151
|
Jensen MK. Design principles for nuclease-deficient CRISPR-based transcriptional regulators. FEMS Yeast Res 2018; 18:4966988. [PMID: 29726937 PMCID: PMC5932555 DOI: 10.1093/femsyr/foy039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/06/2018] [Indexed: 12/18/2022] Open
Abstract
The engineering of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated proteins continues to expand the toolkit available for genome editing, reprogramming gene regulation, genome visualisation and epigenetic studies of living organisms. In this review, the emerging design principles on the use of nuclease-deficient CRISPR-based reprogramming of gene expression will be presented. The review will focus on the designs implemented in yeast both at the level of CRISPR proteins and guide RNA (gRNA), but will lend due credits to the seminal studies performed in other species where relevant. In addition to design principles, this review also highlights applications benefitting from the use of CRISPR-mediated transcriptional regulation and discusses the future directions to further expand the toolkit for nuclease-deficient reprogramming of genomes. As such, this review should be of general interest for experimentalists to get familiarised with the parameters underlying the power of reprogramming genomic functions by use of nuclease-deficient CRISPR technologies.
Collapse
Affiliation(s)
- Michael K Jensen
- Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
152
|
Richter DJ, Fozouni P, Eisen MB, King N. Gene family innovation, conservation and loss on the animal stem lineage. eLife 2018; 7:34226. [PMID: 29848444 PMCID: PMC6040629 DOI: 10.7554/elife.34226] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 05/26/2018] [Indexed: 02/06/2023] Open
Abstract
Choanoflagellates, the closest living relatives of animals, can provide unique insights into the changes in gene content that preceded the origin of animals. However, only two choanoflagellate genomes are currently available, providing poor coverage of their diversity. We sequenced transcriptomes of 19 additional choanoflagellate species to produce a comprehensive reconstruction of the gains and losses that shaped the ancestral animal gene repertoire. We identified ~1944 gene families that originated on the animal stem lineage, of which only 39 are conserved across all animals in our study. In addition, ~372 gene families previously thought to be animal-specific, including Notch, Delta, and homologs of the animal Toll-like receptor genes, instead evolved prior to the animal-choanoflagellate divergence. Our findings contribute to an increasingly detailed portrait of the gene families that defined the biology of the Urmetazoan and that may underpin core features of extant animals. All animals, from sea sponges and reef-building corals to elephants and humans, share a single common ancestor that lived over half a billion years ago. This single-celled predecessor evolved the ability to develop into a creature made up of many cells with specialized jobs. Reconstructing the steps in this evolutionary process has been difficult because the earliest animals were soft-bodied and microscopic and did not leave behind fossils that scientists can study. Though their bodies have since disintegrated, many of the instructions for building the first animals live on in genes that were passed on to life forms that still exist. Scientists are trying to retrace those genes back to the first animal by comparing the genomes of living animals with their closest relatives, the choanoflagellates. Choanoflagellates are single-celled, colony-forming organisms that live in waters around the world. Comparisons with choanoflagellates may help scientists identify which genes were necessary to help animals evolve and diversify into so many different species. So far, 1,000 animal and two choanoflagellate genomes have been sequenced. But the gene repertoires of most species of choanoflagellates have yet to be analyzed. Now, Richter et al. have cataloged the genes of 19 more species of choanoflagellates. This added information allowed them to recreate the likely gene set of the first animal and to identify genetic changes that occurred during animal evolution. The analyses showed that modern animals lost about a quarter of the genes present in their last common ancestor with choanoflagellates and gained an equal number of new genes. Richter et al. identified several dozen core animal genes that were gained and subsequently preserved throughout animal evolution. Many of these are necessary so that an embryo can develop properly, but the precise roles of some core genes remain a mystery. Most other genes that emerged in the first animals have been lost in at least one living animal. The study of Richter et al. also showed that some very important genes in animals, including genes essential for early development and genes that help the immune system detect pathogens, predate animals. These key genes trace back to animals’ last common ancestor with choanoflagellates and may have evolved new roles in animals.
Collapse
Affiliation(s)
- Daniel J Richter
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Équipe EPEP, Station Biologique de Roscoff, Roscoff, France
| | - Parinaz Fozouni
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Medical Scientist Training Program, Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, United States.,Gladstone Institutes, San Francisco, United States
| | - Michael B Eisen
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Nicole King
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
153
|
Zeng W, Wang J, Wang Y, Lin J, Fu Y, Xie J, Jiang D, Chen T, Liu H, Cheng J. Dicer-Like Proteins Regulate Sexual Development via the Biogenesis of Perithecium-Specific MicroRNAs in a Plant Pathogenic Fungus Fusarium graminearum. Front Microbiol 2018; 9:818. [PMID: 29755439 PMCID: PMC5932338 DOI: 10.3389/fmicb.2018.00818] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/10/2018] [Indexed: 11/23/2022] Open
Abstract
Ascospores act as the primary inoculum of Fusarium graminearum, which causes the destructive disease Fusarium head blight (FHB), or scab. MicroRNAs (miRNAs) have been reported in the F. graminearum vegetative stage, and Fgdcl2 is involved in microRNA-like RNA (milRNA) biogenesis but has no major impact on vegetative growth, abiotic stress or pathogenesis. In the present study, we found that ascospore discharge was decreased in the Fgdcl1 deletion mutant, and completely blocked in the double-deletion mutant of Fgdcl1 and Fgdcl2. Besides, more immature asci were observed in the double-deletion mutant. Interestingly, the up-regulated differentially expressed genes (DEGs) common to ΔFgdcl1 and ΔFgdcl1/2 were related to ion transmembrane transporter and membrane components. The combination of small RNA and transcriptome sequencing with bioinformatics analysis predicted 143 novel milRNAs in wild-type perithecia, and 138 of these milRNAs partly or absolutely depended on Fgdcl1, while only 5 novel milRNAs were still obtained in the Fgdcl1 and Fgdcl2 double-deletion mutant. Furthermore, 117 potential target genes were predicted. Overall, Fgdcl1 and Fgdcl2 genes were partly functionally redundant in ascospore discharge and perithecium-specific milRNA generation in F. graminearum, and these perithecium-specific milRNAs play potential roles in sexual development.
Collapse
Affiliation(s)
- Wenping Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jie Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ying Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiatao Xie
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
154
|
Delorme-Axford E, Abernathy E, Lennemann NJ, Bernard A, Ariosa A, Coyne CB, Kirkegaard K, Klionsky DJ. The exoribonuclease Xrn1 is a post-transcriptional negative regulator of autophagy. Autophagy 2018; 14:898-912. [PMID: 29465287 DOI: 10.1080/15548627.2018.1441648] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Macroautophagy/autophagy is a conserved catabolic process that promotes survival during stress. Autophagic dysfunction is associated with pathologies such as cancer and neurodegenerative diseases. Thus, autophagy must be strictly modulated at multiple levels (transcriptional, post-transcriptional, translational and post-translational) to prevent deregulation. Relatively little is known about the post-transcriptional control of autophagy. Here we report that the exoribonuclease Xrn1/XRN1 functions as a negative autophagy factor in the yeast Saccharomyces cerevisiae and in mammalian cells. In yeast, chromosomal deletion of XRN1 enhances autophagy and the frequency of autophagosome formation. Loss of Xrn1 results in the upregulation of autophagy-related (ATG) transcripts under nutrient-replete conditions, and this effect is dependent on the ribonuclease activity of Xrn1. Xrn1 expression is regulated by the yeast transcription factor Ash1 in rich conditions. In mammalian cells, siRNA depletion of XRN1 enhances autophagy and the replication of 2 picornaviruses. This work provides insight into the role of the RNA decay factor Xrn1/XRN1 as a post-transcriptional regulator of autophagy.
Collapse
Affiliation(s)
| | - Emma Abernathy
- b Department of Genetics , Stanford University School of Medicine , Stanford , CA , USA
| | | | - Amélie Bernard
- a Life Sciences Institute, University of Michigan , Ann Arbor , MI , USA
| | - Aileen Ariosa
- a Life Sciences Institute, University of Michigan , Ann Arbor , MI , USA
| | - Carolyn B Coyne
- c Department of Pediatrics , University of Pittsburgh , Pittsburgh , PA , USA
| | - Karla Kirkegaard
- b Department of Genetics , Stanford University School of Medicine , Stanford , CA , USA
| | - Daniel J Klionsky
- a Life Sciences Institute, University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
155
|
Salinero AC, Knoll ER, Zhu ZI, Landsman D, Curcio MJ, Morse RH. The Mediator co-activator complex regulates Ty1 retromobility by controlling the balance between Ty1i and Ty1 promoters. PLoS Genet 2018; 14:e1007232. [PMID: 29462141 PMCID: PMC5834202 DOI: 10.1371/journal.pgen.1007232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 03/02/2018] [Accepted: 01/30/2018] [Indexed: 12/24/2022] Open
Abstract
The Ty1 retrotransposons present in the genome of Saccharomyces cerevisiae belong to the large class of mobile genetic elements that replicate via an RNA intermediary and constitute a significant portion of most eukaryotic genomes. The retromobility of Ty1 is regulated by numerous host factors, including several subunits of the Mediator transcriptional co-activator complex. In spite of its known function in the nucleus, previous studies have implicated Mediator in the regulation of post-translational steps in Ty1 retromobility. To resolve this paradox, we systematically examined the effects of deleting non-essential Mediator subunits on the frequency of Ty1 retromobility and levels of retromobility intermediates. Our findings reveal that loss of distinct Mediator subunits alters Ty1 retromobility positively or negatively over a >10,000-fold range by regulating the ratio of an internal transcript, Ty1i, to the genomic Ty1 transcript. Ty1i RNA encodes a dominant negative inhibitor of Ty1 retromobility that blocks virus-like particle maturation and cDNA synthesis. These results resolve the conundrum of Mediator exerting sweeping control of Ty1 retromobility with only minor effects on the levels of Ty1 genomic RNA and the capsid protein, Gag. Since the majority of characterized intrinsic and extrinsic regulators of Ty1 retromobility do not appear to effect genomic Ty1 RNA levels, Mediator could play a central role in integrating signals that influence Ty1i expression to modulate retromobility. Retrotransposons are mobile genetic elements that copy their RNA genomes into DNA and insert the DNA copies into the host genome. These elements contribute to genome instability, control of host gene expression and adaptation to changing environments. Retrotransposons depend on numerous host factors for their own propagation and control. The retrovirus-like retrotransposon, Ty1, in the yeast Saccharomyces cerevisiae has been an invaluable model for retrotransposon research, and hundreds of host factors that regulate Ty1 retrotransposition have been identified. Non-essential subunits of the Mediator transcriptional co-activator complex have been identified as one set of host factors implicated in Ty1 regulation. Here, we report a systematic investigation of the effects of loss of these non-essential subunits of Mediator on Ty1 retrotransposition. Our findings reveal a heretofore unknown mechanism by which Mediator influences the balance between transcription from two promoters in Ty1 to modulate expression of an autoinhibitory transcript known as Ty1i RNA. Our results provide new insights into host control of retrotransposon activity via promoter choice and elucidate a novel mechanism by which the Mediator co-activator governs this choice.
