151
|
The human fetoembryonic defense system hypothesis: Twenty years on. Mol Aspects Med 2016; 51:71-88. [PMID: 27349751 DOI: 10.1016/j.mam.2016.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/13/2016] [Accepted: 06/21/2016] [Indexed: 11/21/2022]
|
152
|
Khosravi F, Michel V, Galuska CE, Bhushan S, Christian P, Schuppe HC, Pilatz A, Galuska SP, Meinhardt A. Desialylation of Spermatozoa and Epithelial Cell Glycocalyx Is a Consequence of Bacterial Infection of the Epididymis. J Biol Chem 2016; 291:17717-26. [PMID: 27339898 DOI: 10.1074/jbc.m116.718072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 11/06/2022] Open
Abstract
Urinary tract infections caused by uropathogenic Escherichia coli (UPEC) pathovars belong to the most frequent infections in humans. In men, pathogens can also spread to the genital tract via the continuous ductal system, eliciting bacterial prostatitis and/or epididymo-orchitis. Antibiotic treatment usually clears pathogens in acute epididymitis; however, the fertility of patients can be permanently impaired. Because a premature acrosome reaction was observed in an UPEC epididymitis mouse model, and sialidases on the sperm surface are considered to be activated via proteases of the acrosome, we aimed to investigate whether alterations of the sialome of epididymal spermatozoa and surrounding epithelial cells occur during UPEC infection. In UPEC-elicited acute epididymitis in mice, a substantial loss of N-acetylneuraminic acid residues was detected in epididymal spermatozoa and epithelial cells using combined laser microdissection/HPLC-ESI-MS analysis. In support, a substantial reduction of sialic acid residues bound to the surface of spermatozoa was documented in men with a recent history of E. coli-associated epididymitis. In vitro, such an UPEC induced N-acetylneuraminic acid release from human spermatozoa was effectively counteracted by a sialidase inhibitor. These findings strongly suggest a substantial remodeling of the glycocalyx of spermatozoa and epididymal epithelial cells by endogenous sialidases after a premature acrosome reaction during acute epididymitis.
Collapse
Affiliation(s)
- Farhad Khosravi
- From the Institutes of Anatomy and Cell Biology and Biochemistry and
| | - Vera Michel
- From the Institutes of Anatomy and Cell Biology and
| | | | | | | | - Hans-Christian Schuppe
- Department of Urology, Pediatric Urology, and Andrology, Faculty of Medicine, Justus Liebig University, 35392 Giessen, Germany and
| | - Adrian Pilatz
- Department of Urology, Pediatric Urology, and Andrology, Faculty of Medicine, Justus Liebig University, 35392 Giessen, Germany and
| | - Sebastian P Galuska
- Biochemistry and the Department of Reproductive Biology, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | | |
Collapse
|
153
|
Geissner A, Seeberger PH. Glycan Arrays: From Basic Biochemical Research to Bioanalytical and Biomedical Applications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:223-47. [PMID: 27306309 DOI: 10.1146/annurev-anchem-071015-041641] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A major branch of glycobiology and glycan-focused biomedicine studies the interaction between carbohydrates and other biopolymers, most importantly, glycan-binding proteins. Today, this research into glycan-biopolymer interaction is unthinkable without glycan arrays, tools that enable high-throughput analysis of carbohydrate interaction partners. Glycan arrays offer many applications in basic biochemical research, for example, defining the specificity of glycosyltransferases and lectins such as immune receptors. Biomedical applications include the characterization and surveillance of influenza strains, identification of biomarkers for cancer and infection, and profiling of immune responses to vaccines. Here, we review major applications of glycan arrays both in basic and applied research. Given the dynamic nature of this rapidly developing field, we focus on recent findings.
Collapse
Affiliation(s)
- Andreas Geissner
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
| |
Collapse
|
154
|
Perez-Patiño C, Barranco I, Parrilla I, Valero ML, Martinez EA, Rodriguez-Martinez H, Roca J. Characterization of the porcine seminal plasma proteome comparing ejaculate portions. J Proteomics 2016; 142:15-23. [PMID: 27109353 DOI: 10.1016/j.jprot.2016.04.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/04/2016] [Accepted: 04/17/2016] [Indexed: 01/04/2023]
Abstract
UNLABELLED Full identification of boar seminal plasma (SP) proteins remains challenging. This study aims to provide an extensive proteomic analysis of boar SP and to generate an accessible database of boar SP-proteome. A SP-pool (33entire ejaculates/11 boars; 3ejaculates/boar) was analyzed to characterize the boar SP-proteome. Twenty ejaculates (5 boars, 4ejaculates/boar) collected in portions (P1: first 10mL of sperm rich ejaculate fraction (SRF), P2: rest of SRF and P3: post-SRF) were analyzed to evaluate differentially expressed SP-proteins among portions. SP-samples were analyzed using a combination of SEC, 1-D SDS PAGE and NanoLC-ESI-MS/MS followed by functional bioinformatics. The identified proteins were quantified from normalized LFQ intensity data. A total of 536 SP-proteins were identified, 409 of them in Sus scrofa taxonomy (374 validated with ≥99% confidence). Barely 20 of the identified SP-proteins were specifically implicated in reproductive processes, albeit other SP-proteins could be indirectly involved in functionality and fertility of boar spermatozoa. Thirty-four proteins (16 identified in S. scrofa taxonomy) were differentially expressed among ejaculate portions, 16 being over-expressed and 18 under-expressed in P1-P2 regarding to P3. This major proteome mapping of the boar SP provides a complex inventory of proteins with potential roles as sperm function- and fertility- biomarkers. BIOLOGICAL SIGNIFICANCE This proteomic study provides the major characterization of the boar SP-proteome with >250 proteins first reported. The boar SP-proteome is described so that a spectral library can be built for relative 'label free' protein quantification with SWATH approach. This proteomic profiling allows the creation of a publicly accessible database of the boar SP-proteome, as a first step for further understanding the role of SP-proteins in reproductive outcomes as well as for the identification of biomarkers for sperm quality and fertility.
Collapse
Affiliation(s)
- Cristina Perez-Patiño
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - M Luz Valero
- Proteomics Section, Central Service for Experimental Research, University of Valencia, Spain; Department of Biochemistry and Molecular Biology, University of Valencia, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | | | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain.
| |
Collapse
|
155
|
Defaus S, Avilés M, Andreu D, Gutiérrez-Gallego R. Identification of Bovine Sperm Surface Proteins Involved in Carbohydrate-mediated Fertilization Interactions. Mol Cell Proteomics 2016; 15:2236-51. [PMID: 27094474 DOI: 10.1074/mcp.m115.057703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 01/17/2023] Open
Abstract
Glycan-protein interactions play a key role in mammalian fertilization, but data on the composition and identities of protein complexes involved in fertilization events are scarce, with the added complication that the glycans in such interactions tend to differ among species. In this study we have used a bovine model to detect, characterize and identify sperm lectins relevant in fertilization. Given the complexity of the sperm-toward-egg journey, two important aspects of the process, both primarily mediated by protein-sugar interactions, have been addressed: (1) formation of the sperm reservoir in the oviductal epithelium, and (2) gamete recognition (oocyte-sperm interaction). Using whole sperm cells and a novel affinity capture method, several groups of proteins with different glycan specificities, including 58 hitherto unreported as lectins, have been identified in sperm surface, underscoring both the efficacy of our selective approach and the complex composition and function of sperm. Based on these results and previous data, we suggest that sperm surface proteins play significant roles in fertilization events such as membrane remodeling, transport, protection and function, thus supporting the hypothesis that rather than a simple lock-and-key model, mammalian fertilization relies on a complex interactome involving multiple ligands/receptors and recognition/binding events.
