151
|
Yu Z, Chen W, Wang Y, Zhang P, Shi N, Hong Y. Mobile Flowering Locus T RNA - Biological Relevance and Biotechnological Potential. FRONTIERS IN PLANT SCIENCE 2022; 12:792192. [PMID: 35046978 PMCID: PMC8761650 DOI: 10.3389/fpls.2021.792192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Many systemically mobile mRNAs have been revealed in phloem. However, very few of them have been found to be of clear signaling functions. One of such rare examples is the mobile Flowering locus T (FT) mRNA despite the continuous debate about its mobility and biological relevance to the control of flowering time in plants. Nevertheless, accumulating evidence supports the notion of the long-distance movement of FT mRNA from leaf to shoot apex meristem and its role in flowering. In this review, we discuss the discovery of florigenic FT, the initial debate on long-distance movement of FT mRNA, emerging evidence to prove its mobility, and the use of mobile FT mRNA to generate heritable transgenerational gene editing in plants. We elaborate on evidence from virus-based RNA mobility assay, plant grafting, RNA with fluorescent protein labeling, and CRISPR/Cas9 gene-editing technology, to demonstrate that the FT mRNA besides the FT protein can move systemically and function as an integral component of the florigenic signal in flowering. We also propose a model to prompt further research on the molecular mechanism underlying the long-distance movement of this important mobile signaling RNA in plants.
Collapse
Affiliation(s)
- Zhiming Yu
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Weiwei Chen
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yue Wang
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Pengcheng Zhang
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Nongnong Shi
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- School of Science and the Environment, University of Worcester, Worcester, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
152
|
Liang Q, Song K, Lu M, Dai T, Yang J, Wan J, Li L, Chen J, Zhan R, Wang S. Transcriptome and Metabolome Analyses Reveal the Involvement of Multiple Pathways in Flowering Intensity in Mango. FRONTIERS IN PLANT SCIENCE 2022; 13:933923. [PMID: 35909785 PMCID: PMC9330041 DOI: 10.3389/fpls.2022.933923] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/13/2022] [Indexed: 05/19/2023]
Abstract
Mango (Mangifera indica L.) is famous for its sweet flavor and aroma. China is one of the major mango-producing countries. Mango is known for variations in flowering intensity that impacts fruit yield and farmers' profitability. In the present study, transcriptome and metabolome analyses of three cultivars with different flowering intensities were performed to preliminarily elucidate their regulatory mechanisms. The transcriptome profiling identified 36,242 genes. The major observation was the differential expression patterns of 334 flowering-related genes among the three mango varieties. The metabolome profiling detected 1,023 metabolites that were grouped into 11 compound classes. Our results show that the interplay of the FLOWERING LOCUS T and CONSTANS together with their upstream/downstream regulators/repressors modulate flowering robustness. We found that both gibberellins and auxins are associated with the flowering intensities of studied mango varieties. Finally, we discuss the roles of sugar biosynthesis and ambient temperature pathways in mango flowering. Overall, this study presents multiple pathways that can be manipulated in mango trees regarding flowering robustness.
Collapse
Affiliation(s)
- Qingzhi Liang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- *Correspondence: Qingzhi Liang
| | - Kanghua Song
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Mingsheng Lu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- College of Tropical Crops, Yunnan Agricultural University, Puer, China
| | - Tao Dai
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- College of Tropical Crops, Yunnan Agricultural University, Puer, China
| | - Jie Yang
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Jiaxin Wan
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- College of Agriculture, Guangxi University, Nanning, China
| | - Li Li
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Jingjing Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Rulin Zhan
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Rulin Zhan
| | - Songbiao Wang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- Songbiao Wang
| |
Collapse
|
153
|
Uke A, Tokunaga H, Utsumi Y, Vu NA, Nhan PT, Srean P, Hy NH, Ham LH, Lopez-Lavalle LAB, Ishitani M, Hung N, Tuan LN, Van Hong N, Huy NQ, Hoat TX, Takasu K, Seki M, Ugaki M. Cassava mosaic disease and its management in Southeast Asia. PLANT MOLECULAR BIOLOGY 2022; 109:301-311. [PMID: 34240309 PMCID: PMC9162994 DOI: 10.1007/s11103-021-01168-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/21/2021] [Indexed: 05/09/2023]
Abstract
Key message Status of the current outbreak of cassava mosaic disease (CMD) in Southeast Asia was reviewed. Healthy cassava seed production and dissemination systems have been established in Vietnam and Cambodia, along with integrated disease and pest management systems, to combat the outbreak. Abstract Cassava (Manihot esculenta Crantz) is one of the most important edible crops in tropical and subtropical regions. Recently, invasive insect pests and diseases have resulted in serious losses to cassava in Southeast Asia. In this review we discuss the current outbreak of cassava mosaic disease (CMD) caused by the Sri Lankan cassava mosaic virus (SLCMV) in Southeast Asia, and summarize similarities between SLCMV and other cassava mosaic begomoviruses. A SATREPS (Science and Technology Research Partnership for Sustainable Development) project “Development and dissemination of sustainable production systems based on invasive pest management of cassava in Vietnam, Cambodia and Thailand”, was launched in 2016, which has been funded by The Japan International Cooperation Agency (JICA) and The Japan Science and Technology Agency (JST), Japan. The objectives of SATREPS were to establish healthy seed production and dissemination systems for cassava in south Vietnam and Cambodia, and to develop management systems for plant diseases and insect pests of cassava. To achieve these goals, model systems of healthy seed production in Vietnam and Cambodia have been developed incorporating CMD-resistant planting materials through international networks with The International Center for Tropical Agriculture (CIAT) and The International Institute of Tropical Agriculture (IITA). Supplementary Information The online version contains supplementary material available at 10.1007/s11103-021-01168-2.
Collapse
Affiliation(s)
- Ayaka Uke
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba Japan
| | - Hiroki Tokunaga
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa Japan
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
| | - Yoshinori Utsumi
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa Japan
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
| | - Nguyen Anh Vu
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Pham Thi Nhan
- Hung Loc Agricultural Research Center (HLARC), Dong Nai, Vietnam
| | - Pao Srean
- University of Battambang (UBB), Battambang, Cambodia
| | - Nguyen Huu Hy
- Hung Loc Agricultural Research Center (HLARC), Dong Nai, Vietnam
| | - Le Huy Ham
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | | | - Manabu Ishitani
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Nguyen Hung
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Le Ngoc Tuan
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Nguyen Van Hong
- Sub-Department of Plantation and Plant Protection of Tay Ninh Province, Hanoi, Vietnam
| | - Ngo Quang Huy
- Plant Protection Research Institute (PPRI), Hanoi, Vietnam
| | | | - Keiji Takasu
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Motoaki Seki
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa Japan
- International Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa Japan
| | - Masashi Ugaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba Japan
| |
Collapse
|
154
|
Kofler J, Milyaev A, Würtz B, Pfannstiel J, Flachowsky H, Wünsche JN. Proteomic differences in apple spur buds from high and non-cropping trees during floral initiation. J Proteomics 2021; 253:104459. [PMID: 34923173 DOI: 10.1016/j.jprot.2021.104459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 11/28/2021] [Accepted: 12/10/2021] [Indexed: 01/04/2023]
Abstract
The cropping behavior of biennial apple (Malus ×domestica Borkh.) cultivars is irregular and often follows a biennial bearing pattern with 'On' years (high crop load and inhibited floral bud formation) followed by 'Off' years (little crop load and a promoted formation of floral buds). To study proteomic differences between floral and vegetative buds, trees of the strongly alternating cultivar 'Fuji' and the regular bearing cultivar 'Gala' were either completely thinned or not thinned at full bloom to establish two cropping treatments with no ('Off') or a high ('On') crop load, respectively. Student's t-Tests indicated significant differences of protein profiles in buds from 2-year old spurs from both treatments at each sampling date. Abundance patterns of protein clusters coincided with the onset of floral bud initiation and were most noticeable in buds from 'On' trees with a decreased abundance of key enzymes of the phenylpropanoid and flavonoid pathways and an increased abundance of histone deacetylase and ferritins. Furthermore, an increased abundance of proteins involved in histone and DNA methylation was found in the buds from 'Off' trees. This study presents the first large-scale, label-free proteomic profiling of floral and vegetative apple buds during the period of floral bud initiation. SIGNIFICANCE: Although several studies exist that address the complex developmental processes associated with the formation of floral buds in apple (Malus ×domestica Borkh.) at transcriptomic level, no data is available for explaining the difference between floral and vegetative buds or biennial and regular bearing cultivars on a proteomic level. This study presents the first large-scale, label-free proteomic profiling of floral and vegetative apple buds from the two cultivars 'Fuji' and 'Royal Gala' during the period of floral bud initiation and renders possible the development of suitable biomarkers for biennial bearing in apple.
Collapse
Affiliation(s)
- Julian Kofler
- Institute of Crop Science, Section of Crop Physiology of Specialty Crops (340f), University of Hohenheim, Emil-Wolff-Straße 23, 70599 Stuttgart, Germany.
| | - Anton Milyaev
- Institute of Crop Science, Section of Crop Physiology of Specialty Crops (340f), University of Hohenheim, Emil-Wolff-Straße 23, 70599 Stuttgart, Germany
| | - Berit Würtz
- Mass Spectometry Unit, Core Facility Hohenheim (640), University of Hohenheim, August-von-Hartmann-Str. 3, 70599 Stuttgart, Germany
| | - Jens Pfannstiel
- Mass Spectometry Unit, Core Facility Hohenheim (640), University of Hohenheim, August-von-Hartmann-Str. 3, 70599 Stuttgart, Germany
| | - Henryk Flachowsky
- Institute for Breeding Research on Fruit Crops, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Jens-Norbert Wünsche
- Institute of Crop Science, Section of Crop Physiology of Specialty Crops (340f), University of Hohenheim, Emil-Wolff-Straße 23, 70599 Stuttgart, Germany
| |
Collapse
|
155
|
Yoshioka H, Kimura K, Ogo Y, Ohtsuki N, Nishizawa-Yokoi A, Itoh H, Toki S, Izawa T. Real-Time Monitoring of Key Gene Products Involved in Rice Photoperiodic Flowering. FRONTIERS IN PLANT SCIENCE 2021; 12:766450. [PMID: 34975949 PMCID: PMC8715009 DOI: 10.3389/fpls.2021.766450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Flowering is an important biological process through which plants determine the timing of reproduction. In rice, florigen mRNA is induced more strongly when the day length is shorter than the critical day length through recognition of 30-min differences in the photoperiod. Grain number, plant height, and heading date 7 (Ghd7), which encodes a CCT-domain protein unique to monocots, has been identified as a key floral repressor in rice, and Heading date 1 (Hd1), a rice ortholog of the Arabidopsis floral activator CONSTANS (CO), is another key floral regulator gene. The Hd1 gene product has been shown to interact with the Ghd7 gene product to form a strong floral repressor complex under long-day conditions. However, the mRNA dynamics of these genes cannot explain the day-length responses of their downstream genes. Thus, a real-time monitoring system of these key gene products is needed to elucidate the molecular mechanisms underlying accurate photoperiod recognition in rice. Here, we developed a monitoring system using luciferase (LUC) fusion protein lines derived from the Ghd7-LUC and Hd1-LUC genes. We successfully obtained a functionally complemented gene-targeted line for Ghd7-LUC. Using this system, we found that the Ghd7-LUC protein begins to accumulate rapidly after dawn and reaches its peak more rapidly under a short-day condition than under a long-day condition. Our system provides a powerful tool for revealing the accurate time-keeping regulation system incorporating these key gene products involved in rice photoperiodic flowering.