Collapse
Affiliation(s)
- Alicia C. Salinero
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
| | - Elisabeth R. Knoll
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
| | - Z. Iris Zhu
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, United States of America
| | - David Landsman
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, United States of America
| | - M. Joan Curcio
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- * E-mail: (MJC); (RHM)
| | - Randall H. Morse
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- * E-mail: (MJC); (RHM)
| |
Collapse
|
156
|
Wery M, Gautier C, Descrimes M, Yoda M, Vennin-Rendos H, Migeot V, Gautheret D, Hermand D, Morillon A. Native elongating transcript sequencing reveals global anti-correlation between sense and antisense nascent transcription in fission yeast. RNA (NEW YORK, N.Y.) 2018; 24:196-208. [PMID: 29114019 PMCID: PMC5769747 DOI: 10.1261/rna.063446.117] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/03/2017] [Indexed: 05/07/2023]
Abstract
Antisense transcription can regulate sense gene expression. However, previous annotations of antisense transcription units have been based on detection of mature antisense long noncoding (aslnc)RNAs by RNA-seq and/or microarrays, only giving a partial view of the antisense transcription landscape and incomplete molecular bases for antisense-mediated regulation. Here, we used native elongating transcript sequencing to map genome-wide nascent antisense transcription in fission yeast. Strikingly, antisense transcription was detected for most protein-coding genes, correlating with low sense transcription, especially when overlapping the mRNA start site. RNA profiling revealed that the resulting aslncRNAs mainly correspond to cryptic Xrn1/Exo2-sensitive transcripts (XUTs). ChIP-seq analyses showed that antisense (as)XUT's expression is associated with specific histone modification patterns. Finally, we showed that asXUTs are controlled by the histone chaperone Spt6 and respond to meiosis induction, in both cases anti-correlating with levels of the paired-sense mRNAs, supporting physiological significance to antisense-mediated gene attenuation. Our work highlights that antisense transcription is much more extended than anticipated and might constitute an additional nonpromoter determinant of gene regulation complexity.
Collapse
Affiliation(s)
- Maxime Wery
- ncRNA, epigenetic and genome fluidity, Institut Curie, PSL Research University, CNRS UMR 3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, France
| | - Camille Gautier
- ncRNA, epigenetic and genome fluidity, Institut Curie, PSL Research University, CNRS UMR 3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, France
| | - Marc Descrimes
- ncRNA, epigenetic and genome fluidity, Institut Curie, PSL Research University, CNRS UMR 3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, France
| | - Mayuko Yoda
- ncRNA, epigenetic and genome fluidity, Institut Curie, PSL Research University, CNRS UMR 3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, France
| | - Hervé Vennin-Rendos
- ncRNA, epigenetic and genome fluidity, Institut Curie, PSL Research University, CNRS UMR 3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, France
| | - Valérie Migeot
- URPHYM, Namur Research College (NARC), University of Namur, Namur 5000, Belgium
| | - Daniel Gautheret
- Institute for Integrative Biology of the Cell, CNRS, CEA, Université Paris Sud, 91405, Orsay Cedex, France
| | - Damien Hermand
- URPHYM, Namur Research College (NARC), University of Namur, Namur 5000, Belgium
| | - Antonin Morillon
- ncRNA, epigenetic and genome fluidity, Institut Curie, PSL Research University, CNRS UMR 3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, France
| |
Collapse
|
157
|
Delorme-Axford E, Klionsky DJ. Transcriptional and post-transcriptional regulation of autophagy in the yeast Saccharomyces cerevisiae. J Biol Chem 2018; 293:5396-5403. [PMID: 29371397 DOI: 10.1074/jbc.r117.804641] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Autophagy is a highly conserved catabolic pathway that is vital for development, cell survival, and the degradation of dysfunctional organelles and potentially toxic aggregates. Dysregulation of autophagy is associated with cancer, neurodegeneration, and lysosomal storage diseases. Accordingly, autophagy is precisely regulated at multiple levels (transcriptional, post-transcriptional, translational, and post-translational) to prevent aberrant activity. Various model organisms are used to study autophagy, but the baker's yeast Saccharomyces cerevisiae continues to be advantageous for genetic and biochemical analysis of non-selective and selective autophagy. In this Minireview, we focus on the cellular mechanisms that regulate autophagy transcriptionally and post-transcriptionally in S. cerevisiae.
Collapse
Affiliation(s)
| | - Daniel J Klionsky
- From the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
158
|
Rai LS, Singha R, Brahma P, Sanyal K. Epigenetic determinants of phenotypic plasticity in Candida albicans. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2017.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
159
|
Wadhwa G, Shanmughavel P, Singh AK, Bellare JR. Computational Tools: RNA Interference in Fungal Therapeutics. CURRENT TRENDS IN BIOINFORMATICS: AN INSIGHT 2018. [PMCID: PMC7122507 DOI: 10.1007/978-981-10-7483-7_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is steady rise in the number of immunocompromised population due to increased use of potent immunosuppression therapies. This is associated with increased risk of acquiring fungal opportunistic infections in immunocompromised patients which account for high morbidity and mortality rates, if left untreated. The conventional antifungal drugs to treat fungal diseases (mycoses) are increasingly becoming inadequate due to observed varied susceptibility of fungi and their recurrent resistance. RNA interference (RNAi), sequence-specific gene silencing, is emerging as a promising new therapeutic approach. This chapter discusses various aspects of RNAi, viz., the fundamental RNAi machinery present in fungi, in silico siRNA features, designing guidelines and tools, siRNA delivery, and validation of gene knockdown for therapeutics against mycoses. Target gene identification is a crucial step in designing of gene-specific siRNA in addition to efficient delivery strategies to bring about effective inhibition of fungi. Subsequently, designed siRNA can be delivered effectively in vitro either by soaking fungi with siRNA or by transforming inverted repeat transgene containing plasmid into fungi, which ultimately generates siRNA(s). Finally, fungal inhibition can be verified at the RNA and protein levels by blotting techniques, fluorescence imaging, and biochemical assays. Despite challenges, several such in vitro studies have spawned optimism around RNAi as a revolutionary new class of therapeutics against mycoses. But, pharmacokinetic parameters need to be evaluated from in vivo studies and clinical trials to recognize RNAi as a novel treatment approach for mycoses.
Collapse
Affiliation(s)
- Gulshan Wadhwa
- Department of Biotechnology Apex Bioinformatics Centre, Ministry of Science & Technology, New Delhi, India
| | - P. Shanmughavel
- Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu India
| | - Atul Kumar Singh
- Central Research Facility, Indian Institute of Technology Delhi, New Delhi, India
| | - Jayesh R. Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
160
|
Abstract
RNA interference (RNAi)-assisted genome evolution (RAGE) applies directed evolution principles to engineer Saccharomyces cerevisiae genomes. Here, we use acetic acid tolerance as a target trait to describe the key steps of RAGE. Briefly, iterative cycles of RNAi screening are performed to accumulate multiplex knockdown modifications, enabling directed evolution of the yeast genome and continuous improvement of a target phenotype. Detailed protocols are provided on the reconstitution of RNAi machinery, creation of genome-wide RNAi libraries, identification and integration of beneficial knockdown cassettes, and repeated RAGE cycles.
Collapse
Affiliation(s)
- Tong Si
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
161
|
Chen GR, Sive H, Bartel DP. A Seed Mismatch Enhances Argonaute2-Catalyzed Cleavage and Partially Rescues Severely Impaired Cleavage Found in Fish. Mol Cell 2017; 68:1095-1107.e5. [PMID: 29272705 PMCID: PMC5821252 DOI: 10.1016/j.molcel.2017.11.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/09/2017] [Accepted: 11/22/2017] [Indexed: 01/23/2023]
Abstract
The RNAi pathway provides both innate immunity and efficient gene-knockdown tools in many eukaryotic species, but curiously not in zebrafish. We discovered that RNAi is less effective in zebrafish at least partly because Argonaute2-catalyzed mRNA slicing is impaired. This defect is due to two mutations that arose in an ancestor of most teleost fish, implying that most fish lack effective RNAi. Despite lacking efficient slicing activity, these fish have retained the ability to produce miR-451, a microRNA generated by a cleavage reaction analogous to slicing. This ability is due to a G-G mismatch within the fish miR-451 precursor, which substantially enhances its cleavage. An analogous G-G mismatch (or sometimes also a G-A mismatch) enhances target slicing, despite disrupting seed pairing important for target binding. These results provide a strategy for restoring RNAi to zebrafish and reveal unanticipated opposing effects of a seed mismatch with implications for mechanism and guide-RNA design.
