151
|
A selfish gene chastened: Tribolium castaneum Medea M4 is silenced by a complementary gene. Genetica 2014; 142:161-7. [PMID: 24715654 DOI: 10.1007/s10709-014-9763-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 03/29/2014] [Indexed: 01/09/2023]
Abstract
Maternal-effect dominant embryonic arrest (Medea) of Tribolium castaneum are autosomal factors that act maternally to cause the death of any progeny that do not inherit them. This selfish behavior is thought to result from a maternally expressed poison and zygotically expressed antidote. Medea factors and the hybrid incompatibility factor, H, have a negative interaction consistent with complementary genes of the Dobzhansky-Muller model for post-zygotic isolation. This negative interaction may result from H suppression of Medea zygotic antidote, leaving zygotes incompletely protected from maternal poison. I report here a test of the hypothesis that H also suppresses the Medea maternal poison. Viable F1 females were generated from a cross of Medea M4 strain males to H strain females. These females, heterozygous for both M4 and H, failed to express M4 maternal lethal activity when crossed to their male sibs. Transmission of non-M4 homologues from these females was confirmed using a dominant transgenic enhanced green fluorescent protein eye color marker, tightly linked in cis to M4. M4 beetles, lacking H, were selected from the F2 population. Female descendants of these clearly expressed M4 maternal lethal activity, indicating restoration of this activity after H was segregated away. I conclude that H, or a factor tightly linked to H, suppresses Medea M4 maternal poison.
Collapse
|
152
|
Liu S, Lamaze A, Liu Q, Tabuchi M, Yang Y, Fowler M, Bharadwaj R, Zhang J, Bedont J, Blackshaw S, Lloyd TE, Montell C, Sehgal A, Koh K, Wu MN. WIDE AWAKE mediates the circadian timing of sleep onset. Neuron 2014; 82:151-66. [PMID: 24631345 PMCID: PMC3982794 DOI: 10.1016/j.neuron.2014.01.040] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2014] [Indexed: 12/18/2022]
Abstract
How the circadian clock regulates the timing of sleep is poorly understood. Here, we identify a Drosophila mutant, wide awake (wake), that exhibits a marked delay in sleep onset at dusk. Loss of WAKE in a set of arousal-promoting clock neurons, the large ventrolateral neurons (l-LNvs), impairs sleep onset. WAKE levels cycle, peaking near dusk, and the expression of WAKE in l-LNvs is Clock dependent. Strikingly, Clock and cycle mutants also exhibit a profound delay in sleep onset, which can be rescued by restoring WAKE expression in LNvs. WAKE interacts with the GABAA receptor Resistant to Dieldrin (RDL), upregulating its levels and promoting its localization to the plasma membrane. In wake mutant l-LNvs, GABA sensitivity is decreased and excitability is increased at dusk. We propose that WAKE acts as a clock output molecule specifically for sleep, inhibiting LNvs at dusk to promote the transition from wake to sleep.
Collapse
Affiliation(s)
- Sha Liu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Angelique Lamaze
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Qili Liu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Masashi Tabuchi
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Yong Yang
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Melissa Fowler
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Rajnish Bharadwaj
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Julia Zhang
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Joseph Bedont
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Amita Sehgal
- Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyunghee Koh
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21287, USA.
| |
Collapse
|
153
|
Carvalho DO, Costa-da-Silva AL, Lees RS, Capurro ML. Two step male release strategy using transgenic mosquito lines to control transmission of vector-borne diseases. Acta Trop 2014; 132 Suppl:S170-7. [PMID: 24513036 DOI: 10.1016/j.actatropica.2013.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/21/2013] [Accepted: 09/26/2013] [Indexed: 12/27/2022]
Abstract
Mosquitoes are responsible for the transmission of pathogens that cause devastating human diseases such as malaria and dengue. The current increase in mean global temperature and changing sea level interfere with precipitation frequency and some other climatic conditions which, in general, influence the rate of development of insects and etiologic agents causing acceleration as the temperature rises. The most common strategy employed to combat target mosquito species is the Integrated Vector Management (IVM), which comprises the use of multiple activities and various approaches to preventing the spread of a vector in infested areas. IVM programmes are becoming ineffective; and the global scenario is threatening, requiring new interventions for vector control and surveillance. Not surprisingly, there is a growing need to find alternative methods to combat the mosquito vectors. The possibility of using transgenic mosquitoes to fight against those diseases has been discussed over the last two decades and this use of transgenic lines to suppress populations or to replace them is still under investigation through field and laboratory trials. As an alternative, the available transgenic strategies could be improved by coupling suppression and substitution strategies. The idea is to first release a suppression line to significantly reduce the wild population, and once the first objective is reached a second release using a substitution line could be then performed. Examples of targeting this approach against vectors of malaria and dengue are discussed.
Collapse
|
154
|
Affiliation(s)
- Luke Alphey
- Oxitec Limited, Milton Park, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Nina Alphey
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
155
|
Akbari OS, Papathanos PA, Sandler JE, Kennedy K, Hay BA. Identification of germline transcriptional regulatory elements in Aedes aegypti. Sci Rep 2014; 4:3954. [PMID: 24492376 PMCID: PMC3912481 DOI: 10.1038/srep03954] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/16/2014] [Indexed: 12/18/2022] Open
Abstract
The mosquito Aedes aegypti is the principal vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of the alphavirus chikungunya. Vector control strategies utilizing engineered gene drive systems are being developed as a means of replacing wild, pathogen transmitting mosquitoes with individuals refractory to disease transmission, or bringing about population suppression. Several of these systems, including Medea, UD(MEL), and site-specific nucleases, which can be used to drive genes into populations or bring about population suppression, utilize transcriptional regulatory elements that drive germline-specific expression. Here we report the identification of multiple regulatory elements able to drive gene expression specifically in the female germline, or in the male and female germline, in the mosquito Aedes aegypti. These elements can also be used as tools with which to probe the roles of specific genes in germline function and in the early embryo, through overexpression or RNA interference.
Collapse
Affiliation(s)
- Omar S Akbari
- 1] Division of Biology, MC 156-29, California Institute of Technology, Pasadena, CA 91125, USA [2]
| | - Philippos A Papathanos
- 1] Division of Biology, MC 156-29, California Institute of Technology, Pasadena, CA 91125, USA [2]
| | - Jeremy E Sandler
- Division of Biology, MC 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Katie Kennedy
- Division of Biology, MC 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bruce A Hay
- Division of Biology, MC 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
156
|
Alphey L, McKemey A, Nimmo D, Neira Oviedo M, Lacroix R, Matzen K, Beech C. Genetic control of Aedes mosquitoes. Pathog Glob Health 2014; 107:170-9. [PMID: 23816508 DOI: 10.1179/2047773213y.0000000095] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aedes mosquitoes include important vector species such as Aedes aegypti, the major vector of dengue. Genetic control methods are being developed for several of these species, stimulated by an urgent need owing to the poor effectiveness of current methods combined with an increase in chemical pesticide resistance. In this review we discuss the various genetic strategies that have been proposed, their present status, and future prospects. We focus particularly on those methods that are already being tested in the field, including RIDL and Wolbachia-based approaches.
Collapse
Affiliation(s)
- Luke Alphey
- Oxitec Limited, 71 Milton Park, Oxford OX14 4RX, UK.
| | | | | | | | | | | | | |
Collapse
|
157
|
Novel Genetic and Molecular Tools for the Investigation and Control of Dengue Virus Transmission by Mosquitoes. CURRENT TROPICAL MEDICINE REPORTS 2014; 1:21-31. [PMID: 24693489 DOI: 10.1007/s40475-013-0007-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aedes aegypti is the principal vector of dengue virus (DENV) throughout the tropical world. This anthropophilic mosquito species needs to be persistently infected with DENV before it can transmit the virus through its saliva to a new vertebrate host. In the mosquito, DENV is confronted with several innate immune pathways, among which RNA interference is considered the most important. The Ae. aegypti genome project opened the doors for advanced molecular studies on pathogen-vector interactions including genetic manipulation of the vector for basic research and vector control purposes. Thus, Ae. aegypti has become the primary model for studying vector competence for arboviruses at the molecular level. Here, we present recent findings regarding DENV-mosquito interactions, emphasizing how innate immune responses modulate DENV infections in Ae. aegypti. We also describe the latest advancements in genetic manipulation of Ae. aegypti and discuss how this technology can be used to investigate vector transmission of DENV at the molecular level and to control transmission of the virus in the field.