Collapse
Affiliation(s)
- Hayato Yoshioka
- Laboratory of Plant Breeding and Genetics, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keiko Kimura
- Laboratory of Plant Breeding and Genetics, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuko Ogo
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Namie Ohtsuki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Ayako Nishizawa-Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Hironori Itoh
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Takeshi Izawa
- Laboratory of Plant Breeding and Genetics, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
156
|
Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2021; 65:33-92. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
|
157
|
Qu L, Chu YJ, Lin WH, Xue HW. A secretory phospholipase D hydrolyzes phosphatidylcholine to suppress rice heading time. PLoS Genet 2021; 17:e1009905. [PMID: 34879072 PMCID: PMC8654219 DOI: 10.1371/journal.pgen.1009905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 10/21/2021] [Indexed: 11/18/2022] Open
Abstract
Phospholipase D (PLD) hydrolyzes membrane phospholipids and is crucial in various physiological processes and transduction of different signals. Secretory phospholipases play important roles in mammals, however, whose functions in plants remain largely unknown. We previously identified a rice secretory PLD (spPLD) that harbors a signal peptide and here we reported the secretion and function of spPLD in rice heading time regulation. Subcellular localization analysis confirmed the signal peptide is indispensable for spPLD secretion into the extracellular spaces, where spPLD hydrolyzes substrates. spPLD overexpression results in delayed heading time which is dependent on its secretory character, while suppression or deficiency of spPLD led to the early heading of rice under both short-day and long-day conditions, which is consistent with that spPLD overexpression/suppression indeed led to the reduced/increased Hd3a/RFT1 (Arabidopsis Flowing Locus T homolog) activities. Interestingly, rice Hd3a and RFT1 bind to phosphatidylcholines (PCs) and a further analysis by lipidomic approach using mass spectrometry revealed the altered phospholipids profiles in shoot apical meristem, particularly the PC species, under altered spPLD expressions. These results indicate the significance of secretory spPLD and help to elucidate the regulatory network of rice heading time. Secretory phospholipases play essential roles in physiological processes of mammals, while functions of them in plants remain unknown. We identified a rice secretory PLD (spPLD) harboring a signal peptide which is indispensable for secretion of spPLD. Functional studies showed that altered spPLD expression resulted in the changed heading time of rice under both short-day and long-day conditions, which is dependent on the secretory character of spPLD. Rice Hd3a and RFT1, the homologs of Arabidopsis Flowing Locus T (FT), bind to phosphatidylcholine (PC) to promote heading. Analysis of phospholipids profiles in shoot apical meristem by using a mass spectrometry-based lipidomic approach demonstrated that spPLD regulates heading time by hydrolyzing the light period-predominant PC species, further revealing the crucial role of secretory proteins in regulating plant growth and development.
Collapse
Affiliation(s)
- Li Qu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Jia Chu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wen-Hui Lin
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (W-HL); (H-WX)
| | - Hong-Wei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (W-HL); (H-WX)
| |
Collapse
|
158
|
Bai Y, Zhao X, Yao X, Yao Y, An L, Li X, Wang Y, Gao X, Jia Y, Guan L, Li M, Wu K, Wang Z. Genome wide association study of plant height and tiller number in hulless barley. PLoS One 2021; 16:e0260723. [PMID: 34855842 PMCID: PMC8639095 DOI: 10.1371/journal.pone.0260723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
Hulless barley (Hordeum vulgare L. var. nudum), also called naked barley, is a unique variety of cultivated barley. The genome-wide specific length amplified fragment sequencing (SLAF-seq) method is a rapid deep sequencing technology that is used for the selection and identification of genetic loci or markers. In this study, we collected 300 hulless barley accessions and used the SLAF-seq method to identify candidate genes involved in plant height (PH) and tiller number (TN). We obtained a total of 1407 M paired-end reads, and 228,227 SLAF tags were developed. After filtering using an integrity threshold of >0.8 and a minor allele frequency of >0.05, 14,504,892 single-nucleotide polymorphisms (SNP) loci were screened out. The remaining SNPs were used for the construction of a neighbour-joining phylogenetic tree, and the three subcluster members showed no obvious differentiation among regional varieties. We used a genome wide association study approach to identify 1006 and 113 SNPs associated with TN and PH, respectively. Based on best linear unbiased predictors (BLUP), 41 and 29 SNPs associated with TN and PH, respectively. Thus, several of genes, including Hd3a and CKX5, may be useful candidates for the future genetic breeding of hulless barley. Taken together, our results provide insight into the molecular mechanisms controlling barley architecture, which is important for breeding and yield.
Collapse
Affiliation(s)
- Yixiong Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai Province, China
| | - Xiaohong Zhao
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai Province, China
- Good Agricultural Practices Research Center of Traditional, Chongqing Institute of Medicinal Plant Cultivation, Chongqing, China
| | - Xiaohua Yao
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai Province, China
| | - Youhua Yao
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai Province, China
| | - Likun An
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai Province, China
| | - Xin Li
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai Province, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yatao Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Lulu Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Man Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Kunlun Wu
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai Province, China
- * E-mail: (KW); (ZW)
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (KW); (ZW)
| |
Collapse
|
159
|
Liu H, Huang X, Ma B, Zhang T, Sang N, Zhuo L, Zhu J. Components and Functional Diversification of Florigen Activation Complexes in Cotton. PLANT & CELL PHYSIOLOGY 2021; 62:1542-1555. [PMID: 34245289 DOI: 10.1093/pcp/pcab107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/16/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
In shoot apex cells of rice, a hexameric florigen activation complex (FAC), comprising flowering locus T (FT), 14-3-3 and the basic leucine zipper transcription factor FD, activates downstream target genes and regulates several developmental transitions, including flowering. The allotetraploid cotton (Gossypium hirsutum L.) contains only one FT locus in both of the A- and D-subgenomes. However, there is limited information regarding cotton FACs. Here, we identified a 14-3-3 protein that interacts strongly with GhFT in the cytoplasm and the nuclei, and five FD homoeologous gene pairs were characterized. In vivo, all five GhFD proteins interacted with Gh14-3-3 and GhFT in the nucleus. GhFT, 14-3-3 and all the GhFDs interacted in the nucleus as well, suggesting that they formed a ternary complex. Virus-induced silencing of GhFD1, -2 and -4 in cotton delayed flowering and inhibited the expression of floral meristem identity genes. Silencing GhFD3 strongly decreased lateral root formation, suggesting a function in lateral root development. GhFD overexpression in Arabidopsis and transcriptional activation assays suggested that FACs containing GhFD1 and GhFD2 function mainly in promoting flowering with partial functional redundancy. Moreover, GhFD3 was specifically expressed in lateral root meristems and dominantly activated the transcription of auxin response factor genes, such as ARF19. Thus, the diverse functions of FACs may depend on the recruited GhFD. Creating targeted genetic mutations in the florigen system using Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) genome editing may fine-tune flowering and improve plant architecture.
Collapse
Affiliation(s)
- Hui Liu
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
- Plant Genomics Laboratory, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Bin Ma
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Tingting Zhang
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Na Sang
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Lu Zhuo
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Jianbo Zhu
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| |
Collapse
|
160
|
Structural and functional analysis of CCT family genes in pigeonpea. Mol Biol Rep 2021; 49:217-226. [PMID: 34800230 DOI: 10.1007/s11033-021-06860-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Pigeonpea (Cajanus cajan L.) is a photoperiod-sensitive short-day plant. Understanding the flowering-related genes is critical to developing photoperiod insensitive cultivars. METHODS The CCT family genes were identified using 'CCT DOMAIN PROTEIN' as a keyword and localized on the chromosomes using the BLAST search option available at the LIS database. The centromeric positions were identified through BLAST search using the centromeric repeat sequence of C. cajan as a query against the chromosome-wise FASTA files downloaded from the NCBI database. The CCT family genes were classified based on additional domains and/or CCT domains. The orthologous and phylogenetic relationships were inferred using the OrthoFinder and MEGA 10.1 software, respectively. The CCT family genes' expression level in photoperiod-sensitive and insensitive genotypes was compared using RNA-seq data and qRT-PCR analysis. RESULTS We identified 33 CCT family genes in C. cajan distributed on ten chromosomes and nine genomic scaffolds. They were classified into CMF-type, COL-type, PRR-type, and GTCC- type. The CCT family genes of legumes exhibited an extensive orthologous relationship. Glycine max showed the maximum similarity of CCT family genes with C. cajan. The expression analysis of CCT family genes using photoperiod insensitive (ICP20338) and photoperiod sensitive (MAL3) genotypes of C. cajan demonstrated that CcCCT4 and CcCCT23 are the active CONSTANS in ICP20338. In contrast, only CcCCT23 is active in MAL3. CONCLUSION The CCT family genes in C. cajan vary considerably in structure and domain types. They are maximally similar to soybean's CCT family genes. The differential photoperiod response of pigeonpea genotypes, ICP20338 and MAL3, is possibly due to the difference in the number and types of active CONSTANS in them.
Collapse
|
161
|
Wang X, Zhou P, Huang R, Zhang J, Ouyang X. A Daylength Recognition Model of Photoperiodic Flowering. FRONTIERS IN PLANT SCIENCE 2021; 12:778515. [PMID: 34868180 PMCID: PMC8638659 DOI: 10.3389/fpls.2021.778515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/22/2021] [Indexed: 06/01/2023]
Abstract
The photoperiodic flowering pathway is crucial for plant development to synchronize internal signaling events and external seasons. One hundred years after photoperiodic flowering was discovered, the underlying core signaling network has been elucidated in model plants such as Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and soybean (Glycine max). Here, we review the progress made in the photoperiodic flowering area and summarize previously accepted photoperiodic flowering models. We then introduce a new model based on daylength recognition by florigen. By determining the expression levels of the florigen gene, this model can assess the mechanism of daylength sensing and crop latitude adaptation. Future applications of this model under the constraints of global climate change are discussed.
Collapse
Affiliation(s)
- Xiaoying Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Peng Zhou
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Rongyu Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xinhao Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
162
|
In-Depth Sequence Analysis of Bread Wheat VRN1 Genes. Int J Mol Sci 2021; 22:ijms222212284. [PMID: 34830166 PMCID: PMC8626038 DOI: 10.3390/ijms222212284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022] Open
Abstract
The VERNALIZATION1 (VRN1) gene encodes a MADS-box transcription factor and plays an important role in the cold-induced transition from the vegetative to reproductive stage. Allelic variability of VRN1 homoeologs has been associated with large differences in flowering time. The aim of this study was to investigate the genetic variability of VRN1 homoeologs (VRN-A1, VRN-B1 and VRN-D1). We performed an in-depth sequence analysis of VRN1 homoeologs in a panel of 105 winter and spring varieties of hexaploid wheat. We describe the novel allele Vrn-B1f with an 836 bp insertion within intron 1 and show its specific expression pattern associated with reduced heading time. We further provide the complete sequence of the Vrn-A1b allele, revealing a 177 bp insertion in intron 1, which is transcribed into an alternative splice variant. Copy number variation (CNV) analysis of VRN1 homoeologs showed that VRN-B1 and VRN-D1 are present in only one copy. The copy number of recessive vrn-A1 ranged from one to four, while that of dominant Vrn-A1 was one or two. Different numbers of Vrn-A1a copies in the spring cultivars Branisovicka IX/49 and Bastion did not significantly affect heading time. We also report on the deletion of secondary structures (G-quadruplex) in promoter sequences of cultivars with more vrn-A1 copies.
Collapse
|
163
|
Mo Y, Lee CM, Park HM, Ha SK, Kim MJ, Kwak J, Lee HS, Lee JH, Jeung JU. Hd1 Allele Types and Their Associations with Major Agronomic Traits in Korean Rice Cultivars. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112408. [PMID: 34834770 PMCID: PMC8619422 DOI: 10.3390/plants10112408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Optimizing flowering time in crop plants is critical for maximizing yield and quality under target environments. While there is a wide range of heading date variation in Korean rice cultivars, the underlying gene mechanisms are unclear. Here, we sequenced the protein coding regions of Hd1, the major rice heading date gene, from 293 Korean rice cultivars and investigated the associations between Hd1 allele types and major agronomic traits under four different environments. There were four functional Hd1 and five nonfunctional hd1 alleles distributed among the 293 Korean rice cultivars. The effects of the Hd1 allele types were highly significant for days to heading in all four environments, explaining 51.4-65.8% of the phenotypic variation. On average, cultivars carrying nonfunctional hd1 headed 13.7 days earlier than those carrying functional Hd1. While the Hd1 allele types exhibited highly significant effects on culm length and protein content under all four environments, the differences between cultivars carrying Hd1 and hd1 were minimal. The effects of the Hd1 allele types on amylose content were significant in only one of the four environments. Our results provide useful information for fine-tuning rice heading dates by utilizing different Hd1 alleles in rice breeding programs.
Collapse
Affiliation(s)
- Youngjun Mo
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea; (Y.M.); (C.-M.L.); (H.-M.P.); (S.-K.H.); (M.-J.K.); (J.K.); (H.-S.L.); (J.-H.L.)
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
| | - Chang-Min Lee
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea; (Y.M.); (C.-M.L.); (H.-M.P.); (S.-K.H.); (M.-J.K.); (J.K.); (H.-S.L.); (J.-H.L.)
