of Science The Pennsylvania State University 219 Wartik Lab University Park, PA 16802, USA
| |
Collapse
|
175
|
Antimicrobial resistance in the food chain: a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:2643-69. [PMID: 23812024 PMCID: PMC3734448 DOI: 10.3390/ijerph10072643] [Citation(s) in RCA: 348] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 11/17/2022]
Abstract
Antimicrobial resistant zoonotic pathogens present on food constitute a direct risk to public health. Antimicrobial resistance genes in commensal or pathogenic strains form an indirect risk to public health, as they increase the gene pool from which pathogenic bacteria can pick up resistance traits. Food can be contaminated with antimicrobial resistant bacteria and/or antimicrobial resistance genes in several ways. A first way is the presence of antibiotic resistant bacteria on food selected by the use of antibiotics during agricultural production. A second route is the possible presence of resistance genes in bacteria that are intentionally added during the processing of food (starter cultures, probiotics, bioconserving microorganisms and bacteriophages). A last way is through cross-contamination with antimicrobial resistant bacteria during food processing. Raw food products can be consumed without having undergone prior processing or preservation and therefore hold a substantial risk for transfer of antimicrobial resistance to humans, as the eventually present resistant bacteria are not killed. As a consequence, transfer of antimicrobial resistance genes between bacteria after ingestion by humans may occur. Under minimal processing or preservation treatment conditions, sublethally damaged or stressed cells can be maintained in the food, inducing antimicrobial resistance build-up and enhancing the risk of resistance transfer. Food processes that kill bacteria in food products, decrease the risk of transmission of antimicrobial resistance.
Collapse
|
176
|
Yadav T, Carrasco B, Hejna J, Suzuki Y, Takeyasu K, Alonso JC. Bacillus subtilis DprA recruits RecA onto single-stranded DNA and mediates annealing of complementary strands coated by SsbB and SsbA. J Biol Chem 2013; 288:22437-50. [PMID: 23779106 DOI: 10.1074/jbc.m113.478347] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Naturally transformable bacteria recombine internalized ssDNA with a homologous resident duplex (chromosomal transformation) or complementary internalized ssDNAs (plasmid or viral transformation). Bacillus subtilis competence-induced DprA, RecA, SsbB, and SsbA proteins are involved in the early processing of the internalized ssDNA, with DprA physically interacting with RecA. SsbB and SsbA bind and melt secondary structures in ssDNA but limit RecA loading onto ssDNA. DprA binds to ssDNA and facilitates partial dislodging of both single-stranded binding (SSB) proteins from ssDNA. In the absence of homologous duplex DNA, DprA does not significantly increase RecA nucleation onto protein-free ssDNA. DprA facilitates RecA nucleation and filament extension onto SsbB-coated or SsbB plus SsbA-coated ssDNA. DprA facilitates RecA-mediated DNA strand exchange in the presence of both SSB proteins. DprA, which plays a crucial role in plasmid transformation, anneals complementary strands preferentially coated by SsbB to form duplex circular plasmid molecules. Our results provide a mechanistic framework for conceptualizing the coordinated events modulated by SsbB in concert with SsbA and DprA that are crucial for RecA-dependent chromosomal transformation and RecA-independent plasmid transformation.
Collapse
Affiliation(s)
- Tribhuwan Yadav
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
177
|
Perry JA, Wright GD. The antibiotic resistance "mobilome": searching for the link between environment and clinic. Front Microbiol 2013; 4:138. [PMID: 23755047 PMCID: PMC3667243 DOI: 10.3389/fmicb.2013.00138] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/10/2013] [Indexed: 01/30/2023] Open
Abstract
Antibiotic resistance is an ancient problem, owing to the co-evolution of antibiotic-producing and target organisms in the soil and other environments over millennia. The environmental “resistome” is the collection of all genes that directly or indirectly contribute to antibiotic resistance. Many of these resistance determinants originate in antibiotic-producing organisms (where they serve to mediate self-immunity), while others become resistance determinants only when mobilized and over-expressed in non-native hosts (like plasmid-encoded β-lactamases). The modern environmental resistome is under selective pressure from human activities such as agriculture, which may influence the composition of the local resistome and lead to gene transfer events. Beyond the environment, we are challenged in the clinic by the rise in both frequency and diversity of antibiotic resistant pathogens. We assume that clinical resistance originated in the environment, but few examples of direct gene exchange between the environmental resistome and the clinical resistome have been documented. Strong evidence exists to suggest that clinical aminoglycoside and vancomycin resistance enzymes, the extended-spectrum β-lactamase CTX-M and the quinolone resistance gene qnr have direct links to the environmental resistome. In this review, we highlight recent advances in our understanding of horizontal gene transfer of antibiotic resistance genes from the environment to the clinic. Improvements in sequencing technologies coupled with functional metagenomic studies have revealed previously underappreciated diversity in the environmental resistome, and also established novel genetic links to the clinic. Understanding mechanisms of gene exchange becomes vital in controlling the future dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Julie A Perry
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University Hamilton, ON, Canada ; Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton, ON, Canada
| | | |
Collapse
|
178
|