Collapse
Affiliation(s)
- Grace R Chen
- Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hazel Sive
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David P Bartel
- Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
162
|
Muszewska A, Steczkiewicz K, Stepniewska-Dziubinska M, Ginalski K. Cut-and-Paste Transposons in Fungi with Diverse Lifestyles. Genome Biol Evol 2017; 9:3463-3477. [PMID: 29228286 PMCID: PMC5751038 DOI: 10.1093/gbe/evx261] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2017] [Indexed: 02/06/2023] Open
Abstract
Transposable elements (TEs) shape genomes via recombination and transposition, lead to chromosomal rearrangements, create new gene neighborhoods, and alter gene expression. They play key roles in adaptation either to symbiosis in Amanita genus or to pathogenicity in Pyrenophora tritici-repentis. Despite growing evidence of their importance, the abundance and distribution of mobile elements replicating in a "cut-and-paste" fashion is barely described so far. In order to improve our knowledge on this old and ubiquitous class of transposable elements, 1,730 fungal genomes were scanned using both de novo and homology-based approaches. DNA TEs have been identified across the whole data set and display uneven distribution from both DNA TE classification and fungal taxonomy perspectives. DNA TE content correlates with genome size, which confirms that many transposon families proliferate simultaneously. In contrast, it is independent from intron density, average gene distance and GC content. TE count is associated with species' lifestyle and tends to be elevated in plant symbionts and decreased in animal parasites. Lastly, we found that fungi with both RIP and RNAi systems have more total DNA TE sequences but less elements retaining a functional transposase, what reflects stringent control over transposition.
Collapse
Affiliation(s)
- Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, CeNT, University of Warsaw, Poland
| | | | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, CeNT, University of Warsaw, Poland
| |
Collapse
|
163
|
Bunina D, Štefl M, Huber F, Khmelinskii A, Meurer M, Barry JD, Kats I, Kirrmaier D, Huber W, Knop M. Upregulation of SPS100 gene expression by an antisense RNA via a switch of mRNA isoforms with different stabilities. Nucleic Acids Res 2017; 45:11144-11158. [PMID: 28977638 PMCID: PMC5737743 DOI: 10.1093/nar/gkx737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/09/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022] Open
Abstract
Pervasive transcription of genomes generates multiple classes of non-coding RNAs. One of these classes are stable long non-coding RNAs which overlap coding genes in antisense direction (asRNAs). The function of such asRNAs is not fully understood but several cases of antisense-dependent gene expression regulation affecting the overlapping genes have been demonstrated. Using high-throughput yeast genetics and a limited set of four growth conditions we previously reported a regulatory function for ∼25% of asRNAs, most of which repress the expression of the sense gene. To further explore the roles of asRNAs we tested more conditions and identified 15 conditionally antisense-regulated genes, 6 of which exhibited antisense-dependent enhancement of gene expression. We focused on the sporulation-specific gene SPS100, which becomes upregulated upon entry into starvation or sporulation as a function of the antisense transcript SUT169. We demonstrate that the antisense effect is mediated by its 3' intergenic region (3'-IGR) and that this regulation can be transferred to other genes. Genetic analysis revealed that SUT169 functions by changing the relative expression of SPS100 mRNA isoforms from a short and unstable transcript to a long and stable species. These results suggest a novel mechanism of antisense-dependent gene regulation via mRNA isoform switching.
Collapse
Affiliation(s)
- Daria Bunina
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Martin Štefl
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Florian Huber
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Anton Khmelinskii
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Matthias Meurer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Joseph D. Barry
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Ilia Kats
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Daniel Kirrmaier
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
- Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
- Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
164
|
Maraia RJ, Mattijssen S, Cruz-Gallardo I, Conte MR. The La and related RNA-binding proteins (LARPs): structures, functions, and evolving perspectives. WILEY INTERDISCIPLINARY REVIEWS. RNA 2017; 8:10.1002/wrna.1430. [PMID: 28782243 PMCID: PMC5647580 DOI: 10.1002/wrna.1430] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/02/2023]
Abstract
La was first identified as a polypeptide component of ribonucleic protein complexes targeted by antibodies in autoimmune patients and is now known to be a eukaryote cell-ubiquitous protein. Structure and function studies have shown that La binds to a common terminal motif, UUU-3'-OH, of nascent RNA polymerase III (RNAP III) transcripts and protects them from exonucleolytic decay. For precursor-tRNAs, the most diverse and abundant of these transcripts, La also functions as an RNA chaperone that helps to prevent their misfolding. Related to this, we review evidence that suggests that La and its link to RNAP III were significant in the great expansions of the tRNAomes that occurred in eukaryotes. Four families of La-related proteins (LARPs) emerged during eukaryotic evolution with specialized functions. We provide an overview of the high-resolution structural biology of La and LARPs. LARP7 family members most closely resemble La but function with a single RNAP III nuclear transcript, 7SK, or telomerase RNA. A cytoplasmic isoform of La protein as well as LARPs 6, 4, and 1 function in mRNA metabolism and translation in distinct but similar ways, sometimes with the poly(A)-binding protein, and in some cases by direct binding to poly(A)-RNA. New structures of LARP domains, some complexed with RNA, provide novel insights into the functional versatility of these proteins. We also consider LARPs in relation to ancestral La protein and potential retention of links to specific RNA-related pathways. One such link may be tRNA surveillance and codon usage by LARP-associated mRNAs. WIREs RNA 2017, 8:e1430. doi: 10.1002/wrna.1430 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Richard J. Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
- Commissioned Corps, U.S. Public Health Service, Rockville, MD USA
| | - Sandy Mattijssen
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Isabel Cruz-Gallardo
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| |
Collapse
|
165
|
Tan SZ, Prather KL. Dynamic pathway regulation: recent advances and methods of construction. Curr Opin Chem Biol 2017; 41:28-35. [PMID: 29059607 DOI: 10.1016/j.cbpa.2017.10.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/26/2022]
Abstract
Microbial cell factories are a renewable source for the production of biofuels and valuable chemicals. Dynamic pathway regulation has proved successful in improving production of molecules by balancing flux between growth of cells and production of metabolites. Systems for autonomous induction of pathway regulation are increasingly being developed, which include metabolite responsive promoters, biosensors, and quorum sensing systems. Since engineering such systems are dependent on the available methods for controlling protein abundance in the desired host, we review recent tools used for gene repression at the transcriptional, post-transcriptional and post-translational levels in Escherichia coli and Saccharomyces cerevisiae. These approaches may facilitate pathway engineering for biofuel and biochemical production.
Collapse
Affiliation(s)
- Sue Zanne Tan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kristala Lj Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
166
|
Ribosome Biogenesis Modulates Ty1 Copy Number Control in Saccharomyces cerevisiae. Genetics 2017; 207:1441-1456. [PMID: 29046400 PMCID: PMC5714458 DOI: 10.1534/genetics.117.300388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/12/2017] [Indexed: 11/26/2022] Open
Abstract
Transposons can impact the host genome by altering gene expression and participating in chromosome rearrangements. Therefore, organisms evolved different ways to minimize the level of transposition. In Saccharomyces cerevisiae and its close relative S. paradoxus, Ty1 copy number control (CNC) is mediated by the self-encoded restriction factor p22, which is derived from the GAG capsid gene and inhibits virus-like particle (VLP) assembly and function. Based on secondary screens of Ty1 cofactors, we identified LOC1, a RNA localization/ribosome biogenesis gene that affects Ty1 mobility predominantly in strains harboring Ty1 elements. Ribosomal protein mutants rps0bΔ and rpl7aΔ displayed similar CNC-specific phenotypes as loc1Δ, suggesting that ribosome biogenesis is critical for CNC. The level of Ty1 mRNA and Ty1 internal (Ty1i) transcripts encoding p22 was altered in these mutants, and displayed a trend where the level of Ty1i RNA increased relative to full-length Ty1 mRNA. The level of p22 increased in these mutants, and the half-life of p22 also increased in a loc1Δ mutant. Transcriptomic analyses revealed small changes in the level of Ty1 transcripts or efficiency of translation initiation in a loc1Δ mutant. Importantly, a loc1Δ mutant had defects in assembly of Gag complexes and packaging Ty1 RNA. Our results indicate that defective ribosome biogenesis enhances CNC by increasing the level of p22, and raise the possibility for versatile links between VLP assembly, its cytoplasmic environment, and a novel stress response.
Collapse
|
167
|
Prasanth KR, Chuang C, Nagy PD. Co-opting ATP-generating glycolytic enzyme PGK1 phosphoglycerate kinase facilitates the assembly of viral replicase complexes. PLoS Pathog 2017; 13:e1006689. [PMID: 29059239 PMCID: PMC5695612 DOI: 10.1371/journal.ppat.1006689] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 11/02/2017] [Accepted: 10/10/2017] [Indexed: 11/19/2022] Open
Abstract
The intricate interactions between viruses and hosts include exploitation of host cells for viral replication by using many cellular resources, metabolites and energy. Tomato bushy stunt virus (TBSV), similar to other (+)RNA viruses, induces major changes in infected cells that lead to the formation of large replication compartments consisting of aggregated peroxisomal and ER membranes. Yet, it is not known how TBSV obtains the energy to fuel these energy-consuming processes. In the current work, the authors discovered that TBSV co-opts the glycolytic ATP-generating Pgk1 phosphoglycerate kinase to facilitate the assembly of new viral replicase complexes. The recruitment of Pgk1 into the viral replication compartment is through direct interaction with the viral replication proteins. Altogether, we provide evidence that the ATP generated locally within the replication compartment by the co-opted Pgk1 is used to fuel the ATP-requirement of the co-opted heat shock protein 70 (Hsp70) chaperone, which is essential for the assembly of new viral replicase complexes and the activation of functional viral RNA-dependent RNA polymerase. The advantage of direct recruitment of Pgk1 into the virus replication compartment could be that the virus replicase assembly does not need to intensively compete with cellular processes for access to ATP. In addition, local production of ATP within the replication compartment could greatly facilitate the efficiency of Hsp70-driven replicase assembly by providing high ATP concentration within the replication compartment.
