151
|
Yang F, Xi R. Silencing transposable elements in the Drosophila germline. Cell Mol Life Sci 2017; 74:435-448. [PMID: 27600679 PMCID: PMC11107544 DOI: 10.1007/s00018-016-2353-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/18/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
Transposable elements or transposons are DNA pieces that can move around within the genome and are, therefore, potential threat to genome stability and faithful transmission of the genetic information in the germline. Accordingly, self-defense mechanisms have evolved in the metazoan germline to silence transposons, and the primary mechanism requires the germline-specific non-coding small RNAs, named Piwi-interacting RNA (piRNAs), which are in complex with Argonaute family of PIWI proteins (the piRNA-RISC complexes), to silence transposons. piRNA-mediated transposon silencing occurs at both transcriptional and post-transcriptional levels. With the advantages of genetic manipulation and advances of sequencing technology, much progress has been made on the molecular mechanisms of piRNA-mediated transposon silencing in Drosophila melanogaster, which will be the focus of this review. Because piRNA-mediated transposon silencing is evolutionarily conserved in metazoan, model organisms, such as Drosophila, will continue to be served as pioneer systems towards the complete understanding of transposon silencing in the metazoan germline.
Collapse
Affiliation(s)
- Fu Yang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Rongwen Xi
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
| |
Collapse
|
152
|
Hashimoto Y, Takahashi M, Sakota E, Nakamura Y. Nonstop-mRNA decay machinery is involved in the clearance of mRNA 5'-fragments produced by RNAi and NMD in Drosophila melanogaster cells. Biochem Biophys Res Commun 2017; 484:1-7. [PMID: 28115162 DOI: 10.1016/j.bbrc.2017.01.092] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 10/20/2022]
Abstract
When translating mRNAs are cleaved in protein-coding regions, 5' fragments of mRNAs are detached from stop codons (i.e., nonstop mRNAs) and protected from 3'-5' exonucleases by ribosomes stalled at the 3' termini. It has been shown in yeast that the nonstop mRNA decay (NSD) machinery triggers nonstop mRNA degradation by removing stalled ribosomes in the artificial reporter mRNAs. However, it is not known well whether NSD is involved in the degradation of endogenous nonstop mRNAs in higher eukaryotes. In this work, we addressed the question of whether 5'-nonstop-mRNA fragments generated by siRNA cleavage or nonsense-mediated-mRNA decay (NMD) are degraded by the NSD pathway in Drosophila melanogaster cells by knocking down three NSD components, Pelota (a yeast Dom34 homolog), Hbs1 and ABCE1 (a ribosome-recycling factor). We found that double, but not single, knockdown of any two of these three factors efficiently stabilized nonstop reporter mRNAs and triple knockdown of Pelota, Hbs1 and ABCE1 further stabilized nonstop mRNAs in highly ribosome-associated state. These findings demonstrated that Pelota, Hbs1 and ABCE1 are crucial for NSD in Drosophila cells as in yeast for rescuing stalled ribosomes and degrading nonstop mRNAs. To our knowledge, this is the first comprehensive report to show the involvement of the NSD machinery in the clearance of mRNA 5'-fragments produced by RNAi and NMD in eukaryotes.
Collapse
Affiliation(s)
- Yoshifumi Hashimoto
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Masaki Takahashi
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Eri Sakota
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yoshikazu Nakamura
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; RIBOMIC Inc., Minato-ku, Tokyo 108-0071, Japan.
| |
Collapse
|
153
|
Juszkiewicz S, Hegde RS. Initiation of Quality Control during Poly(A) Translation Requires Site-Specific Ribosome Ubiquitination. Mol Cell 2017; 65:743-750.e4. [PMID: 28065601 PMCID: PMC5316413 DOI: 10.1016/j.molcel.2016.11.039] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 11/19/2022]
Abstract
Diverse cellular stressors have been observed to trigger site-specific ubiquitination on several ribosomal proteins. However, the ubiquitin ligases, biochemical consequences, and physiologic pathways linked to these modifications are not known. Here, we show in mammalian cells that the ubiquitin ligase ZNF598 is required for ribosomes to terminally stall during translation of poly(A) sequences. ZNF598-mediated stalling initiated the ribosome-associated quality control (RQC) pathway for degradation of nascent truncated proteins. Biochemical ubiquitination reactions identified two sites of mono-ubiquitination on the 40S protein eS10 as the primary ribosomal target of ZNF598. Cells lacking ZNF598 activity or containing ubiquitination-resistant eS10 ribosomes failed to stall efficiently on poly(A) sequences. In the absence of stalling, read-through of poly(A) produces a poly-lysine tag, which might alter the localization and solubility of the associated protein. Thus, ribosome ubiquitination can modulate translation elongation and impacts co-translational quality control to minimize production of aberrant proteins. Poly(A), not poly-basic tracts, are the main trigger of ribosome stalling in mammals The ubiquitin ligase ZNF598 is required to stall ribosomes during poly(A) translation ZNF598 primarily mono-ubiquitinates two lysines on the 40S ribosomal protein eS10 ZNF598 deletion or mutation of its eS10 target permits increased poly(A) translation
Collapse
|
154
|
Inada T. The Ribosome as a Platform for mRNA and Nascent Polypeptide Quality Control. Trends Biochem Sci 2017; 42:5-15. [DOI: 10.1016/j.tibs.2016.09.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 11/28/2022]
|
155
|
Serdar LD, Whiteside DL, Baker KE. ATP hydrolysis by UPF1 is required for efficient translation termination at premature stop codons. Nat Commun 2016; 7:14021. [PMID: 28008922 PMCID: PMC5196439 DOI: 10.1038/ncomms14021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/22/2016] [Indexed: 11/22/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) represents a eukaryotic quality control pathway that recognizes and rapidly degrades transcripts harbouring nonsense mutations to limit accumulation of non-functional and potentially toxic truncated polypeptides. A critical component of the NMD machinery is UPF1, an RNA helicase whose ATPase activity is essential for NMD, but for which the precise function and site of action remain unclear. We provide evidence that ATP hydrolysis by UPF1 is required for efficient translation termination and ribosome release at a premature termination codon. UPF1 ATPase mutants accumulate 3′ RNA decay fragments harbouring a ribosome stalled during premature termination that impedes complete degradation of the mRNA. The ability of UPF1 to impinge on premature termination, moreover, requires ATP-binding, RNA-binding and NMD cofactors UPF2 and UPF3. Our results reveal that ATP hydrolysis by UPF1 modulates a functional interaction between the NMD machinery and terminating ribosomes necessary for targeting substrates to accelerated degradation. Nonsense-mediated mRNA decay (NMD) is a quality control pathway that recognizes and degrades transcripts harbouring nonsense mutations. Here the authors show that the ATPase activity of UPF1 mediates functional interactions between the NMD machinery and ribosomes required for efficient ribosome release at premature termination codons.
Collapse
Affiliation(s)
- Lucas D Serdar
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - DaJuan L Whiteside
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Kristian E Baker
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
156
|
Hilal T, Yamamoto H, Loerke J, Bürger J, Mielke T, Spahn CM. Structural insights into ribosomal rescue by Dom34 and Hbs1 at near-atomic resolution. Nat Commun 2016; 7:13521. [PMID: 27995908 PMCID: PMC5187420 DOI: 10.1038/ncomms13521] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/11/2016] [Indexed: 01/13/2023] Open
Abstract
The surveillance of mRNA translation is imperative for homeostasis. Monitoring the integrity of the message is essential, as the translation of aberrant mRNAs leads to stalling of the translational machinery. During ribosomal rescue, arrested ribosomes are specifically recognized by the conserved eukaryotic proteins Dom34 and Hbs1, to initiate their recycling. Here we solve the structure of Dom34 and Hbs1 bound to a yeast ribosome programmed with a nonstop mRNA at 3.3 Å resolution using cryo-electron microscopy. The structure shows that Domain N of Dom34 is inserted into the upstream mRNA-binding groove via direct stacking interactions with conserved nucleotides of 18S rRNA. It senses the absence of mRNA at the A-site and part of the mRNA entry channel by direct competition. Thus, our analysis establishes the structural foundation for the recognition of aberrantly stalled 80S ribosomes by the Dom34·Hbs1·GTP complex during Dom34-mediated mRNA surveillance pathways.