Collapse
Affiliation(s)
- Sira Defaus
- From the ‡Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Manuel Avilés
- §Department of Cell Biology and Histology, School of Medicine, University of Murcia and IMIB, Campus Mare Nostrum, 30071 Murcia, Spain
| | - David Andreu
- From the ‡Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain;
| | - Ricardo Gutiérrez-Gallego
- From the ‡Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain;
| |
Collapse
|
156
|
Saraswat M, Joenväärä S, Tomar AK, Singh S, Yadav S, Renkonen R. N-Glycoproteomics of Human Seminal Plasma Glycoproteins. J Proteome Res 2016; 15:991-1001. [PMID: 26791533 DOI: 10.1021/acs.jproteome.5b01069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Seminal plasma aids sperm by inhibiting premature capacitation, helping in the intracervical transport and formation of an oviductal sperm reservoir, all of which appear to be important in the fertilization process. Epitopes such as Lewis x and y are known to be present on seminal plasma glycoproteins, which can modulate the maternal immune response. It is suggested by multiple studies that seminal plasma glycoproteins play, largely undiscovered, important roles in the process of fertilization. We have devised a strategy to analyze glycopeptides from a complex, unknown mixture of protease-digested proteins. This analysis provides identification of the glycoproteins, glycosylation sites, glycan compositions, and proposed structures from the original sample. This strategy has been applied to human seminal plasma total glycoproteins. We have elucidated glycan compositions and proposed structures for 243 glycopeptides belonging to 73 N-glycosylation sites on 50 glycoproteins. The majority of the proposed glycan structures were complex type (83%) followed by high-mannose (10%) and then hybrid (7%). Most of the glycoproteins were either sialylated, fucosylated, or both. Many Lewis x/a and y/b epitopes bearing glycans were found, suggesting immune-modulating epitopes on multiple seminal plasma glycoproteins. The study also shows that large scale N-glycosylation mapping is achievable with current techniques and the depth of the analysis is roughly proportional to the prefractionation and complexity of the sample.
Collapse
Affiliation(s)
- Mayank Saraswat
- Transplantation Laboratory, Haartman Institute, University of Helsinki , Haartmaninkatu 3, P.O. Box 21, Helsinki FI-00014, Finland
- HUSLAB, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Sakari Joenväärä
- Transplantation Laboratory, Haartman Institute, University of Helsinki , Haartmaninkatu 3, P.O. Box 21, Helsinki FI-00014, Finland
- HUSLAB, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences , New Delhi 110029, India
| | - Sarman Singh
- Division of Clinical Microbiology & Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences , New Delhi 110029, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences , New Delhi 110029, India
| | - Risto Renkonen
- Transplantation Laboratory, Haartman Institute, University of Helsinki , Haartmaninkatu 3, P.O. Box 21, Helsinki FI-00014, Finland
- HUSLAB, Helsinki University Hospital, 00290 Helsinki, Finland
| |
Collapse
|
157
|
Chen Q, Pang PC, Cohen ME, Longtine MS, Schust DJ, Haslam SM, Blois SM, Dell A, Clark GF. Evidence for Differential Glycosylation of Trophoblast Cell Types. Mol Cell Proteomics 2016; 15:1857-66. [PMID: 26929217 DOI: 10.1074/mcp.m115.055798] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 11/06/2022] Open
Abstract
Human placental villi are surfaced by the syncytiotrophoblast (STB), with a layer of cytotrophoblasts (CTB) positioned just beneath the STB. STB in normal term pregnancies is exposed to maternal immune cells in the placental intervillous space. Extravillous cytotrophoblasts (EVT) invade the decidua and spiral arteries, where they act in conjunction with natural killer (NK) cells to convert the spiral arteries into flaccid conduits for maternal blood that support a 3-4 fold increase in the rate of maternal blood flow into the placental intervillous space. The functional roles of these distinct trophoblast subtypes during pregnancy suggested that they could be differentially glycosylated. Glycomic analysis of these trophoblasts has revealed the expression of elevated levels of biantennary N-glycans in STB and CTB, with the majority of them bearing a bisecting GlcNAc. N-glycans terminated with polylactosamine extensions were also detected at low levels. A subset of the N-glycans linked to these trophoblasts were sialylated, primarily with terminal NeuAcα2-3Gal sequences. EVT were decorated with the same N-glycans as STB and CTB, except in different proportions. The level of bisecting type N-glycans was reduced, but the level of N-glycans decorated with polylactosamine sequences were substantially elevated compared with the other types of trophoblasts. The level of triantennary and tetraantennary N-glycans was also elevated in EVT. The sialylated N-glycans derived from EVT were completely susceptible to an α2-3 specific neuraminidase (sialidase S). The possibility exists that the N-glycans associated with these different trophoblast subpopulations could act as functional groups. These potential relationships will be considered.
Collapse
Affiliation(s)
- Qiushi Chen
- From the ‡Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Poh-Choo Pang
- From the ‡Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Marie E Cohen
- §Department of Gynaecology and Obstetrics, Faculty of Medicine, Geneva, Switzerland
| | - Mark S Longtine
- ¶Department of Obstetrics and Gynecology, Washington University, School of Medicine, St. Louis, Missouri 63110
| | - Danny J Schust
- ‖Division of Reproductive and Perinatal Research, Department of Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, Missouri 65212
| | - Stuart M Haslam
- From the ‡Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Sandra M Blois
- **Charité Center for Internal Medicine and Dermatology, Division of General Internal and Psychosomatic Medicine, Reproductive Medicine Research Group, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Dell
- From the ‡Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom;
| | - Gary F Clark
- ‖Division of Reproductive and Perinatal Research, Department of Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, Missouri 65212;
| |
Collapse
|
158
|
Lectin binding of human sperm associates with DEFB126 mutation and serves as a potential biomarker for subfertility. Sci Rep 2016; 6:20249. [PMID: 26832966 PMCID: PMC4735291 DOI: 10.1038/srep20249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/31/2015] [Indexed: 12/18/2022] Open
Abstract
Coating on the sperm surface, glycocalyx, plays a key role in sperm motility, maturation and fertilization. A comprehensive profile of sperm surface glycans will greatly facilitate both basic researches and clinical studies. Because of the capability of recognizing different glycan moieties, lectins are widely used in glycobiology. However, lacking high-throughput technology, limited lectins have been reported for analyzing the glycan of human sperm. In this study, we employed a lectin microarray for profiling the surface glycans of human sperm, on which 54 out of 91 lectins showed positive binding. Based on this technique, we compared lectin binding profiling of sperm with homozygous DEFB126 mutation (del/del) with that of wild type (wt/wt). DEFB126 was reported to contribute to the sialylation on sperm surface and its homozygous mutation was related to male subfertility. Six lectins (Jacalin/AIA, GHA, ACL, MPL, VVL and ABA) were found to develop lower binding affinity to sperm with del/del. Further validation showed that these lectins, especially ABA and MPL, can be potential biomarkers for clinical diagnosis of subfertility due to the mutation of DEFB126. Our research provides insight into the detection of some unexplained male subfertility, and the lectin microarray is generally applicable for infertility/subfertility sperm biomarker discovery.
Collapse
|
159
|
Liquid chromatography-tandem mass spectrometry-based fragmentation analysis of glycopeptides. Glycoconj J 2016; 33:261-72. [PMID: 26780731 DOI: 10.1007/s10719-016-9649-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 02/08/2023]
Abstract
The use of liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS(n)) for the glycoproteomic characterization of glycopeptides is a growing field of research. The N- and O-glycosylated peptides (N- and O-glycopeptides) analyzed typically originate from protease-digested glycoproteins where many of them are expected to be biomedically important. Examples of LC-MS(2) and MS(3) fragmentation strategies used to pursue glycan structure, peptide identity and attachment-site identification analyses of glycopeptides are described in this review. MS(2) spectra, using the CID and HCD fragmentation techniques of a complex biantennary N-glycopeptide and a core 1 O-glycopeptide, representing two examples of commonly studied glycopeptide types, are presented. A few practical tips for accomplishing glycopeptide analysis using reversed-phase LC-MS(n) shotgun proteomics settings, together with references to the latest glycoproteomic studies, are presented.
