151
|
Hennessee JP, Castel AD, Knowlton BJ. Recognizing What Matters: Value Improves Recognition by Selectively Enhancing Recollection. JOURNAL OF MEMORY AND LANGUAGE 2017; 94:195-205. [PMID: 28827894 PMCID: PMC5562370 DOI: 10.1016/j.jml.2016.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We examined the effects of value on recognition by assessing its contribution to recollection and familiarity. In three experiments, participants studied English words, each associated with a point-value they would earn for correct recognition, with the goal of maximizing their score. In Experiment 1, participants provided Remember/Know judgments. In Experiment 2 participants indicated whether items were recollected or if not, their degree of familiarity along a 6-point scale. In Experiment 3, recognition of words was accompanied by a test of memory for incidental details. Across all experiments, participants were more likely to recognize items with higher point-value. Furthermore, value appeared to primarily enhance recollection, as effects on familiarity were small and not consistent across experiments. Recollection of high-value items appears to be accompanied by fewer incidental details, suggesting that value increases focus on items at the expense of irrelevant information.
Collapse
Affiliation(s)
- Joseph P Hennessee
- University of California Los Angeles, Department of Psychology, 90095, USA
| | - Alan D Castel
- University of California Los Angeles, Department of Psychology, 90095, USA
| | - Barbara J Knowlton
- University of California Los Angeles, Department of Psychology, 90095, USA
| |
Collapse
|
152
|
Shivarama Shetty M, Sajikumar S. 'Tagging' along memories in aging: Synaptic tagging and capture mechanisms in the aged hippocampus. Ageing Res Rev 2017; 35:22-35. [PMID: 28065806 DOI: 10.1016/j.arr.2016.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/12/2016] [Accepted: 12/30/2016] [Indexed: 02/06/2023]
Abstract
Aging is accompanied by a general decline in the physiological functions of the body with the deteriorating organ systems. Brain is no exception to this and deficits in cognitive functions are quite common in advanced aging. Though a variety of age-related alterations are observed in the structure and function throughout the brain, certain regions show selective vulnerability. Medial temporal lobe, especially the hippocampus, is one such preferentially vulnerable region and is a crucial structure involved in the learning and long-term memory functions. Hippocampal synaptic plasticity, such as long-term potentiation (LTP) and depression (LTD), are candidate cellular correlates of learning and memory and alterations in these properties have been well documented in aging. A related phenomenon called synaptic tagging and capture (STC) has been proposed as a mechanism for cellular memory consolidation and to account for temporal association of memories. Mounting evidences from behavioral settings suggest that STC could be a physiological phenomenon. In this article, we review the recent data concerning STC and provide a framework for how alterations in STC-related mechanisms could contribute to the age-associated memory impairments. The enormity of impairment in learning and memory functions demands an understanding of age-associated memory deficits at the fundamental level given its impact in the everyday tasks, thereby in the quality of life. Such an understanding is also crucial for designing interventions and preventive measures for successful brain aging.
Collapse
|
153
|
Dyck B, Branstetter B, Gharbaoui T, Hudson AR, Breitenbucher JG, Gomez L, Botrous I, Marrone T, Barido R, Allerston CK, Cedervall EP, Xu R, Sridhar V, Barker R, Aertgeerts K, Schmelzer K, Neul D, Lee D, Massari ME, Andersen CB, Sebring K, Zhou X, Petroski R, Limberis J, Augustin M, Chun LE, Edwards TE, Peters M, Tabatabaei A. Discovery of Selective Phosphodiesterase 1 Inhibitors with Memory Enhancing Properties. J Med Chem 2017; 60:3472-3483. [DOI: 10.1021/acs.jmedchem.7b00302] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Brian Dyck
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Bryan Branstetter
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Tawfik Gharbaoui
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Andrew R. Hudson
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - J. Guy Breitenbucher
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Laurent Gomez
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Iriny Botrous
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Tami Marrone
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Richard Barido
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Charles K. Allerston
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - E. Peder Cedervall
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Rui Xu
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Vandana Sridhar
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Ryan Barker
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Kathleen Aertgeerts
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Kara Schmelzer
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - David Neul
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Dong Lee
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Mark Eben Massari
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Carsten B. Andersen
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Kristen Sebring
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Xianbo Zhou
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Robert Petroski
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - James Limberis
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Martin Augustin
- Proteros Biostructures GmbH, Bunsenstraße 7a, D-82152 Martinsried, Germany
| | - Lawrence E. Chun
- Berylllium, 7869 NE Day Road West, Bainbridge
Island, Washington 98110, United States
| | - Thomas E. Edwards
- Berylllium, 7869 NE Day Road West, Bainbridge
Island, Washington 98110, United States
| | - Marco Peters
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Ali Tabatabaei
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| |
Collapse
|
154
|
Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer's disease. Nat Commun 2017; 8:14727. [PMID: 28367951 PMCID: PMC5382255 DOI: 10.1038/ncomms14727] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 01/26/2017] [Indexed: 12/31/2022] Open
Abstract
Alterations of the dopaminergic (DAergic) system are frequently reported in Alzheimer's disease (AD) patients and are commonly linked to cognitive and non-cognitive symptoms. However, the cause of DAergic system dysfunction in AD remains to be elucidated. We investigated alterations of the midbrain DAergic system in the Tg2576 mouse model of AD, overexpressing a mutated human amyloid precursor protein (APPswe). Here, we found an age-dependent DAergic neuron loss in the ventral tegmental area (VTA) at pre-plaque stages, although substantia nigra pars compacta (SNpc) DAergic neurons were intact. The selective VTA DAergic neuron degeneration results in lower DA outflow in the hippocampus and nucleus accumbens (NAc) shell. The progression of DAergic cell death correlates with impairments in CA1 synaptic plasticity, memory performance and food reward processing. We conclude that in this mouse model of AD, degeneration of VTA DAergic neurons at pre-plaque stages contributes to memory deficits and dysfunction of reward processing. Dopaminergic dysfunction occurs in Alzheimer's disease (AD). The authors show that in a mouse model of AD, loss of dopaminergic neurons in the ventral tegmental area, but not the substantia nigra, occurs at early pre-plaque stages, and may contribute to impaired cognition and reward processing.
Collapse
|
155
|
Rossignoli MT, Lopes-Aguiar C, Ruggiero RN, Do Val da Silva RA, Bueno-Junior LS, Kandratavicius L, Peixoto-Santos JE, Crippa JA, Cecilio Hallak JE, Zuardi AW, Szawka RE, Anselmo-Franci J, Leite JP, Romcy-Pereira RN. Selective post-training time window for memory consolidation interference of cannabidiol into the prefrontal cortex: Reduced dopaminergic modulation and immediate gene expression in limbic circuits. Neuroscience 2017; 350:85-93. [PMID: 28344069 DOI: 10.1016/j.neuroscience.2017.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 12/29/2022]
Abstract
The prefrontal cortex (PFC), amygdala and hippocampus display a coordinated activity during acquisition of associative fear memories. Evidence indicates that PFC engagement in aversive memory formation does not progress linearly as previously thought. Instead, it seems to be recruited at specific time windows after memory acquisition, which has implications for the treatment of post-traumatic stress disorders. Cannabidiol (CBD), the major non-psychotomimetic phytocannabinoid of the Cannabis sativa plant, is known to modulate contextual fear memory acquisition in rodents. However, it is still not clear how CBD interferes with PFC-dependent processes during post-training memory consolidation. Here, we tested whether intra-PFC infusions of CBD immediately after or 5h following contextual fear conditioning was able to interfere with memory consolidation. Neurochemical and cellular correlates of the CBD treatment were evaluated by the quantification of extracellular levels of dopamine (DA), serotonin, and their metabolites in the PFC and by measuring the cellular expression of activity-dependent transcription factors in cortical and limbic regions. Our results indicate that bilateral intra-PFC CBD infusion impaired contextual fear memory consolidation when applied 5h after conditioning, but had no effect when applied immediately after it. This effect was associated with a reduction in DA turnover in the PFC following retrieval 5days after training. We also observed that post-conditioning infusion of CBD reduced c-fos and zif-268 protein expression in the hippocampus, PFC, and thalamus. Our findings support that CBD interferes with contextual fear memory consolidation by reducing PFC influence on cortico-limbic circuits.
Collapse
Affiliation(s)
- Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavior Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - SP, Brazil.
| | - Cleiton Lopes-Aguiar
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte - MG, Brazil.
| | - Rafael Naime Ruggiero
- Department of Neuroscience and Behavior Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - SP, Brazil.
| | - Raquel Araujo Do Val da Silva
- Department of Neuroscience and Behavior Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - SP, Brazil.
| | - Lezio Soares Bueno-Junior
- Department of Neuroscience and Behavior Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - SP, Brazil.
| | - Ludmyla Kandratavicius
- Department of Neuroscience and Behavior Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - SP, Brazil.
| | - José Eduardo Peixoto-Santos
- Department of Neuroscience and Behavior Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - SP, Brazil.
| | - José Alexandre Crippa
- Department of Neuroscience and Behavior Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - SP, Brazil.
| | - Jaime Eduardo Cecilio Hallak
- Department of Neuroscience and Behavior Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - SP, Brazil.
| | - Antonio Waldo Zuardi
- Department of Neuroscience and Behavior Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - SP, Brazil.
| | - Raphael Escorsim Szawka
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte - MG, Brazil.
| | - Janete Anselmo-Franci
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto - SP, Brazil.
| | - João Pereira Leite
- Department of Neuroscience and Behavior Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - SP, Brazil.
| | | |
Collapse
|
156
|
Darbinyan L, Hambardzumyan L, Simonyan K, Chavushyan V, Manukyan L, Sarkisian V. Rotenone impairs hippocampal neuronal activity in a rat model of Parkinson’s disease. PATHOPHYSIOLOGY 2017; 24:23-30. [DOI: 10.1016/j.pathophys.2017.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/29/2016] [Accepted: 01/11/2017] [Indexed: 12/21/2022] Open
|
157
|
Passow S, Thurm F, Li SC. Activating Developmental Reserve Capacity Via Cognitive Training or Non-invasive Brain Stimulation: Potentials for Promoting Fronto-Parietal and Hippocampal-Striatal Network Functions in Old Age. Front Aging Neurosci 2017; 9:33. [PMID: 28280465 PMCID: PMC5322263 DOI: 10.3389/fnagi.2017.00033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/08/2017] [Indexed: 01/06/2023] Open
Abstract
Existing neurocomputational and empirical data link deficient neuromodulation of the fronto-parietal and hippocampal-striatal circuitries with aging-related increase in processing noise and declines in various cognitive functions. Specifically, the theory of aging neuronal gain control postulates that aging-related suboptimal neuromodulation may attenuate neuronal gain control, which yields computational consequences on reducing the signal-to-noise-ratio of synaptic signal transmission and hampering information processing within and between cortical networks. Intervention methods such as cognitive training and non-invasive brain stimulation, e.g., transcranial direct current stimulation (tDCS), have been considered as means to buffer cognitive functions or delay cognitive decline in old age. However, to date the reported effect sizes of immediate training gains and maintenance effects of a variety of cognitive trainings are small to moderate at best; moreover, training-related transfer effects to non-trained but closely related (i.e., near-transfer) or other (i.e., far-transfer) cognitive functions are inconsistent or lacking. Similarly, although applying different tDCS protocols to reduce aging-related cognitive impairments by inducing temporary changes in cortical excitability seem somewhat promising, evidence of effects on short- and long-term plasticity is still equivocal. In this article, we will review and critically discuss existing findings of cognitive training- and stimulation-related behavioral and neural plasticity effects in the context of cognitive aging, focusing specifically on working memory and episodic memory functions, which are subserved by the fronto-parietal and hippocampal-striatal networks, respectively. Furthermore, in line with the theory of aging neuronal gain control we will highlight that developing age-specific brain stimulation protocols and the concurrent applications of tDCS during cognitive training may potentially facilitate short- and long-term cognitive and brain plasticity in old age.