Collapse
Affiliation(s)
- Tarek Hilal
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Hiroshi Yamamoto
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Justus Loerke
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jörg Bürger
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Max-Planck Institut für Molekulare Genetik, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Thorsten Mielke
- Max-Planck Institut für Molekulare Genetik, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Christian M.T. Spahn
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
157
|
van Wijlick L, Geissen R, Hilbig JS, Lagadec Q, Cantero PD, Pfeifer E, Juchimiuk M, Kluge S, Wickert S, Alepuz P, Ernst JF. Dom34 Links Translation to Protein O-mannosylation. PLoS Genet 2016; 12:e1006395. [PMID: 27768707 PMCID: PMC5074521 DOI: 10.1371/journal.pgen.1006395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/29/2016] [Indexed: 11/25/2022] Open
Abstract
In eukaryotes, Dom34 upregulates translation by securing levels of activatable ribosomal subunits. We found that in the yeast Saccharomyces cerevisiae and the human fungal pathogen Candida albicans, Dom34 interacts genetically with Pmt1, a major isoform of protein O-mannosyltransferase. In C. albicans, lack of Dom34 exacerbated defective phenotypes of pmt1 mutants, while they were ameliorated by Dom34 overproduction that enhanced Pmt1 protein but not PMT1 transcript levels. Translational effects of Dom34 required the 5′-UTR of the PMT1 transcript, which bound recombinant Dom34 directly at a CA/AC-rich sequence and regulated in vitro translation. Polysomal profiling revealed that Dom34 stimulates general translation moderately, but that it is especially required for translation of transcripts encoding Pmt isoforms 1, 4 and 6. Because defective protein N- or O-glycosylation upregulates transcription of PMT genes, it appears that Dom34-mediated specific translational upregulation of the PMT transcripts optimizes cellular responses to glycostress. Its translational function as an RNA binding protein acting at the 5′-UTR of specific transcripts adds another facet to the known ribosome-releasing functions of Dom34 at the 3′-UTR of transcripts. Fungi respond to damages of their glycostructures in their cell wall by transcriptional upregulation of genes that specify compensatory activities. Upon block of protein N-glycosylation, the human fungal pathogen Candida albicans increases transcription of PMT1 encoding a major isoform of protein O-mannosyltransferase. Here we demonstrate that the Dom34 protein aids in glycostress responses by upregulating the translation of several PMT isoform transcripts. Dom34 has previously been implicated in mechanisms to secure high levels of ribosomal subunits that promote translation in general, e. g. by no-go decay at the 3′-UTR of transcripts. By binding to the 5′-UTR and activating translational initiation of PMT transcripts we add a novel mode of action and suggest a preferred class of targets for the translational activities of the Dom34 protein. The combination of transcriptional and Dom34-mediated translational upregulation of PMT genes optimizes effective recovery and survival of fungal cells upon glycostress.
Collapse
Affiliation(s)
- Lasse van Wijlick
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- Manchot Graduate School Molecules of Infection, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - René Geissen
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jessica S. Hilbig
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Quentin Lagadec
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Pilar D. Cantero
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Eugen Pfeifer
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Mateusz Juchimiuk
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Sven Kluge
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Stephan Wickert
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Paula Alepuz
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot Spain
- ERI Biotecmed. Universitat de València, Burjassot Spain
| | - Joachim F. Ernst
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- Manchot Graduate School Molecules of Infection, Heinrich-Heine-Universität, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
158
|
Harper JW, Bennett EJ. Proteome complexity and the forces that drive proteome imbalance. Nature 2016; 537:328-38. [PMID: 27629639 DOI: 10.1038/nature19947] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/29/2016] [Indexed: 12/28/2022]
Abstract
The cellular proteome is a complex microcosm of structural and regulatory networks that requires continuous surveillance and modification to meet the dynamic needs of the cell. It is therefore crucial that the protein flux of the cell remains in balance to ensure proper cell function. Genetic alterations that range from chromosome imbalance to oncogene activation can affect the speed, fidelity and capacity of protein biogenesis and degradation systems, which often results in proteome imbalance. An improved understanding of the causes and consequences of proteome imbalance is helping to reveal how these systems can be targeted to treat diseases such as cancer.
Collapse
Affiliation(s)
- J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
159
|
Ikeuchi K, Yazaki E, Kudo K, Inada T. Conserved functions of human Pelota in mRNA quality control of nonstop mRNA. FEBS Lett 2016; 590:3254-63. [DOI: 10.1002/1873-3468.12366] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Ken Ikeuchi
- Graduate School of Pharmaceutical Science; Tohoku University; Aoba-ku Sendai Japan
| | - Erina Yazaki
- Graduate School of Pharmaceutical Science; Tohoku University; Aoba-ku Sendai Japan
| | - Kazuhei Kudo
- Graduate School of Pharmaceutical Science; Tohoku University; Aoba-ku Sendai Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Science; Tohoku University; Aoba-ku Sendai Japan
| |
Collapse
|
160
|
Abstract
Viruses have evolved diverse strategies to maximize the functional and coding capacities of their genetic material. Individual viral RNAs are often used as substrates for both replication and translation and can contain multiple, sometimes overlapping open reading frames. Further, viral RNAs engage in a wide variety of interactions with both host and viral proteins to modify the activities of important cellular factors and direct their own trafficking, packaging, localization, stability, and translation. However, adaptations increasing the information density of small viral genomes can have unintended consequences. In particular, viral RNAs have developed features that mark them as potential targets of host RNA quality control pathways. This minireview focuses on ways in which viral RNAs run afoul of the cellular mRNA quality control and decay machinery, as well as on strategies developed by viruses to circumvent or exploit cellular mRNA surveillance.
Collapse
|
161
|
Doamekpor SK, Lee JW, Hepowit NL, Wu C, Charenton C, Leonard M, Bengtson MH, Rajashankar KR, Sachs MS, Lima CD, Joazeiro CAP. Structure and function of the yeast listerin (Ltn1) conserved N-terminal domain in binding to stalled 60S ribosomal subunits. Proc Natl Acad Sci U S A 2016; 113:E4151-60. [PMID: 27385828 PMCID: PMC4961192 DOI: 10.1073/pnas.1605951113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Ltn1 E3 ligase (listerin in mammals) has emerged as a paradigm for understanding ribosome-associated ubiquitylation. Ltn1 binds to 60S ribosomal subunits to ubiquitylate nascent polypeptides that become stalled during synthesis; among Ltn1's substrates are aberrant products of mRNA lacking stop codons [nonstop translation products (NSPs)]. Here, we report the reconstitution of NSP ubiquitylation in Neurospora crassa cell extracts. Upon translation in vitro, ribosome-stalled NSPs were ubiquitylated in an Ltn1-dependent manner, while still ribosome-associated. Furthermore, we provide biochemical evidence that the conserved N-terminal domain (NTD) plays a significant role in the binding of Ltn1 to 60S ribosomal subunits and that NTD mutations causing defective 60S binding also lead to defective NSP ubiquitylation, without affecting Ltn1's intrinsic E3 ligase activity. Finally, we report the crystal structure of the Ltn1 NTD at 2.4-Å resolution. The structure, combined with additional mutational studies, provides insight to NTD's role in binding stalled 60S subunits. Our findings show that Neurospora extracts can be used as a tool to dissect mechanisms underlying ribosome-associated protein quality control and are consistent with a model in which Ltn1 uses 60S subunits as adapters, at least in part via its NTD, to target stalled NSPs for ubiquitylation.
Collapse
Affiliation(s)
- Selom K Doamekpor
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065
| | - Joong-Won Lee
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Nathaniel L Hepowit
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Cheng Wu
- Department of Biology, Texas A&M University, College Station, TX 77843-3258
| | - Clement Charenton
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065
| | - Marilyn Leonard
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Mario H Bengtson
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Kanagalaghatta R Rajashankar
- Northeastern Collaborative Access Team, Advanced Photon Source, Argonne, IL 60439; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, TX 77843-3258;
| | - Christopher D Lima
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065; Howard Hughes Medical Institute, Sloan-Kettering Institute, New York, NY 10065;
| | - Claudio A P Joazeiro
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037; Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg D-69120, Germany; Deutsches Krebsforschungszentrum-Zentrum für Molekulare Biologie der Universität Heidelberg Alliance (ZMBH-DKFZ), Heidelberg D-69120, Germany
| |
Collapse
|
162
|
Horikawa W, Endo K, Wada M, Ito K. Mutations in the G-domain of Ski7 cause specific dysfunction in non-stop decay. Sci Rep 2016; 6:29295. [PMID: 27381255 PMCID: PMC4933942 DOI: 10.1038/srep29295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 06/17/2016] [Indexed: 11/10/2022] Open
Abstract
Ski7 functions as a cofactor in both normal mRNA turnover and non-stop mRNA decay (NSD) mRNA surveillance in budding yeast. The N-terminal region of Ski7 (Ski7N) interacts with the ski-complex and the exosome. The C-terminal region of Ski7 (Ski7C) binds guanine nucleotides and shares overall sequence and structural homology with the proteins of the translational GTPase superfamily, especially the tRNA/tRNA-mimic carrier protein subfamilies such as EF1α, eRF3, and Hbs1. Previous reports showed that Ski7N polypeptide functions adequately in vivo, while Ski7C, if any, only slightly. Furthermore, Ski7C does not exhibit GTP-hydrolysing activities under normal conditions. Therefore, the physiological and functional significance of the conserved Ski7C is unclear. Here, we report strong genetic evidence suggesting differential roles for Ski7N and Ski7C in normal and specific mRNA turnover pathways by creating/isolating mutations in both Ski7N and Ski7C conserved motifs using indicator yeast strains. We concluded that Ski7C participates in mRNA surveillance as a regulatory module competitively with the Hbs1/Dom34 complex. Our results provide insights into the molecular regulatory mechanisms underlying mRNA surveillance.
Collapse
Affiliation(s)
- Wataru Horikawa
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 277-8562, Japan.,Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Kei Endo
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 277-8562, Japan
| | - Miki Wada
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 277-8562, Japan.,Technical office, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Koichi Ito
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 277-8562, Japan
| |
Collapse
|
163
|
Kowalinski E, Kögel A, Ebert J, Reichelt P, Stegmann E, Habermann B, Conti E. Structure of a Cytoplasmic 11-Subunit RNA Exosome Complex. Mol Cell 2016; 63:125-34. [PMID: 27345150 PMCID: PMC4942675 DOI: 10.1016/j.molcel.2016.05.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/26/2016] [Accepted: 05/18/2016] [Indexed: 10/28/2022]
Abstract
The RNA exosome complex associates with nuclear and cytoplasmic cofactors to mediate the decay, surveillance, or processing of a wide variety of transcripts. In the cytoplasm, the conserved core of the exosome (Exo10) functions together with the conserved Ski complex. The interaction of S. cerevisiae Exo10 and Ski is not direct but requires a bridging cofactor, Ski7. Here, we report the 2.65 Å resolution structure of S. cerevisiae Exo10 bound to the interacting domain of Ski7. Extensive hydrophobic interactions rationalize the high affinity and stability of this complex, pointing to Ski7 as a constitutive component of the cytosolic exosome. Despite the absence of sequence homology, cytoplasmic Ski7 and nuclear Rrp6 bind Exo10 using similar surfaces and recognition motifs. Knowledge of the interacting residues in the yeast complexes allowed us to identify a splice variant of human HBS1-Like as a Ski7-like exosome-binding protein, revealing the evolutionary conservation of this cytoplasmic cofactor.