Collapse
|
160
|
Olejnik B, Kratz EM, Zimmer M, Ferens-Sieczkowska M. Glycoprotein fucosylation is increased in seminal plasma of subfertile men. Asian J Androl 2015; 17:274-80. [PMID: 25248658 PMCID: PMC4650452 DOI: 10.4103/1008-682x.138187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fucose, the monosaccharide frequent in N- and O-glycans, is a part of Lewis-type antigens that are known to mediate direct sperm binding to the zona pellucida. Such interaction was found to be inhibited in vitro by fucose-containing oligo- and polysaccharides, as well as neoglycoproteins. The objective of this study was to screen seminal plasma proteins of infertile/subfertile men for the content and density of fucosylated glycoepitopes, and compare them to samples of fertile normozoospermic subjects. Seminal proteins were separated in polyacrylamide gel electrophoresis and blotted onto nitrocellulose membrane and probed with fucose-specific Aleuria aurantia lectin (AAL). Twelve electrophoretic bands were selected for quantitative densitometric analysis. It was found that the content, and especially the density of fucosylated glycans, were higher in glycoproteins present in seminal plasma of subfertile men. No profound differences in fucosylation density were found among the groups of normozoospermic, oligozoospermic, asthenozoospermic, and oligoasthenozoospermic subfertile men. According to the antibody probing, AAL-reactive bands can be attributed to male reproductive tract glycoproteins, including prostate-specific antigen, prostatic acid phosphatase, glycodelin and chorionic gonadotropin. Fibronectin, α1-acid glycoprotein, α1-antitrypsin, immunoglobulin G and antithrombin III may also contribute to this high fucosylation. It is suggested that the abundant fucosylated glycans in the sperm environment could interfere with the sperm surface and disturb the normal course of the fertilization cascade.
Collapse
|
161
|
Mallick A, Mallikharjunarao Y, Rajasekaran P, Roy R, Vankar YD. AuIII-Halide/Phenylacetylene-Catalysed Glycosylations Using 1-O-Acetylfuranoses and Pyranose 1,2-Orthoesters as Glycosyl Donors. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
162
|
Springer SA, Gagneux P. Glycomics: revealing the dynamic ecology and evolution of sugar molecules. J Proteomics 2015; 135:90-100. [PMID: 26626628 DOI: 10.1016/j.jprot.2015.11.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/11/2015] [Accepted: 11/23/2015] [Indexed: 01/11/2023]
Abstract
Sugars are the most functionally and structurally diverse molecules in the biological world. Glycan structures range from tiny single monosaccharide units to giant chains thousands of units long. Some glycans are branched, their monosaccharides linked together in many different combinations and orientations. Some exist as solitary molecules; others are conjugated to proteins and lipids and alter their collective functional properties. In addition to structural and storage roles, glycan molecules participate in and actively regulate physiological and developmental processes. Glycans also mediate cellular interactions within and between individuals. Their roles in ecology and evolution are pivotal, but not well studied because glycan biochemistry requires different methods than standard molecular biology practice. The properties of glycans are in some ways convenient, and in others challenging. Glycans vary on organismal timescales, and in direct response to physiological and ecological conditions. Their mature structures are physical records of both genetic and environmental influences during maturation. We describe the scope of natural glycan variation and discuss how studying glycans will allow researchers to further integrate the fields of ecology and evolution.
Collapse
Affiliation(s)
- Stevan A Springer
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92039, USA; Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92039, USA.
| | - Pascal Gagneux
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92039, USA; Department of Pathology, University of California San Diego, La Jolla, CA 92039, USA.
| |
Collapse
|
163
|
Cheng B, Xie R, Dong L, Chen X. Metabolic Remodeling of Cell-Surface Sialic Acids: Principles, Applications, and Recent Advances. Chembiochem 2015; 17:11-27. [PMID: 26573222 DOI: 10.1002/cbic.201500344] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 12/14/2022]
Abstract
Cell-surface sialic acids are essential in mediating a variety of physiological and pathological processes. Sialic acid chemistry and biology remain challenging to investigate, demanding new tools for probing sialylation in living systems. The metabolic glycan labeling (MGL) strategy has emerged as an invaluable chemical biology tool that enables metabolic installation of useful functionalities into cell-surface sialoglycans by "hijacking" the sialic acid biosynthetic pathway. Here we review the principles of MGL and its applications in study and manipulation of sialic acid function, with an emphasis on recent advances.
Collapse
Affiliation(s)
- Bo Cheng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Ran Xie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Lu Dong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xing Chen
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
164
|
Clark GF. Functional glycosylation in the human and mammalian uterus. FERTILITY RESEARCH AND PRACTICE 2015; 1:17. [PMID: 28620522 PMCID: PMC5424290 DOI: 10.1186/s40738-015-0007-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022]
Abstract
Background Glycosylation is the most common and structurally diverse of all the post-translational modifications of proteins. Lipids and extracellular matrices are also often glycosylated. The mammalian uterus is highly enriched in glycoconjugates that are associated with the apical surfaces of epithelial cells and the secretions released by both epithelial and stromal cells. These glycoconjugates interact primarily with sperm, the implanting embryo, the fetus, and any pathogen that happens to gain entry into the uterus. Secretions of the endometrial glands increase substantially during the luteal phase of the menstrual cycle. These secretions are highly enriched in glycoproteins and mucins that promote specific uterine functions. Findings Lectins and antibodies have been employed in the majority of the studies focused on uterine glycosylation have employed to define the expression of carbohydrate sequences. However, while these studies provide insight about potential glycosylation, precise information about glycan structure is lacking. Direct sequencing studies that employ biochemical or mass spectrometric methods are far more definitive, but have rarely been employed with uterine glycoproteins. Both lectin/antibody binding and direct carbohydrate sequencing studies that have been focused on the mammalian uterus are reviewed. The primary functional role of the eutherian uterus is to facilitate fertilization and nurture the developing embryo/fetus. Trophoblasts are the primary cells that mediate the binding of the embryo and placenta to the uterine lining. In mammals that utilize hemochorial placentation, they invade the decidua, the specialized endometrial lining that forms during pregnancy. Trophoblasts have also been analyzed for their lectin/antibody binding as a complement to the analysis of the uterine cells and tissues. They will also be reviewed here. Conclusions The functional roles of the glycans linked to uterine and trophoblast glycoconjugates remain enigmatic. Another major question in the human is whether defects in placental or uterine glycosylation play a role in the development the Great Obstetrical Syndromes. More recent findings indicate that changes in glycosylation occur in trophoblasts obtained from patients that develop preeclampsia and preterm birth. The functional significance of these changes remain to be defined. Whether such shifts happen during the development of other types of obstetrical syndromes remains to be determined.
Collapse
Affiliation(s)
- Gary F Clark
- Division of Reproductive and Perinatal Research, Department of Obstetrics, Gynecology and Women's Health, University of Missouri, 1 Hospital Drive HSC M658, Columbia, MO 65211 USA
| |
Collapse
|
165
|
Kekäläinen J, Larma I, Linden M, Evans JP. Lectin staining and flow cytometry reveals female-induced sperm acrosome reaction and surface carbohydrate reorganization. Sci Rep 2015; 5:15321. [PMID: 26470849 PMCID: PMC4607886 DOI: 10.1038/srep15321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 09/21/2015] [Indexed: 12/27/2022] Open
Abstract
All cells are covered by glycans, an individually unique layer of oligo- and polysaccharides that are critical moderators of self-recognition and other cellular-level interactions (e.g. fertilization). The functional similarity between these processes suggests that gamete surface glycans may also have an important, but currently overlooked, role in sexual selection. Here we develop a user-friendly methodological approach designed to facilitate future tests of this possibility. Our proposed method is based on flow cytometric quantification of female-induced sperm acrosome reaction and sperm surface glycan modifications in the Mediterranean mussel Mytilus galloprovincialis. In this species, as with many other taxa, eggs release water-soluble factors that attract conspecific sperm (chemoattraction) and promote potentially measurable changes in sperm behavior and physiology. We demonstrate that flow cytometry is able to identify sperm from other seawater particles as well as accurately measure both acrosome reaction and structural modifications in sperm glycans. This methodological approach can increase our understanding of chemically-moderated gamete-level interactions and individual-specific gamete recognition in Mytilus sp. and other taxa with similar, easily identifiable acrosome structure. Our approach is also likely to be applicable to several other species, since carbohydrate-mediated cellular-level interactions between gametes are universal among externally and internally fertilizing species.