Collapse
|
158
|
Abstract
To fight human vector-borne diseases, first releases of sterile transgenic mosquitoes have been performed. Someday, disease-refractory mosquitoes will replace wild types to stop transmission. For such population replacements, gene drive mechanisms must be established that allow local confinement and reversibility.
Collapse
Affiliation(s)
- Ernst A Wimmer
- Department of Developmental Biology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, GZMB, Georg-August-Universität Göttingen, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
159
|
Legros M, Xu C, Morrison A, Scott TW, Lloyd AL, Gould F. Modeling the dynamics of a non-limited and a self-limited gene drive system in structured Aedes aegypti populations. PLoS One 2013; 8:e83354. [PMID: 24340097 PMCID: PMC3858347 DOI: 10.1371/journal.pone.0083354] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/01/2013] [Indexed: 01/27/2023] Open
Abstract
Recently there have been significant advances in research on genetic strategies to control populations of disease-vectoring insects. Some of these strategies use the gene drive properties of selfish genetic elements to spread physically linked anti-pathogen genes into local vector populations. Because of the potential of these selfish elements to spread through populations, control approaches based on these strategies must be carefully evaluated to ensure a balance between the desirable spread of the refractoriness-conferring genetic cargo and the avoidance of potentially unwanted outcomes such as spread to non-target populations. There is also a need to develop better estimates of the economics of such releases. We present here an evaluation of two such strategies using a biologically realistic mathematical model that simulates the resident Aedes aegypti mosquito population of Iquitos, Peru. One strategy uses the selfish element Medea, a non-limited element that could permanently spread over a large geographic area; the other strategy relies on Killer-Rescue genetic constructs, and has been predicted to have limited spatial and temporal spread. We simulate various operational approaches for deploying these genetic strategies, and quantify the optimal number of released transgenic mosquitoes needed to achieve definitive spread of Medea-linked genes and/or high frequencies of Killer-Rescue-associated elements. We show that for both strategies the most efficient approach for achieving spread of anti-pathogen genes within three years is generally to release adults of both sexes in multiple releases over time. Even though females in these releases should not transmit disease, there could be public concern over such releases, making the less efficient male-only release more practical. This study provides guidelines for operational approaches to population replacement genetic strategies, as well as illustrates the use of detailed spatial models to assist in safe and efficient implementation of such novel genetic strategies.
Collapse
Affiliation(s)
- Mathieu Legros
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Entomology, University of California Davis, Davis, California, United States of America
- Institut für Integrative Biologie, ETH Zürich, Zürich, Switzerland
- * E-mail:
| | - Chonggang Xu
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
- Division of Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Amy Morrison
- Department of Entomology, University of California Davis, Davis, California, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas W. Scott
- Department of Entomology, University of California Davis, Davis, California, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alun L. Lloyd
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Mathematics and Biomathematics Graduate Program, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Fred Gould
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
160
|
Abstract
Genetics can potentially provide new, species-specific, environmentally friendly methods for mosquito control. Genetic control strategies aim either to suppress target populations or to introduce a harm-reducing novel trait. Different approaches differ considerably in their properties, especially between self-limiting strategies, where the modification has limited persistence, and self-sustaining strategies, which are intended to persist indefinitely in the target population and may invade other populations. Several methods with different molecular biology are under development and the first field trials have been completed successfully.
Collapse
Affiliation(s)
- Luke Alphey
- Oxitec Limited, Oxford OX14 4RX, United Kingdom;
| |
Collapse
|
161
|
Aryan A, Anderson MAE, Myles KM, Adelman ZN. Germline excision of transgenes in Aedes aegypti by homing endonucleases. Sci Rep 2013; 3:1603. [PMID: 23549343 PMCID: PMC3615334 DOI: 10.1038/srep01603] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/22/2013] [Indexed: 01/24/2023] Open
Abstract
Aedes (Ae.) aegypti is the primary vector for dengue viruses (serotypes1–4) and chikungunya virus. Homing endonucleases (HEs) are ancient selfish elements that catalyze double-stranded DNA breaks (DSB) in a highly specific manner. In this report, we show that the HEs Y2-I-AniI, I-CreI and I-SceI are all capable of catalyzing the excision of genomic segments from the Ae. aegypti genome in a heritable manner. Y2-I-AniI demonstrated the highest efficiency at two independent genomic targets, with 20–40% of Y2-I-AniI-treated individuals producing offspring that had lost the target transgene. HE-induced DSBs were found to be repaired via the single-strand annealing (SSA) and non-homologous end-joining (NHEJ) pathways in a manner dependent on the availability of direct repeat sequences in the transgene. These results support the development of HE-based gene editing and gene drive strategies in Ae. aegypti, and confirm the utility of HEs in the manipulation and modification of transgenes in this important vector.
Collapse
Affiliation(s)
- Azadeh Aryan
- Fralin Life Science Institute and Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
162
|
The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector. G3-GENES GENOMES GENETICS 2013; 3:1493-509. [PMID: 23833213 PMCID: PMC3755910 DOI: 10.1534/g3.113.006742] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mosquitoes are vectors of a number of important human and animal diseases. The development of novel vector control strategies requires a thorough understanding of mosquito biology. To facilitate this, we used RNA-seq to identify novel genes and provide the first high-resolution view of the transcriptome throughout development and in response to blood feeding in a mosquito vector of human disease, Aedes aegypti, the primary vector for Dengue and yellow fever. We characterized mRNA expression at 34 distinct time points throughout Aedes development, including adult somatic and germline tissues, by using polyA+ RNA-seq. We identify a total of 14,238 novel new transcribed regions corresponding to 12,597 new loci, as well as many novel transcript isoforms of previously annotated genes. Altogether these results increase the annotated fraction of the transcribed genome into long polyA+ RNAs by more than twofold. We also identified a number of patterns of shared gene expression, as well as genes and/or exons expressed sex-specifically or sex-differentially. Expression profiles of small RNAs in ovaries, early embryos, testes, and adult male and female somatic tissues also were determined, resulting in the identification of 38 new Aedes-specific miRNAs, and ~291,000 small RNA new transcribed regions, many of which are likely to be endogenous small-interfering RNAs and Piwi-interacting RNAs. Genes of potential interest for transgene-based vector control strategies also are highlighted. Our data have been incorporated into a user-friendly genome browser located at www.Aedes.caltech.edu, with relevant links to Vectorbase (www.vectorbase.org)
Collapse
|
163
|
Robert MA, Okamoto K, Lloyd AL, Gould F. A reduce and replace strategy for suppressing vector-borne diseases: insights from a deterministic model. PLoS One 2013; 8:e73233. [PMID: 24023839 PMCID: PMC3762895 DOI: 10.1371/journal.pone.0073233] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 07/18/2013] [Indexed: 12/22/2022] Open
Abstract
Genetic approaches for controlling disease vectors have aimed either to reduce wild-type populations or to replace wild-type populations with insects that cannot transmit pathogens. Here, we propose a Reduce and Replace (R&R) strategy in which released insects have both female-killing and anti-pathogen genes. We develop a mathematical model to numerically explore release strategies involving an R&R strain of the dengue vector Aedes aegypti. We show that repeated R&R releases may lead to a temporary decrease in mosquito population density and, in the absence of fitness costs associated with the anti-pathogen gene, a long-term decrease in competent vector population density. We find that R&R releases more rapidly reduce the transient and long-term competent vector densities than female-killing releases alone. We show that releases including R&R females lead to greater reduction in competent vector density than male-only releases. The magnitude of reduction in total and competent vectors depends upon the release ratio, release duration, and whether females are included in releases. Even when the anti-pathogen allele has a fitness cost, R&R releases lead to greater reduction in competent vectors than female-killing releases during the release period; however, continued releases are needed to maintain low density of competent vectors long-term. We discuss the results of the model as motivation for more detailed studies of R&R strategies.