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
| | - Hyang-Mi Park
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea; (Y.M.); (C.-M.L.); (H.-M.P.); (S.-K.H.); (M.-J.K.); (J.K.); (H.-S.L.); (J.-H.L.)
| | - Su-Kyung Ha
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea; (Y.M.); (C.-M.L.); (H.-M.P.); (S.-K.H.); (M.-J.K.); (J.K.); (H.-S.L.); (J.-H.L.)
| | - Mi-Jung Kim
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea; (Y.M.); (C.-M.L.); (H.-M.P.); (S.-K.H.); (M.-J.K.); (J.K.); (H.-S.L.); (J.-H.L.)
| | - Jieun Kwak
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea; (Y.M.); (C.-M.L.); (H.-M.P.); (S.-K.H.); (M.-J.K.); (J.K.); (H.-S.L.); (J.-H.L.)
| | - Hyun-Sook Lee
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea; (Y.M.); (C.-M.L.); (H.-M.P.); (S.-K.H.); (M.-J.K.); (J.K.); (H.-S.L.); (J.-H.L.)
| | - Jeong-Heui Lee
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea; (Y.M.); (C.-M.L.); (H.-M.P.); (S.-K.H.); (M.-J.K.); (J.K.); (H.-S.L.); (J.-H.L.)
| | - Ji-Ung Jeung
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea; (Y.M.); (C.-M.L.); (H.-M.P.); (S.-K.H.); (M.-J.K.); (J.K.); (H.-S.L.); (J.-H.L.)
| |
Collapse
|
164
|
Chen L, He F, Long R, Zhang F, Li M, Wang Z, Kang J, Yang Q. A global alfalfa diversity panel reveals genomic selection signatures in Chinese varieties and genomic associations with root development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1937-1951. [PMID: 34487430 DOI: 10.1111/jipb.13172] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/03/2021] [Indexed: 05/04/2023]
Abstract
Alfalfa (Medicago sativa L.) is an important forage crop worldwide. However, little is known about the effects of breeding status and different geographical populations on alfalfa improvement. Here, we sequenced 220 alfalfa core germplasms and determined that Chinese alfalfa cultivars form an independent group, as evidenced by comparisons of FST values between different subgroups, suggesting that geographical origin plays an important role in group differentiation. By tracing the influence of geographical regions on the genetic diversity of alfalfa varieties in China, we identified 350 common candidate genetic regions and 548 genes under selection. We also defined 165 loci associated with 24 important traits from genome-wide association studies. Of those, 17 genomic regions closely associated with a given phenotype were under selection, with the underlying haplotypes showing significant differences between subgroups of distinct geographical origins. Based on results from expression analysis and association mapping, we propose that 6-phosphogluconolactonase (MsPGL) and a gene encoding a protein with NHL domains (MsNHL) are critical candidate genes for root growth. In conclusion, our results provide valuable information for alfalfa improvement via molecular breeding.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fei He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingna Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
165
|
Mao F, Wang Z, Zheng Y, Tang S, Luo X, Xiong T, Yan S. Fine mapping of a heading date QTL, Se16(t), under extremely long day conditions in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:70. [PMID: 37309360 PMCID: PMC10236121 DOI: 10.1007/s11032-021-01263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Heading date (flowering time) is a key trait that determines the yield and the adaptability of rice varieties. In the past 20 years, a number of genetic studies have been carried out to elucidate the genetic control of rice heading date, and many important genes have been cloned. These genes were identified under natural day (ND) conditions; however, little is known about the heading behavior under extreme day-length conditions. In this study, we identified a japonica variety, Sasanishiki, that showed sensitivity to extremely long days (ELD). Its heading date was significantly delayed for about 20 days under artificial ELD conditions that were achieved by setting a light emitting diode (LED) lamp beside a paddy field. We found that the late heading phenotype of Sasanishiki was induced when the day length was more than 14.75 h, and the LED light intensity was above 2 µmol m-2 s-1. Genetic analysis revealed that the photoperiod sensitivity of Sasanishiki was controlled by a dominant locus, temporarily named Se16(t). It was fine mapped to a 30.4-kb interval on chromosome 3, containing five predicted genes, including PHYC, a phytochrome encoding gene of rice. Our findings provide new information on the heading date under ELD conditions in rice. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01263-8.
Collapse
Affiliation(s)
- Fangming Mao
- Rice National Engineering Laboratory (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Zhiquan Wang
- Rice National Engineering Laboratory (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Yiyun Zheng
- Rice National Engineering Laboratory (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Shusheng Tang
- Rice National Engineering Laboratory (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Xin Luo
- Rice National Engineering Laboratory (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Tao Xiong
- Rice National Engineering Laboratory (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Song Yan
- Rice National Engineering Laboratory (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| |
Collapse
|
166
|
Gaston A, Potier A, Alonso M, Sabbadini S, Delmas F, Tenreira T, Cochetel N, Labadie M, Prévost P, Folta KM, Mezzetti B, Hernould M, Rothan C, Denoyes B. The FveFT2 florigen/FveTFL1 antiflorigen balance is critical for the control of seasonal flowering in strawberry while FveFT3 modulates axillary meristem fate and yield. THE NEW PHYTOLOGIST 2021; 232:372-387. [PMID: 34131919 PMCID: PMC8519138 DOI: 10.1111/nph.17557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/09/2021] [Indexed: 05/08/2023]
Abstract
Plant architecture is central in determining crop yield. In the short-day species strawberry, a crop vegetatively propagated by daughter-plants produced by stolons, fruit yield is further dependent on the trade-off between sexual reproduction (fruits) and asexual reproduction (daughter-plants). Both are largely dependent on meristem identity, which establishes the development of branches, stolons and inflorescences. Floral initiation and plant architecture are modulated by the balance between two related proteins, FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1). We explored in woodland strawberry the role of the uncharacterised FveFT2 and FveFT3 genes and of the floral repressor FveTFL1 through gene expression analyses, grafting and genetic transformation (overexpression and gene editing). We demonstrate the unusual properties of these genes. FveFT2 is a nonphotoperiodic florigen permitting short-day (SD) flowering and FveTFL1 is the long-hypothesised long-day systemic antiflorigen that contributes, together with FveFT2, to the photoperiodic regulation of flowering. We additionally show that FveFT3 is not a florigen but promotes plant branching when overexpressed, that is likely to be through changing axillary meristem fate, therefore resulting in a 3.5-fold increase in fruit yield at the expense of stolons. We show that our findings can be translated into improvement of cultivated strawberry in which FveFT2 overexpression significantly accelerates flowering.
Collapse
Affiliation(s)
- Amèlia Gaston
- Biologie du Fruit et PathologieUMR 1332Université BordeauxINRAEVillenave d’OrnonF‐33140France
| | - Aline Potier
- Biologie du Fruit et PathologieUMR 1332Université BordeauxINRAEVillenave d’OrnonF‐33140France
| | - Marie Alonso
- Biologie du Fruit et PathologieUMR 1332Université BordeauxINRAEVillenave d’OrnonF‐33140France
| | - Silvia Sabbadini
- Department of Agricultural, Food and Environmental SciencesMarche Polytechnic UniversityAncona60131Italy
| | - Frédéric Delmas
- Biologie du Fruit et PathologieUMR 1332Université BordeauxINRAEVillenave d’OrnonF‐33140France
| | - Tracey Tenreira
- Biologie du Fruit et PathologieUMR 1332Université BordeauxINRAEVillenave d’OrnonF‐33140France
| | - Noé Cochetel
- Biologie du Fruit et PathologieUMR 1332Université BordeauxINRAEVillenave d’OrnonF‐33140France
| | - Marc Labadie
- Biologie du Fruit et PathologieUMR 1332Université BordeauxINRAEVillenave d’OrnonF‐33140France
| | - Pierre Prévost
- Biologie du Fruit et PathologieUMR 1332Université BordeauxINRAEVillenave d’OrnonF‐33140France
| | - Kevin M. Folta
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFL32611USA
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental SciencesMarche Polytechnic UniversityAncona60131Italy
| | - Michel Hernould
- Biologie du Fruit et PathologieUMR 1332Université BordeauxINRAEVillenave d’OrnonF‐33140France
| | - Christophe Rothan
- Biologie du Fruit et PathologieUMR 1332Université BordeauxINRAEVillenave d’OrnonF‐33140France
| | - Béatrice Denoyes
- Biologie du Fruit et PathologieUMR 1332Université BordeauxINRAEVillenave d’OrnonF‐33140France
| |
Collapse
|
167
|
Rodrigues VL, Dolde U, Sun B, Blaakmeer A, Straub D, Eguen T, Botterweg-Paredes E, Hong S, Graeff M, Li MW, Gendron JM, Wenkel S. A microProtein repressor complex in the shoot meristem controls the transition to flowering. PLANT PHYSIOLOGY 2021; 187:187-202. [PMID: 34015131 PMCID: PMC8418433 DOI: 10.1093/plphys/kiab235] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/01/2021] [Indexed: 05/12/2023]
Abstract
MicroProteins are potent post-translational regulators. In Arabidopsis (Arabidopsis thaliana), the miP1a/b microProteins delay floral transition by forming a complex with CONSTANS (CO) and the co-repressor protein TOPLESS. To better understand the function of the miP1a microProtein in floral repression, we performed a genetic suppressor screen to identify suppressors of miP1a (sum) function. One mutant, sum1, exhibited strong suppression of the miP1a-induced late-flowering phenotype. Mapping of sum1 identified another allele of the gene encoding the histone H3K4 demethylase JUMONJI14 (JMJ14), which is required for miP1a function. Plants carrying mutations in JMJ14 exhibit an early flowering phenotype that is largely dependent on CO activity, supporting an additional role for CO in the repressive complex. We further investigated whether miP1a function involves chromatin modification, performed whole-genome methylome sequencing studies with plants ectopically expressing miP1a, and identified differentially methylated regions (DMRs). Among these DMRs is the promoter of FLOWERING LOCUS T (FT), the prime target of miP1a that is ectopically methylated in a JMJ14-dependent manner. Moreover, when aberrantly expressed at the shoot apex, CO induces early flowering, but only when JMJ14 is mutated. Detailed analysis of the genetic interaction among CO, JMJ14, miP1a/b, and TPL revealed a potential role for CO as a repressor of flowering in the shoot apical meristem (SAM). Altogether, our results suggest that a repressor complex operates in the SAM, likely to maintain it in an undifferentiated state until leaf-derived florigen signals induce SAM conversion into a floral meristem.
Collapse
Affiliation(s)
- Vandasue L. Rodrigues
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Ulla Dolde
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Bin Sun
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Anko Blaakmeer
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Daniel Straub
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Tenai Eguen
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Esther Botterweg-Paredes
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Shinyoung Hong
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Moritz Graeff
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Man-Wah Li
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven CT 06511, USA
| | - Joshua M. Gendron
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven CT 06511, USA
| | - Stephan Wenkel
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- NovoCrops Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Author for communication:
| |
Collapse
|
168
|
Cai F, Shao C, Zhang Y, Shi G, Bao Z, Bao M, Zhang J. Two FD homologs from London plane (Platanus acerifolia) are associated with floral initiation and flower morphology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110971. [PMID: 34315589 DOI: 10.1016/j.plantsci.2021.110971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
The flowering-time gene FD encodes a bZIP transcription factor that interacts with FLOWERING LOCUS T (FT) to induce flowering in Arabidopsis. Previous research has identified two FT homologs of Platanus acerifolia, PaFT and PaFTL, which each have different expression patterns and are involved in diverse developmental processes. However, it is not known whether such FT/FD complexes participate in the flowering processes in P. acerifolia. Therefore, we isolated two closely related FD homologs, PaFDL1 and PaFDL2, and investigated their functions through the analysis of expression profiles, transgenic phenotypes, their interactions with different FT proteins, and potential cis-regulatory elements in their promoters. The PaFDL genes were found to display their maximal expression levels during the stage of floral transition, and subsequent expression patterns were also seen to be related to inflorescence developmental stage. In addition, both PaFDL1 and PaFDL2 were found to be subject to post-transcriptional alternative splicing, each gene producing two transcript forms. Transgenic tobacco overexpressing each of the four resulting transcript types displayed accelerated floral initiation and produced abnormal flowers. The results suggested that the complete PaFDL proteins may interact with different PaFT/PaFTL proteins in order to fulfill both conservative and diverse functions in floral initiation and floral development.