Collapse
Affiliation(s)
- K. Reddisiva Prasanth
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, United States of America
| | - Chingkai Chuang
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, United States of America
| |
Collapse
|
168
|
Affiliation(s)
- R. Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
169
|
Gangloff S, Arcangioli B. DNA repair and mutations during quiescence in yeast. FEMS Yeast Res 2017; 17:fox002. [PMID: 28087675 DOI: 10.1093/femsyr/fox002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2017] [Indexed: 12/20/2022] Open
Abstract
Life is maintained through alternating phases of cell division and quiescence. The causes and consequences of spontaneous mutations have been extensively explored in proliferating cells, and the major sources include errors of DNA replication and DNA repair. The foremost consequences are genetic variations within a cell population that can lead to heritable diseases and drive evolution. While most of our knowledge on DNA damage response and repair has been gained through cells actively dividing, it remains essential to also understand how DNA damage is metabolized in cells which are not dividing. In this review, we summarize the current knowledge concerning the type of lesions that arise in non-dividing budding and fission yeast cells, as well as the pathways used to repair them. We discuss the contribution of these models to our current understanding of age-related pathologies.
Collapse
|
170
|
Kovalev N, Inaba JI, Li Z, Nagy PD. The role of co-opted ESCRT proteins and lipid factors in protection of tombusviral double-stranded RNA replication intermediate against reconstituted RNAi in yeast. PLoS Pathog 2017; 13:e1006520. [PMID: 28759634 PMCID: PMC5552349 DOI: 10.1371/journal.ppat.1006520] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 08/10/2017] [Accepted: 07/07/2017] [Indexed: 01/28/2023] Open
Abstract
Reconstituted antiviral defense pathway in surrogate host yeast is used as an intracellular probe to further our understanding of virus-host interactions and the role of co-opted host factors in formation of membrane-bound viral replicase complexes in protection of the viral RNA against ribonucleases. The inhibitory effect of the RNA interference (RNAi) machinery of S. castellii, which only consists of the two-component DCR1 and AGO1 genes, was measured against tomato bushy stunt virus (TBSV) in wild type and mutant yeasts. We show that deletion of the co-opted ESCRT-I (endosomal sorting complexes required for transport I) or ESCRT-III factors makes TBSV replication more sensitive to the RNAi machinery in yeast. Moreover, the lack of these pro-viral cellular factors in cell-free extracts (CFEs) used for in vitro assembly of the TBSV replicase results in destruction of dsRNA replication intermediate by a ribonuclease at the 60 min time point when the CFE from wt yeast has provided protection for dsRNA. In addition, we demonstrate that co-opted oxysterol-binding proteins and membrane contact sites, which are involved in enrichment of sterols within the tombusvirus replication compartment, are required for protection of viral dsRNA. We also show that phosphatidylethanolamine level influences the formation of RNAi-resistant replication compartment. In the absence of peroxisomes in pex3Δ yeast, TBSV subverts the ER membranes, which provide as good protection for TBSV dsRNA against RNAi or ribonucleases as the peroxisomal membranes in wt yeast. Altogether, these results demonstrate that co-opted protein factors and usurped lipids are exploited by tombusviruses to build protective subcellular environment against the RNAi machinery and possibly other cellular ribonucleases. Positive-strand RNA viruses build membranous replication compartment to support their replication in the infected hosts. One of the proposed functions of the usurped subcellular membranes is to protect the viral RNA from recognition and destruction by various cellular RNA sensors and ribonucleases. To answer this fundamental question on the putative role of co-opted host factors and membranes in protecting the viral double-stranded RNA replication intermediate during replication, the authors took advantage of yeast (Saccharomyces cerevisiae), which lacks the conserved RNAi machinery, as a surrogate host for TBSV. The reconstituted RNAi machinery from S. castellii in S. cerevisiae was used as an intracellular probe to study the effect of various co-opted cellular proteins and lipids on the formation of RNAi-insensitive replication compartment. Overall, the authors demonstrate the interaction between the RNAi machinery and the viral replicase complex, and the essential roles of usurped host factors in protecting the viral dsRNA replication intermediate from RNAi-based degradation.
Collapse
Affiliation(s)
- Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jun-ichi Inaba
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhenghe Li
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
- Institute of Biotechnology, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, P. R. China
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
171
|
Abstract
RNA interference (RNAi) is a mechanism conserved in eukaryotes, including fungi, that represses gene expression by means of small noncoding RNAs (sRNAs) of about 20 to 30 nucleotides. Its discovery is one of the most important scientific breakthroughs of the past 20 years, and it has revolutionized our perception of the functioning of the cell. Initially described and characterized in Neurospora crassa, the RNAi is widespread in fungi, suggesting that it plays important functions in the fungal kingdom. Several RNAi-related mechanisms for maintenance of genome integrity, particularly protection against exogenous nucleic acids such as mobile elements, have been described in several fungi, suggesting that this is the main function of RNAi in the fungal kingdom. However, an increasing number of fungal sRNAs with regulatory functions generated by specific RNAi pathways have been identified. Several mechanistic aspects of the biogenesis of these sRNAs are known, but their function in fungal development and physiology is scarce, except for remarkable examples such as Mucor circinelloides, in which specific sRNAs clearly regulate responses to environmental and endogenous signals. Despite the retention of RNAi in most species, some fungal groups and species lack an active RNAi mechanism, suggesting that its loss may provide some selective advantage. This article summarizes the current understanding of RNAi functions in the fungal kingdom.
Collapse
|
172
|
Sahu U, Rajendra VKH, Kapnoor SS, Bhagavat R, Chandra N, Rangarajan PN. Methionine synthase is localized to the nucleus in Pichia pastoris and Candida albicans and to the cytoplasm in Saccharomyces cerevisiae. J Biol Chem 2017; 292:14730-14746. [PMID: 28701466 DOI: 10.1074/jbc.m117.783019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/10/2017] [Indexed: 11/06/2022] Open
Abstract
Methionine synthase (MS) catalyzes methylation of homocysteine, the last step in the biosynthesis of methionine, which is essential for the regeneration of tetrahydrofolate and biosynthesis of S-adenosylmethionine. Here, we report that MS is localized to the nucleus of Pichia pastoris and Candida albicans but is cytoplasmic in Saccharomyces cerevisiae The P. pastoris strain carrying a deletion of the MET6 gene encoding MS (Ppmet6) exhibits methionine as well as adenine auxotrophy indicating that MS is required for methionine as well as adenine biosynthesis. Nuclear localization of P. pastoris MS (PpMS) was abrogated by the deletion of 107 C-terminal amino acids or the R742A mutation. In silico analysis of the PpMS structure indicated that PpMS may exist in a dimer-like configuration in which Arg-742 of a monomer forms a salt bridge with Asp-113 of another monomer. Biochemical studies indicate that R742A as well as D113R mutations abrogate nuclear localization of PpMS and its ability to reverse methionine auxotrophy of Ppmet6 Thus, association of two PpMS monomers through the interaction of Arg-742 and Asp-113 is essential for catalytic activity and nuclear localization. When PpMS is targeted to the cytoplasm employing a heterologous nuclear export signal, it is expressed at very low levels and is unable to reverse methionine and adenine auxotrophy of Ppmet6 Thus, nuclear localization is essential for the stability and function of MS in P. pastoris. We conclude that nuclear localization of MS is a unique feature of respiratory yeasts such as P. pastoris and C. albicans, and it may have novel moonlighting functions in the nucleus.
Collapse
Affiliation(s)
- Umakant Sahu
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Vinod K H Rajendra
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shankar S Kapnoor
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Raghu Bhagavat
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Nagasuma Chandra
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pundi N Rangarajan
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
173
|
Abstract
Cell differentiation in yeast species is controlled by a reversible, programmed DNA-rearrangement process called mating-type switching. Switching is achieved by two functionally similar but structurally distinct processes in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. In both species, haploid cells possess one active and two silent copies of the mating-type locus (a three-cassette structure), the active locus is cleaved, and synthesis-dependent strand annealing is used to replace it with a copy of a silent locus encoding the opposite mating-type information. Each species has its own set of components responsible for regulating these processes. In this review, we summarize knowledge about the function and evolution of mating-type switching components in these species, including mechanisms of heterochromatin formation, MAT locus cleavage, donor bias, lineage tracking, and environmental regulation of switching. We compare switching in these well-studied species to others such as Kluyveromyces lactis and the methylotrophic yeasts Ogataea polymorpha and Komagataella phaffii. We focus on some key questions: Which cells switch mating type? What molecular apparatus is required for switching? Where did it come from? And what is the evolutionary purpose of switching?
Collapse
|
174
|
Raman V, Simon SA, Demirci F, Nakano M, Meyers BC, Donofrio NM. Small RNA Functions Are Required for Growth and Development of Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:517-530. [PMID: 28504560 DOI: 10.1094/mpmi-11-16-0236-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
RNA interference (RNAi) is conserved in eukaryotic organisms, and it has been well studied in many animal and plant species and some fungal species, yet it is not well studied in fungal plant pathogens. In the rice blast fungus Magnaporthe oryzae, we examined small RNA (sRNA) and their biogenesis in the context of growth and pathogenicity. Through genetic and genomic analyses, we demonstrate that loss of a single gene encoding Dicer, RNA-dependent RNA polymerase, or Argonaute reduces sRNA levels. These three proteins are required for the biogenesis of sRNA-matching genome-wide regions (coding regions, repeats, and intergenic regions). The loss of one Argonaute reduced both sRNA and fungal virulence on barley leaves. Transcriptome analysis of multiple mutants revealed that sRNA play an important role in transcriptional regulation of repeats and intergenic regions in M. oryzae. Together, these data support that M. oryzae sRNA regulate developmental processes including, fungal growth and virulence.