Collapse
Affiliation(s)
- Michael A. Robert
- Department of Mathematics and Biomathematics Graduate Program, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Kenichi Okamoto
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Alun L. Lloyd
- Department of Mathematics and Biomathematics Graduate Program, North Carolina State University, Raleigh, North Carolina, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fred Gould
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
164
|
Abstract
Mislocalization of axonal proteins can result in misassembly and/or miswiring of neural circuits, causing disease. To date, only a handful of genes that control polarized localization of axonal membrane proteins have been identified. Here we report that Drosophila X11/Mint proteins are required for targeting several proteins, including human amyloid precursor protein (APP) and Drosophila APP-like protein (APPL), to axonal membranes and for their exclusion from dendrites of the mushroom body in Drosophila, a brain structure involved in learning and memory. Axonal localization of APP is mediated by an endocytic motif, and loss of X11/Mint results in a dramatic increase in cell-surface levels of APPL, especially on dendrites. Mutations in genes required for endocytosis show similar mislocalization of these proteins to dendrites, and strongly enhance defects seen in X11/Mint mutants. These results suggest that X11/Mint-dependent endocytosis in dendrites may serve to promote the axonal localization of membrane proteins. Since X11/Mint binds to APP, and abnormal trafficking of APP contributes to Alzheimer's disease, deregulation of X11/Mint may be important for Alzheimer's disease pathogenesis.
Collapse
|
165
|
Sekine SU, Haraguchi S, Chao K, Kato T, Luo L, Miura M, Chihara T. Meigo governs dendrite targeting specificity by modulating ephrin level and N-glycosylation. Nat Neurosci 2013; 16:683-91. [PMID: 23624514 DOI: 10.1038/nn.3389] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/01/2013] [Indexed: 11/09/2022]
Abstract
Neural circuit assembly requires precise dendrite and axon targeting. We identified an evolutionarily conserved endoplasmic reticulum (ER) protein, Meigo, from a mosaic genetic screen in Drosophila melanogaster. Meigo was cell-autonomously required in olfactory receptor neurons and projection neurons to target their axons and dendrites to the lateral antennal lobe and to refine projection neuron dendrites into individual glomeruli. Loss of Meigo induced an unfolded protein response and reduced the amount of neuronal cell surface proteins, including Ephrin. Ephrin overexpression specifically suppressed the projection neuron dendrite refinement defect present in meigo mutant flies, and ephrin knockdown caused a similar projection neuron dendrite refinement defect. Meigo positively regulated the level of Ephrin N-glycosylation, which was required for its optimal function in vivo. Thus, Meigo, an ER-resident protein, governs neuronal targeting specificity by regulating ER folding capacity and protein N-glycosylation. Furthermore, Ephrin appears to be an important substrate that mediates Meigo's function in refinement of glomerular targeting.
Collapse
Affiliation(s)
- Sayaka U Sekine
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
166
|
Genetic control of invasive fish: technological options and its role in integrated pest management. Biol Invasions 2013. [DOI: 10.1007/s10530-013-0477-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
167
|
Akbari OS, Matzen KD, Marshall JM, Huang H, Ward CM, Hay BA. A synthetic gene drive system for local, reversible modification and suppression of insect populations. Curr Biol 2013; 23:671-7. [PMID: 23541732 DOI: 10.1016/j.cub.2013.02.059] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/18/2012] [Accepted: 02/27/2013] [Indexed: 01/12/2023]
Abstract
Replacement of wild insect populations with genetically modified individuals unable to transmit disease provides a self-perpetuating method of disease prevention but requires a gene drive mechanism to spread these traits to high frequency. Drive mechanisms requiring that transgenes exceed a threshold frequency in order to spread are attractive because they bring about local but not global replacement, and transgenes can be eliminated through dilution of the population with wild-type individuals. These features are likely to be important in many social and regulatory contexts. Here we describe the first creation of a synthetic threshold-dependent gene drive system, designated maternal-effect lethal underdominance (UD(MEL)), in which two maternally expressed toxins, located on separate chromosomes, are each linked with a zygotic antidote able to rescue maternal-effect lethality of the other toxin. We demonstrate threshold-dependent replacement in single- and two-locus configurations in Drosophila. Models suggest that transgene spread can often be limited to local environments. They also show that in a population in which single-locus UD(MEL) has been carried out, repeated release of wild-type males can result in population suppression, a novel method of genetic population manipulation.
Collapse
Affiliation(s)
- Omar S Akbari
- Division of Biology, MC 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
168
|
Bharadwaj R, Roy M, Ohyama T, Sivan-Loukianova E, Delannoy M, Lloyd TE, Zlatic M, Eberl DF, Kolodkin AL. Cbl-associated protein regulates assembly and function of two tension-sensing structures in Drosophila. Development 2013; 140:627-38. [PMID: 23293294 DOI: 10.1242/dev.085100] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cbl-associated protein (CAP) localizes to focal adhesions and associates with numerous cytoskeletal proteins; however, its physiological roles remain unknown. Here, we demonstrate that Drosophila CAP regulates the organization of two actin-rich structures in Drosophila: muscle attachment sites (MASs), which connect somatic muscles to the body wall; and scolopale cells, which form an integral component of the fly chordotonal organs and mediate mechanosensation. Drosophila CAP mutants exhibit aberrant junctional invaginations and perturbation of the cytoskeletal organization at the MAS. CAP depletion also results in collapse of scolopale cells within chordotonal organs, leading to deficits in larval vibration sensation and adult hearing. We investigate the roles of different CAP protein domains in its recruitment to, and function at, various muscle subcellular compartments. Depletion of the CAP-interacting protein Vinculin results in a marked reduction in CAP levels at MASs, and vinculin mutants partially phenocopy Drosophila CAP mutants. These results show that CAP regulates junctional membrane and cytoskeletal organization at the membrane-cytoskeletal interface of stretch-sensitive structures, and they implicate integrin signaling through a CAP/Vinculin protein complex in stretch-sensitive organ assembly and function.
Collapse
Affiliation(s)
- Rajnish Bharadwaj
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Wang S, Jacobs-Lorena M. Genetic approaches to interfere with malaria transmission by vector mosquitoes. Trends Biotechnol 2013; 31:185-93. [PMID: 23395485 PMCID: PMC3593784 DOI: 10.1016/j.tibtech.2013.01.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/03/2013] [Accepted: 01/03/2013] [Indexed: 11/20/2022]
Abstract
Malaria remains one of the most devastating diseases worldwide, causing over 1 million deaths every year. The most vulnerable stages of Plasmodium development in the vector mosquito occur in the midgut lumen, making the midgut a prime target for intervention. Mosquito transgenesis and paratransgenesis are two novel strategies that aim at rendering the vector incapable of sustaining Plasmodium development. Mosquito transgenesis involves direct genetic engineering of the mosquito itself for delivery of anti-Plasmodium effector molecules. Conversely, paratransgenesis involves the genetic modification of mosquito symbionts for expression of anti-pathogen effector molecules. Here we consider both genetic manipulation strategies for rendering mosquitoes refractory to Plasmodium infection, and discuss challenges for the translation of laboratory findings to field applications.