Collapse
Affiliation(s)
- Eva Kowalinski
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Alexander Kögel
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Judith Ebert
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Peter Reichelt
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Elisabeth Stegmann
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Bianca Habermann
- Computational Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
164
|
Shcherbik N, Chernova TA, Chernoff YO, Pestov DG. Distinct types of translation termination generate substrates for ribosome-associated quality control. Nucleic Acids Res 2016; 44:6840-52. [PMID: 27325745 PMCID: PMC5001609 DOI: 10.1093/nar/gkw566] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/13/2016] [Indexed: 11/24/2022] Open
Abstract
Cotranslational degradation of polypeptide nascent chains plays a critical role in quality control of protein synthesis and the rescue of stalled ribosomes. In eukaryotes, ribosome stalling triggers release of 60S subunits with attached nascent polypeptides, which undergo ubiquitination by the E3 ligase Ltn1 and proteasomal degradation facilitated by the ATPase Cdc48. However, the identity of factors acting upstream in this process is less clear. Here, we examined how the canonical release factors Sup45–Sup35 (eRF1–eRF3) and their paralogs Dom34-Hbs1 affect the total population of ubiquitinated nascent chains associated with yeast ribosomes. We found that the availability of the functional release factor complex Sup45–Sup35 strongly influences the amount of ubiquitinated polypeptides associated with 60S ribosomal subunits, while Dom34-Hbs1 generate 60S-associated peptidyl-tRNAs that constitute a relatively minor fraction of Ltn1 substrates. These results uncover two separate pathways that target nascent polypeptides for Ltn1-Cdc48-mediated degradation and suggest that in addition to canonical termination on stop codons, eukaryotic release factors contribute to cotranslational protein quality control.
Collapse
Affiliation(s)
- Natalia Shcherbik
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Tatiana A Chernova
- Department of Biochemistry, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Yury O Chernoff
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30322, USA Laboratory of Amyloid Biology & Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Dimitri G Pestov
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, Stratford, NJ 08084, USA
| |
Collapse
|
165
|
Ribosome-associated Asc1/RACK1 is required for endonucleolytic cleavage induced by stalled ribosome at the 3' end of nonstop mRNA. Sci Rep 2016; 6:28234. [PMID: 27312062 PMCID: PMC4911565 DOI: 10.1038/srep28234] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/31/2016] [Indexed: 12/21/2022] Open
Abstract
Dom34-Hbs1 stimulates degradation of aberrant mRNAs lacking termination codons by dissociating ribosomes stalled at the 3′ ends, and plays crucial roles in Nonstop Decay (NSD) and No-Go Decay (NGD). In the dom34Δ mutant, nonstop mRNA is degraded by sequential endonucleolytic cleavages induced by a stalled ribosome at the 3′ end. Here, we report that ribosome-associated Asc1/RACK1 is required for the endonucleolytic cleavage of nonstop mRNA by stalled ribosome at the 3′ end of mRNA in dom34Δ mutant cells. Asc1/RACK1 facilitates degradation of truncated GFP-Rz mRNA in the absence of Dom34 and exosome-dependent decay. Asc1/RACK1 is required for the sequential endonucleolytic cleavages by the stalled ribosome in the dom34Δ mutant, depending on its ribosome-binding activity. The levels of peptidyl-tRNA derived from nonstop mRNA were elevated in dom34Δasc1Δ mutant cells, and overproduction of nonstop mRNA inhibited growth of mutant cells. E3 ubiquitin ligase Ltn1 degrades the arrest products from truncated GFP-Rz mRNA in dom34Δ and dom34Δasc1Δ mutant cells, and Asc1/RACK1 represses the levels of substrates for Ltn1-dependent degradation. These indicate that ribosome-associated Asc1/RACK1 facilitates endonucleolytic cleavage of nonstop mRNA by stalled ribosomes and represses the levels of aberrant products even in the absence of Dom34. We propose that Asc1/RACK1 acts as a fail-safe in quality control for nonstop mRNA.
Collapse
|
166
|
Radhakrishnan A, Green R. Connections Underlying Translation and mRNA Stability. J Mol Biol 2016; 428:3558-64. [PMID: 27261255 DOI: 10.1016/j.jmb.2016.05.025] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/03/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
Gene expression and regulation in organisms minimally depends on transcription by RNA polymerase and on the stability of the RNA product (for both coding and non-coding RNAs). For coding RNAs, gene expression is further influenced by the amount of translation by the ribosome and by the stability of the protein product. The stabilities of these two classes of RNA, non-coding and coding, vary considerably: tRNAs and rRNAs tend to be long lived while mRNAs tend to be more short lived. Even among mRNAs, however, there is a considerable range in stability (ranging from seconds to hours in bacteria and up to days in metazoans), suggesting a significant role for stability in the regulation of gene expression. Here, we review recent experiments from bacteria, yeast and metazoans indicating that the stability of most mRNAs is broadly impacted by the actions of ribosomes that translate them. Ribosomal recognition of defective mRNAs triggers "mRNA surveillance" pathways that target the mRNA for degradation [Shoemaker and Green (2012) ]. More generally, even the stability of perfectly functional mRNAs appears to be dictated by overall rates of translation by the ribosome [Herrick et al. (1990), Presnyak et al. (2015) ]. Given that mRNAs are synthesized for the purpose of being translated into proteins, it is reassuring that such intimate connections between mRNA and the ribosome can drive biological regulation. In closing, we consider the likelihood that these connections between protein synthesis and mRNA stability are widespread or whether other modes of regulation dominate the mRNA stability landscape in higher organisms.
Collapse
Affiliation(s)
- Aditya Radhakrishnan
- Program in Molecular Biophysics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Department of Molecular Biology and Genetics, Baltimore, MD 21205, USA
| | - Rachel Green
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Department of Molecular Biology and Genetics, Baltimore, MD 21205, USA.
| |
Collapse
|
167
|
Simms CL, Thomas EN, Zaher HS. Ribosome-based quality control of mRNA and nascent peptides. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27193249 DOI: 10.1002/wrna.1366] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 11/06/2022]
Abstract
Quality control processes are widespread and play essential roles in detecting defective molecules and removing them in order to maintain organismal fitness. Aberrant messenger RNA (mRNA) molecules, unless properly managed, pose a significant hurdle to cellular proteostasis. Often mRNAs harbor premature stop codons, possess structures that present a block to the translational machinery, or lack stop codons entirely. In eukaryotes, the three cytoplasmic mRNA-surveillance processes, nonsense-mediated decay (NMD), no-go decay (NGD), and nonstop decay (NSD), evolved to cope with these aberrant mRNAs, respectively. Nonstop mRNAs and mRNAs that inhibit translation elongation are especially problematic as they sequester valuable ribosomes from the translating ribosome pool. As a result, in addition to RNA degradation, NSD and NGD are intimately coupled to ribosome rescue in all domains of life. Furthermore, protein products produced from all three classes of defective mRNAs are more likely to malfunction. It is not surprising then that these truncated nascent protein products are subject to degradation. Over the past few years, many studies have begun to document a central role for the ribosome in initiating the RNA and protein quality control processes. The ribosome appears to be responsible for recognizing the target mRNAs as well as for recruiting the factors required to carry out the processes of ribosome rescue and nascent protein decay. WIREs RNA 2017, 8:e1366. doi: 10.1002/wrna.1366 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Carrie L Simms
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Erica N Thomas
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
168
|
Ribosome-associated protein quality control. Nat Struct Mol Biol 2016; 23:7-15. [PMID: 26733220 DOI: 10.1038/nsmb.3147] [Citation(s) in RCA: 320] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/23/2015] [Indexed: 12/18/2022]
Abstract
Protein synthesis by the ribosome can fail for numerous reasons including faulty mRNA, insufficient availability of charged tRNAs and genetic errors. All organisms have evolved mechanisms to recognize stalled ribosomes and initiate pathways for recycling, quality control and stress signaling. Here we review the discovery and molecular dissection of the eukaryotic ribosome-associated quality-control pathway for degradation of nascent polypeptides arising from interrupted translation.
Collapse
|
169
|
Simms CL, Zaher HS. Quality control of chemically damaged RNA. Cell Mol Life Sci 2016; 73:3639-53. [PMID: 27155660 DOI: 10.1007/s00018-016-2261-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 04/15/2016] [Accepted: 04/29/2016] [Indexed: 01/10/2023]
Abstract
The "central dogma" of molecular biology describes how information contained in DNA is transformed into RNA and finally into proteins. In order for proteins to maintain their functionality in both the parent cell and subsequent generations, it is essential that the information encoded in DNA and RNA remains unaltered. DNA and RNA are constantly exposed to damaging agents, which can modify nucleic acids and change the information they encode. While much is known about how cells respond to damaged DNA, the importance of protecting RNA has only become appreciated over the past decade. Modification of the nucleobase through oxidation and alkylation has long been known to affect its base-pairing properties during DNA replication. Similarly, recent studies have begun to highlight some of the unwanted consequences of chemical damage on mRNA decoding during translation. Oxidation and alkylation of mRNA appear to have drastic effects on the speed and fidelity of protein synthesis. As some mRNAs can persist for days in certain tissues, it is not surprising that it has recently emerged that mRNA-surveillance and RNA-repair pathways have evolved to clear or correct damaged mRNA.
