151
|
Barbagallo C, Stella M, Broggi G, Russo A, Caltabiano R, Ragusa M. Genetics and RNA Regulation of Uveal Melanoma. Cancers (Basel) 2023; 15:775. [PMID: 36765733 PMCID: PMC9913768 DOI: 10.3390/cancers15030775] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Uveal melanoma (UM) is the most common intraocular malignant tumor and the most frequent melanoma not affecting the skin. While the rate of UM occurrence is relatively low, about 50% of patients develop metastasis, primarily to the liver, with lethal outcome despite medical treatment. Notwithstanding that UM etiopathogenesis is still under investigation, a set of known mutations and chromosomal aberrations are associated with its pathogenesis and have a relevant prognostic value. The most frequently mutated genes are BAP1, EIF1AX, GNA11, GNAQ, and SF3B1, with mutually exclusive mutations occurring in GNAQ and GNA11, and almost mutually exclusive ones in BAP1 and SF3B1, and BAP1 and EIF1AX. Among chromosomal aberrations, monosomy of chromosome 3 is the most frequent, followed by gain of chromosome 8q, and full or partial loss of chromosomes 1 and 6. In addition, epigenetic mechanisms regulated by non-coding RNAs (ncRNA), namely microRNAs and long non-coding RNAs, have also been investigated. Several papers investigating the role of ncRNAs in UM have reported that their dysregulated expression affects cancer-related processes in both in vitro and in vivo models. This review will summarize current findings about genetic mutations, chromosomal aberrations, and ncRNA dysregulation establishing UM biology.
Collapse
Affiliation(s)
- Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy
| | - Michele Stella
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia—Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, 95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia—Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy
| |
Collapse
|
152
|
Bononi A, Wang Q, Zolondick AA, Bai F, Steele-Tanji M, Suarez JS, Pastorino S, Sipes A, Signorato V, Ferro A, Novelli F, Kim JH, Minaai M, Takinishi Y, Pellegrini L, Napolitano A, Xu R, Farrar C, Goparaju C, Bassi C, Negrini M, Pagano I, Sakamoto G, Gaudino G, Pass HI, Onuchic JN, Yang H, Carbone M. BAP1 is a novel regulator of HIF-1α. Proc Natl Acad Sci U S A 2023; 120:e2217840120. [PMID: 36656861 PMCID: PMC9942908 DOI: 10.1073/pnas.2217840120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023] Open
Abstract
BAP1 is a powerful tumor suppressor gene characterized by haplo insufficiency. Individuals carrying germline BAP1 mutations often develop mesothelioma, an aggressive malignancy of the serosal layers covering the lungs, pericardium, and abdominal cavity. Intriguingly, mesotheliomas developing in carriers of germline BAP1 mutations are less aggressive, and these patients have significantly improved survival. We investigated the apparent paradox of a tumor suppressor gene that, when mutated, causes less aggressive mesotheliomas. We discovered that mesothelioma biopsies with biallelic BAP1 mutations showed loss of nuclear HIF-1α staining. We demonstrated that during hypoxia, BAP1 binds, deubiquitylates, and stabilizes HIF-1α, the master regulator of the hypoxia response and tumor cell invasion. Moreover, primary cells from individuals carrying germline BAP1 mutations and primary cells in which BAP1 was silenced using siRNA had reduced HIF-1α protein levels in hypoxia. Computational modeling and co-immunoprecipitation experiments revealed that mutations of BAP1 residues I675, F678, I679, and L691 -encompassing the C-terminal domain-nuclear localization signal- to A, abolished the interaction with HIF-1α. We found that BAP1 binds to the N-terminal region of HIF-1α, where HIF-1α binds DNA and dimerizes with HIF-1β forming the heterodimeric transactivating complex HIF. Our data identify BAP1 as a key positive regulator of HIF-1α in hypoxia. We propose that the significant reduction of HIF-1α activity in mesothelioma cells carrying biallelic BAP1 mutations, accompanied by the significant reduction of HIF-1α activity in hypoxic tissues containing germline BAP1 mutations, contributes to the reduced aggressiveness and improved survival of mesotheliomas developing in carriers of germline BAP1 mutations.
Collapse
Affiliation(s)
- Angela Bononi
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Qian Wang
- Center for Theoretical Biological Physics, Rice University, Houston, TX77005
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Alicia A. Zolondick
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI96822
| | - Fang Bai
- Center for Theoretical Biological Physics, Rice University, Houston, TX77005
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Mika Steele-Tanji
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Joelle S. Suarez
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Sandra Pastorino
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Abigail Sipes
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | | | - Angelica Ferro
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Flavia Novelli
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Jin-Hee Kim
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Michael Minaai
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI96822
| | - Yasutaka Takinishi
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Laura Pellegrini
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Andrea Napolitano
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Ronghui Xu
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Christine Farrar
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Chandra Goparaju
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Cristian Bassi
- Department of Translational Medicine LTTA Centre University of Ferrara, Ferrara44121, Italy
| | - Massimo Negrini
- Department of Translational Medicine LTTA Centre University of Ferrara, Ferrara44121, Italy
| | - Ian Pagano
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Greg Sakamoto
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Giovanni Gaudino
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Harvey I. Pass
- Department of Cardiothoracic Surgery, New York University, New York, NY10016
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX77005
| | - Haining Yang
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Michele Carbone
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| |
Collapse
|
153
|
Soliman N, Mamdouh D, Elkordi A. Choroidal Melanoma: A Mini Review. MEDICINES (BASEL, SWITZERLAND) 2023; 10:medicines10010011. [PMID: 36662495 PMCID: PMC9863301 DOI: 10.3390/medicines10010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023]
Abstract
Choroidal melanoma is a rare malignant tumour, yet it is the most common primary intra-ocular neoplasm and second on the list of top ten most malignant melanoma sites in the body. Clinical presentation can be non-specific and includes photopsia, floaters, progressive visual field loss, and blurry vision. The tumour is quite often diagnosed clinically during fundus examination; however, the most valued diagnostic tests are A- and B-scan ultrasonography (US). Several factors affect prognosis, including the patient's age, tumour size, histological features, and presence of metastases. Still, with primary treatment and tight surveillance, around 50% of choroidal melanoma patients metastasise.
Collapse
Affiliation(s)
- Noha Soliman
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- National Institute for Health Research Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London EC1V 2PD, UK
- Royal College of Surgeons in Ireland, Medical University of Bahrain, Muharraq P.O. Box 15503, Bahrain
- Correspondence:
| | - Diaa Mamdouh
- Faculty of Medicine, Kuwait University, Kuwait City P.O. Box 24923, Kuwait
- Sheikh Jaber Al Ahmad Al Jaber Al Sabah Hospital, Kuwait City, Kuwait
| | - Aisha Elkordi
- Royal College of Surgeons in Ireland, Medical University of Bahrain, Muharraq P.O. Box 15503, Bahrain
- King Hamed University Hospital, Muharraq P.O Box 24343, Bahrain
| |
Collapse
|
154
|
Albright BB, Wignall E, Bentley RC, Havrilesky LJ, Previs RA, Strickland KC. BAP1 Tumor Predisposition Syndrome Presenting as a Recurrent Ovarian Sex Cord-Stromal Tumor. Int J Gynecol Pathol 2023; 42:83-88. [PMID: 35348477 PMCID: PMC10089687 DOI: 10.1097/pgp.0000000000000855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The BRCA1-associated protein 1 ( BAP1 ) gene encodes a tumor suppressor that functions as a ubiquitin hydrolase involved in DNA damage repair. BAP1 germline mutations are associated with increased risk of multiple solid malignancies, including mesothelioma, uveal melanoma, renal cell carcinoma, and high-grade rhabdoid meningiomas. Here, we describe the case of a 52-yr-old woman who experienced multiple abdominal recurrences of an ovarian sex cord-stromal tumor that was originally diagnosed at age 25 and who was found to have a germline mutation in BAP1 and a family history consistent with BAP1 tumor predisposition syndrome. Recurrence of the sex cord-stromal tumor demonstrated loss of BAP1 expression by immunohistochemistry. Although ovarian sex cord-stromal tumors have been described in mouse models of BAP1 tumor predisposition syndrome, this relationship has not been previously described in humans and warrants further investigation. The case presentation, tumor morphology, and immunohistochemical findings have overlapping characteristics with peritoneal mesotheliomas, and this case represents a potential pitfall for surgical pathologists.
Collapse
Affiliation(s)
- Benjamin B. Albright
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Elizabeth Wignall
- Clinical Cancer Genetics, Duke University Medical Center, Durham, NC, USA
| | - Rex C. Bentley
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Laura J. Havrilesky
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Rebecca A. Previs
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Kyle C. Strickland
- Clinical Cancer Genetics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
155
|
Gu X, Hua Y, Yu J, Yang L, Ge S, Jia R, Chai P, Zhuang A, Fan X. Epigenetic drug library screening reveals targeting DOT1L abrogates NAD + synthesis by reprogramming H3K79 methylation in uveal melanoma. J Pharm Anal 2023; 13:24-38. [PMID: 36820078 PMCID: PMC9937798 DOI: 10.1016/j.jpha.2022.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Uveal melanoma (UM) is the most frequent and life-threatening ocular malignancy in adults. Aberrant histone methylation contributes to the abnormal transcriptome during oncogenesis. However, a comprehensive understanding of histone methylation patterns and their therapeutic potential in UM remains enigmatic. Herein, using a systematic epi-drug screening and a high-throughput transcriptome profiling of histone methylation modifiers, we observed that disruptor of telomeric silencing-1-like (DOT1L), a methyltransferase of histone H3 lysine 79 (H3K79), was activated in UM, especially in the high-risk group. Concordantly, a systematic epi-drug library screening revealed that DOT1L inhibitors exhibited salient tumor-selective inhibitory effects on UM cells, both in vitro and in vivo. Combining Cleavage Under Targets and Tagmentation (CUT&Tag), RNA sequencing (RNA-seq), and bioinformatics analysis, we identified that DOT1L facilitated H3K79 methylation of nicotinate phosphoribosyltransferase (NAPRT) and epigenetically activated its expression. Importantly, NAPRT served as an oncogenic accelerator by enhancing nicotinamide adenine dinucleotide (NAD+) synthesis. Therapeutically, DOT1L inhibition epigenetically silenced NAPRT expression through the diminishment of dimethylation of H3K79 (H3K79me2) in the NAPRT promoter, thereby inhibiting the malignant behaviors of UM. Conclusively, our findings delineated an integrated picture of the histone methylation landscape in UM and unveiled a novel DOT1L/NAPRT oncogenic mechanism that bridges transcriptional addiction and metabolic reprogramming.
Collapse
|
156
|
Wang JZ, Nassiri F, Mawrin C, Zadeh G. Genomic Landscape of Meningiomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1416:137-158. [PMID: 37432625 DOI: 10.1007/978-3-031-29750-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Despite being the most common primary brain tumor in adults, until recently, the genomics of meningiomas have remained quite understudied. In this chapter we will discuss the early cytogenetic and mutational changes uncovered in meningiomas, from the discovery of the loss of chromosome 22q and the neurofibromatosis-2 (NF2) gene to other non-NF2 driver mutations (KLF4, TRAF7, AKT1, SMO, etc.) discovered using next generation sequencing. We discuss each of these alterations in the context of their clinical significance and conclude the chapter by reviewing recent multiomic studies that have integrated our knowledge of these alterations together to develop novel molecular classifications for meningiomas.
Collapse
Affiliation(s)
- Justin Z Wang
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada
| | - Farshad Nassiri
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada
| | - Christian Mawrin
- Department of Neuropathology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Gelareh Zadeh
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
157
|
Chalise P, Kwon D, Fridley BL, Mo Q. Statistical Methods for Integrative Clustering of Multi-omics Data. Methods Mol Biol 2023; 2629:73-93. [PMID: 36929074 PMCID: PMC10950392 DOI: 10.1007/978-1-0716-2986-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Cancers are heterogeneous diseases caused by accumulated mutations or abnormal alterations at multi-levels of biological processes including genomics, epigenomics, transcriptomics, and proteomics. There is a great clinical interest in identifying cancer molecular subtypes for disease prognosis and personalized medicine. Integrative clustering is a powerful unsupervised learning method that has been increasingly used to identify cancer molecular subtypes using multi-omics data including somatic mutations, DNA copy numbers, DNA methylation, and gene expression. Integrative clustering methods are generally classified into model-based or nonparametric approaches. In this chapter, we will give an overview of the frequently used model-based methods, including iCluster, iClusterPlus, and iClusterBayes, and the nonparametric method, integrative nonnegative matrix factorization (intNMF). We will use the integrative analyses of uveal melanoma and lower-grade glioma to illustrate these representative methods. Finally, we will discuss the strengths and limitations of these representative methods and give suggestions for performing integrative analyses of cancer multi-omics data in practice.