Collapse
Affiliation(s)
- Jukka Kekäläinen
- University of Western Australia, Centre for Evolutionary Biology, School of Animal Biology (M092), Crawley, Australia
- University of Eastern Finland, Department of Biology, Joensuu, Finland
| | - Irma Larma
- University of Western Australia, Harry Perkins Institute of Medical Research, Centre for Microscopy, Characterization and Analysis, Crawley, Australia
| | - Matthew Linden
- University of Western Australia, Harry Perkins Institute of Medical Research, Centre for Microscopy, Characterization and Analysis, Crawley, Australia
| | - Jonathan P. Evans
- University of Western Australia, Centre for Evolutionary Biology, School of Animal Biology (M092), Crawley, Australia
| |
Collapse
|
166
|
Cohen M. Notable Aspects of Glycan-Protein Interactions. Biomolecules 2015; 5:2056-72. [PMID: 26340640 PMCID: PMC4598788 DOI: 10.3390/biom5032056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 01/01/2023] Open
Abstract
This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry). Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells), stick and roll (bacteria) or surfacing (viruses).
Collapse
Affiliation(s)
- Miriam Cohen
- Depatment of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, BRF2 MC 0687, La Jolla, CA 92093-0687, USA.
| |
Collapse
|
167
|
Munneke S, Painter GF, Gainsford GJ, Stocker BL, Timmer MS. Total synthesis of LewisX using a late-stage crystalline intermediate. Carbohydr Res 2015; 414:1-7. [DOI: 10.1016/j.carres.2015.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/23/2015] [Indexed: 10/23/2022]
|
168
|
Struwe WB, Pagel K, Benesch JLP, Harvey DJ, Campbell MP. GlycoMob: an ion mobility-mass spectrometry collision cross section database for glycomics. Glycoconj J 2015; 33:399-404. [PMID: 26314736 DOI: 10.1007/s10719-015-9613-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 12/29/2022]
Abstract
Ion mobility mass spectrometry (IM-MS) is a promising analytical technique for glycomics that separates glycan ions based on their collision cross section (CCS) and provides glycan precursor and fragment masses. It has been shown that isomeric oligosaccharide species can be separated by IM and identified on basis of their CCS and fragmentation. These results indicate that adding CCSs information for glycans and glycan fragments to searchable databases and analysis pipelines will increase identification confidence and accuracy. We have developed a freely accessible database, GlycoMob ( http://www.glycomob.org ), containing over 900 CCSs values of glycans, oligosaccharide standards and their fragments that will be continually updated. We have measured the absolute CCSs of calibration standards, biologically derived and synthetic N-glycans ionized with various adducts in positive and negative mode or as protonated (positive ion) and deprotonated (negative ion) ions.
Collapse
Affiliation(s)
- Weston B Struwe
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
| | - Kevin Pagel
- Free University Chemistry, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195, Berlin, Germany.,Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | | | - David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Matthew P Campbell
- Biomolecular Frontiers Research Centre, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
169
|
Cao L, Zhang Y, Chen L, Shen A, Zhang X, Ren S, Gu J, Yu L, Liang X. Sample preparation for mass spectrometric analysis of human serum N-glycans using hydrophilic interaction chromatography-based solid phase extraction. Analyst 2015; 139:4538-46. [PMID: 25068150 DOI: 10.1039/c4an00660g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Expression levels of N-linked glycans derived from human serum glycoproteins have been shown to change during the progression of many diseases. Generally, N-glycans released from human serum proteins co-exist with endogenous serum peptides, salts, and other contaminants. Effective removal of these contaminants is essential to obtain the glycan profile of human serum proteins. Here, we developed a sample preparation method for mass spectrometry (MS) analysis of N-linked glycans derived from human serum glycoproteins based on a zwitterionic hydrophilic material named Click TE-Cys. The high hydrophilicity of Click TE-Cys, resulting from its unique surface structure and charge distribution, facilitated removal of co-existing salts and endogenous serum peptides. Furthermore, the present enrichment approach was handled in parallel, thus saving time. Using this method, a total of 47 unique N-glycans released from human serum proteins were identified. The intrabatch and interbatch coefficients of variation for the 47 N-linked glycans were 8.57% ± 0.96% and 9.22% ± 1.03%, respectively. These results demonstrate that the present method is suitable for fast purification of N-linked glycans derived from human serum glycoproteins, and has potential for clinical application.
Collapse
Affiliation(s)
- Liwei Cao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Shu L, Suter MJF, Räsänen K. Evolution of egg coats: linking molecular biology and ecology. Mol Ecol 2015; 24:4052-73. [DOI: 10.1111/mec.13283] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Longfei Shu
- Department of Aquatic Ecology; Swiss Federal Institute of Aquatic Science and Technology; Eawag; 8600 Duebendorf Switzerland
- Institute of Integrative Biology; ETH Zurich; 8092 Zurich Switzerland
| | - Marc J.-F. Suter
- Department of Environmental Toxicology; Swiss Federal Institute of Aquatic Science and Technology; Eawag; 8600 Duebendorf Switzerland
- Department of Environmental Systems Science; Swiss Federal Institute of Technology; ETH Zurich; 8092 Zurich Switzerland
| | - Katja Räsänen
- Department of Aquatic Ecology; Swiss Federal Institute of Aquatic Science and Technology; Eawag; 8600 Duebendorf Switzerland
- Institute of Integrative Biology; ETH Zurich; 8092 Zurich Switzerland
| |
Collapse
|
171
|
Miller DJ. Regulation of Sperm Function by Oviduct Fluid and the Epithelium: Insight into the Role of Glycans. Reprod Domest Anim 2015; 50 Suppl 2:31-9. [DOI: 10.1111/rda.12570] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 01/18/2023]
Affiliation(s)
- DJ Miller
- Department of Animal Sciences; University of Illinois; Urbana-Champaign IL USA
| |
Collapse
|
172
|
Terminal Mannose Residues in Seminal Plasma Glycoproteins of Infertile Men Compared to Fertile Donors. Int J Mol Sci 2015; 16:14933-50. [PMID: 26147424 PMCID: PMC4519880 DOI: 10.3390/ijms160714933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/27/2015] [Accepted: 06/10/2015] [Indexed: 11/16/2022] Open
Abstract
The impact of seminal plasma components on the fertilization outcomes in humans is still under question. The increasing number of couples facing problems with conception raises the need for predictive biomarkers. Detailed understanding of the molecular mechanisms accompanying fertilization remains another challenge. Carbohydrate–protein recognition may be of key importance in this complex field. In this study, we analyzed the unique glycosylation pattern of seminal plasma proteins, the display of high-mannose and hybrid-type oligosaccharides, by means of their reactivity with mannose-specific Galanthus nivalis lectin. Normozoospermic infertile subjects presented decreased amounts of lectin-reactive glycoepitopes compared to fertile donors and infertile patients with abnormal semen parameters. Glycoproteins containing unveiled mannose were isolated in affinity chromatography, and 17 glycoproteins were identified in liquid chromatography-tandem mass spectrometry with electrospray ionization. The N-glycome of the isolated glycoproteins was examined in matrix-assisted laser desorption ionization mass spectrometry. Eleven out of 27 identified oligosaccharides expressed terminal mannose residues, responsible for lectin binding. We suggest that lowered content of high-mannose and hybrid type glycans in normozoospermic infertile patients may be associated with impaired sperm protection from preterm capacitation and should be considered in the search for new infertility markers.
Collapse
|
173
|
Li L, Liu Y, Ma C, Qu J, Calderon AD, Wu B, Wei N, Wang X, Guo Y, Xiao Z, Song J, Sugiarto G, Li Y, Yu H, Chen X, Wang PG. Efficient Chemoenzymatic Synthesis of an N-glycan Isomer Library. Chem Sci 2015; 6:5652-5661. [PMID: 26417422 PMCID: PMC4583208 DOI: 10.1039/c5sc02025e] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quantification, characterization and biofunctional studies of N-glycans on proteins remain challenging tasks due to complexity, diversity and low abundance of these glycans. The availability of structurally defined N-glycans (especially isomers) libraries is essential to help on solving these tasks. We reported herein an efficient chemoenzymatic strategy, namely Core Synthesis/Enzymatic Extension (CSEE), for rapid production of diverse N-glycans. Starting with 5 chemically prepared building blocks, 8 N-glycan core structures containing one or two terminal N-acetyl-D-glucosamine (GlcNAc) residue(s) were chemically synthesized via consistent use of oligosaccharyl thioethers as glycosylation donors in the convergent fragment coupling strategy. Each of these core structures was then extended to 5 to 15 N-glycan sequences by enzymatic reactions catalyzed by 4 robust glycosyltransferases. Success in synthesizing N-glycans with Neu5Gc and core-fucosylation further expanded the ability of enzymatic extension. High performance liquid chromatography with an amide column enabled rapid and efficient purification (>98% purity) of N-glycans in milligram scales. A total of 73 N-glycans (63 isomers) were successfully prepared and characterized by MS2 and NMR. The CSEE strategy provides a practical approach for "mass production" of structurally defined N-glycans, which are important standards and probes for Glycoscience.