Collapse
Affiliation(s)
- Carrie L Simms
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO, 63130, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO, 63130, USA.
| |
Collapse
|
170
|
Rli1/ABCE1 Recycles Terminating Ribosomes and Controls Translation Reinitiation in 3'UTRs In Vivo. Cell 2016; 162:872-84. [PMID: 26276635 DOI: 10.1016/j.cell.2015.07.041] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/21/2015] [Accepted: 07/10/2015] [Indexed: 02/05/2023]
Abstract
To study the function of Rli1/ABCE1 in vivo, we used ribosome profiling and biochemistry to characterize its contribution to ribosome recycling. When Rli1 levels were diminished, 80S ribosomes accumulated both at stop codons and in the adjoining 3'UTRs of most mRNAs. Frequently, these ribosomes reinitiated translation without the need for a canonical start codon, as small peptide products predicted by 3'UTR ribosome occupancy in all three reading frames were confirmed by western analysis and mass spectrometry. Eliminating the ribosome-rescue factor Dom34 dramatically increased 3'UTR ribosome occupancy in Rli1 depleted cells, indicating that Dom34 clears the bulk of unrecycled ribosomes. Thus, Rli1 is crucial for ribosome recycling in vivo and controls ribosome homeostasis. 3'UTR translation occurs in wild-type cells as well, and observations of elevated 3'UTR ribosomes during stress suggest that modulating recycling and reinitiation is involved in responding to environmental changes.
Collapse
|
171
|
Failure of RQC machinery causes protein aggregation and proteotoxic stress. Nature 2016; 531:191-5. [DOI: 10.1038/nature16973] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/07/2016] [Indexed: 12/12/2022]
|
172
|
Codon influence on protein expression in E. coli correlates with mRNA levels. Nature 2016; 529:358-363. [PMID: 26760206 DOI: 10.1038/nature16509] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/01/2015] [Indexed: 02/06/2023]
Abstract
Degeneracy in the genetic code, which enables a single protein to be encoded by a multitude of synonymous gene sequences, has an important role in regulating protein expression, but substantial uncertainty exists concerning the details of this phenomenon. Here we analyse the sequence features influencing protein expression levels in 6,348 experiments using bacteriophage T7 polymerase to synthesize messenger RNA in Escherichia coli. Logistic regression yields a new codon-influence metric that correlates only weakly with genomic codon-usage frequency, but strongly with global physiological protein concentrations and also mRNA concentrations and lifetimes in vivo. Overall, the codon content influences protein expression more strongly than mRNA-folding parameters, although the latter dominate in the initial ~16 codons. Genes redesigned based on our analyses are transcribed with unaltered efficiency but translated with higher efficiency in vitro. The less efficiently translated native sequences show greatly reduced mRNA levels in vivo. Our results suggest that codon content modulates a kinetic competition between protein elongation and mRNA degradation that is a central feature of the physiology and also possibly the regulation of translation in E. coli.
Collapse
|
173
|
Shao S, Hegde RS. Target Selection during Protein Quality Control. Trends Biochem Sci 2015; 41:124-137. [PMID: 26628391 DOI: 10.1016/j.tibs.2015.10.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 11/25/2022]
Abstract
Protein quality control (QC) pathways survey the cellular proteome to selectively recognize and degrade faulty proteins whose accumulation can lead to various diseases. Recognition of the occasional aberrant protein among an abundant sea of similar normal counterparts poses a considerable challenge to the cell. Solving this problem requires protein QC machinery to assay multiple molecular criteria within a spatial and temporal context. Although each QC pathway has unique criteria and mechanisms for distinguishing right from wrong, they appear to share several general concepts. We discuss principles of high-fidelity target recognition, the decisive event of all protein QC pathways, to guide future work in this area.
Collapse
Affiliation(s)
- Sichen Shao
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| | - Ramanujan S Hegde
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
174
|
Bowen AM, Musalgaonkar S, Moomau CA, Gulay SP, Mirvis M, Dinman JD. Ribosomal protein uS19 mutants reveal its role in coordinating ribosome structure and function. ACTA ACUST UNITED AC 2015; 3:e1117703. [PMID: 26824029 PMCID: PMC4721500 DOI: 10.1080/21690731.2015.1117703] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/15/2015] [Accepted: 11/03/2015] [Indexed: 01/16/2023]
Abstract
Prior studies identified allosteric information pathways connecting functional centers in the large ribosomal subunit to the decoding center in the small subunit through the B1a and B1b/c intersubunit bridges in yeast. In prokaryotes a single SSU protein, uS13, partners with H38 (the A-site finger) and uL5 to form the B1a and B1b/c bridges respectively. In eukaryotes, the SSU component was split into 2 separate proteins during the course of evolution. One, also known as uS13, participates in B1b/c bridge with uL5 in eukaryotes. The other, called uS19 is the SSU partner in the B1a bridge with H38. Here, polyalanine mutants of uS19 involved in the uS19/uS13 and the uS19/H38 interfaces were used to elucidate the important amino acid residues involved in these intersubunit communication pathways. Two key clusters of amino acids were identified: one located at the junction between uS19 and uS13, and a second that appears to interact with the distal tip of H38. Biochemical analyses reveal that these mutations shift the ribosomal rotational equilibrium toward the unrotated state, increasing ribosomal affinity for tRNAs in the P-site and for ternary complex in the A-site, and inhibit binding of the translocase, eEF2. These defects in turn affect specific aspects of translational fidelity. These findings suggest that uS19 plays a critical role as a conduit of information exchange between the large and small ribosomal subunits directly through the B1a, and indirectly through the B1b/c bridges.
Collapse
Affiliation(s)
- Alicia M Bowen
- Department of Chemistry and Biochemistry; University of Maryland ; College Park, MD USA
| | - Sharmishtha Musalgaonkar
- Department of Cell Biology and Molecular Genetics; University of Maryland ; College Park, MD USA
| | - Christine A Moomau
- Department of Cell Biology and Molecular Genetics; University of Maryland ; College Park, MD USA
| | - Suna P Gulay
- Department of Cell Biology and Molecular Genetics; University of Maryland ; College Park, MD USA
| | - Mary Mirvis
- Department of Cell Biology and Molecular Genetics; University of Maryland ; College Park, MD USA
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics; University of Maryland ; College Park, MD USA
| |
Collapse
|
175
|
Rosenberg AB, Patwardhan RP, Shendure J, Seelig G. Learning the sequence determinants of alternative splicing from millions of random sequences. Cell 2015; 163:698-711. [PMID: 26496609 DOI: 10.1016/j.cell.2015.09.054] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/28/2015] [Accepted: 09/21/2015] [Indexed: 01/24/2023]
Abstract
Most human transcripts are alternatively spliced, and many disease-causing mutations affect RNA splicing. Toward better modeling the sequence determinants of alternative splicing, we measured the splicing patterns of over two million (M) synthetic mini-genes, which include degenerate subsequences totaling over 100 M bases of variation. The massive size of these training data allowed us to improve upon current models of splicing, as well as to gain new mechanistic insights. Our results show that the vast majority of hexamer sequence motifs measurably influence splice site selection when positioned within alternative exons, with multiple motifs acting additively rather than cooperatively. Intriguingly, motifs that enhance (suppress) exon inclusion in alternative 5' splicing also enhance (suppress) exon inclusion in alternative 3' or cassette exon splicing, suggesting a universal mechanism for alternative exon recognition. Finally, our empirically trained models are highly predictive of the effects of naturally occurring variants on alternative splicing in vivo.
Collapse
Affiliation(s)
- Alexander B Rosenberg
- Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Rupali P Patwardhan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Georg Seelig
- Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA; Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
176
|
Zhang Y, Mandava CS, Cao W, Li X, Zhang D, Li N, Zhang Y, Zhang X, Qin Y, Mi K, Lei J, Sanyal S, Gao N. HflX is a ribosome-splitting factor rescuing stalled ribosomes under stress conditions. Nat Struct Mol Biol 2015; 22:906-13. [PMID: 26458047 DOI: 10.1038/nsmb.3103] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/04/2015] [Indexed: 12/16/2022]
Abstract
Adverse cellular conditions often lead to nonproductive translational stalling and arrest of ribosomes on mRNAs. Here, we used fast kinetics and cryo-EM to characterize Escherichia coli HflX, a GTPase with unknown function. Our data reveal that HflX is a heat shock-induced ribosome-splitting factor capable of dissociating vacant as well as mRNA-associated ribosomes with deacylated tRNA in the peptidyl site. Structural data demonstrate that the N-terminal effector domain of HflX binds to the peptidyl transferase center in a strikingly similar manner as that of the class I release factors and induces dramatic conformational changes in central intersubunit bridges, thus promoting subunit dissociation. Accordingly, loss of HflX results in an increase in stalled ribosomes upon heat shock. These results suggest a primary role of HflX in rescuing translationally arrested ribosomes under stress conditions.