Collapse
Affiliation(s)
- Fangfang Cai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Plant Genomics & Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| | - Changsheng Shao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Yanping Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Gehui Shi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Zhiru Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Jiaqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
169
|
Asymmetric expansions of FT and TFL1 lineages characterize differential evolution of the EuPEBP family in the major angiosperm lineages. BMC Biol 2021; 19:181. [PMID: 34465318 PMCID: PMC8408984 DOI: 10.1186/s12915-021-01128-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022] Open
Abstract
Background In flowering plants, precise timing of the floral transition is crucial to maximize chances of reproductive success, and as such, this process has been intensively studied. FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) have been identified as closely related eukaryotic phosphatidylethanolamine-binding proteins (‘EuPEBPs’) that integrate multiple environmental stimuli, and act antagonistically to determine the optimal timing of the floral transition. Extensive research has demonstrated that FT acts similar to hormonal signals, being transported in the phloem from its primary site of expression in leaves to its primary site of action in the shoot meristem; TFL1 also appears to act as a mobile signal. Recent work implicates FT, TFL1, and the other members of the EuPEBP family, in the control of other important processes, suggesting that the EuPEBP family may be key general regulators of developmental transitions in flowering plants. In eudicots, there are a small number of EuPEBP proteins, but in monocots, and particularly grasses, there has been a large, but uncharacterized expansion of EuPEBP copy number, with unknown consequences for the EuPEBP function. Results To systematically characterize the evolution of EuPEBP proteins in flowering plants, and in land plants more generally, we performed a high-resolution phylogenetic analysis of 701 PEBP sequences from 208 species. We refine previous models of EuPEBP evolution in early land plants, demonstrating the algal origin of the family, and pin-pointing the origin of the FT/TFL1 clade at the base of monilophytes. We demonstrate how a core set of genes (MFT1, MFT2, FT, and TCB) at the base of flowering plants has undergone differential evolution in the major angiosperm lineages. This includes the radical expansion of the FT family in monocots into 5 core lineages, further re-duplicated in the grass family to 12 conserved clades. Conclusions We show that many grass FT proteins are strongly divergent from other FTs and are likely neo-functional regulators of development. Our analysis shows that monocots and eudicots have strongly divergent patterns of EuPEBP evolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01128-8.
Collapse
|
170
|
Tanaka Y, Nanasato Y, Omura K, Endoh K, Kawano T, Iwasaki T. Direct protein delivery into intact plant cells using polyhistidine peptides. Biosci Biotechnol Biochem 2021; 85:1405-1414. [PMID: 33791772 DOI: 10.1093/bbb/zbab055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
Polyhistidine peptides (PHPs), sequences comprising only histidine residues (>His8), are effective cell-penetrating peptides for plant cells. Using PHP-fusion proteins, we aimed to deliver proteins into cultured plant cells from Nicotiana tabacum, Oryza sativa, and Cryptomeria japonica. Co-cultivation of cultured cells with fusion proteins combining maltose-binding protein (MBP), red fluorescent protein (RFP), and various PHPs (MBP-RFP-His8-His20) in one polypeptide showed the cellular uptake of fusion proteins in all plant cell lines. Maximum intracellular fluorescence was shown in MBP-RFP-His20. Further, adenylate cyclase (CyaA), a synthase of cyclic adenosine monophosphate (cAMP) activated by cytosolic calmodulin, was used as a reporter for protein delivery in living cells. A fusion protein combining MBP, RFP, CyaA, and His20 (MBP-RFP-CyaA-His20) was delivered into plant cells and increased intracellular fluorescence and cAMP production in all cell lines. The present study demonstrates that PHPs are effective carriers of proteins into the intracellular space of various cultured plant cells.
Collapse
Affiliation(s)
- Yoshino Tanaka
- Department of Agriculture, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Yoshihiko Nanasato
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Ibaraki, Japan
| | - Kousei Omura
- Department of Agriculture, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Keita Endoh
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Hitachi, Ibaraki, Japan
| | - Tsuyoshi Kawano
- Department of Agriculture, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Takashi Iwasaki
- Department of Agriculture, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| |
Collapse
|
171
|
Xu K, Zhang XM, Chen H, Zhang C, Zhu J, Cheng Z, Huang P, Zhou X, Miao Y, Feng X, Fu YF. Fine-Tuning Florigen Increases Field Yield Through Improving Photosynthesis in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:710754. [PMID: 34484271 PMCID: PMC8415793 DOI: 10.3389/fpls.2021.710754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 05/29/2023]
Abstract
Crop yield has been maintaining its attraction for researchers because of the demand of global population growth. Mutation of flowering activators, such as florigen, increases plant biomass at the expense of later flowering, which prevents crop maturity in the field. As a result, it is difficult to apply flowering activators in agriculture production. Here, we developed a strategy to utilize florigen to significantly improve soybean yield in the field. Through the screening of transgenic lines of RNAi-silenced florigen homologs in soybean (Glycine-max-Flowering Locus T Like, GmFTL), we identified a line, GmFTL-RNAi#1, with minor changes in both GmFTL expression and flowering time but with notable increase in soybean yield. As expected, GmFTL-RNAi#1 matured normally in the field and exhibited markedly high yield over multiple locations and years, indicating that it is possible to reach a trade-off between flowering time and high yield through the fine-tuning expression of flowering activators. Further studies uncovered an unknown mechanism by which GmFTL negatively regulates photosynthesis, a substantial source of crop yield, demonstrating a novel function of florigen. Thus, because of the highly conserved functions of florigen in plants and the classical RNAi approach, the findings provide a promising strategy to harness early flowering genes to improve crop yield.
Collapse
Affiliation(s)
- Kun Xu
- MOA Key Laboratory of Soybean Biology, National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Xiao-Mei Zhang
- MOA Key Laboratory of Soybean Biology, National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haifeng Chen
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Chanjuan Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Jinlong Zhu
- MOA Key Laboratory of Soybean Biology, National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Zhiyuan Cheng
- MOA Key Laboratory of Soybean Biology, National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Penghui Huang
- MOA Key Laboratory of Soybean Biology, National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinan Zhou
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Yuchen Miao
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xianzhong Feng
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yong-Fu Fu
- MOA Key Laboratory of Soybean Biology, National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
172
|
Chen Y, Shen J, Zhang L, Qi H, Yang L, Wang H, Wang J, Wang Y, Du H, Tao Z, Zhao T, Deng P, Shu Q, Qian Q, Yu H, Song S. Nuclear translocation of OsMFT1 that is impeded by OsFTIP1 promotes drought tolerance in rice. MOLECULAR PLANT 2021; 14:1297-1311. [PMID: 33962060 DOI: 10.1016/j.molp.2021.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/16/2020] [Accepted: 04/30/2021] [Indexed: 05/18/2023]
Abstract
Drought is the leading environmental threat affecting crop productivity, and plants have evolved a series of mechanisms to adapt to drought stress. The FT-interacting proteins (FTIPs) and phosphatidylethanolamine-binding proteins (PEBPs) play key roles in developmental processes, whereas their roles in the regulation of stress response are still largely unknown. Here, we report that OsFTIP1 negatively regulates drought response in rice. We showed that OsFTIP1 interacts with rice MOTHER OF FT AND TFL1 (OsMFT1), a PEBP that promotes rice tolerance to drought treatment. Further studies discovered that OsMFT1 interacts with two key drought-related transcription factors, OsbZIP66 and OsMYB26, regulating their binding capacity on drought-related genes and thereby enhancing drought tolerance in rice. Interestingly, we found that OsFTIP1 impedes the nucleocytoplasmic translocation of OsMFT1, implying that dynamic modulation of drought-responsive genes by the OsMFT1-OsMYB26 and OsMFT1-OsbZIP66 complexes is integral to OsFTIP1-modulated nuclear accumulation of OsMFT1. Our findings also suggest that OsMFT1 might act as a hitherto unknown nucleocytoplasmic trafficking signal that regulates drought tolerance in rice in response to environmental signals.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jun Shen
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liang Zhang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Haoyue Qi
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lijia Yang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huanyu Wang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiaxuan Wang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuexing Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Hao Du
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zeng Tao
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ting Zhao
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingyao Shu
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore
| | - Shiyong Song
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
173
|
Sun C, Zhang K, Zhou Y, Xiang L, He C, Zhong C, Li K, Wang Q, Yang C, Wang Q, Chen C, Chen D, Wang Y, Liu C, Yang B, Wu H, Chen X, Li W, Wang J, Xu P, Wang P, Fang J, Chu C, Deng X. Dual function of clock component OsLHY sets critical day length for photoperiodic flowering in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1644-1657. [PMID: 33740293 PMCID: PMC8384598 DOI: 10.1111/pbi.13580] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 05/11/2023]
Abstract
Circadian clock, an endogenous time-setting mechanism, allows plants to adapt to unstable photoperiod conditions and induces flowering with proper timing. In Arabidopsis, the central clock oscillator was formed by a series of interlocked transcriptional feedback loops, but little is known in rice so far. By MutMap technique, we identified the candidate gene OsLHY from a later flowering mutant lem1 and further confirmed it through genetic complementation, RNA interference knockdown, and CRISPR/Cas9-knockout. Global transcriptome profiling and expression analyses revealed that OsLHY might be a vital circadian rhythm component. Interestingly, oslhy flowered later under ≥12 h day length but headed earlier under ≤11 h day length. qRT-PCR results exhibited that OsLHY might function through OsGI-Hd1 pathway. Subsequent one-hybrid assays in yeast, DNA affinity purification qPCR, and electrophoretic mobility shift assays confirmed OsLHY could directly bind to the CBS element in OsGI promoter. Moreover, the critical day length (CDL) for function reversal of OsLHY in oslhy (11-12 h) was prolonged in the double mutant oslhy osgi (about 13.5 h), indicating that the CDL set by OsLHY was OsGI dependent. Additionally, the dual function of OsLHY entirely relied on Hd1, as the double mutant oslhy hd1 showed the same heading date with hd1 under about 11.5, 13.5, and 14 h day lengths. Together, OsLHY could fine-tune the CDL by directly regulating OsGI, and Hd1 acts as the final effector of CDL downstream of OsLHY. Our study illustrates a new regulatory mechanism between the circadian clock and photoperiodic flowering.
Collapse
Affiliation(s)
- Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Kuan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yi Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Lin Xiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Changcai He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Chao Zhong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Ke Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Qiuxia Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Chuanpeng Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Qian Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Congping Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Dan Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Chuanqiang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Bin Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Hualin Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Xiaoqiong Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Peizhou Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Pingrong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| | - Jun Fang
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and AgroecologyChinese Academy of SciencesHarbinChina
| | - Chengcai Chu
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Xiaojian Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaRice Research InstituteSichuan Agricultural UniversityChengduChina
| |
Collapse
|
174
|
Tian Z, Jahn M, Qin X, Obel HO, Yang F, Li J, Chen J. Genetic and Transcriptomic Analysis Reveal the Molecular Basis of Photoperiod-Regulated Flowering in Xishuangbanna Cucumber ( Cucumis sativus L. var. xishuangbannesis Qi et Yuan). Genes (Basel) 2021; 12:genes12071064. [PMID: 34356080 PMCID: PMC8304308 DOI: 10.3390/genes12071064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Xishuangbanna (XIS) cucumber (Cucumis sativus L. var. xishuangbannesis Qi et Yuan), is a botanical variety of cucumber cultivars native to southwest China that possesses excellent agronomic traits for cucumber improvement. However, breeding utilization of XIS cucumber is limited due to the current poor understanding of its photoperiod-sensitive flowering characteristics. In this study, genetic and transcriptomic analysis were conducted to reveal the molecular basis of photoperiod-regulated flowering in XIS cucumber. A major-effect QTL locus DFF1.1 was identified that controls the days to first flowering (DFF) of XIS cucumbers with a span of 1.38 Mb. Whole-genome re-sequencing data of 9 cucumber varieties with different flowering characteristics in response to photoperiod suggested that CsaNFYA1 was the candidate gene of DFF1.1, which harbored a single non-synonymous mutation in its fifth exon. Transcriptomic analysis revealed the positive roles of auxin and ethylene in accelerating flowering under short-day (SD) light-dark cycles when compared with equal-day/night treatment. Carbohydrate storage and high expression levels of related genes were important reasons explaining early flowering of XIS cucumber under SD conditions. By combining with the RNA-Seq data, the co-expression network suggested that CsaNFYA1 integrated multiple types of genes to regulate the flowering of XIS cucumber. Our findings explain the internal regulatory mechanisms of a photoperiodic flowering pathway. These findings may guide the use of photoperiod shifts to promote flowering of photoperiod-sensitive crops.
Collapse
Affiliation(s)
- Zhen Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
| | - Molly Jahn
- Jahn Research Group, USDA/FPL, Madison, WI 53726, USA;
| | - Xiaodong Qin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
| | - Hesbon Ochieng Obel
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
| | - Fan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
- Correspondence: ; Tel.: +86-25-8439-6279
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
| |
Collapse
|
175
|
Peng Q, Zhu C, Liu T, Zhang S, Feng S, Wu C. Phosphorylation of OsFD1 by OsCIPK3 promotes the formation of RFT1-containing florigen activation complex for long-day flowering in rice. MOLECULAR PLANT 2021; 14:1135-1148. [PMID: 33845208 DOI: 10.1016/j.molp.2021.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Heading date is a critical trait that determines the regional adaptability and grain productivity of many crops. Although rice is a facultative short-day plant, its domestication led to the Ghd7-Ehd1-Hd3a/RFT1 pathway for adaptation to long-day conditions (LDs). The formation of the "florigen activation complex" (FAC) containing florigen Hd3a has been characterized. However, the molecular composition of the FAC that contains RFT1 for long-day flowering is unclear. We show here that RFT1 forms a ternary FAC with 14-3-3 proteins and OsFD1 to promote flowering under LDs. We identified a calcineurin B-like-interacting protein kinase, OsCIPK3, which directly interacts with and phosphorylates OsFD1, thereby facilitating the localization of the FAC to the nucleus. Mutation in OsCIPK3 results in a late heading date under LDs but a normal heading date under short-day conditions. Collectively, our results suggest that OsCIPK3 phosphorylates OsFD1 to promote RFT1-containing FAC formation and consequently induce flowering in rice under LDs.