Collapse
Affiliation(s)
- Vidhyavathi Raman
- 1 Department of Plant & Soil Sciences, University of Delaware, Newark 19716, U.S.A.; and
| | - Stacey A Simon
- 1 Department of Plant & Soil Sciences, University of Delaware, Newark 19716, U.S.A.; and
- 2 Delaware Biotechnology Institute, University of Delaware, Newark 19711, U.S.A
| | - Feray Demirci
- 1 Department of Plant & Soil Sciences, University of Delaware, Newark 19716, U.S.A.; and
- 2 Delaware Biotechnology Institute, University of Delaware, Newark 19711, U.S.A
| | - Mayumi Nakano
- 1 Department of Plant & Soil Sciences, University of Delaware, Newark 19716, U.S.A.; and
- 2 Delaware Biotechnology Institute, University of Delaware, Newark 19711, U.S.A
| | - Blake C Meyers
- 1 Department of Plant & Soil Sciences, University of Delaware, Newark 19716, U.S.A.; and
- 2 Delaware Biotechnology Institute, University of Delaware, Newark 19711, U.S.A
| | - Nicole M Donofrio
- 1 Department of Plant & Soil Sciences, University of Delaware, Newark 19716, U.S.A.; and
| |
Collapse
|
175
|
Feng H, Xu M, Liu Y, Dong R, Gao X, Huang L. Dicer-Like Genes Are Required for H 2O 2 and KCl Stress Responses, Pathogenicity and Small RNA Generation in Valsa mali. Front Microbiol 2017; 8:1166. [PMID: 28690605 PMCID: PMC5481355 DOI: 10.3389/fmicb.2017.01166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/07/2017] [Indexed: 11/16/2022] Open
Abstract
Valsa mali (V. mali) is the causative agent of apple tree Valsa canker, which heavily damages the production of apples in China. However, the biological roles of the RNA interfering (RNAi) pathway in the pathogenicity of V. mali remain unknown. Dicer-like proteins (DCLs) are important components that control the initiation of the RNAi pathway. In this study, VmDCL1 and VmDCL2 were isolated and functionally characterized in V. mali. VmDCL1 and VmDCL2 are orthologous in evolution to the DCLs in Cryphonectria parasitica. The deletion of VmDCL1 and VmDCL2 did not affect vegetative growth when the mutants (ΔVmDCL1, ΔVmDCL2 and ΔVmDCL1DCL2) and wild type strain 03–8 were grown on a PDA medium at 25°C in the dark. However, the colony of ΔVmDCL1 increased by 37.1% compared to the 03–8 colony in a medium containing 0.05% H2O2 3 days after inoculation, and the growth of ΔVmDCL1 was significantly inhibited in a medium containing 0.5 M KCl at a ratio of 25.7%. Meanwhile, in the presence of 0.05% H2O2, the growth of ΔVmDCL2 decreased by 34.5% compared with the growth of 03–8, but ΔVmDCL2 grew normally in the presence of 0.5 M KCl. More importantly, the expression of VmDCL2 was up-regulated 125-fold during the pathogen infection. In the infection assays using apple twigs, the pathogenicity of ΔVmDCL2 and ΔVmDCL1DCL2 was significantly reduced compared with that of 03–8 at a ratio of 24.7 and 41.3%, respectively. All defective phenotypes could be nearly rescued by re-introducing the wild type VmDCL1 and VmDCL2 alleles. Furthermore, the number and length distribution of unique small RNAs (unisRNAs) in the mutants and 03–8 were analyzed using deep sequencing. The number of unisRNAs was obviously lower in ΔVmDCL1, ΔVmDCL2 and ΔVmDCL1DCL2 than that in 03–8, and the length distribution of the sRNAs also markedly changed after the VmDCLs were deleted. These results indicated that VmDCLs function in the H2O2 and KCl stress response, pathogenicity and generation of sRNAs.
Collapse
Affiliation(s)
- Hao Feng
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Ming Xu
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Yangyang Liu
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Ruqing Dong
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Xiaoning Gao
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Lili Huang
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| |
Collapse
|
176
|
Silencing of Transposable Elements by piRNAs in Drosophila: An Evolutionary Perspective. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:164-176. [PMID: 28602845 PMCID: PMC5487533 DOI: 10.1016/j.gpb.2017.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/02/2017] [Accepted: 01/12/2017] [Indexed: 11/28/2022]
Abstract
Transposable elements (TEs) are DNA sequences that can move within the genome. TEs have greatly shaped the genomes, transcriptomes, and proteomes of the host organisms through a variety of mechanisms. However, TEs generally disrupt genes and destabilize the host genomes, which substantially reduce fitness of the host organisms. Understanding the genomic distribution and evolutionary dynamics of TEs will greatly deepen our understanding of the TE-mediated biological processes. Most TE insertions are highly polymorphic in Drosophila melanogaster, providing us a good system to investigate the evolution of TEs at the population level. Decades of theoretical and experimental studies have well established “transposition-selection” population genetics model, which assumes that the equilibrium between TE replication and purifying selection determines the copy number of TEs in the genome. In the last decade, P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) were demonstrated to be master repressors of TE activities in Drosophila. The discovery of piRNAs revolutionized our understanding of TE repression, because it reveals that the host organisms have evolved an adaptive mechanism to defend against TE invasion. Tremendous progress has been made to understand the molecular mechanisms by which piRNAs repress active TEs, although many details in this process remain to be further explored. The interaction between piRNAs and TEs well explains the molecular mechanisms underlying hybrid dysgenesis for the I-R and P-M systems in Drosophila, which have puzzled evolutionary biologists for decades. The piRNA repression pathway provides us an unparalleled system to study the co-evolutionary process between parasites and host organisms.
Collapse
|
177
|
Dujon BA, Louis EJ. Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina). Genetics 2017; 206:717-750. [PMID: 28592505 PMCID: PMC5499181 DOI: 10.1534/genetics.116.199216] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/03/2017] [Indexed: 12/15/2022] Open
Abstract
Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs. horizontal genetic accidents in the making of populations. The facility with which novel yeast genomes can now be studied, combined with the already numerous available reference genomes, offer privileged perspectives to further examine these fundamental biological questions using yeasts both as eukaryotic models and as fungi of practical importance.
Collapse
Affiliation(s)
- Bernard A Dujon
- Department Genomes and Genetics, Institut Pasteur, Centre National de la Recherche Scientifique UMR3525, 75724-CEDEX15 Paris, France
- Université Pierre et Marie Curie UFR927, 75005 Paris, France
| | - Edward J Louis
- Centre for Genetic Architecture of Complex Traits, University of Leicester, LE1 7RH, United Kingdom
- Department of Genetics, University of Leicester, LE1 7RH, United Kingdom
| |
Collapse
|
178
|
Nabih A, Sobotka JA, Wu MZ, Wedeles CJ, Claycomb JM. Examining the intersection between splicing, nuclear export and small RNA pathways. Biochim Biophys Acta Gen Subj 2017; 1861:2948-2955. [PMID: 28578161 DOI: 10.1016/j.bbagen.2017.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Nuclear Argonaute/small RNA pathways in a variety of eukaryotic species are generally known to regulate gene expression via chromatin modulation and transcription attenuation in a process known as transcriptional gene silencing (TGS). However, recent data, including genetic screens, phylogenetic profiling, and molecular mechanistic studies, also point to a novel and emerging intersection between the splicing and nuclear export machinery with nuclear Argonaute/small RNA pathways in many organisms. SCOPE OF REVIEW In this review, we summarize the field's current understanding regarding the relationship between splicing, export and small RNA pathways, and consider the biological implications for coordinated regulation of transcripts by these pathways. We also address the importance and available approaches for understanding the RNA regulatory logic generated by the intersection of these particular pathways in the context of synthetic biology. MAJOR CONCLUSIONS The interactions between various eukaryotic RNA regulatory pathways, particularly splicing, nuclear export and small RNA pathways provide a type of combinatorial code that informs the identity ("self" versus "non-self") and dictates the fate of each transcript in a cell. Although the molecular mechanisms for how splicing and nuclear export impact small RNA pathways are not entirely clear at this early stage, the links between these pathways are widespread across eukaryotic phyla. GENERAL SIGNIFICANCE The link between splicing, nuclear export, and small RNA pathways is emerging and establishes a new frontier for understanding the combinatorial logic of gene regulation across species that could someday be harnessed for therapeutic, biotechnology and agricultural applications. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Amena Nabih
- Dept. of Molecular Genetics, University of Toronto, Canada
| | | | - Monica Z Wu
- Dept. of Molecular Genetics, University of Toronto, Canada
| | | | | |
Collapse
|
179
|
Molecular mechanisms of Dicer: endonuclease and enzymatic activity. Biochem J 2017; 474:1603-1618. [PMID: 28473628 PMCID: PMC5415849 DOI: 10.1042/bcj20160759] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022]
Abstract
The enzyme Dicer is best known for its role as a riboendonuclease in the small RNA pathway. In this canonical role, Dicer is a critical regulator of the biogenesis of microRNA and small interfering RNA, as well as a growing number of additional small RNAs derived from various sources. Emerging evidence demonstrates that Dicer's endonuclease role extends beyond the generation of small RNAs; it is also involved in processing additional endogenous and exogenous substrates, and is becoming increasingly implicated in regulating a variety of other cellular processes, outside of its endonuclease function. This review will describe the canonical and newly identified functions of Dicer.