Collapse
Affiliation(s)
- Yanqing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | | | - Wei Cao
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaojing Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dejiu Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ningning Li
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yixiao Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoxiao Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Qin
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kaixia Mi
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianlin Lei
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Ning Gao
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
177
|
Siwaszek A, Ukleja M, Dziembowski A. Proteins involved in the degradation of cytoplasmic mRNA in the major eukaryotic model systems. RNA Biol 2015; 11:1122-36. [PMID: 25483043 DOI: 10.4161/rna.34406] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The process of mRNA decay and surveillance is considered to be one of the main posttranscriptional gene expression regulation platforms in eukaryotes. The degradation of stable, protein-coding transcripts is normally initiated by removal of the poly(A) tail followed by 5'-cap hydrolysis and degradation of the remaining mRNA body by Xrn1. Alternatively, the exosome complex degrades mRNA in the 3'>5'direction. The newly discovered uridinylation-dependent pathway, which is present in many different organisms, also seems to play a role in bulk mRNA degradation. Simultaneously, to avoid the synthesis of incorrect proteins, special cellular machinery is responsible for the removal of faulty transcripts via nonsense-mediated, no-go, non-stop or non-functional 18S rRNA decay. This review is focused on the major eukaryotic cytoplasmic mRNA degradation pathways showing many similarities and pointing out main differences between the main model-species: yeast, Drosophila, plants and mammals.
Collapse
Affiliation(s)
- Aleksandra Siwaszek
- a Institute of Biochemistry and Biophysics ; Polish Academy of Sciences ; Warsaw , Poland
| | | | | |
Collapse
|
178
|
Voorhees RM, Hegde RS. Structures of the scanning and engaged states of the mammalian SRP-ribosome complex. eLife 2015; 4. [PMID: 26158507 PMCID: PMC4497383 DOI: 10.7554/elife.07975] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/07/2015] [Indexed: 12/11/2022] Open
Abstract
The universally conserved signal recognition particle (SRP) is essential for the biogenesis of most integral membrane proteins. SRP scans the nascent chains of translating ribosomes, preferentially engaging those with hydrophobic targeting signals, and delivers these ribosome-nascent chain complexes to the membrane. Here, we present structures of native mammalian SRP-ribosome complexes in the scanning and engaged states. These structures reveal the near-identical SRP architecture of these two states, show many of the SRP-ribosome interactions at atomic resolution, and suggest how the polypeptide-binding M domain selectively engages hydrophobic signals. The scanning M domain, pre-positioned at the ribosomal exit tunnel, is auto-inhibited by a C-terminal amphipathic helix occluding its hydrophobic binding groove. Upon engagement, the hydrophobic targeting signal displaces this amphipathic helix, which then acts as a protective lid over the signal. Biochemical experiments suggest how scanning and engagement are coordinated with translation elongation to minimize exposure of hydrophobic signals during membrane targeting. DOI:http://dx.doi.org/10.7554/eLife.07975.001 Proteins are long chain-like molecules built from smaller building blocks, called amino acids, by a large molecular machine known as a ribosome. Although all proteins are assembled inside cells, some of them must be delivered to the outside or inserted into cell membranes. It is important to understand how this selective delivery system works because secreted proteins (i.e., those delivered outside) and membrane-embedded proteins are essential for cells to communicate with their surroundings. Proteins destined for secretion or membrane insertion contain characteristic stretches of amino acids that act as a targeting signal for delivery to the membrane. These targeting signals are recognized by the ‘signal recognition particle’ (or SRP for short), a large complex found in all living organisms. The SRP has the task of finding ribosomes that are assembling proteins with a targeting signal, and then taking them to the membrane. The protein being assembled can then either cross the membrane for secretion by the cell, or get embedded within the membrane. So, how can the SRP scan the broad range of proteins that are made by the ribosome and engage with only those containing targeting signals? Voorhees and Hegde investigated this question by analyzing SRPs bound to ribosomes that were at different stages of building a membrane protein. The experiment was devised so that SRP would be in two different states: in the first state, the SRP was scanning for its targeting signal and, in the second, it was engaged with the targeting signal. Voorhees and Hegde took many thousands of pictures of these samples using a technique called cryo-electron microscopy, and reconstructed the three-dimensional structures of both states. This revealed fine details of how SRP positions itself immediately next to the part of the ribosome where newly formed protein chains emerge. From here, the SRP scans the protein until the targeting signal emerges and then it engages with the protein. Engaging the targeting signal just as it emerges from the ribosome is probably important because targeting signals tend to aggregate if they are exposed to the contents of a cell. The new structures show how SRP cradles the targeting signal inside a binding groove and covers it with a protective lid to minimize its risk of aggregation. The next challenges are to figure out how SRP chooses which ribosomes to scan, and how it releases the targeting signal when it has delivered it to the membrane. DOI:http://dx.doi.org/10.7554/eLife.07975.002
Collapse
|
179
|
Yang F, Zhao R, Fang X, Huang H, Xuan Y, Ma Y, Chen H, Cai T, Qi Y, Xi R. The RNA surveillance complex Pelo-Hbs1 is required for transposon silencing in the Drosophila germline. EMBO Rep 2015; 16:965-74. [PMID: 26124316 DOI: 10.15252/embr.201540084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/02/2015] [Indexed: 01/09/2023] Open
Abstract
Silencing of transposable elements (TEs) in the metazoan germline is critical for genome integrity and is primarily dependent on Piwi proteins and associated RNAs, which exert their function through both transcriptional and posttranscriptional mechanisms. Here, we report that the evolutionarily conserved Pelo (Dom34)-Hbs1 mRNA surveillance complex is required for transposon silencing in the Drosophila germline. In pelo mutant gonads, mRNAs and proteins of some selective TEs are up-regulated. Pelo is not required for piRNA biogenesis, and our studies suggest that Pelo may function at the translational level to silence TEs: This function requires interaction with Hbs1, and overexpression of RpS30a partially reverts TE-silencing defects in pelo mutants. Interestingly, TE silencing and spermatogenesis defects in pelo mutants can also effectively be rescued by expressing the mammalian ortholog of Pelo. We propose that the Pelo-Hbs1 surveillance complex provides another level of defense against the expression of TEs in the germline of Drosophila and possibly all metazoa.
Collapse
Affiliation(s)
- Fu Yang
- College of Life Sciences Beijing Normal University, Beijing, China National Institute of Biological Sciences, Beijing, China
| | - Rui Zhao
- National Institute of Biological Sciences, Beijing, China
| | - Xiaofeng Fang
- Tsinghua-Peking Center for Life Sciences, Beijing, China Center for Plant Biology, School of Life Sciences Tsinghua University, Beijing, China
| | - Huanwei Huang
- National Institute of Biological Sciences, Beijing, China
| | - Yang Xuan
- National Institute of Biological Sciences, Beijing, China
| | - Yanting Ma
- National Institute of Biological Sciences, Beijing, China
| | - Hongyan Chen
- National Institute of Biological Sciences, Beijing, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing, China
| | - Yijun Qi
- Tsinghua-Peking Center for Life Sciences, Beijing, China Center for Plant Biology, School of Life Sciences Tsinghua University, Beijing, China
| | - Rongwen Xi
- National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
180
|
Crowder JJ, Geigges M, Gibson RT, Fults ES, Buchanan BW, Sachs N, Schink A, Kreft SG, Rubenstein EM. Rkr1/Ltn1 Ubiquitin Ligase-mediated Degradation of Translationally Stalled Endoplasmic Reticulum Proteins. J Biol Chem 2015; 290:18454-66. [PMID: 26055716 DOI: 10.1074/jbc.m115.663559] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Indexed: 11/06/2022] Open
Abstract
Aberrant nonstop proteins arise from translation of mRNA molecules beyond the coding sequence into the 3'-untranslated region. If a stop codon is not encountered, translation continues into the poly(A) tail, resulting in C-terminal appendage of a polylysine tract and a terminally stalled ribosome. In Saccharomyces cerevisiae, the ubiquitin ligase Rkr1/Ltn1 has been implicated in the proteasomal degradation of soluble cytosolic nonstop and translationally stalled proteins. Rkr1 is essential for cellular fitness under conditions associated with increased prevalence of nonstop proteins. Mutation of the mammalian homolog causes significant neurological pathology, suggesting broad physiological significance of ribosome-associated quality control. It is not known whether and how soluble or transmembrane nonstop and translationally stalled proteins targeted to the endoplasmic reticulum (ER) are detected and degraded. We generated and characterized model soluble and transmembrane ER-targeted nonstop and translationally stalled proteins. We found that these proteins are indeed subject to proteasomal degradation. We tested three candidate ubiquitin ligases (Rkr1 and ER-associated Doa10 and Hrd1) for roles in regulating abundance of these proteins. Our results indicate that Rkr1 plays the primary role in targeting the tested model ER-targeted nonstop and translationally stalled proteins for degradation. These data expand the catalog of Rkr1 substrates and highlight a previously unappreciated role for this ubiquitin ligase at the ER membrane.
Collapse
Affiliation(s)
- Justin J Crowder
- From the Department of Biology, Ball State University, Muncie, Indiana 47306 and
| | - Marco Geigges
- the Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Ryan T Gibson
- From the Department of Biology, Ball State University, Muncie, Indiana 47306 and
| | - Eric S Fults
- From the Department of Biology, Ball State University, Muncie, Indiana 47306 and
| | - Bryce W Buchanan
- From the Department of Biology, Ball State University, Muncie, Indiana 47306 and
| | - Nadine Sachs
- the Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Andrea Schink
- the Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Stefan G Kreft
- the Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Eric M Rubenstein
- From the Department of Biology, Ball State University, Muncie, Indiana 47306 and
| |
Collapse
|
181
|
Kowalinski E, Schuller A, Green R, Conti E. Saccharomyces cerevisiae Ski7 Is a GTP-Binding Protein Adopting the Characteristic Conformation of Active Translational GTPases. Structure 2015; 23:1336-43. [PMID: 26051716 PMCID: PMC4509514 DOI: 10.1016/j.str.2015.04.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 01/04/2023]
Abstract
Ski7 is a cofactor of the cytoplasmic exosome in budding yeast, functioning in both mRNA turnover and non-stop decay (NSD), a surveillance pathway that degrades faulty mRNAs lacking a stop codon. The C-terminal region of Ski7 (Ski7C) shares overall sequence similarity with the translational GTPase (trGTPase) Hbs1, but whether Ski7 has retained the properties of a trGTPase is unclear. Here, we report the high-resolution structures of Ski7C bound to either intact guanosine triphosphate (GTP) or guanosine diphosphate-Pi. The individual domains of Ski7C adopt the conformation characteristic of active trGTPases. Furthermore, the nucleotide-binding site of Ski7C shares similar features compared with active trGTPases, notably the presence of a characteristic monovalent cation. However, a suboptimal polar residue at the putative catalytic site and an unusual polar residue that interacts with the γ-phosphate of GTP distinguish Ski7 from other trGTPases, suggesting it might function rather as a GTP-binding protein than as a GTP-hydrolyzing enzyme.