Collapse
Affiliation(s)
- Susanne Passow
- Chair of Lifespan Developmental Neuroscience, Department of Psychology, TU Dresden Dresden, Germany
| | - Franka Thurm
- Chair of Lifespan Developmental Neuroscience, Department of Psychology, TU Dresden Dresden, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Department of Psychology, TU Dresden Dresden, Germany
| |
Collapse
|
158
|
Huang Y, Todd N, Thathiah A. The role of GPCRs in neurodegenerative diseases: avenues for therapeutic intervention. Curr Opin Pharmacol 2017; 32:96-110. [DOI: 10.1016/j.coph.2017.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022]
|
159
|
Franklin DJ, Grossberg S. A neural model of normal and abnormal learning and memory consolidation: adaptively timed conditioning, hippocampus, amnesia, neurotrophins, and consciousness. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2017; 17:24-76. [PMID: 27905080 PMCID: PMC5272895 DOI: 10.3758/s13415-016-0463-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
How do the hippocampus and amygdala interact with thalamocortical systems to regulate cognitive and cognitive-emotional learning? Why do lesions of thalamus, amygdala, hippocampus, and cortex have differential effects depending on the phase of learning when they occur? In particular, why is the hippocampus typically needed for trace conditioning, but not delay conditioning, and what do the exceptions reveal? Why do amygdala lesions made before or immediately after training decelerate conditioning while those made later do not? Why do thalamic or sensory cortical lesions degrade trace conditioning more than delay conditioning? Why do hippocampal lesions during trace conditioning experiments degrade recent but not temporally remote learning? Why do orbitofrontal cortical lesions degrade temporally remote but not recent or post-lesion learning? How is temporally graded amnesia caused by ablation of prefrontal cortex after memory consolidation? How are attention and consciousness linked during conditioning? How do neurotrophins, notably brain-derived neurotrophic factor (BDNF), influence memory formation and consolidation? Is there a common output path for learned performance? A neural model proposes a unified answer to these questions that overcome problems of alternative memory models.
Collapse
Affiliation(s)
- Daniel J Franklin
- Center for Adaptive Systems, Graduate Program in Cognitive and Neural Systems, and Departments of Mathematics, Psychological & Brain Sciences, and Biomedical Engineering, Boston University, 677 Beacon Street, Room 213, Boston, MA, 02215, USA
| | - Stephen Grossberg
- Center for Adaptive Systems, Graduate Program in Cognitive and Neural Systems, and Departments of Mathematics, Psychological & Brain Sciences, and Biomedical Engineering, Boston University, 677 Beacon Street, Room 213, Boston, MA, 02215, USA.
| |
Collapse
|
160
|
Wagner IC, van Buuren M, Bovy L, Morris RG, Fernández G. Methylphenidate during early consolidation affects long-term associative memory retrieval depending on baseline catecholamines. Psychopharmacology (Berl) 2017; 234:657-669. [PMID: 28013352 PMCID: PMC5263224 DOI: 10.1007/s00213-016-4502-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/05/2016] [Indexed: 12/03/2022]
Abstract
RATIONALE Synaptic memory consolidation is thought to rely on catecholaminergic signaling. Eventually, it is followed by systems consolidation, which embeds memories in a neocortical network. Although this sequence was demonstrated in rodents, it is unclear how catecholamines affect memory consolidation in humans. OBJECTIVES Here, we tested the effects of catecholaminergic modulation on synaptic and subsequent systems consolidation. We expected enhanced memory performance and increased neocortical engagement during delayed retrieval. Additionally, we tested if this effect was modulated by individual differences in a cognitive proxy measure of baseline catecholamine synthesis capacity. METHODS Fifty-three healthy males underwent a between-subjects, double-blind, placebo-controlled procedure across 2 days. On day 1, subjects studied and retrieved object-location associations and received 20 mg of methylphenidate or placebo. Drug intake was timed so that methylphenidate was expected to affect early consolidation but not encoding or retrieval. Memory was tested again while subjects were scanned three days later. RESULTS Methylphenidate did not facilitate memory performance, and there was no significant group difference in activation during delayed retrieval. However, memory representations differed between groups depending on baseline catecholamines. The placebo group showed increased activation in occipito-temporal regions but decreased connectivity with the hippocampus, associated with lower baseline catecholamine synthesis capacity. The methylphenidate group showed stronger activation in the postcentral gyrus, associated with higher baseline catecholamine synthesis capacity. CONCLUSIONS Altogether, methylphenidate during early consolidation did not foster long-term memory performance, but it affected retrieval-related neural processes depending on individual levels of baseline catecholamines.
Collapse
Affiliation(s)
- Isabella C Wagner
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Kapittelweg 29, Nijmegen, 6525 EN, The Netherlands.
| | - Mariët van Buuren
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Kapittelweg 29, Nijmegen, 6525 EN, The Netherlands
| | - Leonore Bovy
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Kapittelweg 29, Nijmegen, 6525 EN, The Netherlands
| | - Richard G Morris
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Kapittelweg 29, Nijmegen, 6525 EN, The Netherlands
| |
Collapse
|
161
|
Acetyl-L-Carnitine via Upegulating Dopamine D1 Receptor and Attenuating Microglial Activation Prevents Neuronal Loss and Improves Memory Functions in Parkinsonian Rats. Mol Neurobiol 2016; 55:583-602. [PMID: 27975173 DOI: 10.1007/s12035-016-0293-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/08/2016] [Indexed: 01/22/2023]
Abstract
Parkinson's disease is accompanied by nonmotor symptoms including cognitive impairment, which precede the onset of motor symptoms in patients and are regulated by dopamine (DA) receptors and the mesocorticolimbic pathway. The relative contribution of DA receptors and astrocytic glutamate transporter (GLT-1) in cognitive functions is largely unexplored. Similarly, whether microglia-derived increased immune response affects cognitive functions and neuronal survival is not yet understood. We have investigated the effect of acetyl-L-carnitine (ALCAR) on cognitive functions and its possible underlying mechanism of action in 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats. ALCAR treatment in 6-OHDA-lesioned rats improved memory functions as confirmed by decreased latency time and path length in the Morris water maze test. ALCAR further enhanced D1 receptor levels without altering D2 receptor levels in the hippocampus and prefrontal cortex (PFC) regions, suggesting that the D1 receptor is preferentially involved in the regulation of cognitive functions. ALCAR attenuated microglial activation and release of inflammatory mediators through balancing proinflammatory and anti-inflammatory cytokines, which subsequently enhanced the survival of mature neurons in the CA1, CA3, and PFC regions and improved cognitive functions in hemiparkinsonian rats. ALCAR treatment also improved glutathione (GSH) content, while decreasing oxidative stress indices, inducible nitrogen oxide synthase (iNOS) levels, and astrogliosis resulting in the upregulation of GLT-1 levels. Additionally, ALCAR prevented the loss of dopaminergic (DAergic) neurons in ventral tagmental area (VTA)/substantia nigra pars compacta (SNpc) regions of 6-OHDA-lesioned rats, thus maintaining the integrity of the nigrostriatal pathway. Together, these results demonstrate that ALCAR treatment in hemiparkinsonian rats ameliorates neurodegeneration and cognitive deficits, hence suggesting its therapeutic potential in neurodegenerative diseases.
Collapse
|
162
|
Wang W, Liu L, Jiang P, Chen C, Zhang T. Levodopa improves learning and memory ability on global cerebral ischemia-reperfusion injured rats in the Morris water maze test. Neurosci Lett 2016; 636:233-240. [PMID: 27856221 DOI: 10.1016/j.neulet.2016.11.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 11/24/2022]
Abstract
Previous studies have shown that levodopa (L-dopa) for 1-7days improved the consciousness level of certain patients who suffered from ischemia-reperfusion injury and were comatose for a long time period after cerebral resuscitation treatment. It also has an awakening effect on patients with disorders of consciousness. This study aimed to investigate whether L-dopa, which is used clinically to treat Parkinson's disease, might also ameliorate the behavior of rats following global cerebral ischemia-reperfusion injury. Fifty-six healthy adult male Sprague-Dawley rats were randomly divided into four groups: shamoperated, global cerebral ischemia mode, 25mg/kg/d L-dopa intervention, and 50mg/kg/d L-dopa intervention. The level of consciousness and modified neurological severity score (NSS) of the rats in each group were measured before reperfusion and 6, 24, and 72h and 1-4 weeks after reperfusion. The Morris water maze test was used to assess behavior of rats 1 week after reperfusion and 2 weeks after reperfusion in each group. The results showed that after global cerebral ischemiareperfusion injury, neurological deficits of rats are severe, and space exploration capacity and learning and memory capacity are significantly decreased. L-dopa can shorten the duration of coma in rats following global cerebral ischemia-reperfusion injury and improve the symptoms of neurological deficits and advanced learning and memory. In the range of the selected doses, the relationship between L-dopa and improvement of the neurological behavior in rats was not dose-dependent. Dopamine may be useful for treating severe ischemia-reperfusion brain injury.