Collapse
Affiliation(s)
- Qiang Peng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Guizhou Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Chunmei Zhu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shuo Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shijing Feng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
176
|
Kim YJ, Kwak JS, Dae Hwan K, Song JT, Seo HS. Mutation of the OsGlyRS3 gene affects heading date in rice. PLANT SIGNALING & BEHAVIOR 2021; 16:1913366. [PMID: 33896383 PMCID: PMC8204980 DOI: 10.1080/15592324.2021.1913366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Aminoacyl-tRNA synthetases play a critical role in protein synthesis by catalyzing the covalent attachment of amino acids to their cognate tRNAs. However, the role of aminoacyl-tRNA synthetases in the transition from vegetative to reproductive growth in plants remains poorly understood. In this study, a rice (Oryza sativa) glycyl-tRNA synthetase 3, OsGlyRS3, was found to impact heading date in rice. Flowering in osglyrs3, a mutant line containing a T-DNA insertion in OsGlyRS3, was advanced by approximately 2 weeks compared to wild type. Expression analysis of flowering regulator genes showed that transcript levels of Heading date 1 (Hd1), Heading date 3a (Hd3a), and OsMADS51 were elevated in osglyrs3. These data indicate that the loss of OsGlyRS3 activity induces the expression of flowering-activating genes, resulting in early flowering.
Collapse
Affiliation(s)
- Yeon Jeong Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Jun Soo Kwak
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Kwon Dae Hwan
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Jong Tae Song
- Department of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Hak Soo Seo
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
- Bio-MAX Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
177
|
Ren G, Zhang X, Li Y, Ridout K, Serrano-Serrano ML, Yang Y, Liu A, Ravikanth G, Nawaz MA, Mumtaz AS, Salamin N, Fumagalli L. Large-scale whole-genome resequencing unravels the domestication history of Cannabis sativa. SCIENCE ADVANCES 2021; 7:7/29/eabg2286. [PMID: 34272249 PMCID: PMC8284894 DOI: 10.1126/sciadv.abg2286] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/03/2021] [Indexed: 05/07/2023]
Abstract
Cannabis sativa has long been an important source of fiber extracted from hemp and both medicinal and recreational drugs based on cannabinoid compounds. Here, we investigated its poorly known domestication history using whole-genome resequencing of 110 accessions from worldwide origins. We show that C. sativa was first domesticated in early Neolithic times in East Asia and that all current hemp and drug cultivars diverged from an ancestral gene pool currently represented by feral plants and landraces in China. We identified candidate genes associated with traits differentiating hemp and drug cultivars, including branching pattern and cellulose/lignin biosynthesis. We also found evidence for loss of function of genes involved in the synthesis of the two major biochemically competing cannabinoids during selection for increased fiber production or psychoactive properties. Our results provide a unique global view of the domestication of C. sativa and offer valuable genomic resources for ongoing functional and molecular breeding research.
Collapse
Affiliation(s)
- Guangpeng Ren
- Laboratory for Conservation Biology, Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science and Institute of Innovation Ecology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xu Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science and Institute of Innovation Ecology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Ying Li
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science and Institute of Innovation Ecology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Kate Ridout
- Laboratory for Conservation Biology, Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
- Oxford Molecular Diagnostics Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Martha L Serrano-Serrano
- Laboratory for Conservation Biology, Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science and Institute of Innovation Ecology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Ai Liu
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science and Institute of Innovation Ecology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Gudasalamani Ravikanth
- Suri Sehgal Center for Biodiversity and Conservation, Ashoka Trust for Research in Ecology and the Environment, Royal Enclave Srirampura, Jakkur Post, Bangalore 560 064, India
| | - Muhammad Ali Nawaz
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
- Department of Zoology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Abdul Samad Mumtaz
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Nicolas Salamin
- Department of Computational Biology, Génopode, University of Lausanne, 1015 Lausanne, Switzerland
| | - Luca Fumagalli
- Laboratory for Conservation Biology, Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
- Centre Universitaire Romand de Médecine Légale, Centre Hospitalier Universitaire Vaudois et Université de Lausanne, Chemin de la Vulliette 4, 1000 Lausanne 25, Switzerland
| |
Collapse
|
178
|
Zhou FY, Yu Q, Zhang Y, Han YJ, Yao CC. Overexpression of AGAMOUS-like gene PfAG5 promotes early flowering in Polypogon fugax. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:793-801. [PMID: 33820601 DOI: 10.1071/fp21047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Herbicides are the major tool for controlling large populations of yield depleting weeds. However, over-reliance on herbicides has resulted in weed adaptation and herbicide resistance. In recent years, early flowering weed species related to herbicide resistance is emerging, which may cause seed loss before crop harvest, creating a new problem for non-chemical weed management. In this study, a homologue gene of AGAMOUS sub-family (referred to as PfAG5) of the MADS-box family was cloned from plants of an early flowering Polypogon fugax Nees ex Steud. population resistant to the ACCase inhibitor herbicide (clodinafop-propargyl). The PfAG5 gene was functionally characterised in Arabidopsis thaliana L. Overexpression of the PfAG5 gene in Arabidopsis resulted in early flowering, abnormal flowers (e.g. small petals), short plants and reduced seed set, compared with the wild type. The expression of the PfAG5 gene was high in leaves and flowers, but low in pods in transgenic Arabidopsis. The PfAG5 gene was expressed earlier and higher in the resistant (R) than the susceptible (S) P. fugax plants. Furthermore, one protein (FRIGIDA-like) with relevance to flowering time regulation and interacts with PfAG5 in resistant (R) P. fugax was identified by the yeast two-hybrid and pull-down assays. These results suggest that the PfAG5 gene is involved in modulating early flowering in P. fugax.
Collapse
Affiliation(s)
- Feng-Yan Zhou
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, China; and Corresponding author.
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia, Perth, WA 6009, Australia
| | - Yong Zhang
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Yun-Jing Han
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Chuan-Chun Yao
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| |
Collapse
|
179
|
Maren N, Zhao F, Aryal R, Touchell D, Liu W, Ranney T, Ashrafi H. Reproductive developmental transcriptome analysis of Tripidium ravennae (Poaceae). BMC Genomics 2021; 22:483. [PMID: 34182921 PMCID: PMC8237498 DOI: 10.1186/s12864-021-07641-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tripidium ravennae is a cold-hardy, diploid species in the sugarcane complex (Poaceae subtribe Saccharinae) with considerable potential as a genetic resource for developing improved bioenergy and ornamental grasses. An improved understanding of the genetic regulation of reproductive processes (e.g., floral induction, inflorescence development, and seed development) will enable future applications of precision breeding and gene editing of floral and seed development. In particular, the ability to silence reproductive processes would allow for developing seedless forms of valuable but potentially invasive plants. The objective of this research was to characterize the gene expression environment of reproductive development in T. ravennae. RESULTS During the early phases of inflorescence development, multiple key canonical floral integrators and pathways were identified. Annotations of type II subfamily of MADS-box transcription factors, in particular, were over-represented in the GO enrichment analyses and tests for differential expression (FDR p-value < 0.05). The differential expression of floral integrators observed in the early phases of inflorescence development diminished prior to inflorescence determinacy regulation. Differential expression analysis did not identify many unique genes at mid-inflorescence development stages, though typical biological processes involved in plant growth and development expressed abundantly. The increase in inflorescence determinacy regulatory elements and putative homeotic floral development unigenes at mid-inflorescence development coincided with the expression of multiple meiosis annotations and multicellular organism developmental processes. Analysis of seed development identified multiple unigenes involved in oxidative-reductive processes. CONCLUSION Reproduction in grasses is a dynamic system involving the sequential coordination of complex gene regulatory networks and developmental processes. This research identified differentially expressed transcripts associated with floral induction, inflorescence development, and seed development in T. ravennae. These results provide insights into the molecular regulation of reproductive development and provide a foundation for future investigations and analyses, including genome annotation, functional genomics characterization, gene family evolutionary studies, comparative genomics, and precision breeding.
Collapse
Affiliation(s)
- Nathan Maren
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA.
| | - Fangzhou Zhao
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rishi Aryal
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA
| | - Darren Touchell
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, 455 Research Drive, Mills River, NC, 28759-3423, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA
| | - Thomas Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, 455 Research Drive, Mills River, NC, 28759-3423, USA
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC, 27695-7609, USA.
| |
Collapse
|
180
|
Yue L, Li X, Fang C, Chen L, Yang H, Yang J, Chen Z, Nan H, Chen L, Zhang Y, Li H, Hou X, Dong Z, Weller JL, Abe J, Liu B, Kong F. FT5a interferes with the Dt1-AP1 feedback loop to control flowering time and shoot determinacy in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1004-1020. [PMID: 33458938 DOI: 10.1111/jipb.13070] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/08/2021] [Indexed: 05/29/2023]
Abstract
Flowering time and stem growth habit determine inflorescence architecture in soybean, which in turn influences seed yield. Dt1, a homolog of Arabidopsis TERMINAL FLOWER 1 (TFL1), is a major controller of stem growth habit, but its underlying molecular mechanisms remain unclear. Here, we demonstrate that Dt1 affects node number and plant height, as well as flowering time, in soybean under long-day conditions. The bZIP transcription factor FDc1 physically interacts with Dt1, and the FDc1-Dt1 complex directly represses the expression of APETALA1 (AP1). We propose that FT5a inhibits Dt1 activity via a competitive interaction with FDc1 and directly upregulates AP1. Moreover, AP1 represses Dt1 expression by directly binding to the Dt1 promoter, suggesting that AP1 and Dt1 form a suppressive regulatory feedback loop to determine the fate of the shoot apical meristem. These findings provide novel insights into the roles of Dt1 and FT5a in controlling the stem growth habit and flowering time in soybean, which determine the adaptability and grain yield of this important crop.
Collapse
Affiliation(s)
- Lin Yue
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoming Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Chao Fang
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Liyu Chen
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Hui Yang
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Jie Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhonghui Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyang Nan
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Linnan Chen
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Yuhang Zhang
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Haiyang Li
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingliang Hou
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Zhicheng Dong
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - James L Weller
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Jun Abe
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Baohui Liu
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, the Chinese Academy of Sciences, Harbin, 1500000, China
| | - Fanjiang Kong
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, the Chinese Academy of Sciences, Harbin, 1500000, China
| |
Collapse
|
181
|
Coordinative regulation of plants growth and development by light and circadian clock. ABIOTECH 2021; 2:176-189. [PMID: 36304756 PMCID: PMC9590570 DOI: 10.1007/s42994-021-00041-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/13/2021] [Indexed: 11/30/2022]
Abstract
The circadian clock, known as an endogenous timekeeping system, can integrate various cues to regulate plant physiological functions for adapting to the changing environment and thus ensure optimal plant growth. The synchronization of internal clock with external environmental information needs a process termed entrainment, and light is one of the predominant entraining signals for the plant circadian clock. Photoreceptors can detect and transmit light information to the clock core oscillator through transcriptional or post-transcriptional interactions with core-clock components to sustain circadian rhythms and regulate a myriad of downstream responses, including photomorphogenesis and photoperiodic flowering which are key links in the process of growth and development. Here we summarize the current understanding of the molecular network of the circadian clock and how light information is integrated into the circadian system, especially focus on how the circadian clock and light signals coordinately regulate the common downstream outputs. We discuss the functions of the clock and light signals in regulating photoperiodic flowering among various crop species.