Collapse
Affiliation(s)
- Sibao Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | | |
Collapse
|
170
|
Lee G, Sehgal R, Wang Z, Nair S, Kikuno K, Chen CH, Hay B, Park JH. Essential role of grim-led programmed cell death for the establishment of corazonin-producing peptidergic nervous system during embryogenesis and metamorphosis in Drosophila melanogaster. Biol Open 2013; 2:283-94. [PMID: 23519152 PMCID: PMC3603410 DOI: 10.1242/bio.20133384] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/10/2012] [Indexed: 11/04/2022] Open
Abstract
In Drosophila melanogaster, combinatorial activities of four death genes, head involution defective (hid), reaper (rpr), grim, and sickle (skl), have been known to play crucial roles in the developmentally regulated programmed cell death (PCD) of various tissues. However, different expression patterns of the death genes also suggest distinct functions played by each. During early metamorphosis, a great number of larval neurons unfit for adult life style are removed by PCD. Among them are eight pairs of corazonin-expressing larval peptidergic neurons in the ventral nerve cord (vCrz). To reveal death genes responsible for the PCD of vCrz neurons, we examined extant and recently available mutations as well as RNA interference that disrupt functions of single or multiple death genes. We found grim as a chief proapoptotic gene and skl and rpr as minor ones. The function of grim is also required for PCD of the mitotic sibling cells of the vCrz neuronal precursors (EW3-sib) during embryonic neurogenesis. An intergenic region between grim and rpr, which, it has been suggested, may enhance expression of three death genes in embryonic neuroblasts, appears to play a role for the vCrz PCD, but not for the EW3-sib cell death. The death of vCrz neurons and EW3-sib is triggered by ecdysone and the Notch signaling pathway, respectively, suggesting distinct regulatory mechanisms of grim expression in a cell- and developmental stage-specific manner.
Collapse
Affiliation(s)
- Gyunghee Lee
- Neurogenetics Laboratory, Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, TN 37996 , USA
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Muriu SM, Coulson T, Mbogo CM, Godfray HCJ. Larval density dependence in Anopheles gambiae s.s., the major African vector of malaria. J Anim Ecol 2013; 82:166-74. [PMID: 23163565 PMCID: PMC5373432 DOI: 10.1111/1365-2656.12002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 09/04/2012] [Indexed: 12/01/2022]
Abstract
Anopheles gambiae sensu stricto is the most important vector of malaria in Africa although relatively little is known about the density-dependent processes determining its population size. Mosquito larval density was manipulated under semi-natural conditions using artificial larval breeding sites placed in the field in coastal Kenya; two experiments were conducted: one manipulating the density of a single cohort of larvae across a range of densities and the other employing fewer densities but with the treatments crossed with four treatments manipulating predator access. In the first experiment, larval survival, development rate and the size of the adult mosquito all decreased with larval density (controlling for block effects between 23% and 31% of the variance in the data could be explained by density). In the second experiment, the effects of predator manipulation were not significant, but again we observed strong density dependence in larval survival (explaining 30% of the variance). The results are compared with laboratory studies of A. gambiae larval competition and the few other studies conducted in the field, and the consequences for malaria control are discussed.
Collapse
Affiliation(s)
- Simon M Muriu
- Department of Entomology, KEMRI-Wellcome Trust Programme, P.O. Box 230, Kilifi, Kenya.
| | | | | | | |
Collapse
|
172
|
Hits, leads and drugs against malaria through diversity-oriented synthesis. Future Med Chem 2012; 4:2279-94. [PMID: 23234551 DOI: 10.4155/fmc.12.178] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Malaria is a devastating infectious disease and approximately half the world’s population is at risk. Since vaccination is not yet available, small-molecule-based medicines are currently the best option for the treatment of patients suffering from malaria and combating the spread of infection. Development of resistance against existing drugs has created a need for new types of small molecules to be screened against Plasmodium falciparum, the etiological agent of malaria. The advent of diversity-oriented synthesis has enabled access to novel chemical structures. Evaluation of diversity-oriented synthesis compounds in phenotypic assays for growth inhibition of P. falciparum has resulted in novel hits, leads and even investigational drugs against malaria.
Collapse
|
173
|
Godfray HCJ. Mosquito ecology and control of malaria. J Anim Ecol 2012; 82:15-25. [DOI: 10.1111/1365-2656.12003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 09/01/2012] [Indexed: 11/30/2022]
|
174
|
Wang CW, Sun YH. Segregation of eye and antenna fates maintained by mutual antagonism in Drosophila. Development 2012; 139:3413-21. [DOI: 10.1242/dev.078857] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A general question in development is how do adjacent primordia adopt different developmental fates and stably maintain their distinct fates? In Drosophila melanogaster, the adult eye and antenna originate from the embryonic eye-antenna primordium. These cells proliferate in the larval stage to form the eye-antenna disc. The eye or antenna differs at mid second instar with the restricted expression of Cut (Ct), a homeodomain transcriptional repressor, in the antenna disc and Eyeless (Ey), a Pax6 transcriptional activator, in the eye disc. In this study, we show that ey transcription in the antenna disc is repressed by two homeodomain proteins, Ct and Homothorax (Hth). Loss of Ct and Hth in the antenna disc resulted in ectopic eye development in the antenna. Conversely, the Ct and Hth expression in the eye disc was suppressed by the homeodomain transcription factor Sine oculis (So), a direct target of Ey. Loss of So in the eye disc caused ectopic antenna development in the eye. Therefore, the segregation of eye and antenna fates is stably maintained by mutual repression of the other pathway.
Collapse
Affiliation(s)
- Cheng-Wei Wang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | - Y. Henry Sun
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| |
Collapse
|
175
|
Wang S, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl Acad Sci U S A 2012; 109:12734-9. [PMID: 22802646 PMCID: PMC3412027 DOI: 10.1073/pnas.1204158109] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The most vulnerable stages of Plasmodium development occur in the lumen of the mosquito midgut, a compartment shared with symbiotic bacteria. Here, we describe a strategy that uses symbiotic bacteria to deliver antimalaria effector molecules to the midgut lumen, thus rendering host mosquitoes refractory to malaria infection. The Escherichia coli hemolysin A secretion system was used to promote the secretion of a variety of anti-Plasmodium effector proteins by Pantoea agglomerans, a common mosquito symbiotic bacterium. These engineered P. agglomerans strains inhibited development of the human malaria parasite Plasmodium falciparum and rodent malaria parasite Plasmodium berghei by up to 98%. Significantly, the proportion of mosquitoes carrying parasites (prevalence) decreased by up to 84% for two of the effector molecules, scorpine, a potent antiplasmodial peptide and (EPIP)(4), four copies of Plasmodium enolase-plasminogen interaction peptide that prevents plasminogen binding to the ookinete surface. We demonstrate the use of an engineered symbiotic bacterium to interfere with the development of P. falciparum in the mosquito. These findings provide the foundation for the use of genetically modified symbiotic bacteria as a powerful tool to combat malaria.
Collapse
Affiliation(s)
- Sibao Wang
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| | - Anil K. Ghosh
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| | - Nicholas Bongio
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282
| | - Kevin A. Stebbings
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282
| | - David J. Lampe
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| |
Collapse
|
176
|
Rezende-Teixeira P, Palomino NB, Machado-Santelli GM. Rananos expression pattern during oogenesis and early embryonic development in Rhynchosciara americana. Dev Genes Evol 2012; 222:153-64. [PMID: 22526873 DOI: 10.1007/s00427-012-0398-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 03/26/2012] [Indexed: 01/01/2023]
Abstract
The Dipteran Rhynchosciara americana, a native Brazilian insect that has become a valuable model system for developmental biology research because it provides an interesting opportunity to study a different type of insect oogenesis. Sequences from a cDNA library that was constructed with poly A+RNA from the ovaries of R. americana larvae at different ages were analyzed. Molecular characterization confirmed interesting findings, such as the presence of Rananos. The nanos gene encodes a conserved RNA-binding protein that is required during early development for the maintenance and division of the primordial germ cells of Diptera. nanos plays an important role in specifying the posterior regions of insect embryos and is important for abdomen formation. In the present work, we showed the spatial and temporal expression profiles of this important gene, which is involved in oogenesis and early development. Data mining techniques were used to obtain the complete sequence of Rananos. Bioinformatic tools were used to determine the following: (1) the secondary structure of the 3'-untranslated region of the Rananos mRNA, (2) the encoded protein of the isolated Rananos gene, (3) the conserved zinc-finger domains of the RaNanos protein, and (4) phylogenetic analyses. Furthermore, RNA in situ hybridization and immunolocalization were used to determine mRNA and protein expression in the tissues that were studied and to define Rananos as a germ cell molecular marker.