Collapse
Affiliation(s)
- Eva Kowalinski
- Department of Structural Cell Biology Department, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Anthony Schuller
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel Green
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Conti
- Department of Structural Cell Biology Department, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
182
|
Li J, Zhang Y. Theoretical analysis of transcription process with polymerase stalling. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052713. [PMID: 26066205 DOI: 10.1103/physreve.91.052713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 06/04/2023]
Abstract
Experimental evidence shows that in gene transcription RNA polymerase has the possibility to be stalled at a certain position of the transcription template. This may be due to the template damage or protein barriers. Once stalled, polymerase may backtrack along the template to the previous nucleotide to wait for the repair of the damaged site, simply bypass the barrier or damaged site and consequently synthesize an incorrect messenger RNA, or degrade and detach from the template. Thus, the effective transcription rate (the rate to synthesize correct product mRNA) and the transcription effectiveness (the ratio of the effective transcription rate to the effective transcription initiation rate) are both influenced by polymerase stalling events. So far, no theoretical model has been given to discuss the gene transcription process including polymerase stalling. In this study, based on the totally asymmetric simple exclusion process, the transcription process including polymerase stalling is analyzed theoretically. The dependence of the effective transcription rate, effective transcription initiation rate, and transcription effectiveness on the transcription initiation rate, termination rate, as well as the backtracking rate, bypass rate, and detachment (degradation) rate when stalling, are discussed in detail. The results showed that backtracking restart after polymerase stalling is an ideal mechanism to increase both the effective transcription rate and the transcription effectiveness. Without backtracking, detachment of stalled polymerase can also help to increase the effective transcription rate and transcription effectiveness. Generally, the increase of the bypass rate of the stalled polymerase will lead to the decrease of the effective transcription rate and transcription effectiveness. However, when both detachment rate and backtracking rate of the stalled polymerase vanish, the effective transcription rate may also be increased by the bypass mechanism.
Collapse
Affiliation(s)
- Jingwei Li
- Laboratory of Mathematics for Nonlinear Science, Shanghai Key Laboratory for Contemporary Applied Mathematics, Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai 200433, China
| | - Yunxin Zhang
- Laboratory of Mathematics for Nonlinear Science, Shanghai Key Laboratory for Contemporary Applied Mathematics, Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
183
|
Wolf AS, Grayhack EJ. Asc1, homolog of human RACK1, prevents frameshifting in yeast by ribosomes stalled at CGA codon repeats. RNA (NEW YORK, N.Y.) 2015; 21:935-45. [PMID: 25792604 PMCID: PMC4408800 DOI: 10.1261/rna.049080.114] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/14/2015] [Indexed: 05/09/2023]
Abstract
Quality control systems monitor and stop translation at some ribosomal stalls, but it is unknown if halting translation at such stalls actually prevents synthesis of abnormal polypeptides. In yeast, ribosome stalling occurs at Arg CGA codon repeats, with even two consecutive CGA codons able to reduce translation by up to 50%. The conserved eukaryotic Asc1 protein limits translation through internal Arg CGA codon repeats. We show that, in the absence of Asc1 protein, ribosomes continue translating at CGA codons, but undergo substantial frameshifting with dramatically higher levels of frameshifting occurring with additional repeats of CGA codons. Frameshifting depends upon the slow or inefficient decoding of these codons, since frameshifting is suppressed by increased expression of the native tRNA(Arg(ICG)) that decodes CGA codons by wobble decoding. Moreover, the extent of frameshifting is modulated by the position of the CGA codon repeat relative to the translation start site. Thus, translation fidelity depends upon Asc1-mediated quality control.
Collapse
Affiliation(s)
- Andrew S Wolf
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | - Elizabeth J Grayhack
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
184
|
Saito K, Horikawa W, Ito K. Inhibiting K63 polyubiquitination abolishes no-go type stalled translation surveillance in Saccharomyces cerevisiae. PLoS Genet 2015; 11:e1005197. [PMID: 25909477 PMCID: PMC4409330 DOI: 10.1371/journal.pgen.1005197] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/08/2015] [Indexed: 12/02/2022] Open
Abstract
Incidental ribosome stalling during translation elongation is an aberrant phenomenon during protein synthesis and is subjected to quality control by surveillance systems, in which mRNA and a nascent protein are rapidly degraded. Their detailed molecular mechanisms as well as responsible factors for these processes are beginning to be understood. However, the initial processes for detecting stalled translation that result in degradation remain to be determined. Among the factors identified to date, two E3 ubiquitin ligases have been reported to function in distinct manners. Because ubiquitination is one of the most versatile of cellular signals, these distinct functions of E3 ligases suggested diverse ubiquitination pathways during surveillance for stalled translation. In this study, we report experimental evidences for a unique role of non-proteasomal K63 polyubiquitination during quality control for stalled translation. Inhibiting K63 polyubiquitination by expressing a K63R ubiquitin mutation in Saccharomyces cerevisiae cells markedly abolished the quality control responses for stalled translation. More detailed analyses indicated that the effects of K63R mutants were independent of the proteasome and that K63 polyubiquitination is dependent on Hel2, one of the E3 ligases. Moreover, a K63R ubiquitin mutant barely inhibited the quality control pathway for nonstop translation, indicating distinct mechanisms for these highly related quality control pathways. Our results suggest that non-proteasomal K63 polyubiquitination is included in the initial surveillance process of stalled translation and presumably triggers protein degradation steps upon translational stall. These findings provide crucial information regarding the detailed molecular mechanisms for the initial steps involved in quality control systems and their classification. Stalled translation during elongation is an aberrant phenomenon during protein synthesis. Thus, once detected, it is subjected to quality control in which mRNA and a nascent protein are rapidly degraded. Although the mechanism of degradation for stalled translation is reasonably well understood, the initial processes, including those for detecting stalled translation, have not been determined. The ubiquitin proteasome pathway has been determined to function in the degradation of a nascent protein during stalled translation. Because a ubiquitin signal is one of the most versatile of cellular signals, we investigated the roles of various ubiquitination mechanisms in the budding yeast Saccharomyces cerevisiae using ubiquitin mutants that inhibited the polymerization of specific ubiquitin chains. We identified a role of non-proteasomal K63 polyubiquitination in stalled translation surveillance. Moreover, a K63R ubiquitin mutant barely inhibited the quality control pathway for nonstop translation, indicating distinct mechanisms for these highly related quality control pathways. These findings provide insights into the fundamental mechanisms for the initial processes of stalled translation surveillance and further emphasize the versatility of ubiquitin signals in cellular systems.
Collapse
Affiliation(s)
- Kazuki Saito
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba, Japan
- * E-mail:
| | - Wataru Horikawa
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba, Japan
| | - Koichi Ito
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba, Japan
| |
Collapse
|
185
|
von der Malsburg K, Shao S, Hegde RS. The ribosome quality control pathway can access nascent polypeptides stalled at the Sec61 translocon. Mol Biol Cell 2015; 26:2168-80. [PMID: 25877867 PMCID: PMC4462936 DOI: 10.1091/mbc.e15-01-0040] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/09/2015] [Indexed: 11/11/2022] Open
Abstract
Secretory proteins that stall during their translocation into the endoplasmic reticulum can be polyubiquitinated by a ribosome-associated quality control pathway that accesses its targets via a gap at the ribosome–translocon junction. This pathway may help resolve blocked translocons and efficiently degrade unfinished proteins. Cytosolic ribosomes that stall during translation are split into subunits, and nascent polypeptides trapped in the 60S subunit are ubiquitinated by the ribosome quality control (RQC) pathway. Whether the RQC pathway can also target stalls during cotranslational translocation into the ER is not known. Here we report that listerin and NEMF, core RQC components, are bound to translocon-engaged 60S subunits on native ER membranes. RQC recruitment to the ER in cultured cells is stimulated by translation stalling. Biochemical analyses demonstrated that translocon-targeted nascent polypeptides that subsequently stall are polyubiquitinated in 60S complexes. Ubiquitination at the translocon requires cytosolic exposure of the polypeptide at the ribosome–Sec61 junction. This exposure can result from either failed insertion into the Sec61 channel or partial backsliding of translocating nascent chains. Only Sec61-engaged nascent chains early in their biogenesis were relatively refractory to ubiquitination. Modeling based on recent 60S–RQC and 80S–Sec61 structures suggests that the E3 ligase listerin accesses nascent polypeptides via a gap in the ribosome–translocon junction near the Sec61 lateral gate. Thus the RQC pathway can target stalled translocation intermediates for degradation from the Sec61 channel.