Collapse
|
182
|
Kondhare KR, Patil NS, Banerjee AK. A historical overview of long-distance signalling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4218-4236. [PMID: 33682884 DOI: 10.1093/jxb/erab048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Be it a small herb or a large tree, intra- and intercellular communication and long-distance signalling between distant organs are crucial for every aspect of plant development. The vascular system, comprising xylem and phloem, acts as a major conduit for the transmission of long-distance signals in plants. In addition to expanding our knowledge of vascular development, numerous reports in the past two decades revealed that selective populations of RNAs, proteins, and phytohormones function as mobile signals. Many of these signals were shown to regulate diverse physiological processes, such as flowering, leaf and root development, nutrient acquisition, crop yield, and biotic/abiotic stress responses. In this review, we summarize the significant discoveries made in the past 25 years, with emphasis on key mobile signalling molecules (mRNAs, proteins including RNA-binding proteins, and small RNAs) that have revolutionized our understanding of how plants integrate various intrinsic and external cues in orchestrating growth and development. Additionally, we provide detailed insights on the emerging molecular mechanisms that might control the selective trafficking and delivery of phloem-mobile RNAs to target tissues. We also highlight the cross-kingdom movement of mobile signals during plant-parasite relationships. Considering the dynamic functions of these signals, their implications in crop improvement are also discussed.
Collapse
Affiliation(s)
- Kirtikumar R Kondhare
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL) Pune, Maharashtra, India
| | - Nikita S Patil
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Anjan K Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| |
Collapse
|
183
|
Prewitt SF, Shalit-Kaneh A, Maximova SN, Guiltinan MJ. Inter-species functional compatibility of the Theobroma cacao and Arabidopsis FT orthologs: 90 million years of functional conservation of meristem identity genes. BMC PLANT BIOLOGY 2021; 21:218. [PMID: 33990176 PMCID: PMC8122565 DOI: 10.1186/s12870-021-02982-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND In angiosperms the transition to flowering is controlled by a complex set of interacting networks integrating a range of developmental, physiological, and environmental factors optimizing transition time for maximal reproductive efficiency. The molecular mechanisms comprising these networks have been partially characterized and include both transcriptional and post-transcriptional regulatory pathways. Florigen, encoded by FLOWERING LOCUS T (FT) orthologs, is a conserved central integrator of several flowering time regulatory pathways. To characterize the molecular mechanisms involved in controlling cacao flowering time, we have characterized a cacao candidate florigen gene, TcFLOWERING LOCUS T (TcFT). Understanding how this conserved flowering time regulator affects cacao plant's transition to flowering could lead to strategies to accelerate cacao breeding. RESULTS BLAST searches of cacao genome reference assemblies identified seven candidate members of the CENTRORADIALIS/TERMINAL FLOWER1/SELF PRUNING gene family including a single florigen candidate. cDNA encoding the predicted cacao florigen was cloned and functionally tested by transgenic genetic complementation in the Arabidopsis ft-10 mutant. Transgenic expression of the candidate TcFT cDNA in late flowering Arabidopsis ft-10 partially rescues the mutant to wild-type flowering time. Gene expression studies reveal that TcFT is spatially and temporally expressed in a manner similar to that found in Arabidopsis, specifically, TcFT mRNA is shown to be both developmentally and diurnally regulated in leaves and is most abundant in floral tissues. Finally, to test interspecies compatibility of florigens, we transformed cacao tissues with AtFT resulting in the remarkable formation of flowers in tissue culture. The morphology of these in vitro flowers is normal, and they produce pollen that germinates in vitro with high rates. CONCLUSION We have identified the cacao CETS gene family, central to developmental regulation in angiosperms. The role of the cacao's single FT-like gene (TcFT) as a general regulator of determinate growth in cacao was demonstrated by functional complementation of Arabidopsis ft-10 late-flowering mutant and through gene expression analysis. In addition, overexpression of AtFT in cacao resulted in precocious flowering in cacao tissue culture demonstrating the highly conserved function of FT and the mechanisms controlling flowering in cacao.
Collapse
Affiliation(s)
- S F Prewitt
- Department of Plant Sciences, The Pennsylvania State University, University Park, PA, USA
| | - A Shalit-Kaneh
- Department of Plant Sciences, The Pennsylvania State University, University Park, PA, USA
| | - S N Maximova
- Department of Plant Sciences, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - M J Guiltinan
- Department of Plant Sciences, The Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
184
|
Tian H, Li Y, Wang C, Xu X, Zhang Y, Zeb Q, Zicola J, Fu Y, Turck F, Li L, Lu Z, Liu L. Photoperiod-responsive changes in chromatin accessibility in phloem companion and epidermis cells of Arabidopsis leaves. THE PLANT CELL 2021; 33:475-491. [PMID: 33955490 PMCID: PMC8136901 DOI: 10.1093/plcell/koaa043] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/29/2020] [Indexed: 05/04/2023]
Abstract
Photoperiod plays a key role in controlling the phase transition from vegetative to reproductive growth in flowering plants. Leaves are the major organs perceiving day-length signals, but how specific leaf cell types respond to photoperiod remains unknown. We integrated photoperiod-responsive chromatin accessibility and transcriptome data in leaf epidermis and vascular companion cells of Arabidopsis thaliana by combining isolation of nuclei tagged in specific cell/tissue types with assay for transposase-accessible chromatin using sequencing and RNA-sequencing. Despite a large overlap, vasculature and epidermis cells responded differently. Long-day predominantly induced accessible chromatin regions (ACRs); in the vasculature, more ACRs were induced and these were located at more distal gene regions, compared with the epidermis. Vascular ACRs induced by long days were highly enriched in binding sites for flowering-related transcription factors. Among the highly ranked genes (based on chromatin and expression signatures in the vasculature), we identified TREHALOSE-PHOSPHATASE/SYNTHASE 9 (TPS9) as a flowering activator, as shown by the late flowering phenotypes of T-DNA insertion mutants and transgenic lines with phloem-specific knockdown of TPS9. Our cell-type-specific analysis sheds light on how the long-day photoperiod stimulus impacts chromatin accessibility in a tissue-specific manner to regulate plant development.
Collapse
Affiliation(s)
| | | | | | | | - Yajie Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Qudsia Zeb
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Johan Zicola
- Max Planck Institute for Plant Breeding Research, Cologne, D-50829, Germany
| | - Yongfu Fu
- National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Franziska Turck
- Max Planck Institute for Plant Breeding Research, Cologne, D-50829, Germany
| | - Legong Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zefu Lu
- Author for correspondence: (L.L) and (Z.L.)
| | | |
Collapse
|
185
|
Xia Z, Zhai H, Wu H, Xu K, Watanabe S, Harada K. The Synchronized Efforts to Decipher the Molecular Basis for Soybean Maturity Loci E1, E2, and E3 That Regulate Flowering and Maturity. FRONTIERS IN PLANT SCIENCE 2021; 12:632754. [PMID: 33995435 PMCID: PMC8113421 DOI: 10.3389/fpls.2021.632754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
The general concept of photoperiodism, i.e., the photoperiodic induction of flowering, was established by Garner and Allard (1920). The genetic factor controlling flowering time, maturity, or photoperiodic responses was observed in soybean soon after the discovery of the photoperiodism. E1, E2, and E3 were named in 1971 and, thereafter, genetically characterized. At the centennial celebration of the discovery of photoperiodism in soybean, we recount our endeavors to successfully decipher the molecular bases for the major maturity loci E1, E2, and E3 in soybean. Through systematic efforts, we successfully cloned the E3 gene in 2009, the E2 gene in 2011, and the E1 gene in 2012. Recently, successful identification of several circadian-related genes such as PRR3a, LUX, and J has enriched the known major E1-FTs pathway. Further research progresses on the identification of new flowering and maturity-related genes as well as coordinated regulation between flowering genes will enable us to understand profoundly flowering gene network and determinants of latitudinal adaptation in soybean.
Collapse
Affiliation(s)
- Zhengjun Xia
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Hong Zhai
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Hongyan Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Kun Xu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
| | | | - Kyuya Harada
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| |
Collapse
|
186
|
Dutta S, Deb A, Biswas P, Chakraborty S, Guha S, Mitra D, Geist B, Schäffner AR, Das M. Identification and functional characterization of two bamboo FD gene homologs having contrasting effects on shoot growth and flowering. Sci Rep 2021; 11:7849. [PMID: 33846519 PMCID: PMC8041875 DOI: 10.1038/s41598-021-87491-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 03/26/2021] [Indexed: 02/01/2023] Open
Abstract
Bamboos, member of the family Poaceae, represent many interesting features with respect to their fast and extended vegetative growth, unusual, yet divergent flowering time across species, and impact of sudden, large scale flowering on forest ecology. However, not many studies have been conducted at the molecular level to characterize important genes that regulate vegetative and flowering habit in bamboo. In this study, two bamboo FD genes, BtFD1 and BtFD2, which are members of the florigen activation complex (FAC) have been identified by sequence and phylogenetic analyses. Sequence comparisons identified one important amino acid, which was located in the DNA-binding basic region and was altered between BtFD1 and BtFD2 (Ala146 of BtFD1 vs. Leu100 of BtFD2). Electrophoretic mobility shift assay revealed that this alteration had resulted into ten times higher binding efficiency of BtFD1 than BtFD2 to its target ACGT motif present at the promoter of the APETALA1 gene. Expression analyses in different tissues and seasons indicated the involvement of BtFD1 in flower and vegetative development, while BtFD2 was very lowly expressed throughout all the tissues and conditions studied. Finally, a tenfold increase of the AtAP1 transcript level by p35S::BtFD1 Arabidopsis plants compared to wild type confirms a positively regulatory role of BtFD1 towards flowering. However, constitutive expression of BtFD1 had led to dwarfisms and apparent reduction in the length of flowering stalk and numbers of flowers/plant, whereas no visible phenotype was observed for BtFD2 overexpression. This signifies that timely expression of BtFD1 may be critical to perform its programmed developmental role in planta.
Collapse
Affiliation(s)
- Smritikana Dutta
- grid.412537.60000 0004 1768 2925Department of Life Sciences, Presidency University, Kolkata, India
| | - Anwesha Deb
- grid.412537.60000 0004 1768 2925Department of Life Sciences, Presidency University, Kolkata, India
| | - Prasun Biswas
- grid.412537.60000 0004 1768 2925Department of Life Sciences, Presidency University, Kolkata, India ,grid.411826.80000 0001 0559 4125Department of Botany, Kalna College, Kalna, West Bengal India
| | - Sukanya Chakraborty
- grid.412537.60000 0004 1768 2925Department of Life Sciences, Presidency University, Kolkata, India
| | - Suman Guha
- grid.412537.60000 0004 1768 2925Department of Statistics, Presidency University, Kolkata, India
| | - Devrani Mitra
- grid.412537.60000 0004 1768 2925Department of Life Sciences, Presidency University, Kolkata, India
| | - Birgit Geist
- grid.4567.00000 0004 0483 2525Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, München, Germany
| | - Anton R. Schäffner
- grid.4567.00000 0004 0483 2525Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, München, Germany
| | - Malay Das
- grid.412537.60000 0004 1768 2925Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
187
|
Khosa J, Bellinazzo F, Kamenetsky Goldstein R, Macknight R, Immink RGH. PHOSPHATIDYLETHANOLAMINE-BINDING PROTEINS: the conductors of dual reproduction in plants with vegetative storage organs. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2845-2856. [PMID: 33606013 DOI: 10.1093/jxb/erab064] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/08/2021] [Indexed: 05/18/2023]
Abstract
Geophytes, the plants that form vegetative storage organs, are characterized by a dual reproduction system, in which vegetative and sexual propagation are tightly regulated to ensure fitness in harsh climatic conditions. Recent findings highlight the role of the PEBP (PHOSPHATIDYLETHANOLAMINE-BINDING PROTEIN) gene family in geophytes as major players in the molecular cascades underlying both types of reproduction. In this review, we briefly explain the life cycle and reproduction strategies of different geophytes and what is known about the physiological aspects related to these processes. Subsequently, an in-depth overview is provided of the molecular and genetic pathways driving these processes. In the evolution of plants, the PEBP gene family has expanded, followed by neo- and subfunctionalization. Careful characterization revealed that differential expression and differential protein complex formation provide the members of this gene family with unique functions, enabling them to mediate the crosstalk between the two reproductive events in geophytes in response to environmental and endogenous cues. Taking all these studies into account, we propose to regard the PEBPs as conductors of geophyte reproductive development.