Collapse
Affiliation(s)
- Lei Li
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303
| | - Yunpeng Liu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303
| | - Cheng Ma
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303
| | - Jingyao Qu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303
| | - Angie D Calderon
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303
| | - Baolin Wu
- Chemily, LLC, 58 Edgewood Ave NE, Atlanta, GA 30303
| | - Na Wei
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303
| | - Xuan Wang
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303
| | - Yuxi Guo
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303
| | - Zhongying Xiao
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303
| | - Jing Song
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303
| | - Go Sugiarto
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616
| | - Yanhong Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616
| | - Hai Yu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616
| | - Xi Chen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616
| | - Peng George Wang
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA 30303
| |
Collapse
|
174
|
Bai H, Fan C, Zhang W, Pan Y, Ma L, Ying W, Wang J, Deng Y, Qian X, Qin W. A pH-responsive soluble polymer-based homogeneous system for fast and highly efficient N-glycoprotein/glycopeptide enrichment and identification by mass spectrometry. Chem Sci 2015; 6:4234-4241. [PMID: 29218189 PMCID: PMC5707513 DOI: 10.1039/c5sc00396b] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/21/2015] [Indexed: 12/24/2022] Open
Abstract
A homogeneous reaction system was developed for facile and highly efficient enrichment of biomolecules by exploiting the reversible self-assembly of a stimuli-responsive polymer.
Liquid phase homogeneous reactions using soluble polymer supports have found numerous applications in homogeneous catalysis and organic synthesis because of their advantages of no interface mass transfer limitation and a high conversion rate. However, their application in analytical separation is limited by the inefficient/inconvenient recovery of the target molecules from the extremely complex biological samples. Here, we report a stimuli-responsive polymer system for facile and efficient enrichment of trace amounts of biomolecules from complex biological samples. The soluble polymer supports provide a homogeneous reaction system with fast mass transfer and facilitate interactions between the supports and the target molecules. More importantly, the stimuli-responsive polymers exhibit reversible self-assembly and phase separation under pH variations, which leads to facial sample recovery with a high yield of the target biomolecules. The stimuli-responsive polymer is successfully applied to the enrichment of low abundant N-glycoproteins/glycopeptides, which play crucial roles in various key biological processes in mammals and are closely correlated with the occurrence, progression and metastasis of cancer. N-Glycoprotein is coupled to the stimuli-responsive polymer using the reported hydrazide chemistry with pre-oxidation of the oligosaccharide structure. Highly efficient enrichment of N-glycoproteins/N-glycopeptides with >95% conversion rate is achieved within 1 h, which is eight times faster than using solid/insoluble hydrazide enrichment materials. Mass spectrometry analysis achieves low femtomolar identification sensitivity and obtained 1317 N-glycopeptides corresponding to 458 N-glycoproteins in mouse brain, which is more than twice the amount obtained after enrichment using commercial solid/insoluble materials. These results demonstrate the capability of this “smart” polymer system to combine stimuli-responsive and target-enrichment moieties to achieve improved identification of key biological and disease related biomolecules.
Collapse
Affiliation(s)
- Haihong Bai
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Tianjin Baodi Hospital , Beijing Institute of Radiation Medicine , China . ; .,School of Life Science and Technology , Beijing Institute of Technology , Beijing , China
| | - Chao Fan
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Tianjin Baodi Hospital , Beijing Institute of Radiation Medicine , China . ;
| | - Wanjun Zhang
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Tianjin Baodi Hospital , Beijing Institute of Radiation Medicine , China . ;
| | - Yiting Pan
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Tianjin Baodi Hospital , Beijing Institute of Radiation Medicine , China . ; .,School of Life Science and Technology , Beijing Institute of Technology , Beijing , China
| | - Lin Ma
- Research Center for Analytical Sciences , College of Sciences , Northeastern University , Shenyang , China
| | - Wantao Ying
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Tianjin Baodi Hospital , Beijing Institute of Radiation Medicine , China . ;
| | - Jianhua Wang
- Research Center for Analytical Sciences , College of Sciences , Northeastern University , Shenyang , China
| | - Yulin Deng
- School of Life Science and Technology , Beijing Institute of Technology , Beijing , China
| | - Xiaohong Qian
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Tianjin Baodi Hospital , Beijing Institute of Radiation Medicine , China . ;
| | - Weijie Qin
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Tianjin Baodi Hospital , Beijing Institute of Radiation Medicine , China . ;
| |
Collapse
|
175
|
Protein-Carbohydrate Interaction between Sperm and the Egg-Coating Envelope and Its Regulation by Dicalcin, a Xenopus laevis Zona Pellucida Protein-Associated Protein. Molecules 2015; 20:9468-86. [PMID: 26007194 PMCID: PMC6272592 DOI: 10.3390/molecules20059468] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/13/2015] [Indexed: 12/17/2022] Open
Abstract
Protein-carbohydrate interaction regulates multiple important processes during fertilization, an essential biological event where individual gametes undergo intercellular recognition to fuse and generate a zygote. In the mammalian female reproductive tract, sperm temporarily adhere to the oviductal epithelium via the complementary interaction between carbohydrate-binding proteins on the sperm membrane and carbohydrates on the oviductal cells. After detachment from the oviductal epithelium at the appropriate time point following ovulation, sperm migrate and occasionally bind to the extracellular matrix, called the zona pellucida (ZP), which surrounds the egg, thereafter undergoing the exocytotic acrosomal reaction to penetrate the envelope and to reach the egg plasma membrane. This sperm-ZP interaction also involves the direct interaction between sperm carbohydrate-binding proteins and carbohydrates within the ZP, most of which have been conserved across divergent species from mammals to amphibians and echinoderms. This review focuses on the carbohydrate-mediated interaction of sperm with the female reproductive tract, mainly the interaction between sperm and the ZP, and introduces the fertilization-suppressive action of dicalcin, a Xenopus laevis ZP protein-associated protein. The action of dicalcin correlates significantly with a dicalcin-dependent change in the lectin-staining pattern within the ZP, suggesting a unique role of dicalcin as an inherent protein that is capable of regulating the affinity between the lectin and oligosaccharides attached on its target glycoprotein.
Collapse
|
176
|
Stephens K, Thaler CD, Cardullo RA. Characterization of plasma membrane associated type II α-D-mannosidase and β-N-acetylglucosaminidase of Aquarius remigis sperm. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 60:78-85. [PMID: 25801709 DOI: 10.1016/j.ibmb.2015.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/25/2015] [Accepted: 03/10/2015] [Indexed: 06/04/2023]
Abstract
For successful fertilization to occur, molecules on the surface of male and female gametes must recognize each other in a complementary manner. In some organisms, sperm possess a glycosidase on the plasma membrane overlying the head while eggs have glycoproteins that are recognized by those glycosidases resulting in sperm-egg recognition. In this study, two glycosidases, mannosidase and β-N-acetylglucosaminidase, were identified and biochemically characterized in Aquarius remigis sperm. The mannosidase had a Km of 2.36 ± 0.19 mM, a Vmax of 27.49 ± 0.88 pmol/min and a Hill coefficient of 0.94 ± 0.18 at its optimal pH of 7.0. The mannosidase was extracted most efficiently with CHAPSO but was also efficiently extracted with sodium chloride. Mannosidase activity was effectively inhibited by swainsonine, but not by kifunesine, and was significantly reduced in the presence of Mn(2+) and Mg(2+), but not Zn(2+). N-acetylglucosaminidase had a Km of 0.093 ± 0.01 mM, a Vmax of 153.80 ± 2.97 pmol/min and a Hill coefficient of 0.96 ± 0.63 at its optimal pH of 7.0. N-acetylglucosaminidase was extracted most efficiently with potassium iodide but was also efficiently extracted with Triton X-100 and Zn(2+), but not Ca(2+), Co(2+), Mn(2+) or Mg(2+), significantly inhibited its activity. Taken together, these results indicate that the A. remigis sperm surface contains at least two glycosidases that may recognize complementary glycoconjugates on the surface of water strider eggs.