Kotnik T. Lightning-triggered electroporation and electrofusion as possible contributors to natural horizontal gene transfer. Phys Life Rev 2013; 10:351-70. [PMID: 23787374 DOI: 10.1016/j.plrev.2013.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/06/2013] [Indexed: 12/29/2022]
Abstract
Phylogenetic studies show that horizontal gene transfer (HGT) is a significant contributor to genetic variability of prokaryotes, and was perhaps even more abundant during the early evolution. Hitherto, research of natural HGT has mainly focused on three mechanisms of DNA transfer: conjugation, natural competence, and viral transduction. This paper discusses the feasibility of a fourth such mechanism--cell electroporation and/or electrofusion triggered by atmospheric electrostatic discharges (lightnings). A description of electroporation as a phenomenon is followed by a review of experimental evidence that electroporation of prokaryotes in aqueous environments can result in release of non-denatured DNA, as well as uptake of DNA from the surroundings and transformation. Similarly, a description of electrofusion is followed by a review of experiments showing that prokaryotes devoid of cell wall can electrofuse into hybrids expressing the genes of their both precursors. Under sufficiently fine-tuned conditions, electroporation and electrofusion are efficient tools for artificial transformation and hybridization, respectively, but the quantitative analysis developed here shows that conditions for electroporation-based DNA release, DNA uptake and transformation, as well as for electrofusion are also present in many natural aqueous environments exposed to lightnings. Electroporation is thus a plausible contributor to natural HGT among prokaryotes, and could have been particularly important during the early evolution, when the other mechanisms might have been scarcer or nonexistent. In modern prokaryotes, natural absence of the cell wall is rare, but it is reasonable to assume that the wall has formed during a certain stage of evolution, and at least prior to this, electrofusion could also have contributed to natural HGT. The concluding section outlines several guidelines for assessment of the feasibility of lightning-triggered HGT.
Collapse
Affiliation(s)
- Tadej Kotnik
- Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
179
|
Iwata T, Kaneko S, Shiwa Y, Enomoto T, Yoshikawa H, Hirota J. Bacillus subtilis genome vector-based complete manipulation and reconstruction of genomic DNA for mouse transgenesis. BMC Genomics 2013; 14:300. [PMID: 23642015 PMCID: PMC3648488 DOI: 10.1186/1471-2164-14-300] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/01/2013] [Indexed: 12/02/2022] Open
Abstract
Background The Bacillus subtilis genome (BGM) vector is a novel cloning system for large DNA fragments, in which the entire 4.2 Mb genome of B. subtilis functions as a vector. The BGM vector system has several attractive properties, such as a large cloning capacity of over 3 Mb, stable propagation of cloned DNA and various modification strategies using RecA-mediated homologous recombination. However, genetic modifications using the BGM vector system have not been fully established, and this system has not been applied to transgenesis. In this study, we developed important additions to the genetic modification methods of the BGM vector system. To explore the potential of the BGM vector, we focused on the fish-like odorant receptor (class I OR) gene family, which consists of 158 genes and forms a single gene cluster. Although a cis-acting locus control region is expected to regulate transcription, this has not yet been determined experimentally. Results Using two contiguous bacterial artificial chromosome clones containing several class I OR genes, we constructed two transgenes in the BGM vector by inserting a reporter gene cassette into one class I OR gene. Because they were oriented in opposite directions, we performed an inversion modification to align their orientation and then fused them to enlarge the genomic structure. DNA sequencing revealed that no mutations occurred during gene manipulations with the BGM vector. We further demonstrated that the modified, reconstructed genomic DNA fragments could be used to generate transgenic mice. Transgenic mice carrying the enlarged transgene recapitulated the expression and axonal projection patterns of the target class I OR gene in the main olfactory system. Conclusion We offer a complete genetic modification method for the BGM vector system, including insertion, deletion, inversion and fusion, to engineer genomic DNA fragments without any trace of modifications. In addition, we demonstrate that this system can be used for mouse transgenesis. Thus, the BGM vector system can be an alternative platform for engineering large DNA fragments in addition to conventional systems such as bacterial and yeast artificial chromosomes. Using this system, we provide the first experimental evidence of a cis-acting element for a class I OR gene.
Collapse
|
180
|
Thoma L, Muth G. Conjugative DNA transfer in Streptomyces by TraB: is one protein enough? FEMS Microbiol Lett 2013; 337:81-8. [PMID: 23082971 DOI: 10.1111/1574-6968.12031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 11/28/2022] Open
Abstract
Antibiotic-producing soil bacteria of the genus Streptomyces form a huge natural reservoir of antibiotic resistance genes for the dissemination within the soil community. Streptomyces plasmids encode a unique conjugative DNA transfer system clearly distinguished from classical conjugation involving a single-stranded DNA molecule and a type IV protein secretion system. Only a single plasmid-encoded protein, TraB, is sufficient to translocate a double-stranded DNA molecule into the recipient in Streptomyces matings. TraB is a hexameric pore-forming ATPase that resembles the chromosome segregator protein FtsK and translocates DNA by recognizing specific 8-bp repeats present in the plasmid clt locus. Mobilization of chromosomal genes does not require integration of the plasmid, because TraB also recognizes clt-like sequences distributed all over the chromosome.