Collapse
Affiliation(s)
- Wenzhu Wang
- Institute of Rehabilitation Medicine of China, Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China; Neural Injury and Repair Center, Beijing Institute for Brain Disorders, Beijing, PR China
| | - Lixu Liu
- School of Rehabilitation, Capital Medical University, Beijing, PR China; Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, PR China.
| | - Peng Jiang
- School of Rehabilitation, Capital Medical University, Beijing, PR China
| | - Chen Chen
- School of Rehabilitation, Capital Medical University, Beijing, PR China
| | - Tong Zhang
- School of Rehabilitation, Capital Medical University, Beijing, PR China; Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, PR China
| |
Collapse
|
163
|
Katche C, Tomaiuolo M, Dorman G, Medina JH, Viola H. Novelty during a late postacquisition time window attenuates the persistence of fear memory. Sci Rep 2016; 6:35220. [PMID: 27734911 PMCID: PMC5062250 DOI: 10.1038/srep35220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/26/2016] [Indexed: 12/16/2022] Open
Abstract
Learning to avoid threats in the environment is highly adaptive. However, sometimes a dysregulation of fear memories processing may underlie fear-related disorders. Despite recent advances, a major question of how to effectively attenuate persistent fear memories in a safe manner remains unresolved. Here we show experiments employing a behavioural tool to target a specific time window after training to limit the persistence of a fear memory in rats. We observed that exposure to a novel environment 11 h after an inhibitory avoidance (IA) training that induces a long-lasting memory, attenuates the durability of IA memory but not its formation. This effect is time-restricted and not seen when the environment is familiar. In addition, novelty-induced attenuation of IA memory durability is prevented by the intrahippocampal infusion of the CaMKs inhibitor KN-93. This new behavioural approach which targets a specific time window during late memory consolidation, might represent a new tool for reducing the durability of persistent fear memories.
Collapse
Affiliation(s)
- Cynthia Katche
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina "Dr Eduardo De Robertis" (UBA-CONICET), UBA, Paraguay 2155, 3 piso, Buenos Aires (C1121ABG), Argentina
| | - Micol Tomaiuolo
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina "Dr Eduardo De Robertis" (UBA-CONICET), UBA, Paraguay 2155, 3 piso, Buenos Aires (C1121ABG), Argentina
| | - Guido Dorman
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina "Dr Eduardo De Robertis" (UBA-CONICET), UBA, Paraguay 2155, 3 piso, Buenos Aires (C1121ABG), Argentina
| | - Jorge H Medina
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina "Dr Eduardo De Robertis" (UBA-CONICET), UBA, Paraguay 2155, 3 piso, Buenos Aires (C1121ABG), Argentina.,Departamento de Fisiología, Facultad de Medicina, UBA, Paraguay 2155, 7 piso, Buenos Aires (C1121ABG), Argentina
| | - Haydee Viola
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina "Dr Eduardo De Robertis" (UBA-CONICET), UBA, Paraguay 2155, 3 piso, Buenos Aires (C1121ABG), Argentina.,Departamento de Fisiología, Biología Molecular y Celular Dr Hector Maldonado, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (C1428EGA), Argentina
| |
Collapse
|
164
|
Choi KY, Kim YK. Plasticity-augmented psychotherapy for refractory depressive and anxiety disorders. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:134-47. [PMID: 27072378 DOI: 10.1016/j.pnpbp.2016.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 12/28/2022]
Abstract
Psychotherapy and pharmacotherapy have been the mainstays of treatment for depression and anxiety disorders during the last century. However, treatment response has not improved in the last few decades, with only half of all patients responding satisfactorily to typical antidepressants. To fulfill the needs of the remaining patients, new treatments with better efficacy are in demand. The addition of psychotherapy to antidepressant treatment has been shown to be superior to pharmacotherapy alone. However, the time costs of psychotherapy limit its use for clinicians and patients. Advancements in neuroscience have contributed to an improved understanding of the pathogenesis of depressive and anxiety disorders. In particular, recent advances in the field of fear conditioning have provided valuable insight into the treatment of refractory depressive and anxiety disorders. In this review, we studied the reconsolidation-updating paradigm and the concept of epigenetic modification, which has been shown to permanently attenuate remote fear memory. This has implications for drug-augmented, e.g. antidepressant and valproic acid, psychotherapy. Future research on more sophisticated psychotherapy techniques will increase the desirability of this treatment modality for both clinicians and patients.
Collapse
Affiliation(s)
- Kwang-Yeon Choi
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
165
|
Assar N, Mahmoudi D, Farhoudian A, Farhadi MH, Fatahi Z, Haghparast A. D1- and D2-like dopamine receptors in the CA1 region of the hippocampus are involved in the acquisition and reinstatement of morphine-induced conditioned place preference. Behav Brain Res 2016; 312:394-404. [DOI: 10.1016/j.bbr.2016.06.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/24/2016] [Accepted: 06/29/2016] [Indexed: 01/27/2023]
|
166
|
Puighermanal E, Cutando L, Boubaker-Vitre J, Honoré E, Longueville S, Hervé D, Valjent E. Anatomical and molecular characterization of dopamine D1 receptor-expressing neurons of the mouse CA1 dorsal hippocampus. Brain Struct Funct 2016; 222:1897-1911. [PMID: 27678395 PMCID: PMC5406422 DOI: 10.1007/s00429-016-1314-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022]
Abstract
In the hippocampus, a functional role of dopamine D1 receptors (D1R) in synaptic plasticity and memory processes has been suggested by electrophysiological and pharmacological studies. However, comprehension of their function remains elusive due to the lack of knowledge on the precise localization of D1R expression among the diversity of interneuron populations. Using BAC transgenic mice expressing enhanced green fluorescent protein under the control of D1R promoter, we examined the molecular identity of D1R-containing neurons within the CA1 subfield of the dorsal hippocampus. In agreement with previous findings, our analysis revealed that these neurons are essentially GABAergic interneurons, which express several neurochemical markers, including calcium-binding proteins, neuropeptides, and receptors among others. Finally, by using different tools comprising cell type-specific isolation of mRNAs bound to tagged-ribosomes, we provide solid data indicating that D1R is present in a large proportion of interneurons expressing dopamine D2 receptors. Altogether, our study indicates that D1Rs are expressed by different classes of interneurons in all layers examined and not by pyramidal cells, suggesting that CA1 D1R mostly acts via modulation of GABAergic interneurons.
Collapse
Affiliation(s)
- Emma Puighermanal
- CNRS UMR 5203, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France.,INSERM, U1191, Montpellier, 34094, France.,Université de Montpellier, UMR 5203, Montpellier, 34094, France
| | - Laura Cutando
- CNRS UMR 5203, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France.,INSERM, U1191, Montpellier, 34094, France.,Université de Montpellier, UMR 5203, Montpellier, 34094, France
| | - Jihane Boubaker-Vitre
- CNRS UMR 5203, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France.,INSERM, U1191, Montpellier, 34094, France.,Université de Montpellier, UMR 5203, Montpellier, 34094, France
| | - Eve Honoré
- CNRS UMR 5203, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France.,INSERM, U1191, Montpellier, 34094, France.,Université de Montpellier, UMR 5203, Montpellier, 34094, France
| | - Sophie Longueville
- Inserm, UMR-S 839, 75005, Paris, France.,Université Pierre et Marie Curie-Paris 6, 75005, Paris, France.,Institut du Fer à Moulin, 75005, Paris, France
| | - Denis Hervé
- Inserm, UMR-S 839, 75005, Paris, France.,Université Pierre et Marie Curie-Paris 6, 75005, Paris, France.,Institut du Fer à Moulin, 75005, Paris, France
| | - Emmanuel Valjent
- CNRS UMR 5203, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France. .,INSERM, U1191, Montpellier, 34094, France. .,Université de Montpellier, UMR 5203, Montpellier, 34094, France.
| |
Collapse
|
167
|
Papenberg G, Becker N, Ferencz B, Naveh-Benjamin M, Laukka EJ, Bäckman L, Brehmer Y. Dopamine Receptor Genes Modulate Associative Memory in Old Age. J Cogn Neurosci 2016; 29:245-253. [PMID: 27647283 DOI: 10.1162/jocn_a_01048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previous research shows that associative memory declines more than item memory in aging. Although the underlying mechanisms of this selective impairment remain poorly understood, animal and human data suggest that dopaminergic modulation may be particularly relevant for associative binding. We investigated the influence of dopamine (DA) receptor genes on item and associative memory in a population-based sample of older adults (n = 525, aged 60 years), assessed with a face-scene item associative memory task. The effects of single-nucleotide polymorphisms of DA D1 (DRD1; rs4532), D2 (DRD2/ANKK1/Taq1A; rs1800497), and D3 (DRD3/Ser9Gly; rs6280) receptor genes were examined and combined into a single genetic score. Individuals carrying more beneficial alleles, presumably associated with higher DA receptor efficacy (DRD1 C allele; DRD2 A2 allele; DRD3 T allele), performed better on associative memory than persons with less beneficial genotypes. There were no effects of these genes on item memory or other cognitive measures, such as working memory, executive functioning, fluency, and perceptual speed, indicating a selective association between DA genes and associative memory. By contrast, genetic risk for Alzheimer disease (AD) was associated with worse item and associative memory, indicating adverse effects of APOE ε4 and a genetic risk score for AD (PICALM, BIN1, CLU) on episodic memory in general. Taken together, our results suggest that DA may be particularly important for associative memory, whereas AD-related genetic variations may influence overall episodic memory in older adults without dementia.