Collapse
Affiliation(s)
| | - Sichen Shao
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
186
|
Koutmou KS, Schuller AP, Brunelle JL, Radhakrishnan A, Djuranovic S, Green R. Ribosomes slide on lysine-encoding homopolymeric A stretches. eLife 2015; 4:e05534. [PMID: 25695637 PMCID: PMC4363877 DOI: 10.7554/elife.05534] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/18/2015] [Indexed: 01/29/2023] Open
Abstract
Protein output from synonymous codons is thought to be equivalent if appropriate tRNAs are sufficiently abundant. Here we show that mRNAs encoding iterated lysine codons, AAA or AAG, differentially impact protein synthesis: insertion of iterated AAA codons into an ORF diminishes protein expression more than insertion of synonymous AAG codons. Kinetic studies in E. coli reveal that differential protein production results from pausing on consecutive AAA-lysines followed by ribosome sliding on homopolymeric A sequence. Translation in a cell-free expression system demonstrates that diminished output from AAA-codon-containing reporters results from premature translation termination on out of frame stop codons following ribosome sliding. In eukaryotes, these premature termination events target the mRNAs for Nonsense-Mediated-Decay (NMD). The finding that ribosomes slide on homopolymeric A sequences explains bioinformatic analyses indicating that consecutive AAA codons are under-represented in gene-coding sequences. Ribosome 'sliding' represents an unexpected type of ribosome movement possible during translation.
Collapse
Affiliation(s)
- Kristin S Koutmou
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
| | - Anthony P Schuller
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
| | - Julie L Brunelle
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, United States
| | - Aditya Radhakrishnan
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, United States
| |
Collapse
|
187
|
Wang F, Canadeo LA, Huibregtse JM. Ubiquitination of newly synthesized proteins at the ribosome. Biochimie 2015; 114:127-33. [PMID: 25701549 DOI: 10.1016/j.biochi.2015.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/09/2015] [Indexed: 11/18/2022]
Abstract
Newly synthesized proteins can be misfolded or damaged because of errors during synthesis or environmental insults (e.g., heat shock), placing a significant burden on protein quality control systems. In addition, numerous human diseases are associated with a deficiency in eliminating aberrant proteins or accumulation of aggregated proteins. Understanding the mechanisms of protein quality control and disposal pathways for misfolded proteins is therefore crucial for therapeutic intervention in these diseases. Quality control processes function at many points in the life cycle of proteins, and a subset act at the actual site of protein synthesis, the ribosome. Here we summarize recent advances in the role of the ubiquitin proteasome system in protein quality control during the process of translation.
Collapse
Affiliation(s)
- Feng Wang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Larissa A Canadeo
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jon M Huibregtse
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
188
|
Shao S, Brown A, Santhanam B, Hegde RS. Structure and assembly pathway of the ribosome quality control complex. Mol Cell 2015; 57:433-44. [PMID: 25578875 PMCID: PMC4321881 DOI: 10.1016/j.molcel.2014.12.015] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/07/2014] [Accepted: 12/05/2014] [Indexed: 12/11/2022]
Abstract
During ribosome-associated quality control, stalled ribosomes are split into subunits and the 60S-housed nascent polypeptides are poly-ubiquitinated by Listerin. How this low-abundance ubiquitin ligase targets rare stall-generated 60S among numerous empty 60S is unknown. Here, we show that Listerin specificity for nascent chain-60S complexes depends on nuclear export mediator factor (NEMF). The 3.6 Å cryo-EM structure of a nascent chain-containing 60S-Listerin-NEMF complex revealed that NEMF makes multiple simultaneous contacts with 60S and peptidyl-tRNA to sense nascent chain occupancy. Structural and mutational analyses showed that ribosome-bound NEMF recruits and stabilizes Listerin's N-terminal domain, while Listerin's C-terminal RWD domain directly contacts the ribosome to position the adjacent ligase domain near the nascent polypeptide exit tunnel. Thus, highly specific nascent chain targeting by Listerin is imparted by the avidity gained from a multivalent network of context-specific individually weak interactions, highlighting a new principle of client recognition during protein quality control.
Collapse
Affiliation(s)
- Sichen Shao
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Alan Brown
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Balaji Santhanam
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
189
|
Simms CL, Hudson BH, Mosior JW, Rangwala AS, Zaher HS. An active role for the ribosome in determining the fate of oxidized mRNA. Cell Rep 2014; 9:1256-64. [PMID: 25456128 DOI: 10.1016/j.celrep.2014.10.042] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/23/2014] [Accepted: 10/15/2014] [Indexed: 11/30/2022] Open
Abstract
Chemical damage to RNA affects its functional properties and thus may pose a significant hurdle to the translational apparatus; however, the effects of damaged mRNA on the speed and accuracy of the decoding process and their interplay with quality-control processes are not known. Here, we systematically explore the effects of oxidative damage on the decoding process using a well-defined bacterial in vitro translation system. We find that the oxidative lesion 8-oxoguanosine (8-oxoG) reduces the rate of peptide-bond formation by more than three orders of magnitude independent of its position within the codon. Interestingly, 8-oxoG had little effect on the fidelity of the selection process, suggesting that the modification stalls the translational machinery. Consistent with these findings, 8-oxoG mRNAs were observed to accumulate and associate with polyribosomes in yeast strains in which no-go decay is compromised. Our data provide compelling evidence that mRNA-surveillance mechanisms have evolved to cope with damaged mRNA.
Collapse
Affiliation(s)
- Carrie L Simms
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Benjamin H Hudson
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - John W Mosior
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ali S Rangwala
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
190
|
Kashima I, Takahashi M, Hashimoto Y, Sakota E, Nakamura Y, Inada T. A functional involvement of ABCE1, eukaryotic ribosome recycling factor, in nonstop mRNA decay in Drosophila melanogaster cells. Biochimie 2014; 106:10-6. [DOI: 10.1016/j.biochi.2014.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/02/2014] [Indexed: 11/25/2022]
|
191
|
Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex. Proc Natl Acad Sci U S A 2014; 111:15981-6. [PMID: 25349383 DOI: 10.1073/pnas.1413882111] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
All organisms have evolved mechanisms to manage the stalling of ribosomes upon translation of aberrant mRNA. In eukaryotes, the large ribosomal subunit-associated quality control complex (RQC), composed of the listerin/Ltn1 E3 ubiquitin ligase and cofactors, mediates the ubiquitylation and extraction of ribosome-stalled nascent polypeptide chains for proteasomal degradation. How RQC recognizes stalled ribosomes and performs its functions has not been understood. Using single-particle cryoelectron microscopy, we have determined the structure of the RQC complex bound to stalled 60S ribosomal subunits. The structure establishes how Ltn1 associates with the large ribosomal subunit and properly positions its E3-catalytic RING domain to mediate nascent chain ubiquitylation. The structure also reveals that a distinguishing feature of stalled 60S particles is an exposed, nascent chain-conjugated tRNA, and that the Tae2 subunit of RQC, which facilitates Ltn1 binding, is responsible for selective recognition of stalled 60S subunits. RQC components are engaged in interactions across a large span of the 60S subunit surface, connecting the tRNA in the peptidyl transferase center to the distally located nascent chain tunnel exit. This work provides insights into a mechanism linking translation and protein degradation that targets defective proteins immediately after synthesis, while ignoring nascent chains in normally translating ribosomes.
Collapse
|
192
|
Release factor eRF3 mediates premature translation termination on polylysine-stalled ribosomes in Saccharomyces cerevisiae. Mol Cell Biol 2014; 34:4062-76. [PMID: 25154418 DOI: 10.1128/mcb.00799-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribosome stalling is an important incident enabling the cellular quality control machinery to detect aberrant mRNA. Saccharomyces cerevisiae Hbs1-Dom34 and Ski7 are homologs of the canonical release factor eRF3-eRF1, which recognize stalled ribosomes, promote ribosome release, and induce the decay of aberrant mRNA. Polyadenylated nonstop mRNA encodes aberrant proteins containing C-terminal polylysine segments which cause ribosome stalling due to electrostatic interaction with the ribosomal exit tunnel. Here we describe a novel mechanism, termed premature translation termination, which releases C-terminally truncated translation products from ribosomes stalled on polylysine segments. Premature termination during polylysine synthesis was abolished when ribosome stalling was prevented due to the absence of the ribosomal protein Asc1. In contrast, premature termination was enhanced, when the general rate of translation elongation was lowered. The unconventional termination event was independent of Hbs1-Dom34 and Ski7, but it was dependent on eRF3. Moreover, premature termination during polylysine synthesis was strongly increased in the absence of the ribosome-bound chaperones ribosome-associated complex (RAC) and Ssb (Ssb1 and Ssb2). On the basis of the data, we suggest a model in which eRF3-eRF1 can catalyze the release of nascent polypeptides even though the ribosomal A-site contains a sense codon when the rate of translation is abnormally low.
Collapse
|
193
|
Shao S, Hegde RS. Reconstitution of a minimal ribosome-associated ubiquitination pathway with purified factors. Mol Cell 2014; 55:880-890. [PMID: 25132172 PMCID: PMC4175178 DOI: 10.1016/j.molcel.2014.07.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/23/2014] [Accepted: 07/10/2014] [Indexed: 12/31/2022]
Abstract
Ribosomes stalled on aberrant mRNAs engage quality control mechanisms that degrade the partially translated nascent polypeptide. Ubiquitination of the nascent protein is mediated by the E3 ligase Listerin via a mechanism involving ribosome subunit dissociation. Here, we reconstitute ribosome-associated ubiquitination with purified factors to define the minimal components and essential steps in this process. We find that the primary role of the ribosome splitting factors Hbs1, Pelota, and ABCE1 is to permit Listerin access to the nascent chain. Listerin alone can discriminate 60S- from 80S-nascent chain complexes to selectively ubiquitinate the former. Splitting factors can be bypassed by artificially removing the 40S subunit, suggesting that mere steric hindrance impedes Listerin recruitment. This was illustrated by a cryo-EM reconstruction of the 60S-Listerin complex that identifies a binding interface that clashes with the 40S ribosomal subunit. These results reveal the mechanistic logic of the core steps in a ribosome-associated quality control pathway.