Collapse
Affiliation(s)
- Lina Thoma
- Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen IMIT, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | | |
Collapse
|
181
|
Kung SH, Retchless AC, Kwan JY, Almeida RPP. Effects of DNA size on transformation and recombination efficiencies in Xylella fastidiosa. Appl Environ Microbiol 2013; 79:1712-7. [PMID: 23315739 PMCID: PMC3591940 DOI: 10.1128/aem.03525-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/02/2013] [Indexed: 11/20/2022] Open
Abstract
Horizontally transferred DNA acquired through transformation and recombination has the potential to contribute to the diversity and evolution of naturally competent bacteria. However, many different factors affect the efficiency with which DNA can be transformed and recombined. In this study, we determined how the size of both homologous and nonhomologous regions affects transformation and recombination efficiencies in Xylella fastidiosa, a naturally competent generalist pathogen responsible for many emerging plant diseases. Our experimental data indicate that 96 bp of flanking homology is sufficient to initiate recombination, with recombination efficiencies increasing exponentially with the size of the homologous flanking region up to 1 kb. Recombination efficiencies also decreased with the size of the nonhomologous insert, with no recombination detected when 6 kb of nonhomologous DNA was flanked on either side by 1 kb of homologous sequences. Upon analyzing sequenced X. fastidiosa subsp. fastidiosa genomes for evidence of allele conversion, we estimated the mean size of recombination events to be 1,906 bp, with each event modifying, on average, 1.79% of the nucleotides in the recombined region. There is increasing evidence that horizontally acquired genes significantly affect the genetic diversity of X. fastidiosa, and DNA acquired through natural transformation could be a prominent mode of this horizontal transfer.
Collapse
Affiliation(s)
| | - Adam C. Retchless
- Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Jessica Y. Kwan
- Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Rodrigo P. P. Almeida
- Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| |
Collapse
|
182
|
Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev 2013; 77:53-72. [PMID: 23471617 PMCID: PMC3591985 DOI: 10.1128/mmbr.00044-12] [Citation(s) in RCA: 405] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Restriction-modification (R-M) systems are ubiquitous and are often considered primitive immune systems in bacteria. Their diversity and prevalence across the prokaryotic kingdom are an indication of their success as a defense mechanism against invading genomes. However, their cellular defense function does not adequately explain the basis for their immaculate specificity in sequence recognition and nonuniform distribution, ranging from none to too many, in diverse species. The present review deals with new developments which provide insights into the roles of these enzymes in other aspects of cellular function. In this review, emphasis is placed on novel hypotheses and various findings that have not yet been dealt with in a critical review. Emerging studies indicate their role in various cellular processes other than host defense, virulence, and even controlling the rate of evolution of the organism. We also discuss how R-M systems could have successfully evolved and be involved in additional cellular portfolios, thereby increasing the relative fitness of their hosts in the population.
Collapse
Affiliation(s)
- Kommireddy Vasu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
183
|
Could DNA uptake be a side effect of bacterial adhesion and twitching motility? Arch Microbiol 2013; 195:279-89. [PMID: 23381940 PMCID: PMC3597990 DOI: 10.1007/s00203-013-0870-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/11/2013] [Accepted: 01/12/2013] [Indexed: 12/11/2022]
Abstract
DNA acquisition promotes the spread of resistance to antibiotics and virulence among bacteria. It is also linked to several natural phenomena including recombination, genome dynamics, adaptation and speciation. Horizontal DNA transfer between bacteria occurs via conjugation, transduction or competence for natural transformation by DNA uptake. Among these, competence is the only mechanism of transformation initiated and entirely controlled by the chromosome of the recipient bacteria. While the molecular mechanisms allowing the uptake of extracellular DNA are increasingly characterized, the function of competence for natural transformation by DNA uptake, the selective advantage maintaining it and the reasons why bacteria take up DNA in the first place are still debated. In this synthesis, I review some of the literature and discuss the four hypotheses on how and why do bacteria take up DNA. I argue that DNA uptake by bacteria is an accidental by-product of bacterial adhesion and twitching motility. Adhesion and motility are generally increased in stressful conditions, which may explain why bacteria increase DNA uptake in these conditions. In addition to its fundamental scientific relevance, the new hypothesis suggested here has significant clinical implications and finds further support from the fact that antibiotics sometimes fail to eliminate the targeted bacterium while inevitably causing stress to others. The widespread misuse of antibiotics may thus not only be selecting for resistant strains, but may also be causing bacteria to take up more DNA with the consequent increase in the chances of acquiring drug resistance and virulence-a scenario in full concordance with the previously reported induction of competence genes by antibiotics in Streptococcus pneumoniae and Legionella pneumophila.