Collapse
|
180
|
Błaszczyk L, Biesiada M, Saha A, Garfinkel DJ, Purzycka KJ. Structure of Ty1 Internally Initiated RNA Influences Restriction Factor Expression. Viruses 2017; 9:v9040074. [PMID: 28394277 PMCID: PMC5408680 DOI: 10.3390/v9040074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/20/2017] [Accepted: 04/03/2017] [Indexed: 12/30/2022] Open
Abstract
The long-terminal repeat retrotransposon Ty1 is the most abundant mobile genetic element in many Saccharomyces cerevisiae isolates. Ty1 retrotransposons contribute to the genetic diversity of host cells, but they can also act as an insertional mutagen and cause genetic instability. Interestingly, retrotransposition occurs at a low level despite a high level of Ty1 RNA, even though S. cerevisiae lacks the intrinsic defense mechanisms that other eukaryotes use to prevent transposon movement. p22 is a recently discovered Ty1 protein that inhibits retrotransposition in a dose-dependent manner. p22 is a truncated form of Gag encoded by internally initiated Ty1i RNA that contains two closely-spaced AUG codons. Mutations of either AUG codon compromise p22 translation. We found that both AUG codons were utilized and that translation efficiency depended on the Ty1i RNA structure. Structural features that stimulated p22 translation were context dependent and present only in Ty1i RNA. Destabilization of the 5′ untranslated region (5′ UTR) of Ty1i RNA decreased the p22 level, both in vitro and in vivo. Our data suggest that protein factors such as Gag could contribute to the stability and translational activity of Ty1i RNA through specific interactions with structural motifs in the RNA.
Collapse
Affiliation(s)
- Leszek Błaszczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland.
| | - Marcin Biesiada
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland.
| | - Agniva Saha
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| | - David J Garfinkel
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| | - Katarzyna J Purzycka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland.
| |
Collapse
|
181
|
Terenin IM, Smirnova VV, Andreev DE, Dmitriev SE, Shatsky IN. A researcher's guide to the galaxy of IRESs. Cell Mol Life Sci 2017; 74:1431-1455. [PMID: 27853833 PMCID: PMC11107752 DOI: 10.1007/s00018-016-2409-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022]
Abstract
The idea of internal initiation is frequently exploited to explain the peculiar translation properties or unusual features of some eukaryotic mRNAs. In this review, we summarize the methods and arguments most commonly used to address cases of translation governed by internal ribosome entry sites (IRESs). Frequent mistakes are revealed. We explain why "cap-independent" does not readily mean "IRES-dependent" and why the presence of a long and highly structured 5' untranslated region (5'UTR) or translation under stress conditions cannot be regarded as an argument for appealing to internal initiation. We carefully describe the known pitfalls and limitations of the bicistronic assay and artefacts of some commercially available in vitro translation systems. We explain why plasmid DNA transfection should not be used in IRES studies and which control experiments are unavoidable if someone decides to use it anyway. Finally, we propose a workflow for the validation of IRES activity, including fast and simple experiments based on a single genetic construct with a sequence of interest.
Collapse
Affiliation(s)
- Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Victoria V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitri E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
182
|
Structural and functional studies of a noncanonical Dicer from Entamoeba histolytica. Sci Rep 2017; 7:44832. [PMID: 28317870 PMCID: PMC5357909 DOI: 10.1038/srep44832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/13/2017] [Indexed: 02/07/2023] Open
Abstract
RNaseIII proteins are dsRNA-specific endonucleases involved in many important biological processes, such as small RNA processing and maturation in eukaryotes. Various small RNAs have been identified in a protozoan parasite Entamoeba histolytica. EhRNaseIII is the only RNaseIII endonuclease domain (RIIID)-containing protein in E. histolytica. Here, we present three crystal structures that reveal several unique structural features of EhRNaseIII, especially the interactions between the two helixes (α1 and α7) flanking the RIIID core domain. Structure and sequence analysis indicate that EhRNaseIII is a noncanonical Dicer and it lacks a dsRBD in the C-terminal region (CTR). In vitro studies suggest that EhRNaseIII prefers to bind and cleave longer dsRNAs, generating products around 25 nucleotides in length. Truncation of the CTR or attaching the dsRBD of Aquifex aeolicus RNaseIII can enhance the binding and cleavage activities of EhRNaseIII. In combination with in vitro crosslinking assay, our results suggested that EhRNaseIII functions in a cooperative mode. We speculate that some partner proteins may exist in E. histolytica and regulates the activity of EhRNaseIII through interaction with its CTR. Our studies support that EhRNaseIII plays an important role in producing small RNAs in E. histolytica.
Collapse
|
183
|
The Evolutionary Loss of RNAi Key Determinants in Kinetoplastids as a Multiple Sporadic Phenomenon. J Mol Evol 2017; 84:104-115. [PMID: 28210761 DOI: 10.1007/s00239-017-9780-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 01/28/2017] [Indexed: 12/11/2022]
Abstract
We screened the genomes of a broad panel of kinetoplastid protists for genes encoding proteins associated with the RNA interference (RNAi) system using probes from the Argonaute (AGO1), Dicer1 (DCL1), and Dicer2 (DCL2) genes of Leishmania brasiliensis and Crithidia fasciculata. We identified homologs for all the three of these genes in the genomes of a subset of these organisms. However, several of these organisms lacked evidence for any of these genes, while others lacked only DCL2. The open reading frames encoding these putative proteins were structurally analyzed in silico. The alignments indicated that the genes are homologous with a high degree of confidence, and three-dimensional structural models strongly supported a functional relationship to previously characterized AGO1, DCL1, and DCL2 proteins. Phylogenetic analysis of these putative proteins showed that these genes, when present, evolved in parallel with other nuclear genes, arguing that the RNAi system genes share a common progenitor, likely across all Kinetoplastea. In addition, the genome segments bearing these genes are highly conserved and syntenic, even among those taxa in which they are absent. However, taxa in which these genes are apparently absent represent several widely divergent branches of kinetoplastids, arguing that these genes were independently lost at least six times in the evolutionary history of these organisms. The mechanisms responsible for the apparent coordinate loss of these RNAi system genes independently in several lineages of kinetoplastids, while being maintained in other related lineages, are currently unknown.
Collapse
|
184
|
Tools for attenuation of gene expression in malaria parasites. Int J Parasitol 2017; 47:385-398. [PMID: 28153780 DOI: 10.1016/j.ijpara.2016.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/15/2016] [Accepted: 11/28/2016] [Indexed: 12/30/2022]
Abstract
An understanding of the biology of Plasmodium parasites, which are the causative agents of the disease malaria, requires study of gene function. Various reverse genetic tools have been described for determining gene function. These tools can be broadly grouped as trans- and cis-acting. Trans-acting tools control gene functions through synthetic nucleic acid probe molecules matching the sequence of the gene of interest. Once delivered to the parasite, the probe engages with the mRNA of the target gene and attenuates its function. Cis-acting tools control gene function through elements introduced into the gene of interest by DNA transfection. The expression of the modified gene can be controlled using external agents, typically small molecule ligands. In this review, we discuss the strengths and weaknesses of these tools to guide researchers in selecting the appropriate tool for studies of gene function, and for guiding future refinements of these tools.
Collapse
|
185
|
Villalobos-Escobedo JM, Herrera-Estrella A, Carreras-Villaseñor N. The interaction of fungi with the environment orchestrated by RNAi. Mycologia 2017; 108:556-71. [DOI: 10.3852/15-246] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/07/2016] [Indexed: 11/10/2022]
Affiliation(s)
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad. Cinvestav Campus Guanajuato. Km 9.6 Libramiento Norte, carretera Irapuato-León. 36821 Irapuato, Guanajuato, Mexico
| | - Nohemí Carreras-Villaseñor
- StelaGenomics México, S de RL de CV, Av. Camino Real de Guanajuato S/N, 36821 Irapuato, Guanajuato, Mexico
| |
Collapse
|
186
|
Karademir Andersson A, Cohn M. Naumovozyma castellii: an alternative model for budding yeast molecular biology. Yeast 2016; 34:95-109. [PMID: 27794167 DOI: 10.1002/yea.3218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/18/2016] [Indexed: 11/11/2022] Open
Abstract
Naumovozyma castellii (Saccharomyces castellii) is a member of the budding yeast family Saccharomycetaceae. It has been extensively used as a model organism for telomere biology research and has gained increasing interest as a budding yeast model for functional analyses owing to its amenability to genetic modifications. Owing to the suitable phylogenetic distance to S. cerevisiae, the whole genome sequence of N. castellii has provided unique data for comparative genomic studies, and it played a key role in the establishment of the timing of the whole genome duplication and the evolutionary events that took place in the subsequent genomic evolution of the Saccharomyces lineage. Here we summarize the historical background of its establishment as a laboratory yeast species, and the development of genetic and molecular tools and strains. We review the research performed on N. castellii, focusing on areas where it has significantly contributed to the discovery of new features of molecular biology and to the advancement of our understanding of molecular evolution. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Marita Cohn
- Department of Biology, Genetics group, Lund University, Lund, Sweden
| |
Collapse
|
187
|
Williams TC, Peng B, Vickers CE, Nielsen LK. The Saccharomyces cerevisiae pheromone-response is a metabolically active stationary phase for bio-production. Metab Eng Commun 2016; 3:142-152. [PMID: 29468120 PMCID: PMC5779721 DOI: 10.1016/j.meteno.2016.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 11/04/2022] Open
Abstract
The growth characteristics and underlying metabolism of microbial production hosts are critical to the productivity of metabolically engineered pathways. Production in parallel with growth often leads to biomass/bio-product competition for carbon. The growth arrest phenotype associated with the Saccharomyces cerevisiae pheromone-response is potentially an attractive production phase because it offers the possibility of decoupling production from population growth. However, little is known about the metabolic phenotype associated with the pheromone-response, which has not been tested for suitability as a production phase. Analysis of extracellular metabolite fluxes, available transcriptomic data, and heterologous compound production (para-hydroxybenzoic acid) demonstrate that a highly active and distinct metabolism underlies the pheromone-response. These results indicate that the pheromone-response is a suitable production phase, and that it may be useful for informing synthetic biology design principles for engineering productive stationary phase phenotypes.