Collapse
Affiliation(s)
- Prabhakar Chalise
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Deukwoo Kwon
- Department of Population Health Science & Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brooke L Fridley
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Qianxing Mo
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| |
Collapse
|
158
|
Huang L, Long JP, Irajizad E, Doecke JD, Do KA, Ha MJ. A unified mediation analysis framework for integrative cancer proteogenomics with clinical outcomes. Bioinformatics 2023; 39:6989623. [PMID: 36648331 PMCID: PMC9879726 DOI: 10.1093/bioinformatics/btad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
MOTIVATION Multilevel molecular profiling of tumors and the integrative analysis with clinical outcomes have enabled a deeper characterization of cancer treatment. Mediation analysis has emerged as a promising statistical tool to identify and quantify the intermediate mechanisms by which a gene affects an outcome. However, existing methods lack a unified approach to handle various types of outcome variables, making them unsuitable for high-throughput molecular profiling data with highly interconnected variables. RESULTS We develop a general mediation analysis framework for proteogenomic data that include multiple exposures, multivariate mediators on various scales of effects as appropriate for continuous, binary and survival outcomes. Our estimation method avoids imposing constraints on model parameters such as the rare disease assumption, while accommodating multiple exposures and high-dimensional mediators. We compare our approach to other methods in extensive simulation studies at a range of sample sizes, disease prevalence and number of false mediators. Using kidney renal clear cell carcinoma proteogenomic data, we identify genes that are mediated by proteins and the underlying mechanisms on various survival outcomes that capture short- and long-term disease-specific clinical characteristics. AVAILABILITY AND IMPLEMENTATION Software is made available in an R package (https://github.com/longjp/mediateR). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Licai Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ehsan Irajizad
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James D Doecke
- CSIRO, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Jin Ha
- To whom correspondence should be addressed.
| |
Collapse
|
159
|
Lactate Rewrites the Metabolic Reprogramming of Uveal Melanoma Cells and Induces Quiescence Phenotype. Int J Mol Sci 2022; 24:ijms24010024. [PMID: 36613471 PMCID: PMC9820521 DOI: 10.3390/ijms24010024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Uveal melanoma (UM), the most common primary intraocular cancer in adults, is among the tumors with poorer prognosis. Recently, the role of the oncometabolite lactate has become attractive due to its role as hydroxycarboxylic acid receptor 1 (HCAR1) activator, as an epigenetic modulator inducing lysine residues lactylation and, of course, as a glycolysis end-product, bridging the gap between glycolysis and oxidative phosphorylation. The aim of the present study was to dissect in UM cell line (92.1) the role of lactate as either a metabolite or a signaling molecule, using the known modulators of HCAR1 and of lactate transporters. Our results show that lactate (20 mM) resulted in a significant decrease in cell proliferation and migration, acting and switching cell metabolism toward oxidative phosphorylation. These results were coupled with increased euchromatin content and quiescence in UM cells. We further showed, in a clinical setting, that an increase in lactate transporters MCT4 and HCAR1 is associated with a spindle-shape histological type in UM. In conclusion, our results suggest that lactate metabolism may serve as a prognostic marker of UM progression and may be exploited as a potential therapeutic target.
Collapse
|
160
|
Glinkina K, Nemati F, Teunisse AFAS, Gelmi MC, Etienne V, Kuipers MJ, Alsafadi S, Jager MJ, Decaudin D, Jochemsen AG. Preclinical Evaluation of Trabectedin in Combination With Targeted Inhibitors for Treatment of Metastatic Uveal Melanoma. Invest Ophthalmol Vis Sci 2022; 63:14. [PMID: 36515935 PMCID: PMC9756579 DOI: 10.1167/iovs.63.13.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Uveal melanoma (UM) is considered a rare disease; yet, it is the most common intraocular malignancy in adults. Although the primary tumor may be efficiently managed, more than 50% of patients with UM develop distant metastases. The mortality at the first year after diagnosis of metastatic UM has been estimated at 81%, and the poor prognosis has not improved in the past years due to the lack of effective therapies. Methods In order to search for novel therapeutic possibilities for metastatic UM, we performed a small-scale screen of targeted drug combinations. We verified the targets of the tested compounds by western blotting and PCR and clarified the mechanism of action of the selected combinations by caspase 3 and 7 activity assay and flow cytometry. The best two combinations were tested in a mouse patient-derived xenograft (PDX) UM model as putative therapeutics for metastatic UM. Results Combinations of the multitarget drug trabectedin with either the CK2/CLK double-inhibitor CX-4945 (silmitasertib) or the c-MET/TAM (TYRO3, Axl, MERTK) receptor inhibitors foretinib and cabozantinib demonstrated synergistic effects and induced apoptosis (relative caspase 3 and 7 activity increased up to 20.5-fold in UM cell lines). In the case of the combination of foretinib and cabozantinib, inhibition of the TAM receptors, but not c-Met, was essential to inhibit the growth of UM cells. Monotreatment with trabectedin inhibited tumor growth by 42%, 49%, and 35% in the MM26, MM309, and MM339 PDX mouse models, respectively. Conclusions Trabectedin alone or in combination with cabozantinib inhibited tumor growth in PDX UM mouse models. Blocking of MERTK, rather than TYRO3, activity inhibited UM cell growth and synergized with trabectedin.
Collapse
Affiliation(s)
- Kseniya Glinkina
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fariba Nemati
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Amina F. A. S. Teunisse
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vesnie Etienne
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Muriel J. Kuipers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Samar Alsafadi
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Didier Decaudin
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University, Paris, France,Department of Medical Oncology, Institut Curie, PSL University, Paris, France
| | - Aart G. Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
161
|
Newell F, Johansson PA, Wilmott JS, Nones K, Lakis V, Pritchard AL, Lo SN, Rawson RV, Kazakoff SH, Colebatch AJ, Koufariotis LT, Ferguson PM, Wood S, Leonard C, Law MH, Brooks KM, Broit N, Palmer JM, Couts KL, Vergara IA, Long GV, Barbour AP, Nieweg OE, Shivalingam B, Robinson WA, Stretch JR, Spillane AJ, Saw RP, Shannon KF, Thompson JF, Mann GJ, Pearson JV, Scolyer RA, Waddell N, Hayward NK. Comparative Genomics Provides Etiologic and Biological Insight into Melanoma Subtypes. Cancer Discov 2022; 12:2856-2879. [PMID: 36098958 PMCID: PMC9716259 DOI: 10.1158/2159-8290.cd-22-0603] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 01/12/2023]
Abstract
Melanoma is a cancer of melanocytes, with multiple subtypes based on body site location. Cutaneous melanoma is associated with skin exposed to ultraviolet radiation; uveal melanoma occurs in the eyes; mucosal melanoma occurs in internal mucous membranes; and acral melanoma occurs on the palms, soles, and nail beds. Here, we present the largest whole-genome sequencing study of melanoma to date, with 570 tumors profiled, as well as methylation and RNA sequencing for subsets of tumors. Uveal melanoma is genomically distinct from other melanoma subtypes, harboring the lowest tumor mutation burden and with significantly mutated genes in the G-protein signaling pathway. Most cutaneous, acral, and mucosal melanomas share alterations in components of the MAPK, PI3K, p53, p16, and telomere pathways. However, the mechanism by which these pathways are activated or inactivated varies between melanoma subtypes. Additionally, we identify potential novel germline predisposition genes for some of the less common melanoma subtypes. SIGNIFICANCE This is the largest whole-genome analysis of melanoma to date, comprehensively comparing the genomics of the four major melanoma subtypes. This study highlights both similarities and differences between the subtypes, providing insights into the etiology and biology of melanoma. This article is highlighted in the In This Issue feature, p. 2711.
Collapse
Affiliation(s)
- Felicity Newell
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Corresponding Authors: Felicity Newell, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia. Phone: 61-7-3845-3965; E-mail: ; Richard A. Scolyer, Melanoma Institute Australia, 40 Rockland Road, Wollstonecraft, Sydney, NSW 2065, Australia. Phone: 61-2-9515-7011; E-mail: ; and Nicola Waddell, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia. Phone: 61-7-3845-3538;
| | - Peter A. Johansson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Katia Nones
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Vanessa Lakis
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Antonia L. Pritchard
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Department of Genetics and Immunology, Division of Biomedical Science, University of the Highlands and Islands, Inverness, Scotland, United Kingdom
| | - Serigne N. Lo
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Robert V. Rawson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | | | - Andrew J. Colebatch
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | | | - Peter M. Ferguson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | - Scott Wood
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Conrad Leonard
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Matthew H. Law
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kelly M. Brooks
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Natasa Broit
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Q-Gen Cell Therapeutics, Brisbane, Queensland, Australia
| | - Jane M. Palmer
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kasey L. Couts
- Center for Rare Melanomas, University of Colorado Cancer Center, Aurora, Colorado
| | - Ismael A. Vergara
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Mater Hospital, North Sydney, New South Wales, Australia.,Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Andrew P. Barbour
- Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Omgo E. Nieweg
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Brindha Shivalingam
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Mater Hospital, North Sydney, New South Wales, Australia.,Department of Neurosurgery, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia.,Department of Neurosurgery, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - William A. Robinson
- Center for Rare Melanomas, University of Colorado Cancer Center, Aurora, Colorado
| | - Jonathan R. Stretch
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Mater Hospital, North Sydney, New South Wales, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Andrew J. Spillane
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Mater Hospital, North Sydney, New South Wales, Australia.,Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Robyn P.M. Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Mater Hospital, North Sydney, New South Wales, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Kerwin F. Shannon
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - John F. Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Mater Hospital, North Sydney, New South Wales, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Graham J. Mann
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - John V. Pearson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia.,Corresponding Authors: Felicity Newell, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia. Phone: 61-7-3845-3965; E-mail: ; Richard A. Scolyer, Melanoma Institute Australia, 40 Rockland Road, Wollstonecraft, Sydney, NSW 2065, Australia. Phone: 61-2-9515-7011; E-mail: ; and Nicola Waddell, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia. Phone: 61-7-3845-3538;
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Corresponding Authors: Felicity Newell, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia. Phone: 61-7-3845-3965; E-mail: ; Richard A. Scolyer, Melanoma Institute Australia, 40 Rockland Road, Wollstonecraft, Sydney, NSW 2065, Australia. Phone: 61-2-9515-7011; E-mail: ; and Nicola Waddell, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia. Phone: 61-7-3845-3538;
| | | |
Collapse
|
162
|
Lee SA, Lee D, Kang M, Kim S, Kwon SJ, Lee HS, Seo HR, Kaushal P, Lee NS, Kim H, Lee C, Kwon J. BAP1 promotes the repair of UV-induced DNA damage via PARP1-mediated recruitment to damage sites and control of activity and stability. Cell Death Differ 2022; 29:2381-2398. [PMID: 35637285 PMCID: PMC9751128 DOI: 10.1038/s41418-022-01024-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 01/31/2023] Open
Abstract
BRCA1-associated protein-1 (BAP1) is a ubiquitin C-terminal hydrolase domain-containing deubiquitinase with tumor suppressor activity. The gene encoding BAP1 is mutated in various human cancers, with particularly high frequency in kidney and skin cancers, and BAP1 is involved in many cancer-related cellular functions, such as DNA repair and genome stability. Although BAP1 stimulates DNA double-strand break repair, whether it functions in nucleotide excision repair (NER) is unknown. Here, we show that BAP1 promotes the repair of ultraviolet (UV)-induced DNA damage via its deubiquitination activity in various cell types, including primary melanocytes. Poly(ADP-ribose) polymerase 1 (PARP1) interacts with and recruits BAP1 to damage sites, with BAP1 recruitment peaking after the DDB2 and XPC damage sensors. BAP1 recruitment also requires histone H2A monoubiquitinated at Lys119, which accumulates at damage sites. PARP1 transiently poly(ADP-ribosyl)ates (PARylates) BAP1 at multiple sites after UV damage and stimulates the deubiquitination activity of BAP1 both intrinsically and via PARylation. PARP1 also promotes BAP1 stability via crosstalk between PARylation and ubiquitination. Many PARylation sites in BAP1 are mutated in various human cancers, among which the glutamic acid (Glu) residue at position 31, with particularly frequent mutation in kidney cancer, plays a critical role in BAP1 stabilization and promotes UV-induced DNA damage repair. Glu31 also participates in reducing the viability of kidney cancer cells. This study therefore reveals that BAP1 functions in the NER pathway and that PARP1 plays a role as a novel factor that regulates BAP1 enzymatic activity, protein stability, and recruitment to damage sites. This activity of BAP1 in NER, along with its cancer cell viability-reducing activity, may account for its tumor suppressor function.
Collapse
Affiliation(s)
- Shin-Ai Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Building 37, Room 1068, Bethesda, MD, 20892-4263, USA
| | - Daye Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Minhwa Kang
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Sora Kim
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Su-Jung Kwon
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Han-Sae Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Hye-Ran Seo
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Prashant Kaushal
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Korea
| | - Nam Soo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Hongtae Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul, 02447, Korea
| | - Jongbum Kwon
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| |
Collapse
|
163
|
Yang H, Tan S, Qiao J, Xu Y, Gui Z, Meng Y, Dong B, Peng G, Ibhagui OY, Qian W, Lu J, Li Z, Wang G, Lai J, Yang L, Grossniklaus HE, Yang JJ. Non-invasive detection and complementary diagnosis of liver metastases via chemokine receptor 4 imaging. Cancer Gene Ther 2022; 29:1827-1839. [PMID: 35145271 PMCID: PMC9363530 DOI: 10.1038/s41417-022-00433-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/12/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
Abstract
Noninvasive detection of early-stage liver metastases from different primary cancers is a pressing unmet medical need. The lack of both molecular biomarkers and the sensitive imaging methodology makes the detection challenging. In this study, we observed the elevated expression of chemokine receptor 4 (CXCR4) in uveal melanoma (UM) patient liver tissues, and high CXCR4 expression in liver metastases of UM murine models, regardless of the expression levels in the primary tumors. Based on these findings, we identified CXCR4 as an imaging biomarker and exploited a CXCR4-targeted MRI contrast agent ProCA32.CXCR4 for molecular MRI imaging. ProCA32.CXCR4 has strong CXCR4 binding affinity, high metal selectivity, and r1 and r2 relaxivities, which enables the sensitive detection of liver micrometastases. The MRI imaging capacity for detecting liver metastases was demonstrated in three UM models and one ovarian cancer model. The imaging results were validated by histological and immunohistochemical analysis. ProCA32.CXCR4 has strong potential clinical application for non-invasive diagnosis of liver metastases.