Collapse
|
184
|
Mebrhatu MT, Cenens W, Aertsen A. An overview of the domestication and impact of the Salmonella mobilome. Crit Rev Microbiol 2013; 40:63-75. [PMID: 23356413 DOI: 10.3109/1040841x.2012.755949] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Salmonella spp. are accountable for a large fraction of the global infectious disease burden, with most of their infections being food- or water-borne. The phenotypic features and adaptive potential of Salmonella spp. appear to be driven to a large extent by mobile or laterally acquired genetic elements. A better understanding of the conduct and diversification of these important pathogens consequently requires a more profound insight into the different mechanisms by which these pivotal elements establish themselves in the cell and affect its behavior. This review, therefore, provides an overview of the physiological impact and domestication of the Salmonella mobilome.
Collapse
Affiliation(s)
- Mehari Tesfazgi Mebrhatu
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven , Leuven , Belgium
| | | | | |
Collapse
|
185
|
Abstract
From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutagenesis. Such a balance is important for maintaining viability while providing an opportunity for the advantageous selection of mutations when faced with a changing environment. Over the last decade, studies of DNA repair pathways in bacteria have demonstrated considerable differences between Gram-positive and Gram-negative organisms. Here we review and discuss the DNA repair, genome maintenance, and DNA damage checkpoint pathways of the Gram-positive bacterium Bacillus subtilis. We present their molecular mechanisms and compare the functions and regulation of several pathways with known information on other organisms. We also discuss DNA repair during different growth phases and the developmental program of sporulation. In summary, we present a review of the function, regulation, and molecular mechanisms of DNA repair and mutagenesis in Gram-positive bacteria, with a strong emphasis on B. subtilis.
Collapse
|
186
|
Itaya M. Tools for Genome Synthesis. Synth Biol (Oxf) 2013. [DOI: 10.1016/b978-0-12-394430-6.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
187
|
Kidane D, Ayora S, Sweasy JB, Graumann PL, Alonso JC. The cell pole: the site of cross talk between the DNA uptake and genetic recombination machinery. Crit Rev Biochem Mol Biol 2012; 47:531-55. [PMID: 23046409 DOI: 10.3109/10409238.2012.729562] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Natural transformation is a programmed mechanism characterized by binding of free double-stranded (ds) DNA from the environment to the cell pole in rod-shaped bacteria. In Bacillus subtilis some competence proteins, which process the dsDNA and translocate single-stranded (ss) DNA into the cytosol, recruit a set of recombination proteins mainly to one of the cell poles. A subset of single-stranded binding proteins, working as "guardians", protects ssDNA from degradation and limit the RecA recombinase loading. Then, the "mediators" overcome the inhibitory role of guardians, and recruit RecA onto ssDNA. A RecA·ssDNA filament searches for homology on the chromosome and, in a process that is controlled by "modulators", catalyzes strand invasion with the generation of a displacement loop (D-loop). A D-loop resolvase or "resolver" cleaves this intermediate, limited DNA replication restores missing information and a DNA ligase seals the DNA ends. However, if any step fails, the "rescuers" will repair the broken end to rescue chromosomal transformation. If the ssDNA does not share homology with resident DNA, but it contains information for autonomous replication, guardian and mediator proteins catalyze plasmid establishment after inhibition of RecA. DNA replication and ligation reconstitute the molecule (plasmid transformation). In this review, the interacting network that leads to a cross talk between proteins of the uptake and genetic recombination machinery will be placed into prospective.
Collapse
Affiliation(s)
- Dawit Kidane
- Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
188
|
Guglielmini J, de la Cruz F, Rocha EPC. Evolution of conjugation and type IV secretion systems. Mol Biol Evol 2012; 30:315-31. [PMID: 22977114 PMCID: PMC3548315 DOI: 10.1093/molbev/mss221] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic exchange by conjugation is responsible for the spread of resistance, virulence,
and social traits among prokaryotes. Recent works unraveled the functioning of the
underlying type IV secretion systems (T4SS) and its distribution and recruitment for other
biological processes (exaptation), notably pathogenesis. We analyzed the phylogeny of key
conjugation proteins to infer the evolutionary history of conjugation and T4SS. We show
that single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) conjugation, while both
based on a key AAA+ ATPase, diverged before the last common ancestor of
bacteria. The two key ATPases of ssDNA conjugation are monophyletic, having diverged at an
early stage from dsDNA translocases. Our data suggest that ssDNA conjugation arose first
in diderm bacteria, possibly Proteobacteria, and then spread to other bacterial phyla,
including bacterial monoderms and Archaea. Identifiable T4SS fall within the eight
monophyletic groups, determined by both taxonomy and structure of the cell envelope.
Transfer to monoderms might have occurred only once, but followed diverse adaptive paths.