Collapse
Affiliation(s)
| | - Nina Becker
- Karolinska Institutet, Solna, Sweden.,Stockholm University.,Max Planck Institute for Human Development, Berlin, Germany
| | - Beata Ferencz
- Karolinska Institutet, Solna, Sweden.,Stockholm University
| | | | - Erika J Laukka
- Karolinska Institutet, Solna, Sweden.,Stockholm University
| | - Lars Bäckman
- Karolinska Institutet, Solna, Sweden.,Stockholm University
| | - Yvonne Brehmer
- Karolinska Institutet, Solna, Sweden.,Stockholm University.,Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
168
|
Ripollés P, Marco-Pallarés J, Alicart H, Tempelmann C, Rodríguez-Fornells A, Noesselt T. Intrinsic monitoring of learning success facilitates memory encoding via the activation of the SN/VTA-Hippocampal loop. eLife 2016; 5. [PMID: 27644419 PMCID: PMC5030080 DOI: 10.7554/elife.17441] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/18/2016] [Indexed: 12/15/2022] Open
Abstract
Humans constantly learn in the absence of explicit rewards. However, the neurobiological mechanisms supporting this type of internally-guided learning (without explicit feedback) are still unclear. Here, participants who completed a task in which no external reward/feedback was provided, exhibited enhanced fMRI-signals within the dopaminergic midbrain, hippocampus, and ventral striatum (the SN/VTA-Hippocampal loop) when successfully grasping the meaning of new-words. Importantly, new-words that were better remembered showed increased activation and enhanced functional connectivity between the midbrain, hippocampus, and ventral striatum. Moreover, enhanced emotion-related physiological measures and subjective pleasantness ratings during encoding were associated with remembered new-words after 24 hr. Furthermore, increased subjective pleasantness ratings were also related to new-words remembered after seven days. These results suggest that intrinsic—potentially reward-related—signals, triggered by self-monitoring of correct performance, can promote the storage of new information into long-term memory through the activation of the SN/VTA-Hippocampal loop, possibly via dopaminergic modulation of the midbrain. DOI:http://dx.doi.org/10.7554/eLife.17441.001 Research shows that a reward such as money, or even simply the promise of such a reward, can boost the formation of long-term memories. However, in our everyday lives, we continually gain new knowledge and make new memories in the absence of any obvious immediate reward. Rewards activate a network of brain regions that includes the hippocampus, which has a key role in memory, plus several areas that release the chemical messenger dopamine, which boosts memory formation. However, it was not clear whether this network of brain regions also supports learning that is driven internally rather than by external rewards or incentives. Ripollés et al. have now tested this idea by asking thirty-six volunteers to try and learn the meaning of new words by reading pairs of sentences, all while lying down inside a brain scanner. Half of the paired sentences provided a clear and obvious meaning for the new word. As such, the volunteers were reasonably aware when they’d learned the meaning of a new word without any external feedback. This approach confirmed that the activity of the brain’s reward-memory loop did indeed increase whenever a volunteer learned a new word. Next, outside the brain scanner, the volunteers performed the same task but this time they had to rate how engaging and enjoyable they found it after each trial. Emotional responses such as enjoyment trigger sweating, which alters the electrical activity of the skin. Ripollés et al. observed greater changes in this “electrodermal” activity when the volunteers learned words that they would go on to remember one day later, than when they learned words that they would quickly forget. The volunteers also reported greater enjoyment when learning the words that they would subsequently remember better, even after seven days. Overall, these findings suggest that internally driven learning is in itself rewarding, and that under certain circumstances at least it can activate the brain’s reward-memory circuit. A key question for the future is whether tapping into intrinsically rewarding forms of learning might be a more effective educational strategy than relying on external feedback and incentives. This could be crucial to improving the design of educational programs – for example, in teaching literacy and foreign languages – and for improving the recovery of verbal skills lost after stroke. DOI:http://dx.doi.org/10.7554/eLife.17441.002
Collapse
Affiliation(s)
- Pablo Ripollés
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute - IDIBELL, Barcelona, Spain.,Department of Basic Psychology, University of Barcelona, Barcelona, Spain
| | - Josep Marco-Pallarés
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute - IDIBELL, Barcelona, Spain.,Department of Basic Psychology, University of Barcelona, Barcelona, Spain
| | - Helena Alicart
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute - IDIBELL, Barcelona, Spain
| | - Claus Tempelmann
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute - IDIBELL, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain
| | - Toemme Noesselt
- Department of Biological Psychology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
169
|
Monoaminergic control of brain states and sensory processing: Existing knowledge and recent insights obtained with optogenetics. Prog Neurobiol 2016; 151:237-253. [PMID: 27634227 DOI: 10.1016/j.pneurobio.2016.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/18/2016] [Accepted: 09/10/2016] [Indexed: 01/18/2023]
Abstract
Monoamines are key neuromodulators involved in a variety of physiological and pathological brain functions. Classical studies using physiological and pharmacological tools have revealed several essential aspects of monoaminergic involvement in regulating the sleep-wake cycle and influencing sensory responses but many features have remained elusive due to technical limitations. The application of optogenetic tools led to the ability of monitoring and controlling neuronal populations with unprecedented temporal precision and neurochemical specificity. Here, we focus on recent advances in revealing the roles of some monoamines in brain state control and sensory information processing. We summarize the central position of monoamines in integrating sensory processing across sleep-wake states with an emphasis on research conducted using optogenetic techniques. Finally, we discuss the limitations and perspectives of new integrated experimental approaches in understanding the modulatory mechanisms of monoaminergic systems in the mammalian brain.
Collapse
|
170
|
Reconsolidation-induced memory persistence: Participation of late phase hippocampal ERK activation. Neurobiol Learn Mem 2016; 133:79-88. [DOI: 10.1016/j.nlm.2016.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 11/19/2022]
|
171
|
Dopaminergic inputs in the dentate gyrus direct the choice of memory encoding. Proc Natl Acad Sci U S A 2016; 113:E5501-10. [PMID: 27573822 DOI: 10.1073/pnas.1606951113] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rewarding experiences are often well remembered, and such memory formation is known to be dependent on dopamine modulation of the neural substrates engaged in learning and memory; however, it is unknown how and where in the brain dopamine signals bias episodic memory toward preceding rather than subsequent events. Here we found that photostimulation of channelrhodopsin-2-expressing dopaminergic fibers in the dentate gyrus induced a long-term depression of cortical inputs, diminished theta oscillations, and impaired subsequent contextual learning. Computational modeling based on this dopamine modulation indicated an asymmetric association of events occurring before and after reward in memory tasks. In subsequent behavioral experiments, preexposure to a natural reward suppressed hippocampus-dependent memory formation, with an effective time window consistent with the duration of dopamine-induced changes of dentate activity. Overall, our results suggest a mechanism by which dopamine enables the hippocampus to encode memory with reduced interference from subsequent experience.
Collapse
|
172
|
Shetty MS, Sajikumar S. Differential involvement of Ca 2+/calmodulin-dependent protein kinases and mitogen-activated protein kinases in the dopamine D1/D5 receptor-mediated potentiation in hippocampal CA1 pyramidal neurons. Neurobiol Learn Mem 2016; 138:111-120. [PMID: 27470093 DOI: 10.1016/j.nlm.2016.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/21/2016] [Accepted: 07/23/2016] [Indexed: 10/21/2022]
Abstract
Dopaminergic neurotransmission modulates and influences hippocampal CA1 synaptic plasticity, learning and long-term memory mechanisms. Investigating the mechanisms involved in the slow-onset potentiation induced by the dopamine D1/D5 receptor agonists in hippocampal CA1 region, we have reported recently that it could play a role in regulating synaptic cooperation and competition. We have also shown that a sustained activation of MEK/MAP kinase pathway was involved in the maintenance of this long-lasting potentiation (Shivarama Shetty, Gopinadhan, & Sajikumar, 2016). However, the molecular aspects of the induction of dopaminergic slow-onset potentiation are not known. Here, we investigated the involvement of MEK/MAPK pathway and Ca2+-calmodulin-dependent protein kinases (CaMKII and CaMKIV) in the induction and maintenance phases of the D1/D5 receptor-mediated slow-onset potentiation. We report differential involvement of these kinases in a dose-dependent manner wherein at weaker levels of dopaminergic activation, both CaMKII and MEK1/2 activation is necessary for the establishment of potentiation and with sufficiently stronger dopaminergic activation, the role of CaMKII becomes dispensable whereas MEK activation remains crucial for the long-lasting potentiation. The results are interesting in view of the involvement of the hippocampal dopaminergic system in a variety of cognitive abilities including memory formation and also in neurological diseases such as Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Mahesh Shivarama Shetty
- Department of Physiology, Block MD9, 2 Medical Drive, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Neurobiology/Aging Program, 28 Medical Drive, Life Sciences Institute, National University of Singapore, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Block MD9, 2 Medical Drive, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Neurobiology/Aging Program, 28 Medical Drive, Life Sciences Institute, National University of Singapore, Singapore.
| |
Collapse
|
173
|
Activation of D1/5 Dopamine Receptors: A Common Mechanism for Enhancing Extinction of Fear and Reward-Seeking Behaviors. Neuropsychopharmacology 2016; 41:2072-81. [PMID: 26763483 PMCID: PMC4908654 DOI: 10.1038/npp.2016.5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/21/2015] [Accepted: 01/07/2016] [Indexed: 01/05/2023]
Abstract
Dopamine is critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in appetitive tasks. A parallel and growing literature indicates that dopamine signaling is involved in consolidation of memories into stable representations in aversive tasks such as fear conditioning. Relatively little is known about how dopamine may modulate memories that form during extinction, when organisms learn that the relation between previously associated events is severed. We investigated whether fear and reward extinction share common mechanisms that could be enhanced with dopamine D1/5 receptor activation. Pharmacological activation of dopamine D1/5 receptors (with SKF 81297) enhanced extinction of both cued and contextual fear. These effects also occurred in the extinction of cocaine-induced conditioned place preference, suggesting that the observed effects on extinction were not specific to a particular type of procedure (aversive or appetitive). A cAMP/PKA biased D1 agonist (SKF 83959) did not affect fear extinction, whereas a broadly efficacious D1 agonist (SKF 83822) promoted fear extinction. Together, these findings show that dopamine D1/5 receptor activation is a target for the enhancement of fear or reward extinction.
Collapse
|
174
|
Moncada D. Evidence of VTA and LC control of protein synthesis required for the behavioral tagging process. Neurobiol Learn Mem 2016; 138:226-237. [PMID: 27291857 DOI: 10.1016/j.nlm.2016.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/27/2016] [Accepted: 06/06/2016] [Indexed: 01/18/2023]
Abstract
Several works have shown that the formation of different long-term memories relies on a behavioral tagging process. In other words, to establish a lasting memory, at least two parallel processes must occur: the setting of a learning tag (triggered during learning) that defines where a memory could be stored, and the synthesis of proteins, that once captured at tagged sites will effectively allow the consolidation process to occur. This work focused in studying which brain structures are responsible of controlling the synthesis of those proteins at the brain areas where memory is being stored. It combines electrical activation of the ventral tegmental area (VTA) and/or the locus coeruleus (LC), with local pharmacological interventions and weak and strong behavioral trainings in the inhibitory avoidance and spatial object recognition tasks in rats. The results presented here strongly support the idea that the VTA is a brain structure responsible for regulating the consolidation of memories acting through the D1/D5 dopaminergic receptors of the hippocampus to control the synthesis of new proteins required for this process. Moreover, they provide evidence that the LC may be a second structure with a similar role, acting independently and complementary to the VTA, through the β-adrenergic receptors of the hippocampus.