Collapse
Affiliation(s)
- Hua Yang
- Department of Ophthalmology, Emory University, Atlanta, GA, 30322, USA
| | - Shanshan Tan
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Jingjuan Qiao
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Yiting Xu
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Zongxiang Gui
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Yuguang Meng
- Yerkes National Primate Research Center, Atlanta, GA, 30329, USA
| | - Bin Dong
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Guangda Peng
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | | | - Weiping Qian
- Department of Surgery, Emory University, Atlanta, GA, 30322, USA
| | - Jimmy Lu
- Codex BioSolutions Inc, Gaithersburg, MD, USA
| | - Zezhong Li
- Department of Ophthalmology, Emory University, Atlanta, GA, 30322, USA
| | - Guimin Wang
- Department of Ophthalmology, Emory University, Atlanta, GA, 30322, USA
- Affiliated Eye Hospital of Shandong Traditional Chinese Medicine University, Jinan, China
| | - Jinping Lai
- Department of Pathology and Laboratory Medicine, Kaiser Permanente Sacramento Medical Center, Sacramento, CA, 95825, USA
| | - Lily Yang
- Department of Surgery, Emory University, Atlanta, GA, 30322, USA
| | | | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
164
|
Derrien AC, Houy A, Ganier O, Dingli F, Ningarhari M, Mobuchon L, Espejo Díaz MI, Loew D, Cassoux N, Cussenot O, Cancel-Tassin G, Margueron R, Noirel J, Zucman-Rossi J, Rodrigues M, Stern MH. Functional characterization of 5p15.33 risk locus in uveal melanoma reveals rs452384 as a functional variant and NKX2.4 as an allele-specific interactor. Am J Hum Genet 2022; 109:2196-2209. [PMID: 36459980 PMCID: PMC9748249 DOI: 10.1016/j.ajhg.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
The TERT/CLPTM1L risk locus on chromosome 5p15.33 is a pleiotropic cancer risk locus in which multiple independent risk alleles have been identified, across well over ten cancer types. We previously conducted a genome-wide association study in uveal melanoma (UM), which uncovered a role for the TERT/CLPTM1L risk locus in this intraocular tumor and identified multiple highly correlated risk alleles. Aiming to unravel the biological mechanisms in UM of this locus, which contains a domain enriched in active chromatin marks and enhancer elements, we demonstrated the allele-specific enhancer activity of this risk region using reporter assays. In UM, we identified the functional variant rs452384, of which the C risk allele is associated with higher gene expression, increased CLPTM1L expression in UM tumors, and a longer telomere length in peripheral blood mononuclear cells. Electrophoretic mobility shift assays and quantitative mass spectrometry identified NKX2.4 as an rs452384-T-specific binding protein, whereas GATA4 preferentially interacted with rs452384-C. Knockdown of NKX2.4 but not GATA4 resulted in increased TERT and CLPTM1L expression. In summary, the UM risk conferred by the 5p locus is at least partly due to rs452384, for which NKX2.4 presents strong differential binding activity and regulates CLPTM1L and TERT expression. Altogether, our work unraveled some of the complex regulatory mechanisms at the 5p15.33 susceptibility region in UM, and this might also shed light on shared mechanisms with other tumor types affected by this susceptibility region.
Collapse
Affiliation(s)
- Anne-Céline Derrien
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe labellisée par la Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, Paris 75005, France
| | - Alexandre Houy
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe labellisée par la Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, Paris 75005, France
| | - Olivier Ganier
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe labellisée par la Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, Paris 75005, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 26 rue d'Ulm, Paris 75248 Cedex 05, France
| | - Massih Ningarhari
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, 75006 Paris, France; Functional Genomics of Solid Tumors laboratory, Équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, 75006 Paris, France
| | - Lenha Mobuchon
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe labellisée par la Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, Paris 75005, France
| | - María Isabel Espejo Díaz
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe labellisée par la Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, Paris 75005, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 26 rue d'Ulm, Paris 75248 Cedex 05, France
| | - Nathalie Cassoux
- Department of Ocular Oncology, Institut Curie, Paris 75005, France; Factulty of Medicine, University of Paris Descartes, Paris 75005, France
| | - Olivier Cussenot
- CeRePP, Tenon Hospital, Paris 75020, France; Sorbonne University, GRC n°5 Predictive Onco-Urology, AP-HP, Tenon Hospital, Paris 75020, France; University of Oxford, Nuffield Department of Surgical Sciences, Oxford, UK
| | - Géraldine Cancel-Tassin
- CeRePP, Tenon Hospital, Paris 75020, France; Sorbonne University, GRC n°5 Predictive Onco-Urology, AP-HP, Tenon Hospital, Paris 75020, France
| | - Raphael Margueron
- Institut Curie, PSL Research University, Sorbonne University, Inserm U934/ CNRS UMR3215, 26, rue d'Ulm, 75005 Paris, France
| | - Josselin Noirel
- Laboratoire GBCM (EA7528), CNAM, HESAM Université, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, 75006 Paris, France; Functional Genomics of Solid Tumors laboratory, Équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, 75006 Paris, France; Hôpital Européen Georges Pompidou, APHP, 75015, Paris, France
| | - Manuel Rodrigues
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe labellisée par la Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, Paris 75005, France; Institut Curie, PSL Research University, Department of Medical Oncology, Paris 75005, France
| | - Marc-Henri Stern
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe labellisée par la Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, Paris 75005, France.
| |
Collapse
|
165
|
Targeting GNAQ/11 through PKC inhibition in uveal melanoma. Cancer Gene Ther 2022; 29:1809-1813. [PMID: 35181742 DOI: 10.1038/s41417-022-00437-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/23/2021] [Accepted: 01/31/2022] [Indexed: 01/25/2023]
Abstract
Uveal melanoma is a rare malignancy affecting 5.1 patients/million per year with definitive treatment options of enucleation or radiation therapy to the primary tumor. Unfortunately, no FDA-approved systemic therapies exist for patients in the adjuvant or metastatic setting. Molecular profiling over the past decade has helped define uveal melanomas by characteristic mutations: GNAQ, GNA11, BAP1, SF3B1, and EIF1AX mutations. GNAQ/11 mutations are present in over 90% of patients with uveal melanoma and lead to signal transduction through G-protein coupled receptors to downstream growth factors. PKC inhibition has been an active area of investigation targeting this pathway specific to uveal melanoma. Several molecules have been developed and evaluated in clinical trials. Responses have been noted but clinical development has also yielded multiple toxicities and pathways of resistance limiting both breadth and durability of responses leading to combination therapy approaches. PKC inhibition remains an active and encouraging area of research to determine effective therapies for patients with uveal melanoma.
Collapse
|
166
|
Moro J, Sobrero S, Cartia CF, Ceraolo S, Rapanà R, Vaisitti F, Ganio S, Mellone F, Rudella S, Scopis F, La Paglia D, Cacciatore CC, Ruffini E, Leo F. Diagnostic and Therapeutic Challenges of Malignant Pleural Mesothelioma. Diagnostics (Basel) 2022; 12:3009. [PMID: 36553016 PMCID: PMC9776695 DOI: 10.3390/diagnostics12123009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Malignant pleural mesothelioma is a rare cancer characterized by a very poor prognosis. Exposure to asbestos is the leading cause of malignant pleural mesothelioma. The preinvasive lesions, the mesothelial hyperplasia and its possible evolution are the focus of the majority of the studies aiming to identify the treatable phase of the disease. The role of BAP-1 and MTAP in the diagnosis of mesothelioma in situ and in the prognosis of malignant pleural mesothelioma is the main topic of recent studies. The management of preinvasive lesions in mesothelioma is still unclear and many aspects are the subject of debate. The diagnosis, the disease staging and the accurate, comprehensive assessment of patients are three key instants for an appropriate management of patients/the disease.
Collapse
Affiliation(s)
- Jacopo Moro
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Simona Sobrero
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | | | - Simona Ceraolo
- Nursing Degree Program, Department of Clinical and Biological Sciences, University of Turin, 10124 Torino, Italy
| | - Roberta Rapanà
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Federico Vaisitti
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Stefano Ganio
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Federica Mellone
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Stefano Rudella
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Federico Scopis
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Danilo La Paglia
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Carola Crystel Cacciatore
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| | - Enrico Ruffini
- Division of Thoracic Surgery, Department of Surgical Sciences, Città della Salute Hospital Turin, University of Turin, 10126 Torino, Italy
| | - Francesco Leo
- Thoracic Surgery Division, Department of Oncology, San Luigi Gonzaga Hospital Orbassano, University of Turin, 10043 Orbassano, Italy
| |
Collapse
|
167
|
Stålhammar G. Sex‐based
differences in early and late uveal melanoma‐related mortality. Cancer Med 2022; 12:6700-6710. [PMID: 36398623 PMCID: PMC10067119 DOI: 10.1002/cam4.5458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/28/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND It is debated if there are sex-based differences in survival for patients with uveal melanoma. Previous observations of higher mortality for men in studies with <10-year follow-up have not been replicated in studies with longer follow-up. It is therefore hypothesized that women have a worse survival in later periods. METHODS All patients diagnosed with primary uveal melanoma in Sweden between 1980 and 2017 were included (n = 2032). Survival differences between men and women in early (<10 years from diagnosis) and late (≥10 years) periods were analyzed. RESULTS At baseline, there were no significant differences in mean patient age, tumor thickness, diameter, ciliary body involvement, primary treatment modality, or in American Joint Committee on Cancer (AJCC) T-category between men and women. In total, 764 patients (425 women and 339 men) survived and were followed ≥10 years. In this group, men were significantly younger, but there were no differences in baseline tumor thickness, diameter, ciliary body involvement, primary treatment, or AJCC T-category. In competing risk analysis, women had higher incidence of uveal melanoma-related mortality in the late period (p = 0.036). In univariate Cox regression, male (HR 1.2, p = 0.049) and female sex (HR 1.8, p = 0.034) were significant predictors of uveal melanoma-related mortality in the early and late periods, respectively. CONCLUSION Women with uveal melanoma have better survival in the first decade after diagnosis. Thereafter, female survivors are significantly older than men and have a higher incidence of uveal melanoma-related mortality.
Collapse
Affiliation(s)
- Gustav Stålhammar
- Division of Eye and Vision, Department of Clinical Neuroscience St. Erik Eye Hospital, Karolinska Institutet Stockholm Sweden
- St. Erik Eye Hospital Stockholm Sweden
| |
Collapse
|
168
|
Hu Y, Cai J, Ye M, Mou Q, Zhao B, Sun Q, Lou X, Zhang H, Zhao Y. Development and validation of immunogenic cell death-related signature for predicting the prognosis and immune landscape of uveal melanoma. Front Immunol 2022; 13:1037128. [PMID: 36466923 PMCID: PMC9709208 DOI: 10.3389/fimmu.2022.1037128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2023] Open
Abstract
INTRODUCTION Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults, and the main treatment for UM is currently surgery and plaque brachytherapy. UM is highly susceptible to metastasis, which eventually occurs in nearly half of all patients; once metastasis occurs, patients have a poor prognosis and the condition is difficult to treat. Therefore, the identification of new and effective UM biomarkers is vital for the application of therapeutic strategies. Immunogenic cell death (ICD) is a type of regulatory cell death that activates adaptive immune responses and generates long-term immunological memory. ICD can promote antitumor immunity, which may be a potential immunotherapeutic strategy for UM. METHODS The data of UM from the Cancer Genome Atlas (TCGA) was used as a training set and the data from Gene Expression Omnibus (GEO) was used as a validation set. To determine the expression pattern of ICD-related genes in UM, survival analysis and difference analysis was conducted. The ICD-related risk signature was constructed by employing the least absolute shrinkage and selection operator (LASSO) Cox regression. Subsequently, immune profile and somatic mutation analysis were performed. In addition, cell experiments were performed to verify the role of immunogenic cell death-related genes in UM. RESULTS In this study, we analyzed the relationship between ICD-related gene expression and UM patient prognosis, somatic mutations, and the tumor immune microenvironment. Importantly, we constructed a 5-gene ICD-related risk signature and confirmed it as a novel prognostic biomarker in UM patients. We found that the high-risk group had more immune cell infiltration and a worse prognosis than the low-risk group. In cellular experiments, we confirmed the high expression of FOXP3 inMUM2B andOCM-1A cell lines and that knockdown of FOXP3 markedly inhibited the proliferation of UM tumor cells. DISCUSSION ICD-related genes play a critical role in the tumor immune microenvironment. Our results may contribute to the development of effective immunotherapies.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Meng Ye
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianxue Mou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bowen Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaotong Lou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
169
|
Caksa S, Baqai U, Aplin AE. The future of targeted kinase inhibitors in melanoma. Pharmacol Ther 2022; 239:108200. [PMID: 35513054 PMCID: PMC10187889 DOI: 10.1016/j.pharmthera.2022.108200] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022]
Abstract
Melanoma is a cancer of the pigment-producing cells of the body and its incidence is rising. Targeted inhibitors that act against kinases in the MAPK pathway are approved for BRAF-mutant metastatic cutaneous melanoma and increase patients' survival. Response to these therapies is limited by drug resistance and is less durable than with immune checkpoint inhibition. Conversely, rare melanoma subtypes have few therapeutic options for advanced disease and MAPK pathway targeting agents show minimal anti-tumor effects. Nevertheless, there is a future for targeted kinase inhibitors in melanoma: in new applications such as adjuvant or neoadjuvant therapy and in novel combinations with immunotherapies or other targeted therapies. Pre-clinical studies continue to identify tumor dependencies and their corresponding actionable drug targets, paving the way for rational targeted kinase inhibitor combinations as a personalized medicine approach for melanoma.