Remarkably, some Firmicutes developed a new conjugation system based on an atypical
relaxase and an ATPase derived from a dsDNA translocase. The observed evolutionary rates
and patterns of presence/absence of specific T4SS proteins show that conjugation systems
are often and independently exapted for other functions. This work brings a natural basis
for the classification of all kinds of conjugative systems, thus tackling a problem that
is growing as fast as genomic databases. Our analysis provides the first global picture of
the evolution of conjugation and shows how a self-transferrable complex multiprotein
system has adapted to different taxa and often been recruited by the host. As conjugation
systems became specific to certain clades and cell envelopes, they may have biased the
rate and direction of gene transfer by conjugation within prokaryotes.
Collapse
Affiliation(s)
- Julien Guglielmini
- Département Génomes et Génétique, Microbial Evolutionary Genomics, Institut Pasteur, Paris, France.
| | | | | |
Collapse
|
189
|
Sanguinetti L, Toti S, Reguzzi V, Bagnoli F, Donati C. A novel computational method identifies intra- and inter-species recombination events in Staphylococcus aureus and Streptococcus pneumoniae. PLoS Comput Biol 2012; 8:e1002668. [PMID: 22969418 PMCID: PMC3435249 DOI: 10.1371/journal.pcbi.1002668] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 07/15/2012] [Indexed: 11/30/2022] Open
Abstract
Advances in high-throughput DNA sequencing technologies have determined an explosion in the number of sequenced bacterial genomes. Comparative sequence analysis frequently reveals evidences of homologous recombination occurring with different mechanisms and rates in different species, but the large-scale use of computational methods to identify recombination events is hampered by their high computational costs. Here, we propose a new method to identify recombination events in large datasets of whole genome sequences. Using a filtering procedure of the gene conservation profiles of a test genome against a panel of strains, this algorithm identifies sets of contiguous genes acquired by homologous recombination. The locations of the recombination breakpoints are determined using a statistical test that is able to account for the differences in the natural rate of evolution between different genes. The algorithm was tested on a dataset of 75 genomes of Staphylococcus aureus and 50 genomes comprising different streptococcal species, and was able to detect intra-species recombination events in S. aureus and in Streptococcus pneumoniae. Furthermore, we found evidences of an inter-species exchange of genetic material between S. pneumoniae and Streptococcus mitis, a closely related commensal species that colonizes the same ecological niche. The method has been implemented in an R package, Reco, which is freely available from supplementary material, and provides a rapid screening tool to investigate recombination on a genome-wide scale from sequence data. The extent to which recombination occurs in natural populations is either unknown or controversial but it is widely accepted that recombination plays a crucial role in the evolution of many bacterial species. Numerous methods have been developed for the investigation of recombination events, but most of them require expensive computations and are applicable only to a limited number of genomes or to short nucleotide sequences. Here we present a new algorithm designed to identify recombination events affecting a group of adjacent genes. The procedure is based on the comparison of gene sequences and requires as input the matrix of gene conservation of a test genome against a group of reference genomes. The method is fast, and has minimal computational requirements. Therefore, it can be applied to datasets composed of a large number of complete genomes, and can be easily adapted to analyze data directly from high-throughput sequencing projects. We applied the algorithm to a dataset of S. aureus and streptococcal genomes and we found evidence of yet undetected inter and intra-species recombination events, suggesting that the use of Reco will shed new light on the evolution of bacterial species, and provide important information to improve classification criteria of bacterial species.
Collapse
Affiliation(s)
- Lisa Sanguinetti
- Novartis Vaccines and Diagnostics, Siena, Italy
- Dipartimento di Biologia Molecolare, Università degli Studi di Siena, Siena, Italy
| | - Simona Toti
- Istituto Nazionale di Statistica, Rome, Italy
| | | | | | - Claudio Donati
- Novartis Vaccines and Diagnostics, Siena, Italy
- * E-mail:
| |
Collapse
|
190
|
Sperm-mediated host-derived DNA transfer as a new mechanism for immune system evasion of sexually transmitted genital tract pathogens. Med Hypotheses 2012; 79:408-12. [PMID: 22795612 DOI: 10.1016/j.mehy.2012.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 05/08/2012] [Accepted: 06/10/2012] [Indexed: 12/15/2022]
Abstract
Over one century of extensive efforts directed towards investigating the immune response and the immuno-protection associated with sexually transmitted infections have failed to produce any effective vaccines against most of the major pathogens, among them Neisseria gonorrhea, herpes simplex virus type 2, and Chlamydia trachomatis. Attempts to design and develop protective vaccines against them have also yielded disappointing results. It has long been felt that there might be another yet undiscovered complicating factor, in addition to the recognized difficulties, which might be impeding the development of successful vaccines. Unlike the other body organs and systems, the genital tract and the elements found within it (e.g., spermatozoa) are endowed with unique features, some of which are associated with inherent DNA transferability skills as physiologically required from such an environment. We hypothesize that there is a novel evasion mechanism that involves an unusual sperm-mediated host-derived DNA transfer by which sexually transmitted genital tract microorganisms can express brand new chimeric antigens and epitopes and, by doing so, thus evade the surveillance of the immune system. This hypothesis may describe what would be the long-awaited breakthrough in the search for a vaccine against sexually transmitted infections. It may also assist in developing better-designed vaccines in general, and may have implications on other microorganism-related challenges (e.g., antibiotic resistance).