Collapse
Affiliation(s)
- Diego Moncada
- Neurophysiology of Learning and Memory Research Group, Leibniz-Institute for Neurobiology, Brenneckstr. 6, 39118 Magdeburg, Germany; Instituto de Biología Celular y Neurociencias, Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155, 3° Piso, CP 1121 Buenos Aires, Argentina.
| |
Collapse
|
175
|
|
176
|
Signor C, Temp FR, Mello CF, Oliveira MS, Girardi BA, Gais MA, Funck VR, Rubin MA. Intrahippocampal infusion of spermidine improves memory persistence: Involvement of protein kinase A. Neurobiol Learn Mem 2016; 131:18-25. [DOI: 10.1016/j.nlm.2016.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 12/28/2022]
|
177
|
Adjunctive selective estrogen receptor modulator increases neural activity in the hippocampus and inferior frontal gyrus during emotional face recognition in schizophrenia. Transl Psychiatry 2016; 6:e795. [PMID: 27138794 PMCID: PMC5070055 DOI: 10.1038/tp.2016.59] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/29/2016] [Accepted: 03/05/2016] [Indexed: 12/18/2022] Open
Abstract
Estrogen has been implicated in the development and course of schizophrenia with most evidence suggesting a neuroprotective effect. Treatment with raloxifene, a selective estrogen receptor modulator, can reduce symptom severity, improve cognition and normalize brain activity during learning in schizophrenia. People with schizophrenia are especially impaired in the identification of negative facial emotions. The present study was designed to determine the extent to which adjunctive raloxifene treatment would alter abnormal neural activity during angry facial emotion recognition in schizophrenia. Twenty people with schizophrenia (12 men, 8 women) participated in a 13-week, randomized, double-blind, placebo-controlled, crossover trial of adjunctive raloxifene treatment (120 mg per day orally) and performed a facial emotion recognition task during functional magnetic resonance imaging after each treatment phase. Two-sample t-tests in regions of interest selected a priori were performed to assess activation differences between raloxifene and placebo conditions during the recognition of angry faces. Adjunctive raloxifene significantly increased activation in the right hippocampus and left inferior frontal gyrus compared with the placebo condition (family-wise error, P<0.05). There was no significant difference in performance accuracy or reaction time between active and placebo conditions. To the best of our knowledge, this study provides the first evidence suggesting that adjunctive raloxifene treatment changes neural activity in brain regions associated with facial emotion recognition in schizophrenia. These findings support the hypothesis that estrogen plays a modifying role in schizophrenia and shows that adjunctive raloxifene treatment may reverse abnormal neural activity during facial emotion recognition, which is relevant to impaired social functioning in men and women with schizophrenia.
Collapse
|
178
|
Castilla-Ortega E, Serrano A, Blanco E, Araos P, Suárez J, Pavón FJ, Rodríguez de Fonseca F, Santín LJ. A place for the hippocampus in the cocaine addiction circuit: Potential roles for adult hippocampal neurogenesis. Neurosci Biobehav Rev 2016; 66:15-32. [PMID: 27118134 DOI: 10.1016/j.neubiorev.2016.03.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 02/07/2023]
Abstract
Cocaine addiction is a chronic brain disease in which the drug seeking habits and profound cognitive, emotional and motivational alterations emerge from drug-induced neuroadaptations on a vulnerable brain. Therefore, a 'cocaine addiction brain circuit' has been described to explain this disorder. Studies in both cocaine patients and rodents reveal the hippocampus as a main node in the cocaine addiction circuit. The contribution of the hippocampus to cocaine craving and the associated memories is essential to understand the chronic relapsing nature of addiction, which is the main obstacle for the recovery. Interestingly, the hippocampus holds a particular form of plasticity that is rare in the adult brain: the ability to generate new functional neurons. There is an active scientific debate on the contributions of these new neurons to the addicted brain. This review focuses on the potential role(s) of adult hippocampal neurogenesis (AHN) in cocaine addiction. Although the current evidence primarily originates from animal research, these preclinical studies support AHN as a relevant component for the hippocampal effects of cocaine.
Collapse
Affiliation(s)
- Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain.
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Eduardo Blanco
- Departament de Pedagogia i Psicologia, Facultat d'Educació, Psicologia i Treball Social, Universitat de Lleida, Spain
| | - Pedro Araos
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Juan Suárez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain.
| |
Collapse
|
179
|
França ASC, Muratori L, Nascimento GC, Pereira CM, Ribeiro S, Lobão-Soares B. Object recognition impairment and rescue by a dopamine D2 antagonist in hyperdopaminergic mice. Behav Brain Res 2016; 308:211-6. [PMID: 27059337 DOI: 10.1016/j.bbr.2016.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 03/29/2016] [Accepted: 04/04/2016] [Indexed: 12/12/2022]
Abstract
Genetically-modified mice without the dopamine transporter (DAT) are hyperdopaminergic, and serve as models for studies of addiction, mania and hyperactive disorders. Here we investigated the capacity for object recognition in mildly hyperdopaminergic mice heterozygous for DAT (DAT +/-), with synaptic dopaminergic levels situated between those shown by DAT -/- homozygous and wild-type (WT) mice. We used a classical dopamine D2 antagonist, haloperidol, to modulate the levels of dopaminergic transmission in a dose-dependent manner, before or after exploring novel objects. In comparison with WT mice, DAT +/- mice showed a deficit in object recognition upon subsequent testing 24h later. This deficit was compensated by a single 0.05mg/kg haloperidol injection 30min before training. In all mice, a 0.3mg/kg haloperidol injected immediately after training impaired object recognition. The results indicate that a mild enhancement of dopaminergic levels can be detrimental to object recognition, and that this deficit can be rescued by a low dose of a D2 dopamine receptor antagonist. This suggests that novel object recognition is optimal at intermediate levels of D2 receptor activity.
Collapse
Affiliation(s)
- Arthur S C França
- Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450, Brazil
| | - Larissa Muratori
- Biochemistry Department, Federal University of Rio Grande do Norte, Brazil
| | | | | | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450, Brazil
| | - Bruno Lobão-Soares
- Biophysics and Pharmacology Department, Federal University of Rio Grande do Norte, RN 59078-970, Brazil.
| |
Collapse
|
180
|
Silkis IG. The contribution of dopamine to the functioning of the hippocampus during spatial learning (a hypothetical mechanism). NEUROCHEM J+ 2016. [DOI: 10.1134/s181971241601013x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
181
|
Kern A, Mavrikaki M, Ullrich C, Albarran-Zeckler R, Brantley AF, Smith RG. Hippocampal Dopamine/DRD1 Signaling Dependent on the Ghrelin Receptor. Cell 2016; 163:1176-1190. [PMID: 26590421 DOI: 10.1016/j.cell.2015.10.062] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/17/2015] [Accepted: 10/26/2015] [Indexed: 12/24/2022]
Abstract
The ghrelin receptor (GHSR1a) and dopamine receptor-1 (DRD1) are coexpressed in hippocampal neurons, yet ghrelin is undetectable in the hippocampus; therefore, we sought a function for apo-GHSR1a. Real-time single-molecule analysis on hippocampal neurons revealed dimerization between apo-GHSR1a and DRD1 that is enhanced by DRD1 agonism. In addition, proximity measurements support formation of preassembled apo-GHSR1a:DRD1:Gαq heteromeric complexes in hippocampal neurons. Activation by a DRD1 agonist produced non-canonical signal transduction via Gαq-PLC-IP3-Ca(2+) at the expense of canonical DRD1 Gαs cAMP signaling to result in CaMKII activation, glutamate receptor exocytosis, synaptic reorganization, and expression of early markers of hippocampal synaptic plasticity. Remarkably, this pathway is blocked by genetic or pharmacological inactivation of GHSR1a. In mice, GHSR1a inactivation inhibits DRD1-mediated hippocampal behavior and memory. Our findings identify a previously unrecognized mechanism essential for DRD1 initiation of hippocampal synaptic plasticity that is dependent on GHSR1a, and independent of cAMP signaling.
Collapse
Affiliation(s)
- Andras Kern
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Maria Mavrikaki
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Celine Ullrich
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Rosie Albarran-Zeckler
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Alicia Faruzzi Brantley
- Department of Neuroscience and Behavioral Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Roy G Smith
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
182
|
Ross EK, Kim JP, Settell ML, Han SR, Blaha CD, Min HK, Lee KH. Fornix deep brain stimulation circuit effect is dependent on major excitatory transmission via the nucleus accumbens. Neuroimage 2016; 128:138-148. [PMID: 26780572 PMCID: PMC4764383 DOI: 10.1016/j.neuroimage.2015.12.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/04/2015] [Accepted: 12/31/2015] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Deep brain stimulation (DBS) is a circuit-based treatment shown to relieve symptoms from multiple neurologic and neuropsychiatric disorders. In order to treat the memory deficit associated with Alzheimer's disease (AD), several clinical trials have tested the efficacy of DBS near the fornix. Early results from these studies indicated that patients who received fornix DBS experienced an improvement in memory and quality of life, yet the mechanisms behind this effect remain controversial. It is known that transmission between the medial limbic and corticolimbic circuits plays an integral role in declarative memory, and dysfunction at the circuit level results in various forms of dementia, including AD. Here, we aimed to determine the potential underlying mechanism of fornix DBS by examining the functional circuitry and brain structures engaged by fornix DBS. METHODS A multimodal approach was employed to examine global and local temporal changes that occur in an anesthetized swine model of fornix DBS. Changes in global functional activity were measured by functional MRI (fMRI), and local neurochemical changes were monitored by fast scan cyclic voltammetry (FSCV) during electrical stimulation of the fornix. Additionally, intracranial microinfusions into the nucleus accumbens (NAc) were performed to investigate the global activity changes that occur with dopamine and glutamate receptor-specific antagonism. RESULTS Hemodynamic responses in both medial limbic and corticolimbic circuits measured by fMRI were induced by fornix DBS. Additionally, fornix DBS resulted in increases in dopamine oxidation current (corresponding to dopamine efflux) monitored by FSCV in the NAc. Finally, fornix DBS-evoked hemodynamic responses in the amygdala and hippocampus decreased following dopamine and glutamate receptor antagonism in the NAc. CONCLUSIONS The present findings suggest that fornix DBS modulates dopamine release on presynaptic dopaminergic terminals in the NAc, involving excitatory glutamatergic input, and that the medial limbic and corticolimbic circuits interact in a functional loop.