Collapse
Affiliation(s)
- Signe Caksa
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Usman Baqai
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
170
|
Karz A, Dimitrova M, Kleffman K, Alvarez-Breckenridge C, Atkins MB, Boire A, Bosenberg M, Brastianos P, Cahill DP, Chen Q, Ferguson S, Forsyth P, Glitza Oliva IC, Goldberg SB, Holmen SL, Knisely JPS, Merlino G, Nguyen DX, Pacold ME, Perez-Guijarro E, Smalley KSM, Tawbi HA, Wen PY, Davies MA, Kluger HM, Mehnert JM, Hernando E. Melanoma central nervous system metastases: An update to approaches, challenges, and opportunities. Pigment Cell Melanoma Res 2022; 35:554-572. [PMID: 35912544 PMCID: PMC10171356 DOI: 10.1111/pcmr.13059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023]
Abstract
Brain metastases are the most common brain malignancy. This review discusses the studies presented at the third annual meeting of the Melanoma Research Foundation in the context of other recent reports on the biology and treatment of melanoma brain metastases (MBM). Although symptomatic MBM patients were historically excluded from immunotherapy trials, efforts from clinicians and patient advocates have resulted in more inclusive and even dedicated clinical trials for MBM patients. The results of checkpoint inhibitor trials were discussed in conversation with current standards of care for MBM patients, including steroids, radiotherapy, and targeted therapy. Advances in the basic scientific understanding of MBM, including the role of astrocytes and metabolic adaptations to the brain microenvironment, are exposing new vulnerabilities which could be exploited for therapeutic purposes. Technical advances including single-cell omics and multiplex imaging are expanding our understanding of the MBM ecosystem and its response to therapy. This unprecedented level of spatial and temporal resolution is expected to dramatically advance the field in the coming years and render novel treatment approaches that might improve MBM patient outcomes.
Collapse
Affiliation(s)
- Alcida Karz
- Department of Pathology, NYU Grossman School of Medicine, New York, USA.,Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA
| | - Maya Dimitrova
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA.,Department of Medicine, NYU Grossman School of Medicine, New York, USA
| | - Kevin Kleffman
- Department of Pathology, NYU Grossman School of Medicine, New York, USA.,Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA
| | | | - Michael B Atkins
- Georgetown-Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Marcus Bosenberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research NCI, NIH, USA
| | - Priscilla Brastianos
- MGH Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qing Chen
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Sherise Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter Forsyth
- Department of Neuro-Oncology and Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah B Goldberg
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Sheri L Holmen
- Huntsman Cancer Institute and Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Jonathan P S Knisely
- Meyer Cancer Center and Department of Radiation Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research NCI, NIH, USA
| | - Don X Nguyen
- Department of Pathology, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael E Pacold
- Department of Radiation Oncology, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Eva Perez-Guijarro
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research NCI, NIH, USA
| | - Keiran S M Smalley
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, United States, Boston, Massachusetts, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Harriet M Kluger
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Janice M Mehnert
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA.,Department of Medicine, NYU Grossman School of Medicine, New York, USA
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York, USA.,Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA
| |
Collapse
|
171
|
Jeong J, Jung I, Kim JH, Jeon S, Hyeon DY, Min H, Kang B, Nah J, Hwang D, Um SJ, Ko M, Seong RH. BAP1 shapes the bone marrow niche for lymphopoiesis by fine-tuning epigenetic profiles in endosteal mesenchymal stromal cells. Cell Death Differ 2022; 29:2151-2162. [PMID: 35473985 PMCID: PMC9613645 DOI: 10.1038/s41418-022-01006-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/08/2022] Open
Abstract
Hematopoiesis occurs within a unique bone marrow (BM) microenvironment, which consists of various niche cells, cytokines, growth factors, and extracellular matrix components. These multiple components directly or indirectly regulate the maintenance and differentiation of hematopoietic stem cells (HSCs). Here we report that BAP1 in BM mesenchymal stromal cells (MSCs) is critical for the maintenance of HSCs and B lymphopoiesis. Mice lacking BAP1 in MSCs show aberrant differentiation of hematopoietic stem and progenitor cells, impaired B lymphoid differentiation, and expansion of myeloid lineages. Mechanistically, BAP1 loss in distinct endosteal MSCs, expressing PRX1 but not LEPR, leads to aberrant expression of genes affiliated with BM niche functions. BAP1 deficiency leads to a reduced expression of pro-hematopoietic factors such as Scf caused by increased H2AK119-ub1 and H3K27-me3 levels on the promoter region of these genes. On the other hand, the expression of myelopoiesis stimulating factors including Csf3 was increased by enriched H3K4-me3 and H3K27-ac levels on their promoter, causing myeloid skewing. Notably, loss of BAP1 substantially blocks B lymphopoiesis and skews the differentiation of hematopoietic precursors toward myeloid lineages in vitro, which is reversed by G-CSF neutralization. Thus, our study uncovers a key role for BAP1 expressed in endosteal MSCs in controlling normal hematopoiesis in mice by modulating expression of various niche factors governing lymphopoiesis and myelopoiesis via histone modifications.
Collapse
Affiliation(s)
- Jinguk Jeong
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Korea
| | - Inkyung Jung
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Ji-Hoon Kim
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Shin Jeon
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Immunology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Do Young Hyeon
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hyungyu Min
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Korea
| | - Byeonggeun Kang
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Korea
| | - Jinwoo Nah
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Soo-Jong Um
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Korea
| | - Myunggon Ko
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea.
| | - Rho Hyun Seong
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
172
|
Djulbegovic MB, Taylor DJ, Uversky VN, Galor A, Shields CL, Karp CL. Intrinsic Disorder in BAP1 and Its Association with Uveal Melanoma. Genes (Basel) 2022; 13:1703. [PMID: 36292588 PMCID: PMC9601668 DOI: 10.3390/genes13101703] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Specific subvariants of uveal melanoma (UM) are associated with increased rates of metastasis compared to other subvariants. BRCA1 (BReast CAncer gene 1)-associated protein-1 (BAP1) is encoded by a gene that has been linked to aggressive behavior in UM. Methods: We evaluated BAP1 for the presence of intrinsically disordered protein regions (IDPRs) and its protein−protein interactions (PPI). We evaluated specific sequence-based features of the BAP1 protein using a set of bioinformatic databases, predictors, and algorithms. Results: We show that BAP1’s structure contains extensive IDPRs as it is highly enriched in proline residues (the most disordered amino acid; p-value < 0.05), the average percent of predicted disordered residues (PPDR) was 57.34%, and contains 9 disorder-based binding sites (ie. molecular recognition features (MoRFs)). BAP1’s intrinsic disorder allows it to engage in a complex PPI network with at least 49 partners (p-value < 1.0 × 10−16). Conclusion: These findings show that BAP1 contains IDPRs and an intricate PPI network. Mutations in UM that are associated with the BAP1 gene may alter the function of the IDPRs embedded into its structure. These findings develop the understanding of UM and may provide a target for potential novel therapies to treat this aggressive neoplasm.
Collapse
Affiliation(s)
| | - David J. Taylor
- Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA
- Ophthalmology, Miami Veterans Affairs Medical Center, Miami, FL 33136, USA
- Research Services, Miami Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Carol L. Shields
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Carol L. Karp
- Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
173
|
Prognostic Factors and Nomograms for Overall and Cancer-Specific Survival of Patients with Uveal Melanoma without Metastases: A SEER Analysis of 4119 Cases. J Ophthalmol 2022; 2022:1874336. [PMID: 36157683 PMCID: PMC9492333 DOI: 10.1155/2022/1874336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/06/2021] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose To determine prognostic factors for patients with uveal melanoma without metastases and to construct nomograms to predict their 3- and 5-year overall survival (OS) and cancer-specific survival (CSS). Methods We included 4119 patients who were registered from 2004 to 2015 in the Surveillance, Epidemiology, and End Results database. The median follow-up time was 5.8 years. Independent risk factors affecting OS and CSS were identified with univariate and multivariate Cox regression analyses and used to construct nomograms. Internal and external validation were carried out by using the bootstrap method to calculate the concordance indices (C-indices) and plot the calibration curves. Results Age, primary site, histological type, T-stage, and treatment were independent risk factors for OS and CSS; marital status and sequence number were factors only for OS. The C-indices for internal validation of OS and CSS were 0.713 (95% CI, 0.697–0.729) and 0.708 (95% CI, 0.688–0.728), respectively, and for external validation they were 0.729 (95% CI, 0.705–0.753) and 0.731 (95% CI, 0.700–0.762), respectively. The calibration curves also revealed good agreement between the predicted and actual survival rates. Conclusions We constructed nomograms to predict the 3- and 5-year OS and CSS of patients with uveal melanoma without metastases. Our nomograms may improve prognostication and assist with the development of individualized treatment strategies.
Collapse
|
174
|
Phelps GB, Amsterdam A, Hagen HR, García NZ, Lees JA. MITF deficiency and oncogenic GNAQ each promote proliferation programs in zebrafish melanocyte lineage cells. Pigment Cell Melanoma Res 2022; 35:539-547. [PMID: 35869673 PMCID: PMC9541221 DOI: 10.1111/pcmr.13057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Uveal melanoma (UM) is the most common primary malignancy of the adult eye but lacks any FDA-approved therapy for the deadly metastatic disease. Thus, there is a great need to dissect the driving mechanisms for UM and develop strategies to evaluate potential therapeutics. Using an autochthonous zebrafish model, we previously identified MITF, the master melanocyte transcription factor, as a tumor suppressor in GNAQQ209L -driven UM. Here, we show that zebrafish mitfa-deficient GNAQQ209L -driven tumors significantly up-regulate neural crest markers, and that higher expression of a melanoma-associated neural crest signature correlates with poor UM patient survival. We further determined how the mitfa-null state, as well as expression of GNAQQ209L , YAPS127A;S381A , or BRAFV600E oncogenes, impacts melanocyte lineage cells before they acquire the transformed state. Specifically, examination 5 days post-fertilization showed that mitfa-deficiency is sufficient to up-regulate pigment progenitor and neural crest markers, while GNAQQ209L expression promotes a proliferative phenotype that is further enhanced by YAPS127A;S381A co-expression. Finally, we show that this oncogene-induced proliferative phenotype can be used to screen chemical inhibitors for their efficacy against the UM pathway. Overall, this study establishes that a neural crest signature correlates with poor UM survival, and describes an in vivo assay for preclinical trials of potential UM therapeutics.
Collapse
Affiliation(s)
- Grace B. Phelps
- David H. Koch Institute for Integrative Cancer Research and Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Adam Amsterdam
- David H. Koch Institute for Integrative Cancer Research and Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Hannah R. Hagen
- David H. Koch Institute for Integrative Cancer Research and Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Nicole Zambrana García
- David H. Koch Institute for Integrative Cancer Research and Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Jacqueline A. Lees
- David H. Koch Institute for Integrative Cancer Research and Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
175
|
de Vos L, Carrillo Cano TM, Zarbl R, Klümper N, Ralser DJ, Franzen A, Herr E, Gabrielpillai J, Vogt TJ, Dietrich J, Strieth S, Landsberg J, Dietrich D. CTLA4 , PD-1 , PD-L1 , PD-L2 , TIM-3 , TIGIT , and LAG3 DNA Methylation Is Associated With BAP1 -Aberrancy, Transcriptional Activity, and Overall Survival in Uveal Melanoma. J Immunother 2022; 45:324-334. [PMID: 35862127 DOI: 10.1097/cji.0000000000000429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022]
Abstract
Uveal melanoma (UM) is an aggressive disease with poor response to oncological treatment, including immunotherapy. Loss of the epigenetic modifier BRCA1-associated protein 1 (BAP1) function drives UM oncogenesis and is associated with an immune-suppressive tumor microenvironment, poor prognosis, and a distinct DNA methylation and gene expression profile. Our study aimed to analyze comprehensively the DNA methylation status of the immune checkpoint genes PD-1 , PD-L1 , PD-L2 , CTLA4, TIM-3 ( HAVCR2 ), TIGIT , and LAG3 and its association with mRNA expression, BAP1 -aberrancy, and patients' survival. We analyzed the DNA methylation landscape of immune checkpoint genes at single CpG resolution in N=80 UM samples provided by The Cancer Genome Atlas. We analyzed CpG methylation levels of the immune checkpoints with regard to their transcriptional signatures and patient outcomes.Methylation of specific CpG sites within the immune checkpoint genes PD-1 , PD-L1 , PD-L2 , CTLA4 , TIM-3 , TIGIT , and LAG3 correlated strongly with mRNA expression levels, indicating a strong regulation of gene expression through DNA methylation. Moreover, immune checkpoint gene methylation was strongly associated with BAP1 -mutation status and associated with overall survival in UM. Our data indicate an epigenetic regulation of immune checkpoints through DNA methylation in UM. Further, our data highlight the prognostic significance of DNA methylation of immune checkpoint genes in UM thereby providing a rationale for methylation testing as predictive biomarkers for immunotherapy response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Emmanuelle Herr
- Dermatology and Allergy, University Medical Center Bonn (UKB), Bonn, Germany
| | | | | | | | | | - Jennifer Landsberg
- Dermatology and Allergy, University Medical Center Bonn (UKB), Bonn, Germany
| | | |
Collapse
|
176
|
Cole YC, Zhang YZ, Gallo B, Januszewski AP, Nastase A, Essex DJ, Thaung CMH, Cohen VML, Sagoo MS, Bowcock AM. Correlation between BAP1 Localization, Driver Mutations, and Patient Survival in Uveal Melanoma. Cancers (Basel) 2022; 14:cancers14174105. [PMID: 36077643 PMCID: PMC9454448 DOI: 10.3390/cancers14174105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 12/02/2022] Open
Abstract
Uveal melanoma (UM) is an uncommon but highly aggressive ocular malignancy. Poor overall survival is associated with deleterious BAP1 alterations, which frequently occur with monosomy 3 (LOH3) and a characteristic gene expression profile. Tumor DNA from a cohort of 100 UM patients from Moorfields Biobank (UK) that had undergone enucleation were sequenced for known UM driver genes (BAP1, SF3B1, EIF1AX, GNAQ, and GNA11). Immunohistochemical staining of BAP1 and interphase FISH for chromosomes 3 and 8 was performed, and cellular localization of BAP1 was correlated with BAP1 mutations. Wildtype (WT) BAP1 staining was characterized by nBAP1 expression with <10% cytoplasmic BAP1 (cBAP1). Tumors exhibited heterogeneity with respect to BAP1 staining with different percentages of nBAP1 loss: ≥25% loss of nuclear BAP1 (nBAP1) was superior to chr8q and LOH3 as a prognostic indicator. Of the successfully sequenced UMs, 38% harbored oncogenic mutations in GNA11 and 48% harbored mutations in GNAQ at residues 209 or 183. Of the secondary drivers, 39% of mutations were in BAP1, 11% were in EIF1AX, and 20% were in the SF3B1 R625 hotspot. Most tumors with SF3B1 or EIF1AX mutations retained nuclear BAP1 (nBAP1). The majority of tumor samples with likely pathogenic BAP1 mutations, regardless of mutation class, displayed ≥25% loss of nBAP1. This included all tumors with truncating mutations and 80% of tumors with missense mutations. In addition, 60% of tumors with truncating mutations and 82% of tumors with missense mutations expressed >10% cBAP1.