Collapse
Affiliation(s)
- Paula Rezende-Teixeira
- Departamento de Biologia Celular e Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo 05508-900, SP, Brazil.
| | | | | |
Collapse
|
177
|
Biedler JK, Hu W, Tae H, Tu Z. Identification of early zygotic genes in the yellow fever mosquito Aedes aegypti and discovery of a motif involved in early zygotic genome activation. PLoS One 2012; 7:e33933. [PMID: 22457801 PMCID: PMC3311545 DOI: 10.1371/journal.pone.0033933] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 02/20/2012] [Indexed: 11/19/2022] Open
Abstract
During early embryogenesis the zygotic genome is transcriptionally silent and all mRNAs present are of maternal origin. The maternal-zygotic transition marks the time over which embryogenesis changes its dependence from maternal RNAs to zygotically transcribed RNAs. Here we present the first systematic investigation of early zygotic genes (EZGs) in a mosquito species and focus on genes involved in the onset of transcription during 2–4 hr. We used transcriptome sequencing to identify the “pure” (without maternal expression) EZGs by analyzing transcripts from four embryonic time ranges of 0–2, 2–4, 4–8, and 8–12 hr, which includes the time of cellular blastoderm formation and up to the start of gastrulation. Blast of 16,789 annotated transcripts vs. the transcriptome reads revealed evidence for 63 (P<0.001) and 143 (P<0.05) nonmaternally derived transcripts having a significant increase in expression at 2–4 hr. One third of the 63 EZG transcripts do not have predicted introns compared to 10% of all Ae. aegypti genes. We have confirmed by RT-PCR that zygotic transcription starts as early as 2–3 hours. A degenerate motif VBRGGTA was found to be overrepresented in the upstream sequences of the identified EZGs using a motif identification software called SCOPE. We find evidence for homology between this motif and the TAGteam motif found in Drosophila that has been implicated in EZG activation. A 38 bp sequence in the proximal upstream sequence of a kinesin light chain EZG (KLC2.1) contains two copies of the mosquito motif. This sequence was shown to support EZG transcription by luciferase reporter assays performed on injected early embryos, and confers early zygotic activity to a heterologous promoter from a divergent mosquito species. The results of these studies are consistent with the model of early zygotic genome activation via transcriptional activators, similar to what has been found recently in Drosophila.
Collapse
Affiliation(s)
- James K. Biedler
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail: (JKB); (ZT)
| | - Wanqi Hu
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Hongseok Tae
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail: (JKB); (ZT)
| |
Collapse
|
178
|
Abstract
Gene drive systems are genetic elements capable of spreading into a population even if they confer a fitness cost to their host. We consider a class of drive systems consisting of a chromosomally located, linked cluster of genes, the presence of which renders specific classes of offspring arising from specific parental crosses unviable. Under permissive conditions, a number of these elements are capable of distorting the offspring ratio in their favor. We use a population genetic framework to derive conditions under which these elements spread to fixation in a population or induce a population crash. Many of these systems can be engineered using combinations of toxin and antidote genes, analogous to Medea, which consists of a maternal toxin and zygotic antidote. The majority of toxin–antidote drive systems require a critical frequency to be exceeded before they spread into a population. Of particular interest, a Z-linked Medea construct with a recessive antidote is expected to induce an all-male population crash for release frequencies above 50%. We suggest molecular tools that may be used to build these systems, and discuss their relevance to the control of a variety of insect pest species, including mosquito vectors of diseases such as malaria and dengue fever.
Collapse
Affiliation(s)
- John M Marshall
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
179
|
Dong Y, Das S, Cirimotich C, Souza-Neto JA, McLean KJ, Dimopoulos G. Engineered anopheles immunity to Plasmodium infection. PLoS Pathog 2011; 7:e1002458. [PMID: 22216006 PMCID: PMC3245315 DOI: 10.1371/journal.ppat.1002458] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 11/09/2011] [Indexed: 01/07/2023] Open
Abstract
A causative agent of human malaria, Plasmodium falciparum, is transmitted by Anopheles mosquitoes. The malaria parasite is under intensive attack from the mosquito's innate immune system during its sporogonic development. We have used genetic engineering to create immune-enhanced Anopheles stephensi mosquitoes through blood meal-inducible expression of a transgene encoding the IMD pathway-controlled NF-kB Rel2 transcription factor in the midgut and fat-body tissue. Transgenic mosquitoes showed greater resistance to Plasmodium and microbial infection as a result of timely concerted tissue-specific immune attacks involving multiple effectors. The relatively weak impact of this genetic modification on mosquito fitness under laboratory conditions encourages further investigation of this approach for malaria control.
Collapse
Affiliation(s)
- Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Suchismita Das
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Chris Cirimotich
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jayme A. Souza-Neto
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kyle J. McLean
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
180
|
Marshall JM, Hay BA. Confinement of gene drive systems to local populations: a comparative analysis. J Theor Biol 2011; 294:153-71. [PMID: 22094363 DOI: 10.1016/j.jtbi.2011.10.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 10/25/2011] [Accepted: 10/27/2011] [Indexed: 01/01/2023]
Abstract
Mosquito-borne diseases such as malaria and dengue fever pose a major health problem through much of the world. One approach to disease prevention involves the use of selfish genetic elements to drive disease-refractory genes into wild mosquito populations. Recently engineered synthetic drive systems have provided encouragement for this strategy; but at the same time have been greeted with caution over the concern that transgenes may spread into countries and communities without their consent. Consequently, there is also interest in gene drive systems that, while strong enough to bring about local population replacement, are unable to establish themselves beyond a partially isolated release site, at least during the testing phase. Here, we develop simple deterministic and stochastic models to compare the confinement properties of a variety of gene drive systems. Our results highlight several systems with desirable features for confinement-a high migration rate required to become established in neighboring populations, and low-frequency persistence in neighboring populations for moderate migration rates. Single-allele underdominance and single-locus engineered underdominance have the strongest confinement properties, but are difficult to engineer and require a high introduction frequency, respectively. Toxin-antidote systems such as Semele, Merea and two-locus engineered underdominance show promising confinement properties and require lower introduction frequencies. Killer-rescue is self-limiting in time, but is able to disperse to significant levels in neighboring populations. We discuss the significance of these results in the context of a phased release of transgenic mosquitoes, and the need for characterization of local ecology prior to a release.