Collapse
Affiliation(s)
- Erika K Ross
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Joo Pyung Kim
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Neurosurgery, Bundang CHA Hospital, CHA University School of Medicine, Seongnam, Korea
| | - Megan L Settell
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Seong Rok Han
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Neurosurgery, Ilsan Paik Hospital, College of Medicine, Inje University, Goyang, Korea
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
183
|
Broussard JI, Yang K, Levine AT, Tsetsenis T, Jenson D, Cao F, Garcia I, Arenkiel BR, Zhou FM, De Biasi M, Dani JA. Dopamine Regulates Aversive Contextual Learning and Associated In Vivo Synaptic Plasticity in the Hippocampus. Cell Rep 2016; 14:1930-9. [PMID: 26904943 PMCID: PMC4772154 DOI: 10.1016/j.celrep.2016.01.070] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/04/2015] [Accepted: 01/22/2016] [Indexed: 11/21/2022] Open
Abstract
Dopamine release during reward-driven behaviors influences synaptic plasticity. However, dopamine innervation and release in the hippocampus and its role during aversive behaviors are controversial. Here, we show that in vivo hippocampal synaptic plasticity in the CA3-CA1 circuit underlies contextual learning during inhibitory avoidance (IA) training. Immunohistochemistry and molecular techniques verified sparse dopaminergic innervation of the hippocampus from the midbrain. The long-term synaptic potentiation (LTP) underlying the learning of IA was assessed with a D1-like dopamine receptor agonist or antagonist in ex vivo hippocampal slices and in vivo in freely moving mice. Inhibition of D1-like dopamine receptors impaired memory of the IA task and prevented the training-induced enhancement of both ex vivo and in vivo LTP induction. The results indicate that dopamine-receptor signaling during an aversive contextual task regulates aversive memory retention and regulates associated synaptic mechanisms in the hippocampus that likely underlie learning.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Animals
- Avoidance Learning/drug effects
- Avoidance Learning/physiology
- Benzazepines/pharmacology
- CA1 Region, Hippocampal/cytology
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/physiology
- CA3 Region, Hippocampal/cytology
- CA3 Region, Hippocampal/drug effects
- CA3 Region, Hippocampal/physiology
- Conditioning, Psychological/drug effects
- Conditioning, Psychological/physiology
- Dopamine/metabolism
- Electrodes
- Learning/physiology
- Long-Term Potentiation/drug effects
- Long-Term Potentiation/physiology
- Memory, Long-Term/drug effects
- Memory, Long-Term/physiology
- Mesencephalon/cytology
- Mesencephalon/drug effects
- Mesencephalon/physiology
- Mice
- Mice, Inbred C57BL
- Microtomy
- Pyramidal Cells/cytology
- Pyramidal Cells/drug effects
- Pyramidal Cells/physiology
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/physiology
- Synapses/drug effects
- Synapses/physiology
- Synapses/ultrastructure
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Tissue Culture Techniques
Collapse
Affiliation(s)
- John I Broussard
- Department of Neuroscience, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kechun Yang
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, PA 19104, USA
| | - Amber T Levine
- Department of Neuroscience, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Theodoros Tsetsenis
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, PA 19104, USA
| | - Daniel Jenson
- Department of Neuroscience, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Fei Cao
- Department of Neuroscience, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Isabella Garcia
- Program in Developmental Biology , Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Program in Developmental Biology , Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee, Memphis, TN 38163 USA
| | - Mariella De Biasi
- Department of Psychiatry, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, PA 19104, USA
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
184
|
Dopamine D1 Binding Potential Predicts Fusiform BOLD Activity during Face-Recognition Performance. J Neurosci 2016; 35:14702-7. [PMID: 26538642 DOI: 10.1523/jneurosci.1298-15.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The importance of face memory in humans and primates is well established, but little is known about the neurotransmitter systems involved in face recognition. We tested the hypothesis that face recognition is linked to dopamine (DA) activity in fusiform gyrus (FFG). DA availability was assessed by measuring D1 binding potential (BP) during rest using PET. We further assessed blood-oxygen-level-dependent (BOLD) signal change while subjects performed a face-recognition task during fMRI scanning. There was a strong association between D1 BP and BOLD activity in FFG, whereas D1 BP in striatal and other extrastriatal regions were unrelated to neural activity in FFG. These results suggest that D1 BP locally modulates FFG function during face recognition. Observed relationships among D1 BP, BOLD activity, and face-recognition performance further suggest that D1 receptors place constraints on the responsiveness of FFG neurons. SIGNIFICANCE STATEMENT The importance of face memory in humans and primates is well established, but little is known about the neurotransmitter systems involved in face recognition. Our work shows a role for a specific neurotransmitter system in face memory.
Collapse
|
185
|
Li SB, Du D, Hasan MT, Köhr G. D4 Receptor Activation Differentially Modulates Hippocampal Basal and Apical Dendritic Synapses in Freely Moving Mice. Cereb Cortex 2016; 26:647-55. [PMID: 25270308 DOI: 10.1093/cercor/bhu229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Activation of D4 receptors (D4Rs) has been shown to improve cognitive performance, potentially affecting synaptic strength. We investigated the D4R agonist PD 168077 (PD) in hippocampal CA1 of freely moving mice. We electrically stimulated in stratum oriens (OR) or radiatum (RAD) and evoked local field potentials (LFPs). Intraperitoneally injected PD dose-dependently and reversibly attenuated LFPs for longer time in basal (OR) than apical (RAD) dendrites. High-frequency stimulation induced LTP that was stronger and more stable in OR than RAD. LTP lasted at least 4 h during which the paired-pulse ratio remained reduced. A PD concentration not affecting synaptic transmission was sufficient to reduce LTP in OR but not in RAD. A PD concentration reducing synaptic transmission reduced the early phase LTP in OR additionally and the late phase LTP in RAD exclusively. Furthermore, cell type-specific expression of mCherry in DATCre mice generated fluorescence in dorsal CA1 that was highest in lacunosum moleculare and similar in OR/RAD, indicating that midbrain dopaminergic fibers distribute evenly in OR/RAD. Together, the D4R-mediated modulation of hippocampal synaptic transmission and plasticity is stronger in OR than RAD. This could affect information processing in CA1 neurons, since signals arriving via basal and apical afferents are distinct.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, 60120 Heidelberg, Germany Current Address: Physiology of Neural Networks, Psychiatry/Psychopharmacology, Central Institute of Mental Health, J5, Heidelberg University, Mannheim 68159, Germany
| | - Dan Du
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, 60120 Heidelberg, Germany Current Address: Physiology of Neural Networks, Psychiatry/Psychopharmacology, Central Institute of Mental Health, J5, Heidelberg University, Mannheim 68159, Germany
| | - Mazahir T Hasan
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, 60120 Heidelberg, Germany Current Address: NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin 12101, Germany
| | - Georg Köhr
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, 60120 Heidelberg, Germany Current Address: Physiology of Neural Networks, Psychiatry/Psychopharmacology, Central Institute of Mental Health, J5, Heidelberg University, Mannheim 68159, Germany
| |
Collapse
|
186
|
Leffa DT, de Souza A, Scarabelot VL, Medeiros LF, de Oliveira C, Grevet EH, Caumo W, de Souza DO, Rohde LAP, Torres ILS. Transcranial direct current stimulation improves short-term memory in an animal model of attention-deficit/hyperactivity disorder. Eur Neuropsychopharmacol 2016; 26:368-377. [PMID: 26792443 DOI: 10.1016/j.euroneuro.2015.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 10/30/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is characterized by impairing levels of hyperactivity, impulsivity and inattention. However, different meta-analyses have reported disruptions in short and long-term memory in ADHD patients. Previous studies indicate that mnemonic dysfunctions might be the result of deficits in attentional circuits, probably due to ineffective dopaminergic modulation of hippocampal synaptic plasticity. In this study we aimed to evaluate the potential therapeutic effects of a neuromodulatory technique, transcranial direct current stimulation (tDCS), in short-term memory (STM) deficits presented by the spontaneous hypertensive rats (SHR), the most widely used animal model of ADHD. Adult male SHR and Wistar Kyoto rats (WKY) were subjected to a constant electrical current of 0.5 mA intensity applied on the frontal cortex for 20 min/day during 8 days. STM was evaluated with an object recognition test conducted in an open field. Exploration time and locomotion were recorded, and brain regions were dissected to determine dopamine and BDNF levels. SHR spent less time exploring the new object when compared to WKY, and tDCS improved object recognition deficits in SHR without affecting WKY performance. Locomotor activity was higher in SHR and it was not affected by tDCS. After stimulation, dopamine levels were increased in the hippocampus and striatum of both strains, while BDNF levels were increased only in the striatum of WKY. These findings suggest that tDCS on the frontal cortex might be able to improve STM deficits present in SHR, which is potentially related to dopaminergic neurotransmission in the hippocampus and striatum of those animals.
Collapse
Affiliation(s)
- Douglas Teixeira Leffa
- Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Biochemistry Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies-Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andressa de Souza
- Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies-Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vanessa Leal Scarabelot
- Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies-Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Liciane Fernandes Medeiros
- Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies-Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla de Oliveira
- Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies-Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eugenio Horacio Grevet
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil
| | - Wolnei Caumo
- Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo Onofre de Souza
- Biochemistry Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luis Augusto Paim Rohde
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents, Brazil
| | - Iraci L S Torres
- Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies-Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
187
|
Miendlarzewska EA, Bavelier D, Schwartz S. Influence of reward motivation on human declarative memory. Neurosci Biobehav Rev 2016; 61:156-76. [DOI: 10.1016/j.neubiorev.2015.11.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 10/13/2015] [Accepted: 11/28/2015] [Indexed: 12/13/2022]
|
188
|
PV plasticity sustained through D1/5 dopamine signaling required for long-term memory consolidation. Nat Neurosci 2016; 19:454-64. [PMID: 26807952 DOI: 10.1038/nn.4231] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/23/2015] [Indexed: 02/07/2023]
Abstract
Long-term consolidation of memories depends on processes occurring many hours after acquisition. Whether this involves plasticity that is specifically required for long-term consolidation remains unclear. We found that learning-induced plasticity of local parvalbumin (PV) basket cells was specifically required for long-term, but not short/intermediate-term, memory consolidation in mice. PV plasticity, which involves changes in PV and GAD67 expression and connectivity onto PV neurons, was regulated by cAMP signaling in PV neurons. Following induction, PV plasticity depended on local D1/5 dopamine receptor signaling at 0-5 h to regulate its magnitude, and at 12-14 h for its continuance, ensuring memory consolidation. D1/5 dopamine receptor activation selectively induced DARPP-32 and ERK phosphorylation in PV neurons. At 12-14 h, PV plasticity was required for enhanced sharp-wave ripple densities and c-Fos expression in pyramidal neurons. Our results reveal general network mechanisms of long-term memory consolidation that requires plasticity of PV basket cells induced after acquisition and sustained subsequently through D1/5 receptor signaling.