Collapse
Affiliation(s)
| | | | - Claudia E. Vickers
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD 4072, Australia
| | | |
Collapse
|
188
|
Sun J, Alper H. Synthetic Biology: An Emerging Approach for Strain Engineering. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Jie Sun
- Department of Chemical Engineering; The University of Texas at Austin; 200 E Dean Keeton Street Stop C0400, Austin TX 78712 USA
| | - Hal Alper
- Department of Chemical Engineering; The University of Texas at Austin; 200 E Dean Keeton Street Stop C0400, Austin TX 78712 USA
| |
Collapse
|
189
|
Gaiti F, Calcino AD, Tanurdžić M, Degnan BM. Origin and evolution of the metazoan non-coding regulatory genome. Dev Biol 2016; 427:193-202. [PMID: 27880868 DOI: 10.1016/j.ydbio.2016.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/14/2016] [Accepted: 11/18/2016] [Indexed: 02/09/2023]
Abstract
Animals rely on genomic regulatory systems to direct the dynamic spatiotemporal and cell-type specific gene expression that is essential for the development and maintenance of a multicellular lifestyle. Although it is widely appreciated that these systems ultimately evolved from genomic regulatory mechanisms present in single-celled stem metazoans, it remains unclear how this occurred. Here, we focus on the contribution of the non-coding portion of the genome to the evolution of animal gene regulation, specifically on recent insights from non-bilaterian metazoan lineages, and unicellular and colonial holozoan sister taxa. High-throughput next-generation sequencing, largely in bilaterian model species, has led to the discovery of tens of thousands of non-coding RNA genes (ncRNAs), including short, long and circular forms, and uncovered the central roles they play in development. Based on the analysis of non-bilaterian metazoan, unicellular holozoan and fungal genomes, the evolution of some ncRNAs, such as Piwi-interacting RNAs, correlates with the emergence of metazoan multicellularity, while others, including microRNAs, long non-coding RNAs and circular RNAs, appear to be more ancient. Analysis of non-coding regulatory DNA and histone post-translational modifications have revealed that some cis-regulatory mechanisms, such as those associated with proximal promoters, are present in non-animal holozoans, while others appear to be metazoan innovations, most notably distal enhancers. In contrast, the cohesin-CTCF system for regulating higher-order chromatin structure and enhancer-promoter long-range interactions appears to be restricted to bilaterians. Taken together, most bilaterian non-coding regulatory mechanisms appear to have originated before the divergence of crown metazoans. However, differential expansion of non-coding RNA and cis-regulatory DNA repertoires in bilaterians may account for their increased regulatory and morphological complexity relative to non-bilaterians.
Collapse
Affiliation(s)
- Federico Gaiti
- School of Biological Sciences, University of Queensland, Brisbane, Australia.
| | - Andrew D Calcino
- Department of Integrative Zoology, University of Vienna, Vienna, Austria.
| | - Miloš Tanurdžić
- School of Biological Sciences, University of Queensland, Brisbane, Australia.
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Australia.
| |
Collapse
|
190
|
Karademir Andersson A, Oredsson S, Cohn M. Development of stable haploid strains and molecular genetic tools for Naumovozyma castellii (Saccharomyces castellii). Yeast 2016; 33:633-646. [PMID: 27669110 DOI: 10.1002/yea.3213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/16/2016] [Accepted: 09/16/2016] [Indexed: 11/09/2022] Open
Abstract
The budding yeast Naumovozyma castellii (syn. Saccharomyces castellii) has been included in comparative genomics studies and functional analyses of centromere DNA elements, and has been shown to possess beneficial traits for telomere biology research. To provide useful tools for molecular genetic approaches, we produced stable haploid heterothallic strains from an early ancestral strain derived from the N. castellii collection strain CBS 4310. To this end, we deleted the gene encoding the Ho endonuclease, which is essential for the mating type switching. Gene replacement of HO with the kanMX3 resistance cassette was performed in diploid strains, followed by sporulation and tetrad microdissection of the haploid spores. The mating type (MATa or MATα) was determined for each hoΔ mutant, and was stable under sporulation-inducing conditions, showing that the switching system was totally non-functional. The hoΔstrains showed wild-type growth rates and were successfully transformed with linear DNA using the general protocol. Opposite mating types of the hoΔstrains were mated, resulting in diploid cells that efficiently formed asci and generated viable spores when microdissected. By introduction of a point mutation in the URA3 gene, we created a uracil auxotrophic strain, and by exchanging the kanMX3 cassette for the hphMX4 cassette we show that hygromycin B resistance can be used as a selection marker in N. castellii. These haploid strains containing genetic markers will be useful tools for performing genetic analyses in N. castellii. Moreover, we demonstrate that homology regions of 200-230 bp can be successfully used for target site-specific integration into genomic loci. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Stina Oredsson
- Department of Biology, Functional zoology, Lund University, Lund, Sweden
| | - Marita Cohn
- Department of Biology, Genetics group, Lund University, Lund, Sweden
| |
Collapse
|
191
|
Morgado P, Manna D, Singh U. Recent advances in Entamoeba biology: RNA interference, drug discovery, and gut microbiome. F1000Res 2016; 5:2578. [PMID: 27853522 PMCID: PMC5089142 DOI: 10.12688/f1000research.9241.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2016] [Indexed: 01/04/2023] Open
Abstract
In recent years, substantial progress has been made in understanding the molecular and cell biology of the human parasite
Entamoeba histolytica, an important pathogen with significant global impact. This review outlines some recent advances in the
Entamoeba field in the last five years, focusing on areas that have not recently been discussed in detail: (i) molecular mechanisms regulating parasite gene expression, (ii) new efforts at drug discovery using high-throughput drug screens, and (iii) the effect of gut microbiota on amoebiasis.
Collapse
Affiliation(s)
- Pedro Morgado
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Dipak Manna
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Upinder Singh
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
192
|
Bąkowska-Żywicka K, Mleczko AM, Kasprzyk M, Machtel P, Żywicki M, Twardowski T. The widespread occurrence of tRNA-derived fragments in Saccharomyces cerevisiae. FEBS Open Bio 2016; 6:1186-1200. [PMID: 28203519 PMCID: PMC5302060 DOI: 10.1002/2211-5463.12127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/19/2016] [Accepted: 09/13/2016] [Indexed: 11/10/2022] Open
Abstract
Short RNAs derived from the cleavage of tRNA molecules are observed in most organisms. Their occurrence seems to be induced by stress conditions, but still little is known about their biogenesis and functions. We find that the recovery of tRNA fragments depends on the RNA isolation method. Using an optimized RNA extraction protocol and northern blot hybridization technique, we show that the tRNA-derived fragments in yeast are widespread in 12 different growth conditions. We did not observe significant stress-dependent changes in the amounts of tRNA fragments pool. Instead, we show the differential processing of almost all individual tRNAs. We also provide evidence that 3'-part-derived tRNA fragments are as abundant as the 5'- one in Saccharomyces cerevisiae. The resulting set of S. cerevisiae tRNA fragments provides a robust basis for further experimental studies on biological functions of tRFs.
Collapse
Affiliation(s)
| | - Anna M Mleczko
- Institute of Bioorganic Chemistry Polish Academy of Sciences Poznan Poland
| | - Marta Kasprzyk
- Institute of Bioorganic Chemistry Polish Academy of Sciences Poznan Poland
| | - Piotr Machtel
- Institute of Bioorganic Chemistry Polish Academy of Sciences Poznan Poland
| | - Marek Żywicki
- Department of Computational Biology Institute of Molecular Biology and Biotechnology Faculty of Biology A. Mickiewicz University in Poznan Poland
| | - Tomasz Twardowski
- Institute of Bioorganic Chemistry Polish Academy of Sciences Poznan Poland
| |
Collapse
|
193
|
Roche B, Arcangioli B, Martienssen RA. RNA interference is essential for cellular quiescence. Science 2016; 354:science.aah5651. [PMID: 27738016 DOI: 10.1126/science.aah5651] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022]
Abstract
Quiescent cells play a predominant role in most organisms. Here we identify RNA interference (RNAi) as a major requirement for quiescence (G0 phase of the cell cycle) in Schizosaccharomyces pombe RNAi mutants lose viability at G0 entry and are unable to maintain long-term quiescence. We identified suppressors of G0 defects in cells lacking Dicer (dcr1Δ), which mapped to genes involved in chromosome segregation, RNA polymerase-associated factors, and heterochromatin formation. We propose a model in which RNAi promotes the release of RNA polymerase in cycling and quiescent cells: (i) RNA polymerase II release mediates heterochromatin formation at centromeres, allowing proper chromosome segregation during mitotic growth and G0 entry, and (ii) RNA polymerase I release prevents heterochromatin formation at ribosomal DNA during quiescence maintenance. Our model may account for the codependency of RNAi and histone H3 lysine 9 methylation throughout eukaryotic evolution.
Collapse
Affiliation(s)
- B Roche
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - B Arcangioli
- Dynamics of the Genome Unit, Department of Genomes and Genetics, Institut Pasteur, UMR3525, 25-28 rue du Docteur Roux, Paris 75015, France
| | - R A Martienssen
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
194
|
Sturmberger L, Chappell T, Geier M, Krainer F, Day KJ, Vide U, Trstenjak S, Schiefer A, Richardson T, Soriaga L, Darnhofer B, Birner-Gruenberger R, Glick BS, Tolstorukov I, Cregg J, Madden K, Glieder A. Refined Pichia pastoris reference genome sequence. J Biotechnol 2016; 235:121-31. [PMID: 27084056 PMCID: PMC5089815 DOI: 10.1016/j.jbiotec.2016.04.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 11/16/2022]
Abstract
Strains of the species Komagataella phaffii are the most frequently used "Pichia pastoris" strains employed for recombinant protein production as well as studies on peroxisome biogenesis, autophagy and secretory pathway analyses. Genome sequencing of several different P. pastoris strains has provided the foundation for understanding these cellular functions in recent genomics, transcriptomics and proteomics experiments. This experimentation has identified mistakes, gaps and incorrectly annotated open reading frames in the previously published draft genome sequences. Here, a refined reference genome is presented, generated with genome and transcriptome sequencing data from multiple P. pastoris strains. Twelve major sequence gaps from 20 to 6000 base pairs were closed and 5111 out of 5256 putative open reading frames were manually curated and confirmed by RNA-seq and published LC-MS/MS data, including the addition of new open reading frames (ORFs) and a reduction in the number of spliced genes from 797 to 571. One chromosomal fragment of 76kbp between two previous gaps on chromosome 1 and another 134kbp fragment at the end of chromosome 4, as well as several shorter fragments needed re-orientation. In total more than 500 positions in the genome have been corrected. This reference genome is presented with new chromosomal numbering, positioning ribosomal repeats at the distal ends of the four chromosomes, and includes predicted chromosomal centromeres as well as the sequence of two linear cytoplasmic plasmids of 13.1 and 9.5kbp found in some strains of P. pastoris.