Collapse
|
191
|
Singh PK, Ramachandran G, Durán-Alcalde L, Alonso C, Wu LJ, Meijer WJJ. Inhibition of Bacillus subtilis natural competence by a native, conjugative plasmid-encoded comK repressor protein. Environ Microbiol 2012; 14:2812-25. [PMID: 22779408 DOI: 10.1111/j.1462-2920.2012.02819.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Under certain growth conditions, Bacillus subtilis can develop natural competence, the state in which it is able to bind, adsorb and incorporate exogenous DNA. Development of competence is a bistable process and is subject to complex regulation. Rok is a repressor of the key transcriptional activator of competence genes, comK, and limits the size of the subpopulation that develops competence. Here we report the finding that the large conjugative B. subtilis plasmid pLS20 harbours a rok homologue rok(LS20). Although the deduced product of rok(LS20) is considerably shorter than the chromosomally encoded Rok protein, we show that ectopic expression of the plasmid-encoded Rok(LS20) leads to inhibition of competence by repressing comK, and that the effects of the plasmid and chromosomally encoded Rok proteins are additive. We also show that pLS20 inhibits competence in a rok(LS20) -dependent manner and that purified Rok(LS20) preferentially binds to the comK promoter. By analysing the available databases we identified several additional rok-like genes. These putative rok genes can be divided into two groups and we propose that rok(LS20) is the prototype of a newly identified subgroup of nine rok genes. Finally, we discuss the possible role of the plasmid-located rok and its relatedness with other rok genes.
Collapse
Affiliation(s)
- Praveen K Singh
- Centro de Biología Molecular Severo Ochoa, Instituto de Biología Molecular Eladio Viñuela, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
192
|
Ambur OH, Frye SA, Nilsen M, Hovland E, Tønjum T. Restriction and sequence alterations affect DNA uptake sequence-dependent transformation in Neisseria meningitidis. PLoS One 2012; 7:e39742. [PMID: 22768309 PMCID: PMC3388099 DOI: 10.1371/journal.pone.0039742] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/26/2012] [Indexed: 12/17/2022] Open
Abstract
Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination.
Collapse
|
193
|
Yadav T, Carrasco B, Myers AR, George NP, Keck JL, Alonso JC. Genetic recombination in Bacillus subtilis: a division of labor between two single-strand DNA-binding proteins. Nucleic Acids Res 2012; 40:5546-59. [PMID: 22373918 PMCID: PMC3384303 DOI: 10.1093/nar/gks173] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 11/13/2022] Open
Abstract
We have investigated the structural, biochemical and cellular roles of the two single-stranded (ss) DNA-binding proteins from Bacillus subtilis, SsbA and SsbB. During transformation, SsbB localizes at the DNA entry pole where it binds and protects internalized ssDNA. The 2.8-Å resolution structure of SsbB bound to ssDNA reveals a similar overall protein architecture and ssDNA-binding surface to that of Escherichia coli SSB. SsbA, which binds ssDNA with higher affinity than SsbB, co-assembles onto SsbB-coated ssDNA and the two proteins inhibit ssDNA binding by the recombinase RecA. During chromosomal transformation, the RecA mediators RecO and DprA provide RecA access to ssDNA. Interestingly, RecO interaction with ssDNA-bound SsbA helps to dislodge both SsbA and SsbB from the DNA more efficiently than if the DNA is coated only with SsbA. Once RecA is nucleated onto the ssDNA, RecA filament elongation displaces SsbA and SsbB and enables RecA-mediated DNA strand exchange. During plasmid transformation, RecO localizes to the entry pole and catalyzes annealing of SsbA- or SsbA/SsbB-coated complementary ssDNAs to form duplex DNA with ssDNA tails. Our results provide a mechanistic framework for rationalizing the coordinated events modulated by SsbA, SsbB and RecO that are crucial for RecA-dependent chromosomal transformation and RecA-independent plasmid transformation.