Collapse
Affiliation(s)
- Jiffinvir Khosa
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Francesca Bellinazzo
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | | | - Richard Macknight
- Department of Biochemistry, University of Otago, 9016 Dunedin, PO Box 56 Dunedin, New Zealand
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
188
|
Sang N, Liu H, Ma B, Huang X, Zhuo L, Sun Y. Roles of the 14-3-3 gene family in cotton flowering. BMC PLANT BIOLOGY 2021; 21:162. [PMID: 33789593 PMCID: PMC8015177 DOI: 10.1186/s12870-021-02923-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/08/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND In plants, 14-3-3 proteins, also called GENERAL REGULATORY FACTORs (GRFs), encoded by a large multigene family, are involved in protein-protein interactions and play crucial roles in various physiological processes. No genome-wide analysis of the GRF gene family has been performed in cotton, and their functions in flowering are largely unknown. RESULTS In this study, 17, 17, 31, and 17 GRF genes were identified in Gossypium herbaceum, G. arboreum, G. hirsutum, and G. raimondii, respectively, by genome-wide analyses and were designated as GheGRFs, GaGRFs, GhGRFs, and GrGRFs, respectively. A phylogenetic analysis revealed that these proteins were divided into ε and non-ε groups. Gene structural, motif composition, synteny, and duplicated gene analyses of the identified GRF genes provided insights into the evolution of this family in cotton. GhGRF genes exhibited diverse expression patterns in different tissues. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that the GhGRFs interacted with the cotton FLOWERING LOCUS T homologue GhFT in the cytoplasm and nucleus, while they interacted with the basic leucine zipper transcription factor GhFD only in the nucleus. Virus-induced gene silencing in G. hirsutum and transgenic studies in Arabidopsis demonstrated that GhGRF3/6/9/15 repressed flowering and that GhGRF14 promoted flowering. CONCLUSIONS Here, 82 GRF genes were identified in cotton, and their gene and protein features, classification, evolution, and expression patterns were comprehensively and systematically investigated. The GhGRF3/6/9/15 interacted with GhFT and GhFD to form florigen activation complexs that inhibited flowering. However, GhGRF14 interacted with GhFT and GhFD to form florigen activation complex that promoted flowering. The results provide a foundation for further studies on the regulatory mechanisms of flowering.
Collapse
Affiliation(s)
- Na Sang
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 China
- Special Plant Genomics Laboratory, College of Life Sciences, Shihezi University, Shihezi, 832000 China
| | - Hui Liu
- Special Plant Genomics Laboratory, College of Life Sciences, Shihezi University, Shihezi, 832000 China
| | - Bin Ma
- Special Plant Genomics Laboratory, College of Life Sciences, Shihezi University, Shihezi, 832000 China
| | - Xianzhong Huang
- Special Plant Genomics Laboratory, College of Life Sciences, Shihezi University, Shihezi, 832000 China
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, 233100 China
| | - Lu Zhuo
- Special Plant Genomics Laboratory, College of Life Sciences, Shihezi University, Shihezi, 832000 China
| | - Yuqiang Sun
- Plant Genomics & Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| |
Collapse
|
189
|
The interplay of phloem-mobile signals in plant development and stress response. Biosci Rep 2021; 40:226464. [PMID: 32955092 PMCID: PMC7538631 DOI: 10.1042/bsr20193329] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/28/2023] Open
Abstract
Plants integrate a variety of biotic and abiotic factors for optimal growth in their given environment. While some of these responses are local, others occur distally. Hence, communication of signals perceived in one organ to a second, distal part of the plant and the coordinated developmental response require an intricate signaling system. To do so, plants developed a bipartite vascular system that mediates the uptake of water, minerals, and nutrients from the soil; transports high-energy compounds and building blocks; and traffics essential developmental and stress signals. One component of the plant vasculature is the phloem. The development of highly sensitive mass spectrometry and molecular methods in the last decades has enabled us to explore the full complexity of the phloem content. As a result, our view of the phloem has evolved from a simple transport path of photoassimilates to a major highway for pathogens, hormones and developmental signals. Understanding phloem transport is essential to comprehend the coordination of environmental inputs with plant development and, thus, ensure food security. This review discusses recent developments in its role in long-distance signaling and highlights the role of some of the signaling molecules. What emerges is an image of signaling paths that do not just involve single molecules but rather, quite frequently an interplay of several distinct molecular classes, many of which appear to be transported and acting in concert.
Collapse
|
190
|
Taoka KI, Shimatani Z, Yamaguchi K, Ogawa M, Saitoh H, Ikeda Y, Akashi H, Terada R, Kawasaki T, Tsuji H. Novel assays to monitor gene expression and protein-protein interactions in rice using the bioluminescent protein, NanoLuc. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:89-99. [PMID: 34177328 PMCID: PMC8215459 DOI: 10.5511/plantbiotechnology.20.1209a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/09/2020] [Indexed: 05/21/2023]
Abstract
Luciferases have been widely utilized as sensitive reporters to monitor gene expression and protein-protein interactions. Compared to firefly luciferase (Fluc), a recently developed luciferase, Nanoluciferase (NanoLuc or Nluc), has several superior properties such as a smaller size and stronger luminescence activity. We compared the reporter properties of Nluc and Fluc in rice (Oryza sativa). In both plant-based two-hybrid and split luc complementation (SLC) assays, Nluc activity was detected with higher sensitivity and specificity than that with Fluc. To apply Nluc to research involving the photoperiodic regulation of flowering, we made a knock-in rice plant in which the Nluc coding region was inserted in-frame with the OsMADS15 gene, a target of the rice florigen Hd3a. Strong Nluc activity in response to Hd3a, and in response to change in day length, was detected in rice protoplasts and in a single shoot apical meristem, respectively. Our results indicate that Nluc assay systems will be powerful tools to monitor gene expression and protein-protein interaction in plant research.
Collapse
Affiliation(s)
- Ken-ichiro Taoka
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa 244-0813, Japan
- E-mail: Tel & Fax: +81-45-275-2475
| | - Zenpei Shimatani
- Graduate School of Science, Technology and Innovation, Kobe University, Hyogo 657-8501, Japan
| | - Koji Yamaguchi
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Mana Ogawa
- Graduate School of Agriculture, Meijo University, Aichi 468-8502, Japan
| | - Hiromi Saitoh
- Graduate School of Agriculture, Meijo University, Aichi 468-8502, Japan
| | - Yoichi Ikeda
- Graduate School of Agriculture, Meijo University, Aichi 468-8502, Japan
| | - Hiroko Akashi
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa 244-0813, Japan
| | - Rie Terada
- Graduate School of Agriculture, Meijo University, Aichi 468-8502, Japan
| | - Tsutomu Kawasaki
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa 244-0813, Japan
| |
Collapse
|
191
|
Herridge R, Brownfield L, Macknight R. Identification and Characterization of Perennial Ryegrass ( Lolium perenne) Vernalization Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:640324. [PMID: 33747020 PMCID: PMC7973463 DOI: 10.3389/fpls.2021.640324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Perennial ryegrass (Lolium perenne) is a temperate grass species commonly used as pasture for livestock. Flowering (heading) of ryegrass impacts metabolizable energy content and seed yield, therefore this trait is important for both farmers and seed producers. In related grass species, the VRN genes (VRN1-3) have been largely implicated in the determination of vernalization response and are responsible for much of the intra-species variation in this trait. Many other important flowering-time regulators have been cataloged in the model grass Brachypodium distachyon; however, in several cases, such as VRN2, their ryegrass homologs have not been well-characterized. Here, ryegrass homologs of important flowering time genes from B. distachyon were identified through available synteny data and sequence similarity. Phylogenetic analysis of VRN3/FT-like and VRN2-like genes was performed to elucidate these families further. The expression patterns of these genes were assessed during vernalization. This confirmed the key roles played by LpVRN1 and LpFT3 in the promotion of flowering. Furthermore, two orthologs of VRN2 identified here, as well as an ortholog of CO9, were expressed prior to vernalization, and were repressed in flowering plants, suggesting a role in floral repression. Significant variability in expression of these flowering pathway genes in diverse genotypes was detected and may underlie variation in flowering time and vernalization response.
Collapse
|
192
|
Cui Y, Xu Z, Xu Q. Elucidation of the relationship between yield and heading date using CRISPR/Cas9 system-induced mutation in the flowering pathway across a large latitudinal gradient. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:23. [PMID: 37309418 PMCID: PMC10236111 DOI: 10.1007/s11032-021-01213-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/03/2021] [Indexed: 06/14/2023]
Abstract
The naturally occurring genetic variation in the universal flowering (or heading date in crops) pathway has produced major advancements in crop domestication and expansion, and the various combinations of heading date genes have facilitated the plants to heading at suitable times in different ecological zones. However, gene combinations that can maximize crop yields may not exist in natural populations. Here, we planted a series of heading date mutants that harbored different heading mutant gene combinations generated by CRISPR/Cas9 gene editing technology, along with a collection of commercial varieties, across a large latitude gradient to evaluate the major effects of heading date genes and preferable gene combinations for each area. The relationship between yield and heading date was investigated. According to the pattern obtained from gene editing mutants, we concluded that the growth period of commercial varieties could be adjusted to achieve maximum yield performance in some areas. By combining the long vegetative growth allele and weak photoperiod sensitivity allele, we pinpointed an optimal balance between growth period and yield production, resulting in new partially determinate heading date to maximum yields and improved adaptability. We propose that harnessing mutations in the florigen pathway to customize the balance between vegetative and reproductive growth offers a broad toolkit for boosting crop productivity. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01213-4.
Collapse
Affiliation(s)
- Yue Cui
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866 China
| | - Zhengjin Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866 China
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866 China
| |
Collapse
|
193
|
Cheng X, Li G, Krom N, Tang Y, Wen J. Genetic regulation of flowering time and inflorescence architecture by MtFDa and MtFTa1 in Medicago truncatula. PLANT PHYSIOLOGY 2021; 185:161-178. [PMID: 33631796 PMCID: PMC8133602 DOI: 10.1093/plphys/kiaa005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/11/2020] [Indexed: 05/29/2023]
Abstract
Regulation of floral transition and inflorescence development is crucial for plant reproductive success. FLOWERING LOCUS T (FT) is one of the central players in the flowering genetic regulatory network, whereas FLOWERING LOCUS D (FD), an interactor of FT and TERMINAL FLOWER 1 (TFL1), plays significant roles in both floral transition and inflorescence development. Here we show the genetic regulatory networks of floral transition and inflorescence development in Medicago truncatula by characterizing MtFTa1 and MtFDa and their genetic interactions with key inflorescence meristem (IM) regulators. Both MtFTa1 and MtFDa promote flowering; the double mutant mtfda mtfta1 does not proceed to floral transition. RNAseq analysis reveals that a broad range of genes involved in flowering regulation and flower development are up- or downregulated by MtFTa1 and/or MtFDa mutations. Furthermore, mutation of MtFDa also affects the inflorescence architecture. Genetic analyses of MtFDa, MtFTa1, MtTFL1, and MtFULc show that MtFDa is epistatic to MtFULc and MtTFL1 in controlling IM identity. Our results demonstrate that MtFTa1 and MtFDa are major flowering regulators in M. truncatula, and MtFDa is essential both in floral transition and secondary inflorescence development. The study will advance our understanding of the genetic regulation of flowering time and inflorescence development in legumes.
Collapse
Affiliation(s)
- Xiaofei Cheng
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| | - Guifen Li
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| | - Nick Krom
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| | - Yuhong Tang
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| | - Jiangqi Wen
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| |
Collapse
|
194
|
Lei J, Dai P, Li Y, Zhang W, Zhou G, Liu C, Liu X. Heritable gene editing using FT mobile guide RNAs and DNA viruses. PLANT METHODS 2021; 17:20. [PMID: 33596981 PMCID: PMC7890912 DOI: 10.1186/s13007-021-00719-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/06/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND The virus-induced genome editing (VIGE) system can be used to quickly identify gene functions and generate knock-out libraries as an alternative to the virus-induced gene silencing (VIGS). Although plant virus-mediated VIGE has been shown to have great application prospects, edited genes cannot be transferred to the next generations using this system, as viruses cannot enter into shoot apical meristem (SAM) in plants. RESULTS We developed a novel cotton leaf crumple virus (CLCrV)-mediated VIGE system designed to target BRI1, GL2, PDS genes, and GUS transgene in A. thaliana by transforming Cas9 overexpression (Cas9-OE) A. thaliana. Given the deficiency of the VIGE system, ProYao::Cas9 and Pro35S::Cas9 A. thaliana were transformed by fusing 102 bp FT mRNAs with sgRNAs so as to explore the function of Flowering Locus T (FT) gene in delivering sgRNAs into SAM, thus avoiding tissue culture and stably acquiring heritable mutant offspring. Our results showed that sgRNAs fused with FT mRNA at the 5' end (FT strategy) effectively enabled gene editing in infected plants and allowed the acquisition of mutations heritable by the next generation, with an efficiency of 4.35-8.79%. In addition, gene-edited offspring by FT-sgRNAs did not contain any components of the CLCrV genome. CONCLUSIONS FT strategy can be used to acquire heritable mutant offspring avoiding tissue culture and stable transformation based on the CLCrV-mediated VIGE system in A. thaliana.