Collapse
Affiliation(s)
- Yasemin C. Cole
- National Heart and Lung Institute, Imperial College London, London SW3 6LR, UK
| | - Yu-Zhi Zhang
- National Heart and Lung Institute, Imperial College London, London SW3 6LR, UK
- Department of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP, UK
| | - Beatrice Gallo
- Ocular Oncology Service, Moorfields Eye Hospital & St. Bartholomew’s Hospital, London EC1V 2PD, UK
| | - Adam P. Januszewski
- National Heart and Lung Institute, Imperial College London, London SW3 6LR, UK
| | - Anca Nastase
- National Heart and Lung Institute, Imperial College London, London SW3 6LR, UK
| | - David J. Essex
- Ocular Oncology Service, Moorfields Eye Hospital & St. Bartholomew’s Hospital, London EC1V 2PD, UK
| | - Caroline M. H. Thaung
- Moorfields Eye Hospital, London EC1V 2PD, UK
- Department of Eye Pathology, UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Victoria M. L. Cohen
- Ocular Oncology Service, Moorfields Eye Hospital & St. Bartholomew’s Hospital, London EC1V 2PD, UK
- Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Mandeep S. Sagoo
- Ocular Oncology Service, Moorfields Eye Hospital & St. Bartholomew’s Hospital, London EC1V 2PD, UK
- Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Anne M. Bowcock
- National Heart and Lung Institute, Imperial College London, London SW3 6LR, UK
- Departments of Oncological Sciences, Dermatology and Genetics & Genome Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: ; Tel.: +1-212-659-8256
| |
Collapse
|
177
|
Wang J, Qiao S, Liang S, Qian C, Dong Y, Pei M, Wang H, Wan G. TRPM4 and TRPV2 are two novel prognostic biomarkers and promising targeted therapy in UVM. Front Mol Biosci 2022; 9:985434. [PMID: 36081847 PMCID: PMC9445434 DOI: 10.3389/fmolb.2022.985434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/01/2022] [Indexed: 12/21/2022] Open
Abstract
Uveal melanoma (UVM) is the most common primary intraocular malignancy tumor in adults. Almost 50% of UVM patients develop metastatic disease, and is usually fatal within 1 year. However, the mechanism of etiology remains unclear. The lack of prognostic, diagnostic and therapeutic biomarkers is a main limitation for clinical diagnosis and treatment. The transient receptor potential (TRP) channels play important roles in the occurrence and development of tumors, which may have the potential as a therapeutic target for UVM. This current study aimed to identify the potential effect and function of the TRPs that could provide survival prediction and new insight into therapy for UVM. Based on the transcriptome data and potential key genes of UVM were screened using the Cancer Genome Atlas (TCGA) databases, Gene expression analysis showed the expression of TRPM4, TRPV2 and other TRPs was high levels in UVM. Using survival analysis, we screened out that the high expression of TRPM4 and TRPV2 was negatively correlated with the prognosis of UVM patients. Cox regression analysis and functional enrichment analysis further indicated that TRPM4 and TRPV2 were the most convincing therapeutic targets of UVM, and the majority of genes involved in ferroptosis pathways in UVM showed positively correlated with the expression levels of TRPM4 and TRPV2. In conclusion, TRPM4 and TRPV2 were considered as two novel prognostic biomarkers and a promising targeted therapy in UVM.
Collapse
Affiliation(s)
- Jiong Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sen Qiao
- Assisted Reproduction Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Shenzhi Liang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cheng Qian
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Dong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Minghang Pei
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
- *Correspondence: Hongmei Wang, ; Guangming Wan,
| | - Guangming Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Hongmei Wang, ; Guangming Wan,
| |
Collapse
|
178
|
Yu IS, Wee K, Williamson L, Titmuss E, An J, Naderi-Azad S, Metcalf C, Yip S, Horst B, Jones SJM, Paton K, Nelson BH, Marra M, Laskin JJ, Savage KJ. Exceptional response to combination ipilimumab and nivolumab in metastatic uveal melanoma: Insights from genomic analysis. Melanoma Res 2022; 32:278-285. [PMID: 35726793 DOI: 10.1097/cmr.0000000000000810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Uveal melanoma is the most common intraocular malignancy and has a poor prognosis compared to other melanoma subtypes with a median overall survival of 6-10 months. With immune checkpoint inhibitor therapy, either PD-1 inhibitor alone or combination ipilimumab/nivolumab (anti-CTLA-4/anti-PD-1), responses are rare and often not durable. We present a case report of a now 66-year-old woman with diffuse metastatic uveal melanoma previously treated with a combination of ipilimumab/nivolumab, followed by maintenance nivolumab. Almost complete resolution of all sites of metastatic disease was observed except for one liver metastasis which regressed partially on immunotherapy. Notably, the patient had a significantly elevated BMI and developed widespread vitiligo on treatment. Whole-genome and transcriptome analysis was performed on the residual liver biopsy and molecular markers that may have contributed to the exceptional response were investigated. Several alterations were observed in genes involved in T-cell responses. Estimates of tumour infiltrating immune cells indicated a high level of plasma cells compared to other uveal melanoma cases, a finding previously associated with indolent disease. The patient also carried several germline SNPs that may have contributed to her treatment response as well as widespread vitiligo. Whole-genome and transcriptome sequencing have provided insight into potential molecular underpinnings of an exceptional treatment response in a tumour type typically associated with poor prognosis. Immunological findings suggest a role for plasma cells in the tumour microenvironment. Elevated BMI and the development of vitiligo may be clinically relevant factors for predicting response to immune checkpoint inhibitor therapy, warranting further studies in patients with uveal melanoma.
Collapse
Affiliation(s)
- Irene S Yu
- Department of Medical Oncology, BC Cancer
| | - Kathleen Wee
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia
| | - Laura Williamson
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia
| | - Emma Titmuss
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia
| | - Jianghong An
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia
| | - Sheida Naderi-Azad
- Faculty of Medicine, University of Toronto, 1 King's College Cir, Toronto, Ontario
| | | | - Stephen Yip
- Department of Pathology and Laboratory Medicine
| | - Basil Horst
- Department of Pathology and Laboratory Medicine
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia
- Department of Medical Genetics
| | - Katherine Paton
- Department of Ophthalmology and Visual Sciences, University of British Columbia
| | - Brad H Nelson
- Department of Medical Genetics
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Marco Marra
- Department of Medical Oncology, BC Cancer
- Department of Medical Genetics
| | | | | |
Collapse
|
179
|
Kaler CJ, Dollar JJ, Cruz AM, Kuznetsoff JN, Sanchez MI, Decatur CL, Licht JD, Smalley KSM, Correa ZM, Kurtenbach S, Harbour JW. BAP1 Loss Promotes Suppressive Tumor Immune Microenvironment via Upregulation of PROS1 in Class 2 Uveal Melanomas. Cancers (Basel) 2022; 14:3678. [PMID: 35954340 PMCID: PMC9367253 DOI: 10.3390/cancers14153678] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Uveal melanoma (UM) is the most common primary cancer of the eye and is associated with a high rate of metastatic death. UM can be stratified into two main classes based on metastatic risk, with class 1 UM having a low metastatic risk and class 2 UM having a high metastatic risk. Class 2 UM have a distinctive genomic, transcriptomic, histopathologic, and clinical phenotype characterized by biallelic inactivation of the BAP1 tumor-suppressor gene, an immune-suppressive microenvironment enriched for M2-polarized macrophages, and poor response to checkpoint-inhibitor immunotherapy. To identify potential mechanistic links between BAP1 loss and immune suppression in class 2 UM, we performed an integrated analysis of UM samples, as well as genetically engineered UM cell lines and uveal melanocytes (UMC). Using RNA sequencing (RNA-seq), we found that the most highly upregulated gene associated with BAP1 loss across these datasets was PROS1, which encodes a ligand that triggers phosphorylation and activation of the immunosuppressive macrophage receptor MERTK. The inverse association between BAP1 and PROS1 in class 2 UM was confirmed by single-cell RNA-seq, which also revealed that MERTK was upregulated in CD163+ macrophages in class 2 UM. Using ChIP-seq, BAP1 knockdown in UM cells resulted in an accumulation of H3K27ac at the PROS1 locus, suggesting epigenetic regulation of PROS1 by BAP1. Phosphorylation of MERTK in RAW 264.7 monocyte-macrophage cells was increased upon coculture with BAP1-/- UMCs, and this phosphorylation was blocked by depletion of PROS1 in the UMCs. These findings were corroborated by multicolor immunohistochemistry, where class 2/BAP1-mutant UMs demonstrated increased PROS1 expression in tumor cells and increased MERTK phosphorylation in CD163+ macrophages compared with class 1/BAP1-wildtype UMs. Taken together, these findings provide a mechanistic link between BAP1 loss and the suppression of the tumor immune microenvironment in class 2 UMs, and they implicate the PROS1-MERTK pathway as a potential target for immunotherapy in UM.
Collapse
Affiliation(s)
- Christopher J. Kaler
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.K.); (J.J.D.); (A.M.C.); (J.N.K.); (M.I.S.); (C.L.D.); (Z.M.C.); (S.K.)
| | - James J. Dollar
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.K.); (J.J.D.); (A.M.C.); (J.N.K.); (M.I.S.); (C.L.D.); (Z.M.C.); (S.K.)
| | - Anthony M. Cruz
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.K.); (J.J.D.); (A.M.C.); (J.N.K.); (M.I.S.); (C.L.D.); (Z.M.C.); (S.K.)
| | - Jeffim N. Kuznetsoff
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.K.); (J.J.D.); (A.M.C.); (J.N.K.); (M.I.S.); (C.L.D.); (Z.M.C.); (S.K.)
| | - Margaret I. Sanchez
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.K.); (J.J.D.); (A.M.C.); (J.N.K.); (M.I.S.); (C.L.D.); (Z.M.C.); (S.K.)
| | - Christina L. Decatur
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.K.); (J.J.D.); (A.M.C.); (J.N.K.); (M.I.S.); (C.L.D.); (Z.M.C.); (S.K.)
| | - Jonathan D. Licht
- University of Florida Health Cancer Center, University of Florida Cancer and Genetics Research Complex, Gainesville, FL 32610, USA;
| | - Keiran S. M. Smalley
- Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Zelia M. Correa
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.K.); (J.J.D.); (A.M.C.); (J.N.K.); (M.I.S.); (C.L.D.); (Z.M.C.); (S.K.)
| | - Stefan Kurtenbach
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.K.); (J.J.D.); (A.M.C.); (J.N.K.); (M.I.S.); (C.L.D.); (Z.M.C.); (S.K.)
| | - J. William Harbour
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.K.); (J.J.D.); (A.M.C.); (J.N.K.); (M.I.S.); (C.L.D.); (Z.M.C.); (S.K.)
- Department of Ophthalmology and Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
180
|
Xu YY, Ren ZL, Liu XL, Zhang GM, Huang SS, Shi WH, Ye LX, Luo X, Liu SW, Li YL, Yu L. BAP1 loss augments sensitivity to BET inhibitors in cancer cells. Acta Pharmacol Sin 2022; 43:1803-1815. [PMID: 34737422 PMCID: PMC9253001 DOI: 10.1038/s41401-021-00783-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
The tumor suppressor gene BAP1 encodes a widely expressed deubiquitinase for histone H2A. Both hereditary and acquired mutations are associated with multiple cancer types, including cutaneous melanoma (CM), uveal melanoma (UM), and clear cell renal cell carcinoma (ccRCC). However, there is no personalized therapy for BAP1-mutant cancers. Here, we describe an epigenetic drug library screening to identify small molecules that exert selective cytotoxicity against BAP1 knockout CM cells over their isogenic parental cells. Hit characterization reveals that BAP1 loss renders cells more vulnerable to bromodomain and extraterminal (BET) inhibitor-induced transcriptional alterations, G1/G0 cell cycle arrest and apoptosis. The association of BAP1 loss with sensitivity to BET inhibitors is observed in multiple BAP1-deficient cancer cell lines generated by gene editing or derived from patient tumors as well as immunodeficient xenograft and immunocompetent allograft murine models. We demonstrate that BAP1 deubiquitinase activity reduces sensitivity to BET inhibitors. Concordantly, ectopic expression of RING1A or RING1B (H2AK119 E3 ubiquitin ligases) enhances sensitivity to BET inhibitors. The mechanistic study shows that the BET inhibitor OTX015 exerts a more potent suppressive effect on the transcription of various proliferation-related genes, especially MYC, in BAP1 knockout cells than in their isogenic parental cells, primarily by targeting BRD4. Furthermore, ectopic expression of Myc rescues the BET inhibitor-sensitizing effect induced by BAP1 loss. Our study reveals new approaches to specifically suppress BAP1-deficient cancers, including CM, UM, and ccRCC.