Collapse
Affiliation(s)
- Kimberly Stephens
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Catherine D Thaler
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Richard A Cardullo
- Department of Entomology, University of California, Riverside, CA 92521, USA; Department of Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
177
|
Moh ES, Thaysen-Andersen M, Packer NH. Relative versus absolute quantitation in disease glycomics. Proteomics Clin Appl 2015; 9:368-82. [DOI: 10.1002/prca.201400184] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/21/2014] [Accepted: 02/10/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Edward S.X. Moh
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| | | | - Nicolle H. Packer
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| |
Collapse
|
178
|
Kudelka MR, Ju T, Heimburg-Molinaro J, Cummings RD. Simple sugars to complex disease--mucin-type O-glycans in cancer. Adv Cancer Res 2015; 126:53-135. [PMID: 25727146 DOI: 10.1016/bs.acr.2014.11.002] [Citation(s) in RCA: 362] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mucin-type O-glycans are a class of glycans initiated with N-acetylgalactosamine (GalNAc) α-linked primarily to Ser/Thr residues within glycoproteins and often extended or branched by sugars or saccharides. Most secretory and membrane-bound proteins receive this modification, which is important in regulating many biological processes. Alterations in mucin-type O-glycans have been described across tumor types and include expression of relatively small-sized, truncated O-glycans and altered terminal structures, both of which are associated with patient prognosis. New discoveries in the identity and expression of tumor-associated O-glycans are providing new avenues for tumor detection and treatment. This chapter describes mucin-type O-glycan biosynthesis, altered mucin-type O-glycans in primary tumors, including mechanisms for structural changes and contributions to the tumor phenotype, and clinical approaches to detect and target altered O-glycans for cancer treatment and management.
Collapse
Affiliation(s)
- Matthew R Kudelka
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Richard D Cummings
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
179
|
Goldman R, Sanda M. Targeted methods for quantitative analysis of protein glycosylation. Proteomics Clin Appl 2015; 9:17-32. [PMID: 25522218 PMCID: PMC5780646 DOI: 10.1002/prca.201400152] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/15/2014] [Accepted: 12/11/2014] [Indexed: 12/17/2022]
Abstract
Quantification of proteins by LC-MS/MS-MRM has become a standard method with broad projected clinical applicability. MRM quantification of protein modifications is, however, far less utilized, especially in the case of glycoproteins. This review summarizes current methods for quantitative analysis of protein glycosylation with a focus on MRM methods. We describe advantages of this quantitative approach, analytical parameters that need to be optimized to achieve reliable measurements, and point out the limitations. Differences between major classes of N- and O-glycopeptides are described and class-specific glycopeptide assays are demonstrated.
Collapse
Affiliation(s)
- Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Washington, DC, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Miloslav Sanda
- Department of Oncology, Lombardi Comprehensive Cancer Center, Washington, DC, USA
| |
Collapse
|
180
|
Campbell MP, Royle L, Rudd PM. GlycoBase and autoGU: resources for interpreting HPLC-glycan data. Methods Mol Biol 2015; 1273:17-28. [PMID: 25753700 DOI: 10.1007/978-1-4939-2343-4_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The biological relevance of protein glycosylation has made glycomics, the comprehensive study to identify all glycans in an organism, indispensable in many research fields. Determining the structure and functional relationship of glycoproteins requires the comprehensive characterization of glycan structures by a range of analytical methods. High performance liquid chromatography (HPLC) is a well-established technology commonly used for the complete structural elucidation of N- and O-linked glycans; however, the analysis of data is a major bottleneck and robust bioinformatic solutions are required. This chapter describes the availability of databases and tools, GlycoBase and autoGU developed in conjunction with the EUROCarbDB initiative, to assist the interpretation of HPLC-glycan data collections.
Collapse
Affiliation(s)
- Matthew P Campbell
- Biomolecular Frontiers Research Centre, Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia,
| | | | | |
Collapse
|
181
|
Four glycoproteins are expressed in the cat zona pellucida. Theriogenology 2014; 83:1162-73. [PMID: 25623231 DOI: 10.1016/j.theriogenology.2014.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/15/2014] [Accepted: 12/13/2014] [Indexed: 11/20/2022]
Abstract
The mammalian oocyte is surrounded by a matrix called the zona pellucida (ZP). This envelope participates in processes such as acrosome reaction induction, sperm binding and may be involved in speciation. In cat (Felis catus), this matrix is composed of at least three glycoproteins called ZP2, ZP3, and ZP4. However, recent studies have pointed to the presence of a fourth protein in several mammals (rat, human, hamster or rabbit), meaning that a reevaluation of cat ZP is needed. For this reason, the objective of this research was to analyze the protein composition of cat ZP by means of proteomic analysis. Using ZP from ovaries and oocytes, several peptides corresponding to four proteins were detected, yielding a coverage of 33.17%, 71.50%, 50.23%, and 49.64% for ZP1, ZP2, ZP3, and ZP4, respectively. Moreover, the expression of four genes was confirmed by molecular analysis. Using total RNA isolated from cat ovaries, the complementary deoxyribonucleic acids encoding cat ZP were partially amplified by reverse-transcribed polymerase chain reaction. Furthermore, ZP1 was totally amplified for the first time in this species. As far as we are aware, this is the first study that confirms the presence of four proteins in cat ZP.
Collapse
|
182
|
Petit D, Teppa E, Mir AM, Vicogne D, Thisse C, Thisse B, Filloux C, Harduin-Lepers A. Integrative view of α2,3-sialyltransferases (ST3Gal) molecular and functional evolution in deuterostomes: significance of lineage-specific losses. Mol Biol Evol 2014; 32:906-27. [PMID: 25534026 PMCID: PMC4379398 DOI: 10.1093/molbev/msu395] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Sialyltransferases are responsible for the synthesis of a diverse range of sialoglycoconjugates predicted to be pivotal to deuterostomes’ evolution. In this work, we reconstructed the evolutionary history of the metazoan α2,3-sialyltransferases family (ST3Gal), a subset of sialyltransferases encompassing six subfamilies (ST3Gal I–ST3Gal VI) functionally characterized in mammals. Exploration of genomic and expressed sequence tag databases and search of conserved sialylmotifs led to the identification of a large data set of st3gal-related gene sequences. Molecular phylogeny and large scale sequence similarity network analysis identified four new vertebrate subfamilies called ST3Gal III-r, ST3Gal VII, ST3Gal VIII, and ST3Gal IX. To address the issue of the origin and evolutionary relationships of the st3gal-related genes, we performed comparative syntenic mapping of st3gal gene loci combined to ancestral genome reconstruction. The ten vertebrate ST3Gal subfamilies originated from genome duplication events at the base of vertebrates and are organized in three distinct and ancient groups of genes predating the early deuterostomes. Inferring st3gal gene family history identified also several lineage-specific gene losses, the significance of which was explored in a functional context. Toward this aim, spatiotemporal distribution of st3gal genes was analyzed in zebrafish and bovine tissues. In addition, molecular evolutionary analyses using specificity determining position and coevolved amino acid predictions led to the identification of amino acid residues with potential implication in functional divergence of vertebrate ST3Gal. We propose a detailed scenario of the evolutionary relationships of st3gal genes coupled to a conceptual framework of the evolution of ST3Gal functions.