Collapse
Affiliation(s)
- John M Marshall
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
181
|
Smibert P, Bejarano F, Wang D, Garaulet DL, Yang JS, Martin R, Bortolamiol-Becet D, Robine N, Hiesinger PR, Lai EC. A Drosophila genetic screen yields allelic series of core microRNA biogenesis factors and reveals post-developmental roles for microRNAs. RNA (NEW YORK, N.Y.) 2011; 17:1997-2010. [PMID: 21947201 PMCID: PMC3198593 DOI: 10.1261/rna.2983511] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Canonical animal microRNAs (miRNAs) are ∼22-nt regulatory RNAs generated by stepwise cleavage of primary hairpin transcripts by the Drosha and Dicer RNase III enzymes. We performed a genetic screen using an miRNA-repressed reporter in the Drosophila eye and recovered the first reported alleles of fly drosha, an allelic series of its dsRBD partner pasha, and novel alleles of dicer-1. Analysis of drosha mutants provided direct confirmation that mirtrons are independent of this nuclease, as inferred earlier from pasha knockouts. We further used these mutants to demonstrate in vivo cross-regulation of Drosha and Pasha in the intact animal, confirming remarkable conservation of a homeostatic mechanism that aligns their respective levels. Although the loss of core miRNA pathway components is universally lethal in animals, we unexpectedly recovered hypomorphic alleles that gave adult escapers with overtly normal development. However, the mutant photoreceptor neurons exhibited reduced synaptic transmission, without accompanying defects in neuronal development or maintenance. These findings indicate that synaptic function is especially sensitive to optimal miRNA pathway function. These allelic series of miRNA pathway mutants should find broad usage in studies of miRNA biogenesis and biology in the Drosophila system.
Collapse
Affiliation(s)
- Peter Smibert
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Fernando Bejarano
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Dong Wang
- Department of Physiology and Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Daniel L. Garaulet
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Jr-Shiuan Yang
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Raquel Martin
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Diane Bortolamiol-Becet
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Nicolas Robine
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - P. Robin Hiesinger
- Department of Physiology and Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Eric C. Lai
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
- Corresponding author.E-mail .
| |
Collapse
|
182
|
Abstract
Synthetic biology is an emerging field focused on engineering biomolecular systems and cellular capabilities for a variety of applications. Substantial progress began a little over a decade ago with the creation of synthetic gene networks inspired by electrical engineering. Since then, the field has designed and built increasingly complex circuits and constructs and begun to use these systems in a variety of settings, including the clinic. These efforts include the development of synthetic biology therapies for the treatment of infectious diseases and cancer, as well as approaches in vaccine development, microbiome engineering, cell therapy, and regenerative medicine. Here, we highlight advances in the biomedical application of synthetic biology and discuss the field's clinical potential.
Collapse
Affiliation(s)
- Warren C Ruder
- Howard Hughes Medical Institute, Department of Biomedical Engineering, and Center for BioDynamics, Boston University, Boston, MA 02115, USA
| | | | | |
Collapse
|
183
|
Abstract
A major goal of synthetic biology is to develop a deeper understanding of biological design principles from the bottom up, by building circuits and studying their behavior in cells. Investigators initially sought to design circuits "from scratch" that functioned as independently as possible from the underlying cellular system. More recently, researchers have begun to develop a new generation of synthetic circuits that integrate more closely with endogenous cellular processes. These approaches are providing fundamental insights into the regulatory architecture, dynamics, and evolution of genetic circuits and enabling new levels of control across diverse biological systems.
Collapse
Affiliation(s)
- Nagarajan Nandagopal
- Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
184
|
Marshall JM. The toxin and antidote puzzle: new ways to control insect pest populations through manipulating inheritance. Bioeng Bugs 2011; 2:235-40. [PMID: 21876382 DOI: 10.4161/bbug.2.5.15801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Insects carry out essential ecological functions, such as pollination, but also cause extensive damage to agricultural crops, and transmit human diseases such as malaria and dengue fever. Advances in insect transgenesis are making it increasingly feasible to engineer genes conferring desirable phenotypes, and gene drive systems are required to spread these genes into wild populations. Medea provides one solution, being able to spread into a population from very low initial frequencies through the action of a maternally-expressed toxin linked to a zygotically-expressed antidote. Several other toxin-antidote combinations are imaginable that distort the offspring ratio in favor of a desired transgene, or drive the population towards an all-male crash. We explore two such systems--Semele, which is capable of spreading a desired transgene into an isolated population in a confined manner; and Merea, which is capable of inducing a local population crash when located on the Z chromosome of a Lepidopteron pest.
Collapse
Affiliation(s)
- John M Marshall
- Division of Biology, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
185
|
Awasaki T, Lee T. New tools for the analysis of glial cell biology in Drosophila. Glia 2011; 59:1377-86. [PMID: 21305614 PMCID: PMC3128189 DOI: 10.1002/glia.21133] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 12/02/2010] [Indexed: 11/07/2022]
Abstract
Because of its genetic, molecular, and behavioral tractability, Drosophila has emerged as a powerful model system for studying molecular and cellular mechanisms underlying the development and function of nervous systems. The Drosophila nervous system has fewer neurons and exhibits a lower glia:neuron ratio than is seen in vertebrate nervous systems. Despite the simplicity of the Drosophila nervous system, glial organization in flies is as sophisticated as it is in vertebrates. Furthermore, fly glial cells play vital roles in neural development and behavior. In addition, powerful genetic tools are continuously being created to explore cell function in vivo. In taking advantage of these features, the fly nervous system serves as an excellent model system to study general aspects of glial cell development and function in vivo. In this article, we review and discuss advanced genetic tools that are potentially useful for understanding glial cell biology in Drosophila.
Collapse
Affiliation(s)
- Takeshi Awasaki
- Department of Neurobiology, University of Massachusetts, Worcester, Massachusetts 01605, USA
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Tzumin Lee
- Department of Neurobiology, University of Massachusetts, Worcester, Massachusetts 01605, USA
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| |
Collapse
|
186
|
Marshall JM, Hay BA. Inverse Medea as a novel gene drive system for local population replacement: a theoretical analysis. J Hered 2011; 102:336-41. [PMID: 21493596 PMCID: PMC3076586 DOI: 10.1093/jhered/esr019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
One strategy to control mosquito-borne diseases, such as malaria and dengue fever, on a regional scale is to use gene drive systems to spread disease-refractory genes into wild mosquito populations. The development of a synthetic Medea element that has been shown to drive population replacement in laboratory Drosophila populations has provided encouragement for this strategy but has also been greeted with caution over the concern that transgenes may spread into countries without their consent. Here, we propose a novel gene drive system, inverse Medea, which is strong enough to bring about local population replacement but is unable to establish itself beyond an isolated release site. The system consists of 2 genetic components--a zygotic toxin and maternal antidote--which render heterozygous offspring of wild-type mothers unviable. Through population genetic analysis, we show that inverse Medea will only spread when it represents a majority of the alleles in a population. The element is best located on an autosome and will spread to fixation provided any associated fitness costs are dominant and to very high frequency otherwise. We suggest molecular tools that could be used to build the inverse Medea system and discuss its utility for a confined release of transgenic mosquitoes.
Collapse
Affiliation(s)
- John M Marshall
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
187
|
Abstract
Cytoplasmic incompatibility induced by inherited intracellular bacteria of arthropods, and Medea elements found in flour beetles, are both forms of postsegregation distortion involving the killing of embryos in order to increase the ratio of progeny that inherit them. The recently described peel-zeel element of Caenorhabditis elegans also uses this mechanism; like Medea the genes responsible are in the nuclear genome but it shares a paternal mode of action with the bacteria. The peel-1 gene has now been shown to encode a potent toxin that is delivered by sperm, and rescued by zygotic transcription of the linked zeel-1. The predominance of self-fertilization in C. elegans has produced an unusual distribution pattern for a selfish genetic element; further population and functional studies will shed light on its evolution. The element might also have potential for use in disease control.
Collapse
|
188
|
Selfish genetic elements, genetic conflict, and evolutionary innovation. Proc Natl Acad Sci U S A 2011; 108 Suppl 2:10863-70. [PMID: 21690392 DOI: 10.1073/pnas.1102343108] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genomes are vulnerable to selfish genetic elements (SGEs), which enhance their own transmission relative to the rest of an individual's genome but are neutral or harmful to the individual as a whole. As a result, genetic conflict occurs between SGEs and other genetic elements in the genome. There is growing evidence that SGEs, and the resulting genetic conflict, are an important motor for evolutionary change and innovation. In this review, the kinds of SGEs and their evolutionary consequences are described, including how these elements shape basic biological features, such as genome structure and gene regulation, evolution of new genes, origin of new species, and mechanisms of sex determination and development. The dynamics of SGEs are also considered, including possible "evolutionary functions" of SGEs.