Collapse
Affiliation(s)
- Yu-Yan Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Lu Ren
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Medicinal Information and Real World Engineering Technology Center of Universities, Guangzhou, 510006, China
| | - Xiao-Lian Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Gui-Ming Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Si-Si Huang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Hui Shi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lin-Xuan Ye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin Luo
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shu-Wen Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Lei Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Le Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
181
|
Sabat‐Pośpiech D, Fabian‐Kolpanowicz K, Kalirai H, Kipling N, Coupland SE, Coulson JM, Fielding AB. Aggressive uveal melanoma displays a high degree of centrosome amplification, opening the door to therapeutic intervention. J Pathol Clin Res 2022; 8:383-394. [PMID: 35474453 PMCID: PMC9161346 DOI: 10.1002/cjp2.272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022]
Abstract
Uveal melanoma (UM) is the most common intraocular cancer in adults. Whilst treatment of primary UM (PUM) is often successful, around 50% of patients develop metastatic disease with poor outcomes, linked to chromosome 3 loss (monosomy 3, M3). Advances in understanding UM cell biology may indicate new therapeutic options. We report that UM exhibits centrosome abnormalities, which in other cancers are associated with increased invasiveness and worse prognosis, but also represent a potential Achilles' heel for cancer-specific therapeutics. Analysis of 75 PUM patient samples revealed both higher centrosome numbers and an increase in centrosomes with enlarged pericentriolar matrix (PCM) compared to surrounding normal tissue, both indicative of centrosome amplification. The PCM phenotype was significantly associated with M3 (t-test, p < 0.01). Centrosomes naturally enlarge as cells approach mitosis; however, whilst UM with higher mitotic scores had enlarged PCM regardless of genetic status, the PCM phenotype remained significantly associated with M3 in UM with low mitotic scores (ANOVA, p = 0.021) suggesting that this is independent of proliferation. Phenotypic analysis of patient-derived cultures and established UM lines revealed comparable levels of centrosome amplification in PUM cells to archetypal triple-negative breast cancer cell lines, whilst metastatic UM (MUM) cell lines had even higher levels. Importantly, many UM cells also exhibit centrosome clustering, a common strategy employed by other cancer cells with centrosome amplification to survive cell division. As UM samples with M3 display centrosome abnormalities indicative of amplification, this phenotype may contribute to the development of MUM, suggesting that centrosome de-clustering drugs may provide a novel therapeutic approach.
Collapse
Affiliation(s)
- Dorota Sabat‐Pośpiech
- Molecular Physiology and Cell Signalling, Institute of Systems Molecular & Integrative BiologyUniversity of LiverpoolLiverpoolUK
- Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Kim Fabian‐Kolpanowicz
- Biomedical and Life Sciences, Faculty of Health and MedicineLancaster UniversityLancasterUK
| | - Helen Kalirai
- Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Natalie Kipling
- Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Sarah E Coupland
- Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Judy M Coulson
- Molecular Physiology and Cell Signalling, Institute of Systems Molecular & Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Andrew B Fielding
- Molecular Physiology and Cell Signalling, Institute of Systems Molecular & Integrative BiologyUniversity of LiverpoolLiverpoolUK
- Biomedical and Life Sciences, Faculty of Health and MedicineLancaster UniversityLancasterUK
| |
Collapse
|
182
|
Chan PY, Phillips MM, Ellis S, Johnston A, Feng X, Arora A, Hay G, Cohen VML, Sagoo MS, Bomalaski JS, Sheaff MT, Szlosarek PW. A Phase 1 study of ADI-PEG20 (pegargiminase) combined with cisplatin and pemetrexed in ASS1-negative metastatic uveal melanoma. Pigment Cell Melanoma Res 2022; 35:461-470. [PMID: 35466524 PMCID: PMC9322321 DOI: 10.1111/pcmr.13042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022]
Abstract
Metastatic uveal melanoma (UM) is a devastating disease with few treatment options. We evaluated the safety, tolerability and preliminary activity of arginine depletion using pegylated arginine deiminase (ADI‐PEG20; pegargiminase) combined with pemetrexed (Pem) and cisplatin (Cis) chemotherapy in a phase 1 dose‐expansion study of patients with argininosuccinate synthetase (ASS1)‐deficient metastatic UM. Eligible patients received up to six cycles of Pem (500 mg/m2) and Cis (75 mg/m2) every 3 weeks plus weekly intramuscular ADI (36 mg/m2), followed by maintenance ADI until progression (NCT02029690). Ten of fourteen ASS1‐deficient patients with UM liver metastases and a median of one line of prior immunotherapy received ADIPemCis. Only one ≥ grade 3 adverse event of febrile neutropenia was reported. Seven patients had stable disease with a median progression‐free survival of 3.0 months (range, 1.3–8.1) and a median overall survival of 11.5 months (range, 3.2–36.9). Despite anti‐ADI‐PEG20 antibody emergence, plasma arginine concentrations remained suppressed by 18 weeks with a reciprocal increase in plasma citrulline. Tumour rebiopsies at progression revealed ASS1 re‐expression as an escape mechanism. ADIPemCis was well tolerated with modest disease stabilisation in metastatic UM. Further investigation of arginine deprivation is indicated in UM including combinations with immune checkpoint blockade and additional anti‐metabolite strategies.
Collapse
Affiliation(s)
- Pui Ying Chan
- Department of Medical Oncology, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK.,Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Melissa M Phillips
- Department of Medical Oncology, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Stephen Ellis
- Department of Medical Oncology, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | | | - Xiaoxing Feng
- Polaris Pharmaceuticals Inc, San Diego, California, USA
| | - Amit Arora
- Department of Ocular Oncology, Moorfields Eye Hospital, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Gordon Hay
- Department of Ocular Oncology, Moorfields Eye Hospital, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Victoria M L Cohen
- Department of Ocular Oncology, Moorfields Eye Hospital, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Mandeep S Sagoo
- Department of Ocular Oncology, Moorfields Eye Hospital, Moorfields Eye Hospital NHS Foundation Trust, London, UK.,NIHR Biomedical Research Centre for Ophthalmology at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK
| | | | - Michael T Sheaff
- Department of Histopathology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Peter W Szlosarek
- Department of Medical Oncology, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK.,Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
183
|
Cordycepin (3′-Deoxyadenosine) Suppresses Heat Shock Protein 90 Function and Targets Tumor Growth in an Adenosine Deaminase-Dependent Manner. Cancers (Basel) 2022; 14:cancers14133122. [PMID: 35804893 PMCID: PMC9264932 DOI: 10.3390/cancers14133122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Alterations in metabolism and energy production are increasingly being recognized as important drivers of neoplasia, raising the possibility that metabolic analogs could disrupt oncogenic pathways. 3′-deoxyadenosine, also known as cordycepin, is an adenosine analog that inhibits the growth of several types of cancer. However, the effects of cordycepin have only been examined in a limited number of tumor types, and its mechanism of action is poorly understood. We found that cordycepin slows the growth and promotes apoptosis in uveal melanoma, as well as a range of other hard-to-treat malignancies, including retinoblastoma, atypical teratoid rhabdoid tumors, and diffuse midline gliomas. Interestingly, these effects were dependent on low adenosine deaminase (ADA) expression or activity. Inhibition of ADA using either siRNA or pharmacologic approaches sensitized tumors with higher ADA to cordycepin in vitro and in vivo, with increased apoptosis, reduced clonogenic capacity, and slower migration of neoplastic cells. Our studies suggest that ADA is both a biomarker predicting response to cordycepin and a target for combination therapy. We also describe a novel mechanism of action for cordycepin: competition with adenosine triphosphate (ATP) in binding to Hsp90, resulting in impaired processing of oncogenic Hsp90 client proteins.
Collapse
|
184
|
Recent Advances and Challenges in Uveal Melanoma Immunotherapy. Cancers (Basel) 2022; 14:cancers14133094. [PMID: 35804863 PMCID: PMC9264803 DOI: 10.3390/cancers14133094] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Uveal melanoma is the most common primary intraocular malignancy in adults. Although it can be controlled locally, half of the patients still develop metastases. To date, there have been no standard therapeutic strategies for the prevention or treatment of metastases. Existing therapies, such as chemotherapy and targeted therapies, induce only minimal responses. This review focuses on newly published research on immunotherapy. We highlight expanding treatments and their clinical outcomes, as well as propose promising new treatments and feasible checkpoints. Based on these findings, we provide innovative insights into feasible strategies for the treatment of patients with uveal melanoma. Abstract Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Compared to cutaneous melanoma (CM), which mainly harbors BRAF or NRAS mutations, UM predominantly harbors GNAQ or GNA11 mutations. Although primary UM can be controlled locally, approximately 50% of patients still develop metastases. To date, there have been no standard therapeutic strategies for the prevention or treatment of metastases. Unfortunately, chemotherapy and targeted therapies only induce minimal responses in patients with metastatic UM, with a median survival time of only 4–5 months after metastasis detection. Immunotherapy agents, such as immune checkpoint inhibitors, have achieved pioneering outcomes in CM but have shown limited effects in UM. Researchers have explored several feasible checkpoints to identify options for future therapies. Cancer vaccines have shown little in the way of therapeutic benefit in patients with UM, and there are few ongoing trials providing favorable evidence, but adoptive cell transfer-related therapies seem promising and deserve further investigation. More recently, the immune-mobilizing monoclonal T-cell receptor against the cancer molecule tebentafusp showed impressive antitumor effects. Meanwhile, oncolytic viruses and small molecule inhibitors have also gained ground. This review highlights recent progress in burgeoning treatments and provides innovative insights on feasible strategies for the treatment of UM.
Collapse
|
185
|
Silva-Rodríguez P, Fernández-Díaz D, Bande M, Pardo M, Loidi L, Blanco-Teijeiro MJ. GNAQ and GNA11 Genes: A Comprehensive Review on Oncogenesis, Prognosis and Therapeutic Opportunities in Uveal Melanoma. Cancers (Basel) 2022; 14:3066. [PMID: 35804836 PMCID: PMC9264989 DOI: 10.3390/cancers14133066] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
The GNAQ and GNA11 genes are mutated in almost 80-90% of uveal melanomas in a mutually exclusive pattern. These genes encode the alpha subunits of the heterotrimeric G proteins, Gq and G11; thus, mutations of these genes result in the activation of several important signaling pathways, including phospholipase C, and activation of the transcription factor YAP. It is well known that both of them act as driver genes in the oncogenic process and it has been assumed that they do not play a role in the prognosis of these tumours. However, it has been hypothesised that mutations in these genes could give rise to molecularly and clinically distinct types of uveal melanomas. It has also been questioned whether the type and location of mutation in the GNAQ and GNA11 genes may affect the progression of these tumours. All of these questions, except for their implications in carcinogenesis, remain controversial. Uveal melanoma has a distinctive genetic profile, and specific recurrent mutations, which make it a potential candidate for treatment with targeted therapy. Given that the most frequent mutations are those observed in the GNAQ and GNA11 genes, and that both genes are involved in oncogenesis, these molecules, as well as the downstream signalling pathways in which they are involved, have been proposed as promising potential therapeutic targets. Therefore, in this review, special attention is paid to the current data related to the possible prognostic implications of both genes from different perspectives, as well as the therapeutic options targeting them.
Collapse
Affiliation(s)
- Paula Silva-Rodríguez
- Fundación Pública Galega de Medicina Xenómica, Clinical University Hospital, SERGAS, 15706 Santiago de Compostela, Spain;
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (D.F.-D.); (M.B.); (M.J.B.-T.)
| | - Daniel Fernández-Díaz
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (D.F.-D.); (M.B.); (M.J.B.-T.)
| | - Manuel Bande
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (D.F.-D.); (M.B.); (M.J.B.-T.)
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain
| | - María Pardo
- Grupo Obesidómica, Instituto de Investigación Sanitaria de Santiago (IDIS), CIBEROBN, ISCIII, 15706 Santiago de Compostela, Spain;
| | - Lourdes Loidi
- Fundación Pública Galega de Medicina Xenómica, Clinical University Hospital, SERGAS, 15706 Santiago de Compostela, Spain;
| | - María José Blanco-Teijeiro
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (D.F.-D.); (M.B.); (M.J.B.-T.)
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain
| |
Collapse
|
186
|
Yang TJ, Li TN, Huang RS, Pan MYC, Lin SY, Lin S, Wu KP, Wang LHC, Hsu STD. Tumor suppressor BAP1 nuclear import is governed by transportin-1. J Cell Biol 2022; 221:213174. [PMID: 35446349 DOI: 10.1083/jcb.202201094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/16/2022] [Accepted: 03/31/2022] [Indexed: 12/30/2022] Open
Abstract
Subcellular localization of the deubiquitinating enzyme BAP1 is deterministic for its tumor suppressor activity. While the monoubiquitination of BAP1 by an atypical E2/E3-conjugated enzyme UBE2O and BAP1 auto-deubiquitination are known to regulate its nuclear localization, the molecular mechanism by which BAP1 is imported into the nucleus has remained elusive. Here, we demonstrated that transportin-1 (TNPO1, also known as Karyopherin β2 or Kapβ2) targets an atypical C-terminal proline-tyrosine nuclear localization signal (PY-NLS) motif of BAP1 and serves as the primary nuclear transporter of BAP1 to achieve its nuclear import. TNPO1 binding dissociates dimeric BAP1 and sequesters the monoubiquitination sites flanking the PY-NLS of BAP1 to counteract the function of UBE2O that retains BAP1 in the cytosol. Our findings shed light on how TNPO1 regulates the nuclear import, self-association, and monoubiquitination of BAP1 pertinent to oncogenesis.