Collapse
Affiliation(s)
- Daniel Petit
- INRA, UMR 1061, Unité Génétique Moléculaire Animale, F-87060 Limoges Cedex, France Université de Limoges, UMR 1061, Unité Génétique Moléculaire Animale, 123 avenue Albert Thomas, F-87060 Limoges Cedex, France
| | - Elin Teppa
- Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Anne-Marie Mir
- Laboratoire de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université Lille Nord de France, Lille1, Villeneuve d'Ascq, France
| | - Dorothée Vicogne
- Laboratoire de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université Lille Nord de France, Lille1, Villeneuve d'Ascq, France
| | - Christine Thisse
- Department of Cell Biology, School of Medicine, University of Virginia
| | - Bernard Thisse
- Department of Cell Biology, School of Medicine, University of Virginia
| | - Cyril Filloux
- INRA, UMR 1061, Unité Génétique Moléculaire Animale, F-87060 Limoges Cedex, France Université de Limoges, UMR 1061, Unité Génétique Moléculaire Animale, 123 avenue Albert Thomas, F-87060 Limoges Cedex, France
| | - Anne Harduin-Lepers
- Laboratoire de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université Lille Nord de France, Lille1, Villeneuve d'Ascq, France
| |
Collapse
|
183
|
HOU YILING, DING XIANG, HOU WANRU. Composition and antioxidant activity of water-soluble oligosaccharides from Hericium erinaceus. Mol Med Rep 2014; 11:3794-9. [DOI: 10.3892/mmr.2014.3121] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 06/26/2014] [Indexed: 11/05/2022] Open
|
184
|
Cecioni S, Imberty A, Vidal S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem Rev 2014; 115:525-61. [DOI: 10.1021/cr500303t] [Citation(s) in RCA: 381] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samy Cecioni
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Anne Imberty
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
| | - Sébastien Vidal
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| |
Collapse
|
185
|
Hottin A, Wright DW, Davies GJ, Behr JB. Exploiting the Hydrophobic Terrain in Fucosidases with Aryl-Substituted Pyrrolidine Iminosugars. Chembiochem 2014; 16:277-83. [DOI: 10.1002/cbic.201402509] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Indexed: 12/16/2022]
|
186
|
Lak P, Makeneni S, Woods RJ, Lowary TL. Specificity of furanoside-protein recognition through antibody engineering and molecular modeling. Chemistry 2014; 21:1138-48. [PMID: 25413161 DOI: 10.1002/chem.201405259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Indexed: 01/06/2023]
Abstract
Recognition of furanosides (five-membered ring sugars) by proteins plays important roles in host-pathogen interactions. In comparison to their six-membered ring counterparts (pyranosides), detailed studies of the molecular motifs involved in the recognition of furanosides by proteins are scarce. Here the first in-depth molecular characterization of a furanoside-protein interaction system, between an antibody (CS-35) and cell wall polysaccharides of mycobacteria, including the organism responsible for tuberculosis is reported. The approach was centered on the generation of the single chain variable fragment of CS-35 and a rational library of its mutants. Investigating the interaction from various aspects revealed the structural motifs that govern the interaction, as well as the relative contribution of molecular forces involved in the recognition. The specificity of the recognition was shown to originate mainly from multiple CH-π interactions and, to a lesser degree, hydrogen bonds formed in critical distances and geometries.
Collapse
Affiliation(s)
- Parnian Lak
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2 (Canada)
| | | | | | | |
Collapse
|
187
|
Macauley MS, Arlian BM, Rillahan CD, Pang PC, Bortell N, Marcondes MCG, Haslam SM, Dell A, Paulson JC. Systemic blockade of sialylation in mice with a global inhibitor of sialyltransferases. J Biol Chem 2014; 289:35149-58. [PMID: 25368325 DOI: 10.1074/jbc.m114.606517] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sialic acid terminates glycans of glycoproteins and glycolipids that play numerous biological roles in health and disease. Although genetic tools are available for interrogating the effects of decreased or abolished sialoside expression in mice, pharmacological inhibition of the sialyltransferase family has, to date, not been possible. We have recently shown that a sialic acid analog, 2,4,7,8,9-pentaacetyl-3Fax-Neu5Ac-CO2Me (3F-NeuAc), added to the media of cultured cells shuts down sialylation by a mechanism involving its intracellular conversion to CMP-3F-NeuAc, a competitive inhibitor of all sialyltransferases. Here we show that administering 3F-NeuAc to mice dramatically decreases sialylated glycans in cells of all tissues tested, including blood, spleen, liver, brain, lung, heart, kidney, and testes. A single dose results in greatly decreased sialoside expression for over 7 weeks in some tissues. Although blockade of sialylation with 3F-NeuAc does not affect viability of cultured cells, its use in vivo has a deleterious "on target" effect on liver and kidney function. After administration of 3F-NeuAc, liver enzymes in the blood are dramatically altered, and mice develop proteinuria concomitant with dramatic loss of sialic acid in the glomeruli within 4 days, leading to irreversible kidney dysfunction and failure to thrive. These results confirm a critical role for sialosides in liver and kidney function and document the feasibility of pharmacological inhibition of sialyltransferases for in vivo modulation of sialoside expression.
Collapse
Affiliation(s)
- Matthew S Macauley
- From the Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science and
| | - Britni M Arlian
- From the Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science and
| | - Cory D Rillahan
- From the Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science and the Division of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, and
| | - Poh-Choo Pang
- the Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Nikki Bortell
- the Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La, Jolla, California 92037
| | - Maria Cecilia G Marcondes
- the Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La, Jolla, California 92037
| | - Stuart M Haslam
- the Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anne Dell
- the Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - James C Paulson
- From the Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science and
| |
Collapse
|
188
|
Machado SA, Kadirvel G, Daigneault BW, Korneli C, Miller P, Bovin N, Miller DJ. LewisX-containing glycans on the porcine oviductal epithelium contribute to formation of the sperm reservoir. Biol Reprod 2014; 91:140. [PMID: 25339106 DOI: 10.1095/biolreprod.114.119503] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In many mammals, after semen deposition, a subpopulation of the sperm is transported to the lower oviduct, or isthmus, to form a functional sperm reservoir that provides sperm to fertilize oocytes. The precise molecular interactions that allow formation of this reservoir are unclear. It is proposed that binding of sperm receptors (lectins) to their oviductal cell ligands is accomplished by glycans. Previous results indicated that Lewis trisaccharides are present in glycosphingolipids and O- and N-linked glycans of the porcine isthmus and that Le(X)-containing molecules bind porcine sperm. Immunohistochemistry indicated that the Lewis structures identified by mass spectrometry were, in fact, Lewis X (Le(X)) trisaccharides. These motifs were localized to the luminal border of the isthmus. Assays using fluoresceinated glycans showed that 3-O-sulfated Le(X) (suLe(X)) bound to receptors localized on the head of nearly 60% of uncapacitated boar sperm but that the positional isomer 3-O-sulfo-Le(A) (suLe(A)) bound to <5% of sperm. Sperm also bound preferentially to suLe(X) made insoluble by coupling to beads. Capacitation reduced the ability of suLe(X) to bind sperm to <10%, perhaps helping to explain why sperm are released at capacitation. Pretreatment of oviduct cell aggregates with the Le(X) antibody blocked 57% of sperm binding to isthmic aggregates. Blocking putative receptors on sperm with soluble Le(X) and suLe(X) glycans specifically reduced sperm binding to oviduct cells up to 61%. These results demonstrate that the oviduct isthmus contains Le(X)-related moieties and that sperm binding to these oviduct glycans is necessary and sufficient for forming the sperm reservoir.