Collapse
|
189
|
Computer simulation on disease vector population replacement driven by the maternal effect dominant embryonic arrest. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 696:335-43. [PMID: 21431574 DOI: 10.1007/978-1-4419-7046-6_34] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
In this chapter, we present a series of computer simulations on the genetic modification of disease vectors. We compared the effectiveness of two techniques of genetic modification, transposable elements and maternal effect dominant embryonic arrest (MEDEA). A gene drive mechanism based on MEDEA is introduced in the population to confer immunity to individuals. Experimental results suggested that the genetic maternal effects could be necessary for the effectiveness of a disease control strategy based on the genetic modification of vectors.
Collapse
|
190
|
Windbichler N, Menichelli M, Papathanos PA, Thyme SB, Li H, Ulge UY, Hovde BT, Baker D, Monnat RJ, Burt A, Crisanti A. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature 2011; 473:212-5. [PMID: 21508956 PMCID: PMC3093433 DOI: 10.1038/nature09937] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/16/2011] [Indexed: 01/07/2023]
Abstract
Genetic methods of manipulating or eradicating disease vector populations have long been discussed as an attractive alternative to existing control measures because of their potential advantages in terms of effectiveness and species specificity. The development of genetically engineered malaria-resistant mosquitoes has shown, as a proof of principle, the possibility of targeting the mosquito's ability to serve as a disease vector. The translation of these achievements into control measures requires an effective technology to spread a genetic modification from laboratory mosquitoes to field populations. We have suggested previously that homing endonuclease genes (HEGs), a class of simple selfish genetic elements, could be exploited for this purpose. Here we demonstrate that a synthetic genetic element, consisting of mosquito regulatory regions and the homing endonuclease gene I-SceI, can substantially increase its transmission to the progeny in transgenic mosquitoes of the human malaria vector Anopheles gambiae. We show that the I-SceI element is able to invade receptive mosquito cage populations rapidly, validating mathematical models for the transmission dynamics of HEGs. Molecular analyses confirm that expression of I-SceI in the male germline induces high rates of site-specific chromosomal cleavage and gene conversion, which results in the gain of the I-SceI gene, and underlies the observed genetic drive. These findings demonstrate a new mechanism by which genetic control measures can be implemented. Our results also show in principle how sequence-specific genetic drive elements like HEGs could be used to take the step from the genetic engineering of individuals to the genetic engineering of populations.
Collapse
Affiliation(s)
- Nikolai Windbichler
- Imperial College London, Department of Life Sciences, South Kensington Campus, London, SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat Methods 2011; 8:405-7. [PMID: 21460824 DOI: 10.1038/nmeth.1592] [Citation(s) in RCA: 634] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/14/2011] [Indexed: 11/09/2022]
Abstract
Existing transgenic RNAi resources in Drosophila melanogaster based on long double-stranded hairpin RNAs are powerful tools for functional studies, but they are ineffective in gene knockdown during oogenesis, an important model system for the study of many biological questions. We show that shRNAs, modeled on an endogenous microRNA, are extremely effective at silencing gene expression during oogenesis. We also describe our progress toward building a genome-wide shRNA resource.
Collapse
|
192
|
Lee G, Wang Z, Sehgal R, Chen CH, Kikuno K, Hay B, Park JH. Drosophila caspases involved in developmentally regulated programmed cell death of peptidergic neurons during early metamorphosis. J Comp Neurol 2011; 519:34-48. [PMID: 21120926 DOI: 10.1002/cne.22498] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A great number of obsolete larval neurons in the Drosophila central nervous system are eliminated by developmentally programmed cell death (PCD) during early metamorphosis. To elucidate the mechanisms of neuronal PCD occurring during this period, we undertook genetic dissection of seven currently known Drosophila caspases in the PCD of a group of interneurons (vCrz) that produce corazonin (Crz) neuropeptide in the ventral nerve cord. The molecular death program in the vCrz neurons initiates within 1 hour after pupariation, as demonstrated by the cytological signs of cell death and caspase activation. PCD was significantly suppressed in dronc-null mutants, but not in null mutants of either dredd or strica. A double mutation lacking both dronc and strica impaired PCD phenotype more severely than did a dronc mutation alone, but comparably to a triple dredd/strica/dronc mutation, indicating that dronc is a main initiator caspase, while strica plays a minor role that overlaps with dronc's. As for effector caspases, vCrz PCD requires both ice and dcp-1 functions, as they work cooperatively for a timely removal of the vCrz neurons. Interestingly, the activation of the Ice and Dcp-1 is not solely dependent on Dronc and Strica, implying an alternative pathway to activate the effectors. Two remaining effector caspase genes, decay and damm, found no apparent functions in the neuronal PCD, at least during early metamorphosis. Overall, our work revealed that vCrz PCD utilizes dronc, strica, dcp-1, and ice wherein the activation of Ice and Dcp-1 requires a novel pathway in addition to the initiator caspases.
Collapse
Affiliation(s)
- Gyunghee Lee
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | | | |
Collapse
|
193
|
Marshall JM, Pittman GW, Buchman AB, Hay BA. Semele: a killer-male, rescue-female system for suppression and replacement of insect disease vector populations. Genetics 2011; 187:535-51. [PMID: 21078687 PMCID: PMC3030495 DOI: 10.1534/genetics.110.124479] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 11/10/2010] [Indexed: 11/18/2022] Open
Abstract
Two strategies to control mosquito-borne diseases, such as malaria and dengue fever, are reducing mosquito population sizes or replacing populations with disease-refractory varieties. We propose a genetic system, Semele, which may be used for both. Semele consists of two components: a toxin expressed in transgenic males that either kills or renders infertile wild-type female recipients and an antidote expressed in females that protects them from the effects of the toxin. An all-male release results in population suppression because wild-type females that mate with transgenic males produce no offspring. A release that includes transgenic females results in gene drive since females carrying the allele are favored at high population frequencies. We use simple population genetic models to explore the utility of the Semele system. We find that Semele can spread under a wide range of conditions, all of which require a high introduction frequency. This feature is desirable since transgenic insects released accidentally are unlikely to persist, transgenic insects released intentionally can be spatially confined, and the element can be removed from a population through sustained release of wild-type insects. We examine potential barriers to Semele gene drive and suggest molecular tools that could be used to build the Semele system.
Collapse
Affiliation(s)
- John M Marshall
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W2 1PG, United Kingdom.
| | | | | | | |
Collapse
|
194
|
Malaria vector control: from past to future. Parasitol Res 2011; 108:757-79. [PMID: 21229263 DOI: 10.1007/s00436-010-2232-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/06/2010] [Indexed: 01/17/2023]
Abstract
Malaria is one of the most common vector-borne diseases widespread in the tropical and subtropical regions. Despite considerable success of malaria control programs in the past, malaria still continues as a major public health problem in several countries. Vector control is an essential part for reducing malaria transmission and became less effective in recent years, due to many technical and administrative reasons, including poor or no adoption of alternative tools. Of the different strategies available for vector control, the most successful are indoor residual spraying and insecticide-treated nets (ITNs), including long-lasting ITNs and materials. Earlier DDT spray has shown spectacular success in decimating disease vectors but resulted in development of insecticide resistance, and to control the resistant mosquitoes, organophosphates, carbamates, and synthetic pyrethroids were introduced in indoor residual spraying with needed success but subsequently resulted in the development of widespread multiple insecticide resistance in vectors. Vector control in many countries still use insecticides in the absence of viable alternatives. Few developments for vector control, using ovitraps, space spray, biological control agents, etc., were encouraging when used in limited scale. Likewise, recent introduction of safer vector control agents, such as insect growth regulators, biocontrol agents, and natural plant products have yet to gain the needed scale of utility for vector control. Bacterial pesticides are promising and are effective in many countries. Environmental management has shown sufficient promise for vector control and disease management but still needs advocacy for inter-sectoral coordination and sometimes are very work-intensive. The more recent genetic manipulation and sterile insect techniques are under development and consideration for use in routine vector control and for these, standardized procedures and methods are available but need thorough understanding of biology, ethical considerations, and sufficiently trained manpower for implementation being technically intensive methods. All the methods mentioned in the review that are being implemented or proposed for implementation needs effective inter-sectoral coordination and community participation. The latest strategy is evolution-proof insecticides that include fungal biopesticides, Wolbachia, and Denso virus that essentially manipulate the life cycle of the mosquitoes were found effective but needs more research. However, for effective vector control, integrated vector management methods, involving use of combination of effective tools, is needed and is also suggested by Global Malaria Control Strategy. This review article raises issues associated with the present-day vector control strategies and state opportunities with a focus on ongoing research and recent advances to enable to sustain the gains achieved so far.