Collapse
Affiliation(s)
- Tzu-Jing Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Tian-Neng Li
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Rih-Sheng Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Max Yu-Chen Pan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Academia Sinica Common Mass Spectrometry Facilities for Proteomics and Protein Modification Analysis, Academia Sinica, Taipei, Taiwan
| | - Steven Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
187
|
Beasley AB, Chen FK, Isaacs TW, Gray ES. Future perspectives of uveal melanoma blood based biomarkers. Br J Cancer 2022; 126:1511-1528. [PMID: 35190695 PMCID: PMC9130512 DOI: 10.1038/s41416-022-01723-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 01/15/2022] [Accepted: 01/27/2022] [Indexed: 01/06/2023] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy affecting adults. Despite successful local treatment of the primary tumour, metastatic disease develops in up to 50% of patients. Metastatic UM carries a particularly poor prognosis, with no effective therapeutic option available to date. Genetic studies of UM have demonstrated that cytogenetic features, including gene expression, somatic copy number alterations and specific gene mutations can allow more accurate assessment of metastatic risk. Pre-emptive therapies to avert metastasis are being tested in clinical trials in patients with high-risk UM. However, current prognostic methods require an intraocular tumour biopsy, which is a highly invasive procedure carrying a risk of vision-threatening complications and is limited by sampling variability. Recently, a new diagnostic concept known as "liquid biopsy" has emerged, heralding a substantial potential for minimally invasive genetic characterisation of tumours. Here, we examine the current evidence supporting the potential of blood circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), microRNA (miRNA) and exosomes as biomarkers for UM. In particular, we discuss the potential of these biomarkers to aid clinical decision making throughout the management of UM patients.
Collapse
Affiliation(s)
- Aaron B Beasley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia
- Department of Ophthalmology, Perth Children's Hospital, Perth, WA, Australia
| | - Timothy W Isaacs
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia
- Perth Retina, West Leederville, WA, Australia
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia.
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
188
|
Lalonde E, Ewens K, Richards-Yutz J, Ebrahimzedeh J, Terai M, Gonsalves CF, Sato T, Shields CL, Ganguly A. Improved Uveal Melanoma Copy Number Subtypes Including an Ultra–High-Risk Group. OPHTHALMOLOGY SCIENCE 2022; 2:100121. [PMID: 36249692 PMCID: PMC9559896 DOI: 10.1016/j.xops.2022.100121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
Abstract
Purpose Design Participants Methods Main Outcome Measures Results Conclusions
Collapse
|
189
|
Gelmi MC, Houtzagers LE, Strub T, Krossa I, Jager MJ. MITF in Normal Melanocytes, Cutaneous and Uveal Melanoma: A Delicate Balance. Int J Mol Sci 2022; 23:6001. [PMID: 35682684 PMCID: PMC9181002 DOI: 10.3390/ijms23116001] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Microphthalmia-associated transcription factor (MITF) is an important regulator of melanogenesis and melanocyte development. Although it has been studied extensively in cutaneous melanoma, the role of MITF in uveal melanoma (UM) has not been explored in much detail. We review the literature about the role of MITF in normal melanocytes, in cutaneous melanoma, and in UM. In normal melanocytes, MITF regulates melanocyte development, melanin synthesis, and melanocyte survival. The expression profile and the behaviour of MITF-expressing cells suggest that MITF promotes local proliferation and inhibits invasion, inflammation, and epithelial-to-mesenchymal (EMT) transition. Loss of MITF expression leads to increased invasion and inflammation and is more prevalent in malignant cells. Cutaneous melanoma cells switch between MITF-high and MITF-low states in different phases of tumour development. In UM, MITF loss is associated with loss of BAP1 protein expression, which is a marker of poor prognosis. These data indicate a dual role for MITF in benign and malignant melanocytic cells.
Collapse
Affiliation(s)
- Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| | - Laurien E. Houtzagers
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| | - Thomas Strub
- Université Côte d’Azur, 06103 Nice, France; (T.S.); (I.K.)
- Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, 06204 Nice, France
| | - Imène Krossa
- Université Côte d’Azur, 06103 Nice, France; (T.S.); (I.K.)
- Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, 06204 Nice, France
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| |
Collapse
|
190
|
Drula R, Iluta S, Gulei D, Iuga C, Dima D, Ghiaur G, Buzoianu AD, Ciechanover A, Tomuleasa C. Exploiting the ubiquitin system in myeloid malignancies. From basic research to drug discovery in MDS and AML. Blood Rev 2022; 56:100971. [PMID: 35595613 DOI: 10.1016/j.blre.2022.100971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system is the crucial homeostatic mechanism responsible for the degradation and turnover of proteins. As such, alterations at this level are often associated with oncogenic processes, either through accumulation of undegraded pathway effectors or, conversely, excessive degradation of tumor-suppressing factors. Therefore, investigation of the ubiquitin- proteasome system has gained much attraction in recent years, especially in the context of hematological malignancies, giving rise to efficient therapeutics such as bortezomib for multiple myeloma. Current investigations are now focused on manipulating protein degradation via fine-tuning of the ubiquitination process through inhibition of deubiquitinating enzymes or development of PROTAC systems for stimulation of ubiquitination and protein degradation. On the other hand, the efficiency of Thalidomide derivates in myelodysplastic syndromes (MDS), such as Lenalidomide, acted as the starting point for the development of targeted leukemia-associated protein degradation molecules. These novel molecules display high efficiency in overcoming the limitations of current therapeutic regimens, such as refractory diseases. Therefore, in this manuscript we will address the therapeutic opportunities and strategies based on the ubiquitin-proteasome system, ranging from the modulation of deubiquitinating enzymes and, conversely, describing the potential of modern targeted protein degrading molecules and their progress into clinical implementation.
Collapse
Affiliation(s)
- Rares Drula
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Cristina Iuga
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Pharmaceutical Analysis, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| | - Gabriel Ghiaur
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Aaron Ciechanover
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Rappaport Technion Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel; Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Ciprian Tomuleasa
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
| |
Collapse
|
191
|
Phelps GB, Hagen HR, Amsterdam A, Lees JA. MITF deficiency accelerates GNAQ-driven uveal melanoma. Proc Natl Acad Sci U S A 2022; 119:e2107006119. [PMID: 35512098 PMCID: PMC9172632 DOI: 10.1073/pnas.2107006119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 02/17/2022] [Indexed: 01/02/2023] Open
Abstract
Cutaneous melanoma (CM) and uveal melanoma (UM) both originate from the melanocytic lineage but are primarily driven by distinct oncogenic drivers, BRAF/NRAS or GNAQ/GNA11, respectively. The melanocytic master transcriptional regulator, MITF, is essential for both CM development and maintenance, but its role in UM is largely unexplored. Here, we use zebrafish models to dissect the key UM oncogenic signaling events and establish the role of MITF in UM tumors. Using a melanocytic lineage expression system, we showed that patient-derived mutations of GNAQ (GNAQQ209L) or its upstream CYSLTR2 receptor (CYSLTR2L129Q) both drive UM when combined with a cooperating mutation, tp53M214K/M214K. The tumor-initiating potential of the major GNAQ/11 effector pathways, YAP, and phospholipase C-β (PLCβ)–ERK was also investigated in this system and thus showed that while activated YAP (YAPAA) induced UM with high potency, the patient-derived PLCβ4 mutation (PLCB4D630Y) very rarely yielded UM tumors in the tp53M214K/M214K context. Remarkably, mitfa deficiency was profoundly UM promoting, dramatically accelerating the onset and progression of tumors induced by Tg(mitfa:GNAQQ209L);tp53M214K/M214K or Tg(mitfa:CYSLTR2L129Q);tp53M214K/M214K. Moreover, mitfa loss was sufficient to cooperate with GNAQQ209L to drive tp53–wild type UM development and allowed Tg(mitfa:PLCB4D630Y);tp53M214K/M214K melanocyte lineage cells to readily form tumors. Notably, all of the mitfa−/− UM tumors, including those arising in Tg(mitfa:PLCB4D630Y);tp53M214K/M214K;mitfa−/− zebrafish, displayed nuclear YAP while lacking hyperactive ERK indicative of PLCβ signaling. Collectively, these data show that YAP signaling is the major mediator of UM and that MITF acts as a bona fide tumor suppressor in UM in direct opposition to its essential role in CM.
Collapse
Affiliation(s)
- Grace B. Phelps
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Hannah R. Hagen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Adam Amsterdam
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jacqueline A. Lees
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
192
|
Huang YM, Yeh KY, Chen PY, Hsieh TY, Hsu LS, Wu CE, Yang CH, Zheng YC. Primary intracranial malignant melanomas in solitary type: a tertiary center experience. J Clin Neurosci 2022; 101:37-46. [PMID: 35526362 DOI: 10.1016/j.jocn.2022.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE Solitary type primary intracranial malignant melanoma (PIMM) is extremely rare but fatal. The optimal treatment algorithm according to clinical relevance of symptoms and outcomes is unclear. This series emphasized the prognostic factors of solitary PIMM and established the treatment algorithm for this rare disease. METHODS Patients with solitary PIMMs were pathologically verified and treated with neurosurgical tumor resection. All solitary PIMMs recruited at our institute received multidisciplinary team care. We analyzed the clinical findings and prognostic factors. RESULTS The study cohort included 10 patients. PIMMs in solitary type impacted middle-aged populations with male predominance in Taiwan. Most patients (80%) presented a single tumor initially. Six patients had progressed to multiplicity after the initial treatment. Rates of tumor bleeding and leptomeningeal metastasis seeding (LS) are high in solitary PIMMs. Patients who had gross-total resection (GTR) had better survival than those who had incomplete resection, with median overall survival (OS) rates of 170.4 months vs. 5.23 months (p = 0.004). Multiplicity, eloquent area involvement, initial tumor bleeding, LS, hydrocephalus, and Karnofsky Performance Score < 80 at diagnosis were associated with negative outcomes in progression-free survival and OS. Adjuvant radiotherapy for patients who had LS and for those who cannot undergo grossly total tumor removal resulted in a good outcome. CONCLUSIONS GTR demonstrated better outcomes for solitary PIMM. For recurrent tumors, aggressively repeated surgical resection remained beneficial for selected cases. Adjuvant radiotherapy was a treatment option for LS following operation. We proposed a possible treatment algorithm for solitary PIMM.
Collapse
Affiliation(s)
- Yen-Min Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Kun-Yun Yeh
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan.
| | - Pin-Yuan Chen
- Departments of Neurosurgery, Chang Gung Memorial Hospital, Keelung and Linkou & Chang Gung University, Taiwan.
| | - Tsan-Yu Hsieh
- Department of Pathology, Chang Gung Memorial Hospital, Keelung, Taiwan.
| | - Li-Sung Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Chiao-En Wu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Cheng-Han Yang
- Departments of Anatomic Pathology, Chang Gung Memorial Hospital at Linkou.
| | - Yun-Cong Zheng
- Departments of Neurosurgery, Chang Gung Memorial Hospital, Keelung and Linkou & Chang Gung University, Taiwan.
| |
Collapse
|
193
|
Karg MM, John L, Refaian N, Buettner C, Rottmar T, Sommer J, Bock B, Resheq YJ, Ksander BR, Heindl LM, Mackensen A, Bosch JJ. Midkine promotes metastasis and therapeutic resistance via mTOR/RPS6 in uveal melanoma. Mol Cancer Res 2022; 20:1320-1336. [PMID: 35503453 DOI: 10.1158/1541-7786.mcr-20-0692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/27/2021] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
Abstract
Uveal melanoma is a rare form of melanoma that originates in the eye, exerts widespread therapeutic resistance and displays an inherent propensity for hepatic metastases. Since metastatic disease is characterized by poor survival, there is an unmet clinical need to identify new therapeutic targets in uveal melanoma. Here, we show that the pleiotropic cytokine midkine is expressed in uveal melanoma. Midkine expression in primary uveal melanoma significantly correlates with poor survival and is elevated in patients that develop metastatic disease. Monosomy 3 and histopathological staging parameters are associated with midkine expression. In addition, we demonstrate that midkine promotes survival, migration across a barrier of hepatic sinusoid endothelial cells and resistance to AKT/mTOR inhibition. Furthermore, midkine is secreted and mediates mTOR activation by maintaining phosphorylation of the mTOR target RPS6 in uveal melanoma cells. Therefore, midkine is identified as a uveal melanoma cell survival factor that drives metastasis and therapeutic resistance, and could be exploited as a biomarker as well as a new therapeutic target. Implications: Midkine is identified as a survival factor that drives liver metastasis and therapeutic resistance in melanoma of the eye.