Collapse
Affiliation(s)
- Lukas Sturmberger
- Austrian Center of Industrial Biotechnology (ACIB), Petersgasse 14, 8010 Graz, Austria
| | - Thomas Chappell
- BioGrammatics Inc., 2120 Las Palmas Drive, Carlsbad, CA 92011, United States
| | - Martina Geier
- Austrian Center of Industrial Biotechnology (ACIB), Petersgasse 14, 8010 Graz, Austria
| | - Florian Krainer
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Kasey J Day
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th St., Chicago, IL 60637, United States
| | - Ursa Vide
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Sara Trstenjak
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Anja Schiefer
- Austrian Center of Industrial Biotechnology (ACIB), Petersgasse 14, 8010 Graz, Austria
| | - Toby Richardson
- Synthetic Genomics, Inc., 11149 North Torrey Pines Rd., La Jolla, CA 92037, United States
| | - Leah Soriaga
- Synthetic Genomics, Inc., 11149 North Torrey Pines Rd., La Jolla, CA 92037, United States
| | - Barbara Darnhofer
- Austrian Center of Industrial Biotechnology (ACIB), Petersgasse 14, 8010 Graz, Austria; Institute of Pathology, Research Unit Functional Proteomics and Metabolic Pathways, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Ruth Birner-Gruenberger
- Austrian Center of Industrial Biotechnology (ACIB), Petersgasse 14, 8010 Graz, Austria; Institute of Pathology, Research Unit Functional Proteomics and Metabolic Pathways, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th St., Chicago, IL 60637, United States
| | - Ilya Tolstorukov
- BioGrammatics Inc., 2120 Las Palmas Drive, Carlsbad, CA 92011, United States; Keck Graduate Institute, 535 Watson Drive, Claremont, CA 91711, United States
| | - James Cregg
- BioGrammatics Inc., 2120 Las Palmas Drive, Carlsbad, CA 92011, United States; Keck Graduate Institute, 535 Watson Drive, Claremont, CA 91711, United States
| | - Knut Madden
- BioGrammatics Inc., 2120 Las Palmas Drive, Carlsbad, CA 92011, United States
| | - Anton Glieder
- Austrian Center of Industrial Biotechnology (ACIB), Petersgasse 14, 8010 Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; bisy e.U., Wetzawinkel 20, 8200 Hofstaetten/Raab, Austria.
| |
Collapse
|
195
|
Rowley PA, Ho B, Bushong S, Johnson A, Sawyer SL. XRN1 Is a Species-Specific Virus Restriction Factor in Yeasts. PLoS Pathog 2016; 12:e1005890. [PMID: 27711183 PMCID: PMC5053509 DOI: 10.1371/journal.ppat.1005890] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023] Open
Abstract
In eukaryotes, the degradation of cellular mRNAs is accomplished by Xrn1 and the cytoplasmic exosome. Because viral RNAs often lack canonical caps or poly-A tails, they can also be vulnerable to degradation by these host exonucleases. Yeast lack sophisticated mechanisms of innate and adaptive immunity, but do use RNA degradation as an antiviral defense mechanism. One model is that the RNA of yeast viruses is subject to degradation simply as a side effect of the intrinsic exonuclease activity of proteins involved in RNA metabolism. Contrary to this model, we find a highly refined, species-specific relationship between Xrn1p and the "L-A" totiviruses of different Saccharomyces yeast species. We show that the gene XRN1 has evolved rapidly under positive natural selection in Saccharomyces yeast, resulting in high levels of Xrn1p protein sequence divergence from one yeast species to the next. We also show that these sequence differences translate to differential interactions with the L-A virus, where Xrn1p from S. cerevisiae is most efficient at controlling the L-A virus that chronically infects S. cerevisiae, and Xrn1p from S. kudriavzevii is most efficient at controlling the L-A-like virus that we have discovered within S. kudriavzevii. All Xrn1p orthologs are equivalent in their interaction with another virus-like parasite, the Ty1 retrotransposon. Thus, the activity of Xrn1p against totiviruses is not simply an incidental consequence of the enzymatic activity of Xrn1p, but rather Xrn1p co-evolves with totiviruses to maintain its potent antiviral activity and limit viral propagation in Saccharomyces yeasts. Consistent with this, we demonstrated that Xrn1p physically interacts with the Gag protein encoded by the L-A virus, suggesting a host-virus interaction that is more complicated than just Xrn1p-mediated nucleolytic digestion of viral RNAs.
Collapse
Affiliation(s)
- Paul A. Rowley
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
- Section of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Brandon Ho
- Section of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Sarah Bushong
- Section of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Arlen Johnson
- Section of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Sara L. Sawyer
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
- Section of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
196
|
Identification of gene knockdown targets conferring enhanced isobutanol and 1-butanol tolerance to Saccharomyces cerevisiae using a tunable RNAi screening approach. Appl Microbiol Biotechnol 2016; 100:10005-10018. [DOI: 10.1007/s00253-016-7791-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/25/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
|
197
|
Zhang J, Liu H, Yao Q, Yu X, Chen Y, Cui R, Wu B, Zheng L, Zuo J, Huang Z, Ma J, Gan J. Structural basis for single-stranded RNA recognition and cleavage by C3PO. Nucleic Acids Res 2016; 44:9494-9504. [PMID: 27596600 PMCID: PMC5100593 DOI: 10.1093/nar/gkw776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022] Open
Abstract
Translin and translin-associated factor-x are highly conserved in eukaroytes; they can form heteromeric complexes (known as C3POs) and participate in various nucleic acid metabolism pathways. In humans and Drosophila, C3POs cleave the fragmented siRNA passenger strands and facilitate the activation of RNA-induced silencing complex, the effector complex of RNA interference (RNAi). Here, we report three crystal structures of Nanoarchaeum equitans (Ne) C3PO. The apo-NeC3PO structure adopts an open form and unravels a potential substrates entryway for the first time. The NeC3PO:ssRNA and NeC3PO:ssDNA complexes fold like closed football with the substrates captured at the inner cavities. The NeC3PO:ssRNA structure represents the only catalytic form C3PO complex available to date; with mutagenesis and in vitro cleavage assays, the structure provides critical insights into the substrate binding and the two-cation-assisted catalytic mechanisms that are shared by eukaryotic C3POs. The work presented here further advances our understanding on the RNAi pathway.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hehua Liu
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qingqing Yao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiang Yu
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yiqing Chen
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ruixue Cui
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Baixing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lina Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Junjun Zuo
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhen Huang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA .,College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianhua Gan
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
198
|
Armas-Tizapantzi A, Montiel-González AM. RNAi silencing: A tool for functional genomics research on fungi. FUNGAL BIOL REV 2016. [DOI: 10.1016/j.fbr.2016.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
199
|
Azlan A, Dzaki N, Azzam G. Argonaute: The executor of small RNA function. J Genet Genomics 2016; 43:481-94. [PMID: 27569398 DOI: 10.1016/j.jgg.2016.06.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/08/2016] [Accepted: 06/17/2016] [Indexed: 01/06/2023]
Abstract
The discovery of small non-coding RNAs - microRNA (miRNA), short interfering RNA (siRNA) and PIWI-interacting RNA (piRNA) - represents one of the most exciting frontiers in biology specifically on the mechanism of gene regulation. In order to execute their functions, these small RNAs require physical interactions with their protein partners, the Argonaute (AGO) family proteins. Over the years, numerous studies have made tremendous progress on understanding the roles of AGO in gene silencing in various organisms. In this review, we summarize recent progress of AGO-mediated gene silencing and other cellular processes in which AGO proteins have been implicated with a particular focus on progress made in flies, humans and other model organisms as compliment.
Collapse
Affiliation(s)
- Azali Azlan
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Najat Dzaki
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Ghows Azzam
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; Advance Medical and Dental Institute, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
200
|
Huber F, Bunina D, Gupta I, Khmelinskii A, Meurer M, Theer P, Steinmetz LM, Knop M. Protein Abundance Control by Non-coding Antisense Transcription. Cell Rep 2016; 15:2625-36. [PMID: 27292640 PMCID: PMC4920891 DOI: 10.1016/j.celrep.2016.05.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/08/2016] [Accepted: 05/10/2016] [Indexed: 11/17/2022] Open
Abstract
Stable unannotated transcripts (SUTs), some of which overlap protein-coding genes in antisense direction, are a class of non-coding RNAs. While case studies have reported important regulatory roles for several of such RNAs, their general impact on protein abundance regulation of the overlapping gene is not known. To test this, we employed seamless gene manipulation to repress antisense SUTs of 162 yeast genes by using a unidirectional transcriptional terminator and a GFP tag. We found that the mere presence of antisense SUTs was not sufficient to influence protein abundance, that observed effects of antisense SUTs correlated with sense transcript start site overlap, and that the effects were generally weak and led to reduced protein levels. Antisense regulated genes showed increased H3K4 di- and trimethylation and had slightly lower than expected noise levels. Our results suggest that the functionality of antisense RNAs has gene and condition-specific components.
Collapse
Affiliation(s)
- Florian Huber
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Daria Bunina
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Ishaan Gupta
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Anton Khmelinskii
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Matthias Meurer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Patrick Theer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany; Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|