Collapse
Affiliation(s)
- Tribhuwan Yadav
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain and Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1532, USA
| | - Begoña Carrasco
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain and Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1532, USA
| | - Angela R. Myers
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain and Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1532, USA
| | - Nicholas P. George
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain and Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1532, USA
| | - James L. Keck
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain and Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1532, USA
| | - Juan C. Alonso
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain and Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1532, USA
| |
Collapse
|
194
|
Croucher NJ, Harris SR, Barquist L, Parkhill J, Bentley SD. A high-resolution view of genome-wide pneumococcal transformation. PLoS Pathog 2012; 8:e1002745. [PMID: 22719250 PMCID: PMC3375284 DOI: 10.1371/journal.ppat.1002745] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/27/2012] [Indexed: 01/03/2023] Open
Abstract
Transformation is an important mechanism of microbial evolution through which bacteria have been observed to rapidly adapt in response to clinical interventions; examples include facilitating vaccine evasion and the development of penicillin resistance in the major respiratory pathogen Streptococcus pneumoniae. To characterise the process in detail, the genomes of 124 S. pneumoniae isolates produced through in vitro transformation were sequenced and recombination events detected. Those recombinations importing the selected marker were independent of unselected events elsewhere in the genome, the positions of which were not significantly affected by local sequence similarity between donor and recipient or mismatch repair processes. However, both types of recombinations were sometimes mosaic, with multiple non-contiguous segments originating from the same molecule of donor DNA. The lengths of the unselected events were exponentially distributed with a mean of 2.3 kb, implying that recombinations are stochastically resolved with a fixed per base probability of 4.4×10(-4) bp(-1). This distribution of recombination sizes, coupled with an observed under representation of large insertions within transferred sequence, suggests transformation has the potential to reduce the size of bacterial genomes, and is unlikely to act as an efficient mechanism for the uptake of accessory genomic loci.
Collapse
Affiliation(s)
- Nicholas J Croucher
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
195
|
Lang AS, Zhaxybayeva O, Beatty JT. Gene transfer agents: phage-like elements of genetic exchange. Nat Rev Microbiol 2012; 10:472-82. [PMID: 22683880 DOI: 10.1038/nrmicro2802] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Horizontal gene transfer is important in the evolution of bacterial and archaeal genomes. An interesting genetic exchange process is carried out by diverse phage-like gene transfer agents (GTAs) that are found in a wide range of prokaryotes. Although GTAs resemble phages, they lack the hallmark capabilities that define typical phages, and they package random pieces of the producing cell's genome. In this Review, we discuss the defining characteristics of the GTAs that have been identified to date, along with potential functions for these agents and the possible evolutionary forces that act on the genes involved in their production.
Collapse
Affiliation(s)
- Andrew S Lang
- Department of Biology, Memorial University, St. John's, Newfoundland and Labrador A1B 3X9, Canada.
| | | | | |
Collapse
|
196
|
Das D, Das D, Prasad A. Giant number fluctuations in microbial ecologies. J Theor Biol 2012; 308:96-104. [PMID: 22683366 DOI: 10.1016/j.jtbi.2012.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 05/26/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
Abstract
Statistical fluctuations in population sizes of microbes may be quite large depending on the nature of their underlying stochastic dynamics. For example, the variance of the population size of a microbe undergoing a pure birth process with unlimited resources is proportional to the square of its mean. We refer to such large fluctuations, with the variance growing as square of the mean, as giant number fluctuations (GNF). Luria and Delbrück showed that spontaneous mutation processes in microbial populations exhibit GNF. We explore whether GNF can arise in other microbial ecologies. We study certain simple ecological models evolving via stochastic processes: (i) bi-directional mutation, (ii) lysis-lysogeny of bacteria by bacteriophage, and (iii) horizontal gene transfer (HGT). For the case of bi-directional mutation process, we show analytically exactly that the GNF relationship holds at large times. For the ecological model of bacteria undergoing lysis or lysogeny under viral infection, we show that if the viral population can be experimentally manipulated to stay quasi-stationary, the process of lysogeny maps essentially to one-way mutation process and hence the GNF property of the lysogens follows. Finally, we show that even the process of HGT may map to the mutation process at large times, and thereby exhibits GNF.
Collapse
Affiliation(s)
- Dipjyoti Das
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | | | | |
Collapse
|
197
|
Lu N, Mylon SE, Kong R, Bhargava R, Zilles JL, Nguyen TH. Interactions between dissolved natural organic matter and adsorbed DNA and their effect on natural transformation of Azotobacter vinelandii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 426:430-435. [PMID: 22542236 DOI: 10.1016/j.scitotenv.2012.03.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/01/2012] [Accepted: 03/23/2012] [Indexed: 05/31/2023]
Abstract
To better understand gene transfer in the soil environment, the interactions between dissolved natural organic matter (NOM) and chromosomal or plasmid DNA adsorbed to silica surfaces were investigated. The rates of NOM adsorption onto silica surfaces coated with DNA were measured by quartz crystal microbalance (QCM) and showed a positive correlation with carboxylate group density for both soil and aquatic NOM in solutions containing either 1mM Ca(2+) or Mg(2+). Increasing total dissolved organic carbon (DOC) concentrations of the NOM solution also resulted in an increase in the adsorption rates, likely due to divalent cation complexation with NOM carboxylate groups and the phosphate backbones of the DNA. The results from Fourier transform infrared spectroscopy (FTIR) for dissolved DNA and DNA adsorbed on silica beads also suggest that adsorption may result from divalent cation complexation with the DNA's phosphate backbone. The interactions, between DNA and NOM, however, did not influence natural transformation of Azotobacter vinelandii by DNA. These results suggest that DNA adsorbed to NOM-coated silica or otherwise complexed with NOM remains available for natural transformation in the environment.