Collapse
Affiliation(s)
| | - Lukas John
- University Hospital Erlangen, Erlangen, Germany
| | - Nasrin Refaian
- Department of Ophthalmology, University Hospital Cologne, Cologne and Center for Integrated Oncology (CIO) Cologne-Bonn, Cologne, Germany
| | - Christian Buettner
- University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | | | | | | | | | | | | | - Andreas Mackensen
- Dept. of Internal Medicine 5, Hematology/Oncology, Erlangen, Germany
| | | |
Collapse
|
194
|
Broit N, Johansson PA, Rodgers CB, Walpole S, Hayward NK, Pritchard AL. Systematic review and meta-analysis of genomic alterations in acral melanoma. Pigment Cell Melanoma Res 2022; 35:369-386. [PMID: 35229492 PMCID: PMC9540316 DOI: 10.1111/pcmr.13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Abstract
Acral melanoma (AM) tumors arise on the palms, soles, fingers, toes, and nailbeds. A comprehensive systematic meta-analysis of AM genomic aberrations has not been conducted to date. A literature review was carried out to identify studies sequencing AM. Whole-genome/exome data from 181 samples were identified. Targeted panel sequencing data from MSK-IMPACT were included as a validation cohort (n = 92), and studies using targeted hot spot sequencing were also collated for BRAF (n = 26 studies), NRAS (n = 21), and KIT (n = 32). Statistical analysis indicated BRAF, NRAS, PTEN, TYRP1, and KIT as significantly mutated genes. Frequent copy-number aberrations were also found for important cancer genes, such as CDKN2A, KIT, MDM2, CCND1, CDK4, and PAK1, among others. Mapping genomic alterations within the context of the hallmarks of cancer identified four components frequently altered, including (i) sustained proliferative signaling and (ii) evading growth suppression, (iii) genome instability and mutation, and (iv) enabling replicative immortality. This analysis provides the largest analysis of genomic aberrations in AM in the literature to date and highlights pathways that may be therapeutically targetable.
Collapse
Affiliation(s)
- Natasa Broit
- Oncogenomics GroupQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
- Faculty of MedicineUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Peter A. Johansson
- Oncogenomics GroupQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Chloe B. Rodgers
- Genetics and Immunology GroupUniversity of the Highlands and IslandsInvernessUK
| | - Sebastian T. Walpole
- Oncogenomics GroupQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Nicholas K. Hayward
- Oncogenomics GroupQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Antonia L. Pritchard
- Oncogenomics GroupQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
- Genetics and Immunology GroupUniversity of the Highlands and IslandsInvernessUK
| |
Collapse
|
195
|
Baqai U, Purwin TJ, Bechtel N, Chua V, Han A, Hartsough EJ, Kuznetsoff JN, Harbour JW, Aplin AE. Multi-omics profiling shows BAP1 loss is associated with upregulated cell adhesion molecules in uveal melanoma. Mol Cancer Res 2022; 20:1260-1271. [DOI: 10.1158/1541-7786.mcr-21-0657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/04/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Abstract
BRCA1-associated protein 1 (BAP1) is a tumor suppressor gene that is mutated in cancer, including uveal melanoma (UM). Loss-of-function BAP1 mutations are associated with UM metastasis and poor prognosis, but the mechanisms underlying these effects remain unclear. Upregulation of cell-cell adhesion proteins is involved with collective migration and metastatic seeding of cancer cells. Here, we show that BAP1 loss in UM patient samples is associated with upregulated gene expression of multiple cell adhesion molecules (CAMs), including E-cadherin (CDH1), cell adhesion molecule 1 (CADM1), and syndecan-2 (SDC2). Similar findings were observed in UM cell lines and scRNA seq data from UM patient samples. BAP1 re-expression in UM cells reduced E-cadherin and CADM1 levels. Functionally, knockdown of E-cadherin decreased spheroid cluster formation and knockdown of CADM1 decreased growth of BAP1 mutant UM cells. Together, our findings demonstrate that BAP1 regulates the expression of CAMs which may regulate metastatic traits. Implications: BAP1 mutations and increased metastasis may be due to upregulation of cell adhesion molecules.
Collapse
Affiliation(s)
- Usman Baqai
- Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Nelisa Bechtel
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Vivian Chua
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Anna Han
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Edward J. Hartsough
- Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| | | | | | - Andrew E. Aplin
- Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
196
|
Hagström A, Kal Omar R, Williams PA, Stålhammar G. The rationale for treating uveal melanoma with adjuvant melatonin: a review of the literature. BMC Cancer 2022; 22:398. [PMID: 35413810 PMCID: PMC9006630 DOI: 10.1186/s12885-022-09464-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/28/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Uveal melanoma is a rare form of cancer with high mortality. The incidence of metastases is attributed to early seeding of micrometastases from the eye to distant organs, primarily the liver. Once these seeded clusters of dormant tumor cells grow into larger radiologically detectable macrometastases, median patient survival is about 1 year. Melatonin is an important hormone for synchronizing circadian rhythms. It is also involved in other aspects of human physiology and may offer therapeutic benefits for a variety of diseases including cancer. METHODS Articles involving the physiological effects of melatonin, pharmacokinetics, and previous use in cancer studies were acquired using a comprehensive literature search in the Medline (PubMed) and Web of Science databases. In total, 147 publications were selected and included in the review. RESULTS Melatonin has been observed to suppress the growth of cancer cells, inhibit metastatic spread, enhance immune system functions, and act as an anti-inflammatory in both in vitro and in vivo models. Melatonin may also enhance the efficacy of cancer treatments such as immuno- and chemotherapy. Numerous studies have shown promising results for oral melatonin supplementation in patients with other forms of cancer including cutaneous malignant melanoma. Cell line and animal studies support a hypothesis in which similar benefits may exist for uveal melanoma. CONCLUSIONS Given its low cost, good safety profile, and limited side effects, there may be potential for the use of melatonin as an adjuvant oncostatic treatment. Future avenues of research could include clinical trials to evaluate the effect of melatonin in prevention of macrometastases of uveal melanoma.
Collapse
Affiliation(s)
- Anna Hagström
- Department of Medicine, Karolinska Institutet, D1:04, 171 76, Stockholm, Sweden.
| | - Ruba Kal Omar
- Department of Medicine, Karolinska Institutet, D1:04, 171 76, Stockholm, Sweden.
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 171 64, Stockholm, Sweden
| | - Gustav Stålhammar
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 171 64, Stockholm, Sweden
- St. Erik Eye Hospital, Box 4078, 171 04, Stockholm, Sweden
| |
Collapse
|
197
|
Gallenga CE, Franco E, Adamo GG, Violanti SS, Tassinari P, Tognon M, Perri P. Genetic Basis and Molecular Mechanisms of Uveal Melanoma Metastasis: A Focus on Prognosis. Front Oncol 2022; 12:828112. [PMID: 35480119 PMCID: PMC9037634 DOI: 10.3389/fonc.2022.828112] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
Uveal melanoma (UM) is the most frequently found primary intraocular tumor, although it accounts for only 5% of all melanomas. Despite novel systemic therapies, patient survival has remained poor. Indeed, almost half of UM patients develop metastases from micro-metastases which were undetectable at diagnosis. Genetic analysis is crucial for metastatic risk prediction, as well as for patient management and follow-up. Several prognostic parameters have been explored, including tumor location, basal dimension and thickness, histopathologic cell type, vascular mimicry patterns, and infiltrating lymphocytes. Herein, the Authors review the available literature concerning cytogenetic prognostic markers and biochemical pathways correlated to UM metastasis development.
Collapse
Affiliation(s)
| | - Elena Franco
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Ginevra Giovanna Adamo
- Department of Specialized Surgery, Section of Ophthalmology, Sant’Anna University Hospital, Ferrara, Italy
| | - Sara Silvia Violanti
- Department of Head and Neck, Section of Ophthalmology, San Paolo Hospital, Savona, Italy
| | - Paolo Tassinari
- Department of Specialized Surgery, Section of Ophthalmology, Sant’Anna University Hospital, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paolo Perri
- Department of Neuroscience and Rehabilitation, Section of Ophthalmology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
198
|
Carbone M, Pass HI, Ak G, Alexander HR, Baas P, Baumann F, Blakely AM, Bueno R, Bzura. A, Cardillo G, Churpek JE, Dianzani I, De Rienzo A, Emi M, Emri S, Felley-Bosco E, Fennell DA, Flores RM, Grosso F, Hayward NK, Hesdorffer M, Hoang CD, Johansson PA, Kindler HL, Kittaneh M, Krausz T, Mansfield A, Metintas M, Minaai M, Mutti L, Nielsen M, O’Byrne K, Opitz I, Pastorino S, Pentimalli F, de Perrot M, Pritchard A, Ripley RT, Robinson B, Rusch V, Taioli E, Takinishi Y, Tanji M, Tsao AS, Tuncer AM, Walpole S, Wolf A, Yang H, Yoshikawa Y, Zolodnick A, Schrump DS, Hassan R. Medical and surgical care of mesothelioma patients and their relatives carrying germline BAP1 mutations. J Thorac Oncol 2022; 17:873-889. [DOI: 10.1016/j.jtho.2022.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022]
|
199
|
Singh AD, Raval V, Wrenn J, Zabor EC. Small Choroidal Melanoma: Outcomes After Surveillance Versus Immediate Treatment. Am J Ophthalmol 2022; 241:47-56. [PMID: 35358487 DOI: 10.1016/j.ajo.2022.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE To quantify potential loss (loss of vision) and gain (freedom from metastasis) in patients with small choroidal melanoma treated after a period of surveillance to document growth. METHODS A total of 167 patients with small choroidal melanoma (size: 5.0-16.0 mm in largest basal diameter and 1.0-2.5 mm in height) were identified: 42 treated after surveillance (documented growth) and 125 treated immediately. A prediction model was applied to each patient in the immediate treatment group to obtain the predicted risk of melanoma (high risk vs low risk). Potential loss (loss of vision) and gain (freedom from metastasis) were compared between the low-risk immediate treatment group and those treated after surveillance. RESULTS By using the optimal cut point (0.60; 95% confidence interval: 0.37-0.61) of predicted risk for small choroidal melanoma (sensitivity: 0.74, specificity: 0.95), we identified 94 (75%) patients as high risk (score: ≥0.6) and the remaining 31 (25%) as having low-risk melanoma (score: <0.6). Over a median follow-up of 34.6 months, 5 developed metastasis (high risk = 4, low risk = 1) compared with 1 patient in the surveillance group. Initial visual acuity and loss of <15-letter visual acuity were not significantly different at 36 months between the low-risk patients immediately treated and those treated after surveillance (81% vs 83%), respectively. CONCLUSIONS Low-risk choroidal melanoma identified by the prediction model can be labeled as an indeterminate melanocytic tumor. Such patients can be managed by surveillance to document growth before receiving vision-threatening treatment without increased risk of metastatic death. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
Affiliation(s)
- Arun D Singh
- From the Ophthalmic Oncology, Cole Eye Institute, Cleveland Clinic (A.D.S., V.R., J.W.), and.
| | - Vishal Raval
- From the Ophthalmic Oncology, Cole Eye Institute, Cleveland Clinic (A.D.S., V.R., J.W.), and
| | - Jacquelyn Wrenn
- From the Ophthalmic Oncology, Cole Eye Institute, Cleveland Clinic (A.D.S., V.R., J.W.), and
| | - Emily C Zabor
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic (E.C.Z.), Cleveland, Ohio, USA
| |
Collapse
|
200
|
Ağın A, Kiratli H, Guresci S, Babaoglu B, Karakaya J, Soylemezoglu F. Evaluation of HSP-27, BAP1, BRAF V600E, CCR7, and PD-L1 expression in uveal melanoma on enucleated eyes and metastatic liver tumors. Int J Biol Markers 2022; 37:200-209. [PMID: 35341390 DOI: 10.1177/03936155221088886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The presence of metastatic disease is one of the most important factors limiting survival in patients with uveal melanoma. Studies on proteins associated with metastatic mechanisms are sparse in the literature. METHODS Enucleation samples from 15 patients with metastatic uveal melanoma (Group 1), liver metastasectomy samples from 8 patients with metastatic uveal melanoma (Group 2), and enucleation samples from 20 patients with non-metastatic uveal melanoma as controls (Group 3) were included in the study. Antibodies against heat shock protein 27 (HSP-27), BRCA1-associated protein-1 (BAP1), C-C chemokine receptor 7 (CCR7), B-Raf proto-oncogene serine/threonine-protein kinase V600E (BRAF V600E), and programmed death-ligand 1 (PD-L1) were used to detect immunoreactivity in each sample by immunohistochemical methods. Correlations between these expressed proteins and selected histopathological and clinical features, and metastatic process were investigated. RESULTS The frequencies of HSP-27 (median score: Group 1: 8, Group 2: 12, Group 3: 4) and BRAF V600E expressions (number of samples: Group 1: 4 (26.7%), Group 2: 1 (12.5%), Group 3: 0 (0%)), and BAP1 expression loss (number of samples : Group 1: 12 (80%), Group 2: 8 (100%), Group 3: 9 (45%)) were higher in samples from patients with metastatic uveal melanoma (Group 1 + 2) than in those from patients with non-metastatic disease (Group 3) (P = 0.001, P = 0.034, and P = 0.007, respectively). CCR7 expression (median score: Group 1: 0, Group 2: 2, Group 3: 3) was similar among these three groups (P = 0.136). No samples exhibited PD-L1 expression (P = 1.000). One-unit increases in the HSP-27 expression level and BAP1 expression loss were significantly related to 1.375- and 7.855-fold increases in the risk of metastasis, respectively (P = 0.007 and P = 0.017). CONCLUSION HSP-27 and BAP1 are considered to be associated with metastasis, indicating these proteins as potential treatment targets in metastatic uveal melanoma.
Collapse
Affiliation(s)
- Abdullah Ağın
- Department of Ophthalmology, University of Health Science, 147013Haseki Training and Research Hospital, Istanbul, Turkey
| | - Hayyam Kiratli
- Ocular Oncology Service, Department of Ophthalmology, 37515Hacettepe University School of Medicine, Ankara, Turkey
| | - Servet Guresci
- Department of Pathology, 536164Ankara City Hospital, Ankara, Turkey
| | - Berrin Babaoglu
- Department of Pathology, 37515Hacettepe University School of Medicine, Ankara, Turkey
| | - Jale Karakaya
- Department of Biostatistics, 37515Hacettepe University School of Medicine, Ankara, Turkey
| | - Figen Soylemezoglu
- Department of Pathology, 37515Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|