Collapse
Affiliation(s)
- Sichen Shao
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | |
Collapse
|
194
|
Ishimura R, Nagy G, Dotu I, Zhou H, Yang XL, Schimmel P, Senju S, Nishimura Y, Chuang JH, Ackerman SL. RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science 2014; 345:455-9. [PMID: 25061210 DOI: 10.1126/science.1249749] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In higher eukaryotes, transfer RNAs (tRNAs) with the same anticodon are encoded by multiple nuclear genes, and little is known about how mutations in these genes affect translation and cellular homeostasis. Similarly, the surveillance systems that respond to such defects in higher eukaryotes are not clear. Here, we discover that loss of GTPBP2, a novel binding partner of the ribosome recycling protein Pelota, in mice with a mutation in a tRNA gene that is specifically expressed in the central nervous system causes ribosome stalling and widespread neurodegeneration. Our results not only define GTPBP2 as a ribosome rescue factor but also unmask the disease potential of mutations in nuclear-encoded tRNA genes.
Collapse
Affiliation(s)
- Ryuta Ishimura
- Howard Hughes Medical Institute and The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Gabor Nagy
- Howard Hughes Medical Institute and The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Ivan Dotu
- The Jackson Laboratory for Genomic Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Huihao Zhou
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Xiang-Lei Yang
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Paul Schimmel
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto 860-8556, Japan
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Susan L Ackerman
- Howard Hughes Medical Institute and The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| |
Collapse
|
195
|
Preis A, Heuer A, Barrio-Garcia C, Hauser A, Eyler DE, Berninghausen O, Green R, Becker T, Beckmann R. Cryoelectron microscopic structures of eukaryotic translation termination complexes containing eRF1-eRF3 or eRF1-ABCE1. Cell Rep 2014; 8:59-65. [PMID: 25001285 PMCID: PMC6813808 DOI: 10.1016/j.celrep.2014.04.058] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/01/2014] [Accepted: 04/03/2014] [Indexed: 10/29/2022] Open
Abstract
Termination and ribosome recycling are essential processes in translation. In eukaryotes, a stop codon in the ribosomal A site is decoded by a ternary complex consisting of release factors eRF1 and guanosine triphosphate (GTP)-bound eRF3. After GTP hydrolysis, eRF3 dissociates, and ABCE1 can bind to eRF1-loaded ribosomes to stimulate peptide release and ribosomal subunit dissociation. Here, we present cryoelectron microscopic (cryo-EM) structures of a pretermination complex containing eRF1-eRF3 and a termination/prerecycling complex containing eRF1-ABCE1. eRF1 undergoes drastic conformational changes: its central domain harboring the catalytically important GGQ loop is either packed against eRF3 or swung toward the peptidyl transferase center when bound to ABCE1. Additionally, in complex with eRF3, the N-terminal domain of eRF1 positions the conserved NIKS motif proximal to the stop codon, supporting its suggested role in decoding, yet it appears to be delocalized in the presence of ABCE1. These results suggest that stop codon decoding and peptide release can be uncoupled during termination.
Collapse
Affiliation(s)
- Anne Preis
- Gene Center Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany; Center for Integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany
| | - Andre Heuer
- Gene Center Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany; Center for Integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany
| | - Clara Barrio-Garcia
- Gene Center Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany; Center for Integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany
| | - Andreas Hauser
- Gene Center Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany; Center for Integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany
| | - Daniel E Eyler
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Otto Berninghausen
- Gene Center Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany; Center for Integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany
| | - Rachel Green
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas Becker
- Gene Center Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany; Center for Integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany.
| | - Roland Beckmann
- Gene Center Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany; Center for Integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany.
| |
Collapse
|
196
|
Wolff S, Weissman JS, Dillin A. Differential scales of protein quality control. Cell 2014; 157:52-64. [PMID: 24679526 DOI: 10.1016/j.cell.2014.03.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 02/06/2023]
Abstract
Proteins are notorious for their unpleasant behavior-continually at risk of misfolding, collecting damage, aggregating, and causing toxicity and disease. To counter these challenges, cells have evolved elaborate chaperone and quality control networks that can resolve damage at the level of the protein, organelle, cell, or tissue. On the smallest scale, the integrity of individual proteins is monitored during their synthesis. On a larger scale, cells use compartmentalized defenses and networks of communication, capable sometimes of signaling between cells, to respond to changes in the proteome's health. Together, these layered defenses help protect cells from damaged proteins.
Collapse
Affiliation(s)
- Suzanne Wolff
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, California Institute of Quantitative Biology, Center for RNA Systems Biology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
197
|
Guydosh NR, Green R. Dom34 rescues ribosomes in 3' untranslated regions. Cell 2014; 156:950-62. [PMID: 24581494 DOI: 10.1016/j.cell.2014.02.006] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/18/2013] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
Ribosomes that stall before completing peptide synthesis must be recycled and returned to the cytoplasmic pool. The protein Dom34 and cofactors Hbs1 and Rli1 can dissociate stalled ribosomes in vitro, but the identity of targets in the cell is unknown. Here, we extend ribosome profiling methodology to reveal a high-resolution molecular characterization of Dom34 function in vivo. Dom34 removes stalled ribosomes from truncated mRNAs, but, in contrast, does not generally dissociate ribosomes on coding sequences known to trigger stalling, such as polyproline. We also show that Dom34 targets arrested ribosomes near the ends of 3' UTRs. These ribosomes appear to gain access to the 3' UTR via a mechanism that does not require decoding of the mRNA. These results suggest that ribosomes frequently enter downstream noncoding regions and that Dom34 carries out the important task of rescuing them.
Collapse
Affiliation(s)
- Nicholas R Guydosh
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel Green
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
198
|
Petropoulos AD, McDonald ME, Green R, Zaher HS. Distinct roles for release factor 1 and release factor 2 in translational quality control. J Biol Chem 2014; 289:17589-96. [PMID: 24798339 DOI: 10.1074/jbc.m114.564989] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bacteria, stop codons are recognized by two similar class 1 release factors, release factor 1 (RF1) and release factor 2 (RF2). Normally, during termination, the class 2 release factor 3 (RF3), a GTPase, functions downstream of peptide release where it accelerates the dissociation of RF1/RF2 prior to ribosome recycling. In addition to their canonical function in termination, both classes of release factor are also involved in a post peptidyl transfer quality control (post PT QC) mechanism where the termination factors recognize mismatched (i.e. error-containing) ribosome complexes and promote premature termination. Here, using a well defined in vitro system, we explored the role of release factors in canonical termination and post PT QC. As reported previously, during canonical termination, RF1 and RF2 recognize stop codons in a similar manner, and RF3 accelerates their rate of dissociation. During post PT QC, only RF2 (and not RF1) effectively binds to mismatched ribosome complexes; and whereas the addition of RF3 to RF2 increased its rate of release on mismatched complexes, the addition of RF3 to RF1 inhibited its rate of release but increased the rate of peptidyl-tRNA dissociation. Our data strongly suggest that RF2, in addition to its primary role in peptide release, functions as the principle factor for post PT QC.
Collapse
Affiliation(s)
- Alexandros D Petropoulos
- From the Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | - Megan E McDonald
- From the Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | - Rachel Green
- From the Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | - Hani S Zaher
- the Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| |
Collapse
|
199
|
|
200
|
Wu X, He WT, Tian S, Meng D, Li Y, Chen W, Li L, Tian L, Zhong CQ, Han F, Chen J, Han J. pelo is required for high efficiency viral replication. PLoS Pathog 2014; 10:e1004034. [PMID: 24722736 PMCID: PMC3983054 DOI: 10.1371/journal.ppat.1004034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 02/14/2014] [Indexed: 11/18/2022] Open
Abstract
Viruses hijack host factors for their high speed protein synthesis, but information about these factors is largely unknown. In searching for genes that are involved in viral replication, we carried out a forward genetic screen for Drosophila mutants that are more resistant or sensitive to Drosophila C virus (DCV) infection-caused death, and found a virus-resistant line in which the expression of pelo gene was deficient. Our mechanistic studies excluded the viral resistance of pelo deficient flies resulting from the known Drosophila anti-viral pathways, and revealed that pelo deficiency limits the high level synthesis of the DCV capsid proteins but has no or very little effect on the expression of some other viral proteins, bulk cellular proteins, and transfected exogenous genes. The restriction of replication of other types of viruses in pelo deficient flies was also observed, suggesting pelo is required for high level production of capsids of all kinds of viruses. We show that both pelo deficiency and high level DCV protein synthesis increase aberrant 80S ribosomes, and propose that the preferential requirement of pelo for high level synthesis of viral capsids is at least partly due to the role of pelo in dissociation of stalled 80S ribosomes and clearance of aberrant viral RNA and proteins. Our data demonstrated that pelo is a host factor that is required for high efficiency translation of viral capsids and targeting pelo could be a strategy for general inhibition of viral infection.
Collapse
Affiliation(s)
- Xiurong Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wan-Ting He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shuye Tian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Dan Meng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yuanyue Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wanze Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lisheng Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lili Tian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Felicia Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jianming Chen
- The Key Laboratory of Marine Biogenetic Resources, The Third Institute of Oceanography, State Oceanic Administration of China, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail: ,
| |
Collapse
|