Collapse
Affiliation(s)
- Nanxi Lu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
198
|
Campos-Guillén J, Fernández F, Pastrana X, Loske AM. Relationship between plasmid size and shock wave-mediated bacterial transformation. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:1078-84. [PMID: 22502888 DOI: 10.1016/j.ultrasmedbio.2012.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 02/13/2012] [Accepted: 02/20/2012] [Indexed: 05/15/2023]
Abstract
Bacterial transformation is a fundamental tool in molecular biology; nevertheless, there is still a lack of efficient methods for gene delivery. The use of shock waves has been proposed as an alternative. Recently, our group demonstrated that shock wave-induced transfer of deoxyribonucleic acid (DNA) into bacteria can be increased by enhancing acoustic cavitation; however, so far, little information exists about the effects of shock waves on DNA. The objective of this study was to identify the size regimes of plasmids (DNA molecules that are separate from the chromosomal DNA), which promote shock wave-induced transformation. The transformation efficiency of shock waves and the integrity of DNA were studied for six different plasmid sizes, using the parameters that led to the best results in our previous study.
Collapse
Affiliation(s)
- Juan Campos-Guillén
- Unidad de Microbiología Básica y Aplicada, Universidad Autónoma de Querétaro, Querétaro, México
| | | | | | | |
Collapse
|
199
|
Nie Y, Tang YQ, Li Y, Chi CQ, Cai M, Wu XL. The genome sequence of Polymorphum gilvum SL003B-26A1(T) reveals its genetic basis for crude oil degradation and adaptation to the saline soil. PLoS One 2012; 7:e31261. [PMID: 22359583 PMCID: PMC3281065 DOI: 10.1371/journal.pone.0031261] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/04/2012] [Indexed: 11/24/2022] Open
Abstract
Polymorphum gilvum SL003B-26A1T is the type strain of a novel species in the recently published novel genus Polymorphum isolated from saline soil contaminated with crude oil. It is capable of using crude oil as the sole carbon and energy source and can adapt to saline soil at a temperature of 45°C. The Polymorphum gilvum genome provides a genetic basis for understanding how the strain could degrade crude oil and adapt to a saline environment. Genome analysis revealed the versatility of the strain for emulsifying crude oil, metabolizing aromatic compounds (a characteristic specific to the Polymorphum gilvum genome in comparison with other known genomes of oil-degrading bacteria), as well as possibly metabolizing n-alkanes through the LadA pathway. In addition, COG analysis revealed Polymorphum gilvum SL003B-26A1T has significantly higher abundances of the proteins responsible for cell motility, lipid transport and metabolism, and secondary metabolite biosynthesis, transport and catabolism than the average levels found in all other genomes sequenced thus far, but lower abundances of the proteins responsible for carbohydrate transport and metabolism, defense mechanisms, and translation than the average levels. These traits support the adaptability of Polymorphum gilvum to a crude oil-contaminated saline environment. The Polymorphum gilvum genome could serve as a platform for further study of oil-degrading microorganisms for bioremediation and microbial-enhanced oil recovery in harsh saline environments.
Collapse
Affiliation(s)
- Yong Nie
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing
| | - Yue-Qin Tang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing
| | - Yan Li
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing
| | - Chang-Qiao Chi
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing
| | - Man Cai
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing
| | - Xiao-Lei Wu
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing
- * E-mail:
| |
Collapse
|
200
|
Cabezon E, Lanza VF, Arechaga I. Membrane-associated nanomotors for macromolecular transport. Curr Opin Biotechnol 2011; 23:537-44. [PMID: 22189002 DOI: 10.1016/j.copbio.2011.11.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 11/18/2011] [Accepted: 11/25/2011] [Indexed: 11/19/2022]
Abstract
Nature has endowed cells with powerful nanomotors to accomplish intricate mechanical tasks, such as the macromolecular transport across membranes occurring in cell division, bacterial conjugation, and in a wide variety of secretion systems. These biological motors couple the chemical energy provided by ATP hydrolysis to the mechanical work needed to transport DNA and/or protein effectors. Here, we review what is known about the molecular mechanisms of these membrane-associated machines. Sequence and structural comparison between these ATPases reveal that they share a similar motor domain, suggesting a common evolutionary ancestor. Learning how these machines operate will lead the design of nanotechnology devices with unique applications in medicine and engineering.
Collapse
Affiliation(s)
- Elena Cabezon
- Departamento de Biología Molecular, Universidad de Cantabria, and Instituto de Biomedicina y Biotecnología de Cantabria, UC-SODERCAN-CSIC, C. Herrera Oria s/n, 39011 Santander, Spain.
| | | | | |
Collapse
|