Collapse
|
189
|
Rosen ZB, Cheung S, Siegelbaum SA. Midbrain dopamine neurons bidirectionally regulate CA3-CA1 synaptic drive. Nat Neurosci 2015; 18:1763-71. [PMID: 26523642 PMCID: PMC11186581 DOI: 10.1038/nn.4152] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/01/2015] [Indexed: 12/16/2022]
Abstract
Dopamine (DA) is required for hippocampal-dependent memory and long-term potentiation (LTP) at CA1 Schaffer collateral (SC) synapses. It is therefore surprising that exogenously applied DA has little effect on SC synapses, but suppresses CA1 perforant path (PP) inputs. To examine DA actions under more physiological conditions, we used optogenetics to release DA from ventral tegmental area inputs to hippocampus. Unlike exogenous DA application, optogenetic release of DA caused a bidirectional, activity-dependent modulation of SC synapses, with no effect on PP inputs. Low levels of DA release, simulating tonic DA neuron firing, depressed the SC response through a D4 receptor-dependent enhancement of feedforward inhibition mediated by parvalbumin-expressing interneurons. Higher levels of DA release, simulating phasic firing, increased SC responses through a D1 receptor-dependent enhancement of excitatory transmission. Thus, tonic-phasic transitions in DA neuron firing in response to motivational demands may cause a modulatory switch from inhibition to enhancement of hippocampal information flow.
Collapse
Affiliation(s)
- Zev B. Rosen
- Department of Neuroscience, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Stephanie Cheung
- Department of Neuroscience, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Steven A. Siegelbaum
- Department of Neuroscience, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
- Department of Pharmacology, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
- Kavli Institute for Brain Science, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
190
|
Ichinose T, Aso Y, Yamagata N, Abe A, Rubin GM, Tanimoto H. Reward signal in a recurrent circuit drives appetitive long-term memory formation. eLife 2015; 4:e10719. [PMID: 26573957 PMCID: PMC4643015 DOI: 10.7554/elife.10719] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/05/2015] [Indexed: 11/13/2022] Open
Abstract
Dopamine signals reward in animal brains. A single presentation of a sugar reward to Drosophila activates distinct subsets of dopamine neurons that independently induce short- and long-term olfactory memories (STM and LTM, respectively). In this study, we show that a recurrent reward circuit underlies the formation and consolidation of LTM. This feedback circuit is composed of a single class of reward-signaling dopamine neurons (PAM-α1) projecting to a restricted region of the mushroom body (MB), and a specific MB output cell type, MBON-α1, whose dendrites arborize that same MB compartment. Both MBON-α1 and PAM-α1 neurons are required during the acquisition and consolidation of appetitive LTM. MBON-α1 additionally mediates the retrieval of LTM, which is dependent on the dopamine receptor signaling in the MB α/β neurons. Our results suggest that a reward signal transforms a nascent memory trace into a stable LTM using a feedback circuit at the cost of memory specificity. DOI:http://dx.doi.org/10.7554/eLife.10719.001 An animal that finds particularly nutritious and palatable food will often develop a long-lasting memory—even if they experience that event only once. One example of this is the ability of the fruit fly Drosophila to form a long-term association between a sugar reward and a specific odor that was present when they received the reward. The consumption of sugar triggers the release of a chemical called dopamine on specific compartments of a brain structure called the mushroom body. Dopamine then acts to modify the connection between cells called “Kenyon cells”, which encode specific odors, and the neurons that send signals out from the mushroom body (called MBONs). The result is the formation of a memory that links the odor with the reward. However, little is known about how this process differs for long-term vs. short-term memories, and how it can occur when the fly has experienced the odor and reward together on only a single occasion. To find out, Ichinose et al. combined behavioral testing of fruit flies with genetics. The results confirmed that the dopamine neurons and the MBONs that project to a single compartment of the mushroom body, called α1, are both required for the formation of long-term odor-reward memories, but not their short-term equivalents. These neurons are called PAM-α1 and MBON-α1, respectively. Unexpectedly, anatomical data revealed that PAM-α1 dopamine neurons receive input from MBON-α1; that is, long-term memory formation involves a feedback circuit: from PAM-α1 to Kenyon cells, then to MBON-α1 and back to PAM-α1. Blocking feedback from the MBON-α1 onto the PAM-α1 neurons shortly after odor-reward training disrupted long-term memory formation. Conversely, blocking feedback at a later stage did not. This suggests that prolonged activation of PAM-α1 by MBON-α1 helps to strengthen newly established memories, converting them into memories that will last for a long time. The discovery of a specific circuit that supports long-term, but not short-term, memory formation in fruit flies is consistent with evidence of distinct mechanisms underlying these processes in mammals. Further work is now required to determine whether feedback circuits similar to those in fruit flies also contribute to reward-based learning in other animals. DOI:http://dx.doi.org/10.7554/eLife.10719.002
Collapse
Affiliation(s)
- Toshiharu Ichinose
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nobuhiro Yamagata
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Ayako Abe
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|
191
|
Basu J, Siegelbaum SA. The Corticohippocampal Circuit, Synaptic Plasticity, and Memory. Cold Spring Harb Perspect Biol 2015; 7:7/11/a021733. [PMID: 26525152 DOI: 10.1101/cshperspect.a021733] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Synaptic plasticity serves as a cellular substrate for information storage in the central nervous system. The entorhinal cortex (EC) and hippocampus are interconnected brain areas supporting basic cognitive functions important for the formation and retrieval of declarative memories. Here, we discuss how information flow in the EC-hippocampal loop is organized through circuit design. We highlight recently identified corticohippocampal and intrahippocampal connections and how these long-range and local microcircuits contribute to learning. This review also describes various forms of activity-dependent mechanisms that change the strength of corticohippocampal synaptic transmission. A key point to emerge from these studies is that patterned activity and interaction of coincident inputs gives rise to associational plasticity and long-term regulation of information flow. Finally, we offer insights about how learning-related synaptic plasticity within the corticohippocampal circuit during sensory experiences may enable adaptive behaviors for encoding spatial, episodic, social, and contextual memories.
Collapse
Affiliation(s)
- Jayeeta Basu
- Department of Neuroscience and Physiology, NYU Neuroscience Institute, New York University School of Medicine, New York, New York 10016
| | - Steven A Siegelbaum
- Kavli Institute for Brain Science, Columbia University, New York, New York 10032 Department of Neuroscience, Columbia University, New York, New York 10032 Department of Pharmacology, Columbia University, New York, New York 10032
| |
Collapse
|
192
|
Grogan J, Bogacz R, Tsivos D, Whone A, Coulthard E. Dopamine and Consolidation of Episodic Memory: Timing is Everything. J Cogn Neurosci 2015; 27:2035-50. [PMID: 26102227 PMCID: PMC4880040 DOI: 10.1162/jocn_a_00840] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Memory consolidation underpins adaptive behavior and dopaminergic networks may be critical for prolonged, selective information storage. To understand the time course of the dopaminergic contribution to memory consolidation in humans, here we investigate the effect of dopaminergic medication on recall and recognition in the short and longer term in Parkinson disease (PD). Fifteen people with PD were each tested on or off dopaminergic medication during learning/early consolidation (Day 1) and/or late consolidation (Day 2). Fifteen age-matched healthy participants were tested only once. On Day 1 participants learned new information, and early episodic memory was tested after 30 min. Then on Day 2, recall and recognition were retested after a 24-hr delay. Participants on medication on Day 1 recalled less information at 30 min and 24 hr. In contrast, patients on medication on Day 2 (8-24 hr after learning) recalled more information at 24 hr than those off medication. Although recognition sensitivity was unaffected by medication, response bias was dependent on dopaminergic state: Medication during learning induced a more liberal bias 24 hr later, whereas patients off medication during learning were more conservative responders 24 hr later. We use computational modeling to propose possible mechanisms for this change in response bias. In summary, dopaminergic medication in PD patients during learning impairs early consolidation of episodic memory and makes delayed responses more liberal, but enhances late memory consolidation presumably through a dopamine-dependent consolidation pathway that may be active during sleep.
Collapse
Affiliation(s)
| | | | | | - Alan Whone
- University of Bristol
- North Bristol NHS Trust
| | | |
Collapse
|
193
|
Chai AP, Ma WP, Wang LP, Cao J, Xu L, Yang YX, Mao RR. Chronic constant light-induced hippocampal late-phase long-term potentiation impairment in vitro is attenuated by antagonist of D1/D5 receptors. Brain Res 2015; 1622:72-80. [DOI: 10.1016/j.brainres.2015.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/05/2015] [Accepted: 06/17/2015] [Indexed: 12/25/2022]
|
194
|
Shu H, Zheng GQ, Wang X, Sun Y, Liu Y, Weaver JM, Shen X, Liu W, Jin X. Activation of matrix metalloproteinase in dorsal hippocampus drives improvement in spatial working memory after intra-VTA nicotine infusion in rats. J Neurochem 2015; 135:357-67. [PMID: 26263395 DOI: 10.1111/jnc.13283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/29/2022]
Abstract
The hippocampus receives dopaminergic projections from the ventral tegmental area (VTA) and substantia nigra. These inputs appear to provide a modulatory signal that influences hippocampus-dependent behaviors. Enhancements in working memory performance have been previously reported following acute smoking/nicotine exposure. However, the underlying mechanism remains unclear. This study investigated the effects of nicotine on spatial working memory (SWM) and the mechanisms involved. Delayed alternation T-maze task was used to assess SWM. In situ and gel gelatin zymography were used to detect matrix metalloproteinase-9 (MMP-9) in SWM. Systemic or local (intra-VTA) administration of nicotine significantly improves SWM, which was accompanied by increased MMP-9 activity in dorsal hippocampus (dHPC). Intra-dHPC administration of MMP inhibitor FN-439 abolished the memory enhancement induced by intra-VTA nicotine infusion. FN-439 had no effect on locomotor behavior. Our data suggest that intra-VTA nicotine infusion activates MMP-9 in dHPC to improve SWM in rats.