Collapse
|
195
|
Ward CM, Su JT, Huang Y, Lloyd AL, Gould F, Hay BA. Medea selfish genetic elements as tools for altering traits of wild populations: a theoretical analysis. Evolution 2010; 65:1149-62. [PMID: 21062278 DOI: 10.1111/j.1558-5646.2010.01186.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One strategy for controlling transmission of insect-borne disease involves replacing the native insect population with transgenic animals unable to transmit disease. Population replacement requires a drive mechanism to ensure the rapid spread of linked transgenes, the presence of which may result in a fitness cost to carriers. Medea selfish genetic elements have the feature that when present in a female, only offspring that inherit the element survive, a behavior that can lead to spread. Here, we derive equations that describe the conditions under which Medea elements with a fitness cost will spread, and the equilibrium allele frequencies are achieved. Of particular importance, we show that whenever Medea spreads, the non-Medea genotype is driven out of the population, and we estimate the number of generations required to achieve this goal for Medea elements with different fitness costs and male-only introduction frequencies. Finally, we characterize two contexts in which Medea elements with fitness costs drive the non-Medea allele from the population: an autosomal element in which not all Medea-bearing progeny of a Medea-bearing mother survive, and an X-linked element in species in which X/Y individuals are male. Our results suggest that Medea elements can drive population replacement under a wide range of conditions.
Collapse
Affiliation(s)
- Catherine M Ward
- Division of Biology, MC156-29, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| | | | | | | | | | | |
Collapse
|
196
|
Hay BA, Chen CH, Ward CM, Huang H, Su JT, Guo M. Engineering the genomes of wild insect populations: challenges, and opportunities provided by synthetic Medea selfish genetic elements. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1402-13. [PMID: 20570677 PMCID: PMC3601555 DOI: 10.1016/j.jinsphys.2010.05.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 05/10/2023]
Abstract
Advances in insect transgenesis and our knowledge of insect physiology and genomics are making it possible to create transgenic populations of beneficial or pest insects that express novel traits. There are contexts in which we may want the transgenes responsible for these traits to spread so that all individuals within a wild population carry them, a process known as population replacement. Transgenes of interest are unlikely to confer an overall fitness benefit on those who carry them. Therefore, an essential component of any population replacement strategy is the presence of a drive mechanism that will ensure the spread of linked transgenes. We discuss contexts in which population replacement might be desirable and the requirements a drive system must satisfy to be both effective and safe. We then describe the creation of synthetic Medea elements, the first selfish genetic elements synthesized de novo, with the capability of driving population replacement, in this case in Drosophila. The strategy used to create Drosophila Medea is applicable to a number of other insect species and the Medea system satisfies key requirements for scientific and social acceptance. Finally, we highlight several challenges to implementing population replacement in the wild.
Collapse
Affiliation(s)
- Bruce A Hay
- Division of Biology, MC156-29, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, United States.
| | | | | | | | | | | |
Collapse
|
197
|
Benedict M, Eckerstorfer M, Franz G, Gaugitsch H, Greiter A, Heissenberger A, Knols B, Kumschick S, Nentwig W, Rabitsch W. Defining Environment Risk Assessment Criteria for Genetically Modified Insects to be placed on the EU Market. ACTA ACUST UNITED AC 2010. [DOI: 10.2903/sp.efsa.2010.en-71] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
198
|
Carter V, Hurd H. Choosing anti-Plasmodium molecules for genetically modifying mosquitoes: focus on peptides. Trends Parasitol 2010; 26:582-90. [PMID: 20800543 DOI: 10.1016/j.pt.2010.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 11/27/2022]
Abstract
In the wake of the development of insecticide resistance in mosquitoes, novel strategies for halting malaria transmission are being developed. These include the genetic modification (GM) of mosquitoes to become incompetent vectors. Although mosquito GM technologies are progressing rapidly, the rationale behind choosing anti-parasite molecules to be expressed by mosquitoes has received less attention. Here, questions are explored that that should be addressed during the strategic selection of these anti-Plasmodium molecules, focusing on antimicrobial peptides. Properties that will enhance the likelihood of success are discussed, and the need to plan an initial strategy to eliminate molecules that cause fitness costs to the mosquito is considered. Effector molecules with proven anti-sporogonic stage activity are reviewed, and the activity of a selection of these molecules is detailed.
Collapse
Affiliation(s)
- Victoria Carter
- School of Life Sciences, Institute for Science and Technology in Medicine (ISTM), Keele University, Staffordshire, UK
| | | |
Collapse
|
199
|
Kermicle JL, Evans MMS. The Zea mays sexual compatibility gene ga2: naturally occurring alleles, their distribution, and role in reproductive isolation. ACTA ACUST UNITED AC 2010; 101:737-49. [PMID: 20696670 DOI: 10.1093/jhered/esq090] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Major genes govern the fertilization of teosinte ovules by maize pollen. A pollen-pistil compatibility system different from the previously described systems, Ga1-s and Tcb1-s, was identified among maize lines introgressed with chromosome segments from 2 teosinte populations. The pistil barrier is dominant, and pollen competence is determined by genotype of the individual pollen grain. A major gene governing this incompatibility behaves as a strong allele of ga2, a locus identified previously among maize genetic stocks on the basis of transmission ratio distortion. Additionally, pollen simultaneously carrying both ga2 and Ga2 was functional on Ga2 silks, which have the pistil barrier, indicating that Ga2 conditions acceptance of the pollen grain rather than ga2 conditioning rejection of the pollen grain by Ga2 silks. The strong allele (Ga2-s), a weaker one such as reported among maize genetic stocks (Ga2-w), and an allele having only pollen competence (Ga2-m), or some combination of these, was found in all 13 of the teosinte populations sampled. Sympatric and parapatric maize landraces carried Ga2-m or the presumed null allele ga2, but Ga2-s or Ga2-w was not found. The combination of exclusively Ga2-s teosinte with ga2 maize, which could provide strong reproductive isolation, was not characteristic of the 5, paired populations tested.
Collapse
Affiliation(s)
- Jerry L Kermicle
- the Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA.
| | | |
Collapse
|
200
|
Abstract
RNA interference (RNAi) provides a powerful reverse genetics approach to analyze gene functions both in tissue culture and in vivo. Because of its widespread applicability and effectiveness it has become an essential part of the tool box kits of model organisms such as Caenorhabditis elegans, Drosophila, and the mouse. In addition, the use of RNAi in animals in which genetic tools are either poorly developed or nonexistent enables a myriad of fundamental questions to be asked. Here, we review the methods and applications of in vivo RNAi to characterize gene functions in model organisms and discuss their impact to the study of developmental as well as evolutionary questions. Further, we discuss the applications of RNAi technologies to crop improvement, pest control and RNAi therapeutics, thus providing an appreciation of the potential for phenomenal applications of RNAi to agriculture and medicine.
Collapse
Affiliation(s)
- Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|