Collapse
Affiliation(s)
- Jianfeng Lei
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Peihong Dai
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Yue Li
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Wanqi Zhang
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Guantong Zhou
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Chao Liu
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Xiaodong Liu
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China.
| |
Collapse
|
195
|
Fu J, Liu G, Liu B. Foreign Cry1Ab/c Delays Flowering in Insect-Resistant Transgenic Rice via Interaction With Hd3a Florigen. FRONTIERS IN PLANT SCIENCE 2021; 12:608721. [PMID: 33643344 PMCID: PMC7905309 DOI: 10.3389/fpls.2021.608721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Genetic modifications in rice, which resulted in insect resistance, have been highly efficacious. However, they have also induced undesirable secondary phenotypes, such as delayed flowering. The molecular mechanisms associated with these unwanted effects remain unclear. Here, we showed that the flowering time for insect-resistant transgenic cry1Ab/c rice Huahui-1 (HH1) was delayed, compared with that for the parental rice Minghui-63 (MH63), cultivated on farmland and saline-alkaline soils. In contrast, the insect-resistant transgenic cry1C ^* rice cultivars T1C-19 and MH63 had similar flowering times under the same conditions. We quantified the following: the expression of five major flowering genes in HH1, T1C-19, and MH63; florigen Hd3a protein expression levels in HH1 and MH63; interactions between Cry1Ab/c and the five main flowering proteins; and the effects of E3s ubiquitin ligase-mediated Cry1Ab/c expression on florigen Hd3a. Hd3a transcription was significantly lower in HH1 but not in T1C-19, compared with that in MH63. The results of yeast two-hybrid, complementary bimolecular fluorescence, and co-immunoprecipitation assays revealed that florigen Hd3a interacted with the exogenous Cry1Ab/c expressed in HH1 and not the exogenous Cry1C^* expressed in T1C-19. When Cry1Ab/c, Hd3a, and E3s fusion proteins were transiently co-expressed in tobacco cells, the Hd3a expression level was significantly lower than the level of Cry1Ab/c and Hd3a co-expression. Thus, the downregulation of Hd3a expression and the interaction between Cry1Ab/c and Hd3a interfere with Hd3a protein expression and might cooperatively delay HH1 flowering time. To the best of our knowledge, this study is the first to explain the delay in flowering time in insect-resistant transgenic rice, mediated by interactions between exogenous and endogenous proteins. This information might help elucidate the molecular mechanisms associated with these unwanted phenotypes effects and improve the process of biosafety assessment of transgenic rice.
Collapse
Affiliation(s)
- Jianmei Fu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guoqiang Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| | - Biao Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| |
Collapse
|
196
|
Chai J, Zhu S, Li C, Wang C, Cai M, Zheng X, Zhou L, Zhang H, Sheng P, Wu M, Jin X, Cheng Z, Zhang X, Lei C, Ren Y, Lin Q, Zhou S, Guo X, Wang J, Zhao Z, Wan J. OsRE1 interacts with OsRIP1 to regulate rice heading date by finely modulating Ehd1 expression. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:300-310. [PMID: 32757315 PMCID: PMC7868965 DOI: 10.1111/pbi.13462] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/24/2020] [Indexed: 05/06/2023]
Abstract
Heading date is a key agronomic trait affecting crop yield. In rice, Early heading date 1 (Ehd1) is an important B-type response regulator in determination of heading date. Although many regulatory factors of Ehd1 expression have been functionally characterized, the direct regulators of Ehd1 largely remain to be identified. Here, we identified a new regulator of Ehd1, OsRE1, that directly binds to the A-box motif in the Ehd1 promoter. Osre1 confers an early heading phenotype due to elevated expression levels of Ehd1. OsRE1 is a nucleus-localized bZIP transcription factor with a diurnal rhythmic expression pattern. Furthermore, we identified an OsRE1-interacting protein, OsRIP1, and demonstrated that OsRIP1 can repress the transcript expression of Ehd1 in an OsRE1-dependent manner. Our genetic data showed that OsRE1 and OsRIP1 may function upstream of Ehd1 in regulating heading date. Together, our results suggest that OsRE1 functions cooperatively with OsRIP1 to regulate heading date through finely modulating the expression of Ehd1. In addition, OsRE1 and OsRIP1 are two minor heading date regulators, which are more desirable for fine-tuning heading date to improve rice regional adaptability.
Collapse
Affiliation(s)
- Juntao Chai
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Chunming Wang
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Maohong Cai
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Liang Zhou
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Peike Sheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Mingming Wu
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Xin Jin
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Shirong Zhou
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
197
|
Bai M, Liu J, Fan C, Chen Y, Chen H, Lu J, Sun J, Ning G, Wang C. KSN heterozygosity is associated with continuous flowering of Rosa rugosa Purple branch. HORTICULTURE RESEARCH 2021; 8:26. [PMID: 33518715 PMCID: PMC7848002 DOI: 10.1038/s41438-021-00464-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 05/02/2023]
Abstract
Rose (Rosa spp.) plants flower via two contrasting methods: once flowering (OF) and continuous flowering (CF). Purple branch is a rare continuously flowering variety of Rosa rugosa that is extensively cultivated in China. However, the genetic basis of its CF behavior is unknown. We demonstrated that Purple branch is heterozygous for the TFL1 homolog KSN. One KSN allele with a 9 kb Copia insertion was found to be identical to that from continuously flowering Rosa chinensis Old blush. The other allele was found to be a functional wild-type allele. The overall expression of KSN was closely linked to the floral transition, and it was significantly repressed in continuously flowering Purple branch compared with OF Plena. The promoter region of the normal KSN allele was hypermethylated, and histone methylation at H3H4, H3K9, and H3K27 of the KSN gene locus was modified in continuously flowering Purple branch. Silencing of the DNA methyltransferase genes MET1 and CMT3 and the histone methyltransferase gene SUVR5 in Purple branch led to enhanced KSN expression, but silencing of the histone demethylase gene JMJ12 suppressed KSN expression. Therefore, the CF habit of Purple branch may be due to reduced expression of KSN caused by the halved dose and may be associated with epigenetic modifications together with retrotransposon insertions along the chromosome. Our study revealed a novel mechanism underlying the CF behavior of rose plants.
Collapse
Affiliation(s)
- Mengjuan Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunguo Fan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yeqing Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Lu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingjing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guogui Ning
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
198
|
Zong W, Ren D, Huang M, Sun K, Feng J, Zhao J, Xiao D, Xie W, Liu S, Zhang H, Qiu R, Tang W, Yang R, Chen H, Xie X, Chen L, Liu Y, Guo J. Strong photoperiod sensitivity is controlled by cooperation and competition among Hd1, Ghd7 and DTH8 in rice heading. THE NEW PHYTOLOGIST 2021; 229:1635-1649. [PMID: 33089895 PMCID: PMC7821112 DOI: 10.1111/nph.16946] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/05/2020] [Indexed: 05/19/2023]
Abstract
Rice (Oryza sativa) is a short-day (SD) plant originally having strong photoperiod sensitivity (PS), with SDs promoting and long days (LDs) suppressing flowering. Although the evolution of PS in rice has been extensively studied, there are few studies that combine the genetic effects and underlying mechanism of different PS gene combinations with variations in PS. We created a set of isogenic lines among the core PS-flowering genes Hd1, Ghd7 and DTH8 using CRISPR mutagenesis, to systematically dissect their genetic relationships under different day-lengths. We investigated their monogenic, digenic, and trigenic effects on target gene regulation and PS variation. We found that Hd1 and Ghd7 have the primary functions for promoting and repressing flowering, respectively, regardless of day-length. However, under LD conditions, Hd1 promotes Ghd7 expression and is recruited by Ghd7 and/or DTH8 to form repressive complexes that collaboratively suppress the Ehd1-Hd3a/RFT1 pathway to block heading, but under SD conditions Hd1 competes with the complexes to promote Hd3a/RFT1 expression, playing a tradeoff relationship with PS flowering. Natural allelic variations of Hd1, Ghd7 and DTH8 in rice populations have resulted in various PS performances. Our findings reveal that rice PS flowering is controlled by crosstalk of two modules - Hd1-Hd3a/RFT1 in SD conditions and (Hd1/Ghd7/DTH8)-Ehd1-Hd3a/RFT1 in LD conditions - and the divergences of these genes provide the basis for rice adaptation to broad regions.
Collapse
Affiliation(s)
- Wubei Zong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Ding Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Minghui Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Kangli Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Jinglei Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Jing Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Dongdong Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Wenhao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Shiqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Han Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Rong Qiu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Wenjing Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Ruqi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Hongyi Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Yao‐Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| |
Collapse
|
199
|
Mallano AI, Li W, Tabys D, Chao C, Yang Y, Anwar S, Almas HI, Nisa ZU, Li Y. The soybean GmNFY-B1 transcription factor positively regulates flowering in transgenic Arabidopsis. Mol Biol Rep 2021; 48:1589-1599. [PMID: 33512627 DOI: 10.1007/s11033-021-06164-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/15/2021] [Indexed: 01/18/2023]
Abstract
Nuclear Factor Y (NF-Y) gene family regulates numbers of flowering processes. Two independent transgenic Arabidopsis lines overexpressing (OX) GmNFY-B1 and GmNFYB1-GR (GmNFYB1 fused with the glucocorticoid receptor) were used to investigate the function of NFY-B1 in flowering. Furthermore, GmNFYB1-GR lines were chemically treated with dexamethasone (Dex, synthetic steroid hormone), cycloheximide (Cyc, an inhibitor of protein biosynthesis), and ethanol to examine their effects on different flowering related marker genes. Our results indicated that the transgenic lines produced longer hypocotyl lengths and had fewer numbers of rosette leaves compared to the wild-type and nf-yb1 mutant plants under both long and short-day (LD and SD) conditions. The qRT-PCR assays revealed that transcript levels of all flowering time regulating genes, i.e. SOC, FLC, FT, TSF, LFY, GI2, AGL, and FCA showed higher transcript abundance in lines OX GmNFYB1-GR. However, FT and GI genes showed higher transcript levels under Dex and Dex/Cyc treatments compared to Cyc and ethanol. Additionally, 24 differentially expressed genes were identified and verified through RNA-seq and RT-qPCR in GmNF-YB1-GR lines under Cyc and Dex/Cyc treatments from which 14 genes were up-regulated and 10 were down-regulated. These genes are involved in regulatory functions of circadian rhythm, regulation of flower development in photoperiodic, and GA pathways. The overexpression of GmNF-YB1 and GmNF-YB1-GR promote flowering through the higher expression of flowering-related genes. Further GmNF-YB1 and its attachment with the GR receptor can regulate its target genes under Dex/Cyc treatment and might act as flowering inducer under LD and SD conditions.
Collapse
Affiliation(s)
- Ali Inayat Mallano
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Wenbin Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Dina Tabys
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Nur-Sultan, 010000, Kazakhstan
| | - Chen Chao
- School of Life Science and Technology, Harbin Normal University, Harbin, People's Republic of China
| | - Yu Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, People's Republic of China
| | - Sumera Anwar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Hafiza Iqra Almas
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Zaib Un Nisa
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Yongguang Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
200
|
Cai M, Zhu S, Wu M, Zheng X, Wang J, Zhou L, Zheng T, Cui S, Zhou S, Li C, Zhang H, Chai J, Zhang X, Jin X, Cheng Z, Zhang X, Lei C, Ren Y, Lin Q, Guo X, Zhao L, Wang J, Zhao Z, Jiang L, Wang H, Wan J. DHD4, a CONSTANS-like family transcription factor, delays heading date by affecting the formation of the FAC complex in rice. MOLECULAR PLANT 2021; 14:330-343. [PMID: 33246053 DOI: 10.1016/j.molp.2020.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 05/21/2023]
Abstract
Heading date (or flowering time) is one of the most important agronomic traits in rice, influencing its regional adaptability and crop yield. Many major-effect genes for rice heading date have been identified, but in practice they are difficult to be used for rice molecular breeding because of their dramatic effects on heading date. Genes with minor effects on heading date, which are more desirable for fine-tuning flowering time without significant yield penalty, were seldom reported. In this study, we identified a new minor-effect heading date repressor, Delayed Heading Date 4 (DHD4). The dhd4 mutant shows a slightly earlier flowering phenotype without a notable yield penalty compared with wild-type plants under natural long-day conditions. DHD4 encodes a CONSTANS-like transcription factor localized in the nucleus. Molecular, biochemical, and genetic assays show that DHD4 can compete with 14-3-3 to interact with OsFD1, thus affecting the formation of the Hd3a-14-3-3-OsFD1 tri-protein FAC complex, resulting in reduced expression of OsMADS14 and OsMADS15, and ultimately delaying flowering. Taken together, these results shed new light on the regulation of flowering time in rice and provide a promising target for fine-tuning flowering time to improve the regional adaptability of rice.
Collapse
Affiliation(s)
- Maohong Cai
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Mingming Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiachang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianhui Zheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Song Cui
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shirong Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huan Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Juntao Chai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyue Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Jin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|