Collapse
Affiliation(s)
- Hui Shu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Guo-qing Zheng
- Department of Neurology, The Second Affiliated Hospital &Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaona Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Yanyun Sun
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Yushan Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - John Michael Weaver
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.,Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Xianzhi Shen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Key Laboratory of Neurosurgery, and the Department of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, China
| | - Xinchun Jin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
195
|
Fries GR, Valvassori SS, Bock H, Stertz L, Magalhães PVDS, Mariot E, Varela RB, Kauer-Sant'Anna M, Quevedo J, Kapczinski F, Saraiva-Pereira ML. Memory and brain-derived neurotrophic factor after subchronic or chronic amphetamine treatment in an animal model of mania. J Psychiatr Res 2015; 68:329-36. [PMID: 26026487 DOI: 10.1016/j.jpsychires.2015.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/01/2015] [Accepted: 05/07/2015] [Indexed: 11/26/2022]
Abstract
Progression of bipolar disorder (BD) has been associated with cognitive impairment and changes in neuroplasticity, including a decrease in serum brain-derived neurotrophic factor (BDNF). However, no study could examine BDNF levels directly in different brain regions after repeated mood episodes to date. The proposed animal model was designed to mimic several manic episodes and evaluate whether the performance in memory tasks and BDNF levels in hippocampus, prefrontal cortex, and amygdala would change after repeated amphetamine (AMPH) exposure. Adult male Wistar rats were divided into subchronic (AMPH for 7 days) and chronic groups (35 days), mimicking manic episodes at early and late stages of BD, respectively. After open field habituation or inhibitory avoidance test, rats were killed, brain regions were isolated, and BDNF mRNA and protein levels were measured by quantitative real-time PCR and ELISA, respectively. AMPH impaired habituation memory in both subchronic and chronic groups, and the impairment was worse in the chronic group. This was accompanied by increased Bdnf mRNA levels in the prefrontal cortex and amygdala region, as well as reduced BDNF protein in the hippocampus. In the inhibitory avoidance, AMPH significantly decreased the change from training to test when compared to saline. No difference was observed between subchronic and chronic groups, although chronically AMPH-treated rats presented increased Bdnf mRNA levels and decreased protein levels in hippocampus when compared to the subchronic group. Our results suggest that the cognitive impairment related to BD neuroprogression may be associated with BDNF alterations in hippocampus, prefrontal cortex, and amygdala.
Collapse
Affiliation(s)
- Gabriel R Fries
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Laboratory of Genetic Identification and Medical Genetic Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Samira S Valvassori
- INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Laboratory of Neurosciences, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, 88806-000, Criciúma, Santa Catarina, Brazil.
| | - Hugo Bock
- Laboratory of Genetic Identification and Medical Genetic Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-903, Rio Grande do Sul, Brazil.
| | - Laura Stertz
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Pedro Vieira da Silva Magalhães
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Department of Psychiatry, Universidade Federal Rio Grande do Sul, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil.
| | - Edimilson Mariot
- INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Laboratory of Neurosciences, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, 88806-000, Criciúma, Santa Catarina, Brazil.
| | - Roger B Varela
- INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Laboratory of Neurosciences, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, 88806-000, Criciúma, Santa Catarina, Brazil.
| | - Marcia Kauer-Sant'Anna
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-903, Rio Grande do Sul, Brazil; Department of Psychiatry, Universidade Federal Rio Grande do Sul, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil.
| | - João Quevedo
- INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA; Laboratory of Neurosciences, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, 88806-000, Criciúma, Santa Catarina, Brazil.
| | - Flávio Kapczinski
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Psychiatry, Universidade Federal Rio Grande do Sul, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil.
| | - Maria Luiza Saraiva-Pereira
- Laboratory of Genetic Identification and Medical Genetic Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-903, Rio Grande do Sul, Brazil.
| |
Collapse
|
196
|
Behavioral Tagging: A Translation of the Synaptic Tagging and Capture Hypothesis. Neural Plast 2015; 2015:650780. [PMID: 26380117 PMCID: PMC4562088 DOI: 10.1155/2015/650780] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/12/2015] [Indexed: 11/18/2022] Open
Abstract
Similar molecular machinery is activated in neurons following an electrical stimulus that induces synaptic changes and after learning sessions that trigger memory formation. Then, to achieve perdurability of these processes protein synthesis is required for the reinforcement of the changes induced in the network. The synaptic tagging and capture theory provided a strong framework to explain synaptic specificity and persistence of electrophysiological induced plastic changes. Ten years later, the behavioral tagging hypothesis (BT) made use of the same argument, applying it to learning and memory models. The hypothesis postulates that the formation of lasting memories relies on at least two processes: the setting of a learning tag and the synthesis of plasticity related proteins, which once captured at tagged sites allow memory consolidation. BT explains how weak events, only capable of inducing transient forms of memories, can result in lasting memories when occurring close in time with other behaviorally relevant experiences that provide proteins. In this review, we detail the findings supporting the existence of BT process in rodents, leading to the consolidation, persistence, and interference of a memory. We focus on the molecular machinery taking place in these processes and describe the experimental data supporting the BT in humans.
Collapse
|
197
|
Tomaiuolo M, Katche C, Viola H, Medina JH. Evidence of Maintenance Tagging in the Hippocampus for the Persistence of Long-Lasting Memory Storage. Neural Plast 2015; 2015:603672. [PMID: 26380116 PMCID: PMC4561985 DOI: 10.1155/2015/603672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/11/2015] [Indexed: 12/28/2022] Open
Abstract
The synaptic tagging and capture (STC) hypothesis provides a compelling explanation for synaptic specificity and facilitation of long-term potentiation. Its implication on long-term memory (LTM) formation led to postulate the behavioral tagging mechanism. Here we show that a maintenance tagging process may operate in the hippocampus late after acquisition for the persistence of long-lasting memory storage. The proposed maintenance tagging has several characteristics: (1) the tag is transient and time-dependent; (2) it sets in a late critical time window after an aversive training which induces a short-lasting LTM; (3) exposing rats to a novel environment specifically within this tag time window enables the consolidation to a long-lasting LTM; (4) a familiar environment exploration was not effective; (5) the effect of novelty on the promotion of memory persistence requires dopamine D1/D5 receptors and Arc expression in the dorsal hippocampus. The present results can be explained by a broader version of the behavioral tagging hypothesis and highlight the idea that the durability of a memory trace depends either on late tag mechanisms induced by a training session or on events experienced close in time to this tag.
Collapse
Affiliation(s)
- Micol Tomaiuolo
- Instituto de Biología Celular y Neurociencias “Dr. Eduardo De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina
| | - Cynthia Katche
- Instituto de Biología Celular y Neurociencias “Dr. Eduardo De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina
| | - Haydee Viola
- Instituto de Biología Celular y Neurociencias “Dr. Eduardo De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular Dr. Hector Maldonado, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Jorge H. Medina
- Instituto de Biología Celular y Neurociencias “Dr. Eduardo De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina
| |
Collapse
|
198
|
Shivarama Shetty M, Gopinadhan S, Sajikumar S. Dopamine D1/D5 receptor signaling regulates synaptic cooperation and competition in hippocampal CA1 pyramidal neurons via sustained ERK1/2 activation. Hippocampus 2015; 26:137-50. [PMID: 26194339 PMCID: PMC5054950 DOI: 10.1002/hipo.22497] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2015] [Indexed: 12/30/2022]
Abstract
Synaptic cooperation and competition are important components of synaptic plasticity that tune synapses for the formation of associative long‐term plasticity, a cellular correlate of associative long‐term memory. We have recently reported that coincidental activation of weak synapses within the vicinity of potentiated synapses will alter the cooperative state of synapses to a competitive state thus leading to the slow decay of long‐term plasticity, but the molecular mechanism underlying this is still unknown. Here, using acute hippocampal slices of rats, we have examined how increasing extracellular dopamine concentrations interact and/or affect electrically induced long‐term potentiation (LTP) in the neighboring synapses. We demonstrate that D1/D5‐receptor‐mediated potentiation at the CA1 Schaffer collateral synapses differentially regulates synaptic co‐operation and competition. Further investigating the molecular players involved, we reveal an important role for extracellular signal‐regulated kinases‐1 and 2 (ERK1/2) as signal integrators and dose‐sensors. Interestingly, a sustained activation of ERK1/2 pathway seems to be involved in the differential regulation of synaptic associativity. The concentration‐dependent effects of the modulatory transmitter, as demonstrated for dopaminergic signaling in the present study, might offer additional computational power by fine tuning synaptic associativity processes for establishing long‐term associative memory in neural networks. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mahesh Shivarama Shetty
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology/Aging Program, Life Sciences Institute (LSI), National University of Singapore, Singapore
| | - Suma Gopinadhan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology/Aging Program, Life Sciences Institute (LSI), National University of Singapore, Singapore
| |
Collapse
|
199
|
Memory trace replay: the shaping of memory consolidation by neuromodulation. Trends Neurosci 2015; 38:560-70. [PMID: 26275935 PMCID: PMC4712256 DOI: 10.1016/j.tins.2015.07.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/02/2015] [Accepted: 07/14/2015] [Indexed: 01/24/2023]
Abstract
The consolidation of memories for places and events is thought to rely, at the network level, on the replay of spatially tuned neuronal firing patterns representing discrete places and spatial trajectories. This occurs in the hippocampal-entorhinal circuit during sharp wave ripple events (SWRs) that occur during sleep or rest. Here, we review theoretical models of lingering place cell excitability and behaviorally induced synaptic plasticity within cell assemblies to explain which sequences or places are replayed. We further provide new insights into how fluctuations in cholinergic tone during different behavioral states might shape the direction of replay and how dopaminergic release in response to novelty or reward can modulate which cell assemblies are replayed.
Collapse
|
200
|
Kinoshita KI, Tada Y, Muroi Y, Unno T, Ishii T. Selective loss of dopaminergic neurons in the substantia nigra pars compacta after systemic administration of MPTP facilitates extinction learning. Life Sci 2015. [PMID: 26209139 DOI: 10.1016/j.lfs.2015.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc). In PD, thinking and retrieval deficits often arise from cognitive impairments. However, the mechanism of cognitive disorders in PD remains unknown. Therefore, we investigated cognitive function in PD model mice produced by intraperitoneal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which specifically destroys the DAergic neurons in the SNpc. MAIN METHODS We evaluated the cognitive function of MPTP-treated mice (PD mice) using the contextual fear conditioning test. In the test, each experiment consists of three phases: training, re-exposure, and testing. Mice were trained with a foot shock (a weak unconditioned stimulus: 1mA/2s duration, once, or an intense unconditioned stimulus: 2mA/2s duration, twice), and 24h later, mice were re-exposed to the training context for 3min to determine reconsolidation or 30min to determine extinction. The percentage of time spent freezing was measured during the test session as indexes of memory consolidation, reconsolidation, and extinction. KEY FINDINGS Reconsolidation of PD mice occurred normally but memory extinction was facilitated in PD mice compared to control mice. Moreover, memory retention in PD mice was attenuated earlier than in controls following repeated conditioned stimuli every day. SIGNIFICANCE PD mice with selective loss of DAergic neurons in the SNpc showed attenuated memory retention, probably via facilitated extinction learning.
Collapse
Affiliation(s)
- Ken-ichi Kinoshita
- Department of Pathogenetic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yayoi Tada
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Yoshikage Muroi
- Department of Pathogenetic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Toshihiro Unno
- Department of Pathogenetic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; The Laboratory of Pharmacology, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Toshiaki Ishii
- Department of Pathogenetic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|