Collapse
Affiliation(s)
- Sergio A Machado
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Govindasamy Kadirvel
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Bradford W Daigneault
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Claudia Korneli
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Paul Miller
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Nicolai Bovin
- Shemyakin Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - David J Miller
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
189
|
Gupta SK. Role of zona pellucida glycoproteins during fertilization in humans. J Reprod Immunol 2014; 108:90-7. [PMID: 25445843 DOI: 10.1016/j.jri.2014.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/12/2014] [Accepted: 08/27/2014] [Indexed: 12/18/2022]
Abstract
In the last decade, scientific investigations pertaining to the role of zona pellucida (ZP) glycoproteins during fertilization in humans have led to new insights. This has been achieved using purified native/recombinant human zona proteins and transgenic mice expressing human ZP glycoproteins. The proposed model in mice of ZP glycoprotein-3 (ZP3) acting as primary sperm receptor and ZP glycoprotein-2 (ZP2) as secondary sperm receptor has been modified for sperm-egg binding in humans. ZP glycoprotein-1 (ZP1), ZP3, and ZP glycoprotein-4 (ZP4) have been shown to bind to the capacitated human sperm. ZP2 binds to the acrosome-reacted human spermatozoa. Further, the eggs obtained from transgenic mice expressing human ZP2 alone or in conjunction with other human instead of mouse zona proteins showed binding of human sperm, suggesting that ZP2 might also play a role in sperm-egg binding. This function has been mapped to a domain corresponding to amino acid residues 51-144 of ZP2. In contrast to mice, where ZP3 is the primary agonist for inducing the acrosome reaction, in humans, the acrosome reaction can be mediated by ZP1, ZP3, and ZP4. The effect of mutations in the genes encoding zona proteins on the ZP morphology and infertility has not been established. Further, the role of autoantibodies against ZP in women with 'unexplained infertility' leading to poor outcome of in vitro fertilization is currently controversial and needs further investigations. Understanding the role of ZP glycoproteins during human fertilization facilitates the development of new contraceptives and strategies to overcome the problem of infertility.
Collapse
Affiliation(s)
- Satish Kumar Gupta
- Reproductive Cell Biology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| |
Collapse
|
190
|
A role for carbohydrate recognition in mammalian sperm-egg binding. Biochem Biophys Res Commun 2014; 450:1195-203. [DOI: 10.1016/j.bbrc.2014.06.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 11/18/2022]
|
191
|
Naz RK. Vaccine for human contraception targeting sperm Izumo protein and YLP12 dodecamer peptide. Protein Sci 2014; 23:857-68. [PMID: 24723387 PMCID: PMC4088970 DOI: 10.1002/pro.2476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 01/06/2023]
Abstract
There is an urgent need to develop a better method of contraception which is non-steroidal and reversible to control world population explosion and unintended pregnancies. Contraceptive vaccines (CV), especially targeting sperm-specific proteins, can provide an ideal contraceptive modality. Sperm-specific proteins can induce an immune response in women as well as men, thus can be used for CV development in both sexes. In this article, we will review two sperm-specific proteins, namely Izumo protein and YLP12 dodecamer peptide. Gene-knockout studies indicate that Izumo protein is essential for sperm-egg membrane fusion. Vaccination with Izumo protein or its cDNA causes a significant reduction in fertility of female mice. The antibodies to human Izumo inhibit human sperm penetration assay. Recently, our laboratory found that a significant percentage of infertile women have antibodies to Izumo protein. The second sperm-specific protein is YLP12 , a peptide mimetic sequence present on human sperm involved in recognition and binding to the human oocyte zona pellucida. Vaccination with YLP12 or its cDNA causes long-term, reversible contraception, without side effects, in female mice. Infertile, but not fertile, men and women have antibodies to YLP12 peptide. Our laboratory has isolated, cloned, and sequenced cDNA encoding human single chain variable fragment (scFv) antibody from infertile men which reacts with YLP12 peptide. The human YLP12 scFv antibody may provide a novel passive immunocontraceptive, the first of its kind. In conclusion, sperm-specific Izumo protein and YLP12 peptide can provide exciting candidates for antisperm CV development.
Collapse
Affiliation(s)
- Rajesh K Naz
- Reproductive Immunology and Molecular Biology Laboratories, Department of Obstetrics and Gynecology, West Virginia University, School of MedicineMorgantown, West Virginia
| |
Collapse
|
192
|
Liu C, Deng Q, Fang G, Huang X, Wang S. Facile synthesis of graphene doped poly(ionic liquid) boronate affinity material for specific capture of glycoproteins. J Mater Chem B 2014; 2:5229-5237. [DOI: 10.1039/c4tb00663a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
193
|
Avella MA, Baibakov B, Dean J. A single domain of the ZP2 zona pellucida protein mediates gamete recognition in mice and humans. ACTA ACUST UNITED AC 2014; 205:801-9. [PMID: 24934154 PMCID: PMC4068139 DOI: 10.1083/jcb.201404025] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ZP251–149 domain is necessary for human and mouse gamete recognition on the surface of the zona pellucida and for mouse fertility. The extracellular zona pellucida surrounds ovulated eggs and mediates gamete recognition that is essential for mammalian fertilization. Zonae matrices contain three (mouse) or four (human) glycoproteins (ZP1–4), but which protein binds sperm remains controversial. A defining characteristic of an essential zona ligand is sterility after genetic ablation. We have established transgenic mice expressing human ZP4 that form zonae pellucidae in the absence of mouse or human ZP2. Neither mouse nor human sperm bound to these ovulated eggs, and these female mice were sterile after in vivo insemination or natural mating. The same phenotype was observed with truncated ZP2 that lacks a restricted domain within ZP251–149. Chimeric human/mouse ZP2 isoforms expressed in transgenic mice and recombinant peptide bead assays confirmed that this region accounts for the taxon specificity observed in human–mouse gamete recognition. These observations in transgenic mice document that the ZP251–149 sperm-binding domain is necessary for human and mouse gamete recognition and penetration through the zona pellucida.
Collapse
Affiliation(s)
- Matteo A Avella
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Boris Baibakov
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
194
|
Li CW, Hon KW, Ghosh B, Li PH, Lin HY, Chan PH, Lin CH, Chen YC, Mong KKT. Synthesis of Oligomeric Mannosides and Their Structure-Binding Relationship with Concanavalin A. Chem Asian J 2014; 9:1786-96. [DOI: 10.1002/asia.201402029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/20/2014] [Indexed: 01/15/2023]
|
195
|
Chiu PCN, Lam KKW, Wong RCW, Yeung WSB. The identity of zona pellucida receptor on spermatozoa: an unresolved issue in developmental biology. Semin Cell Dev Biol 2014; 30:86-95. [PMID: 24747367 DOI: 10.1016/j.semcdb.2014.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 11/29/2022]
Abstract
Mammalian oocytes are surrounded by an acellular zona pellucida (ZP). Fertilization begins when a capacitated spermatozoon binds to the ZP. Defective sperm-ZP interaction is a cause of male infertility and reduced fertilization rates in clinical assisted reproduction treatment. Despite the importance of spermatozoa-ZP binding, the mechanisms and regulation of the interaction are unclear partly due to the failure in the identification of ZP receptor on spermatozoa. Most of the previous studies assumed that the sperm ZP receptor is a single molecular species, and a number of potential candidates had been suggested. Yet none of them can be considered as the sole sperm ZP receptor. Accumulated evidence suggested that the sperm ZP receptor is a dynamic multi-molecular structure requiring coordinated action of different proteins that are assembled into a functional complex during post-testicular maturation and capacitation. The complex components may include carbohydrate-binding, protein-binding and acrosomal matrix proteins which work as a suite to mediate spermatozoa-ZP interaction. This article aims to review the latest insights in the identification of the sperm ZP receptor. Continued investigation of the area will provide considerable understanding of the regulation of fertilization that will be useful for practical application in human contraception and reproductive medicine.
Collapse
Affiliation(s)
- Philip C N Chiu
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China; Centre of Reproduction, Development and Growth, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - Kevin K W Lam
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - Rachel C W Wong
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China; Centre of Reproduction, Development and Growth, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
196
|
Huang HL, Lv C, Zhao YC, Li W, He XM, Li P, Sha AG, Tian X, Papasian CJ, Deng HW, Lu GX, Xiao HM. Mutant ZP1 in familial infertility. N Engl J Med 2014; 370:1220-6. [PMID: 24670168 PMCID: PMC4076492 DOI: 10.1056/nejmoa1308851] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human zona pellucida is composed of four glycoproteins (ZP1, ZP2, ZP3, and ZP4) and has an important role in reproduction. Here we describe a form of infertility with an autosomal recessive mode of inheritance, characterized by abnormal eggs that lack a zona pellucida. We identified a homozygous frameshift mutation in ZP1 in six family members. In vitro studies showed that defective ZP1 proteins and normal ZP3 proteins colocalized throughout the cells and were not expressed at the cell surface, suggesting that the aberrant ZP1 results in the sequestration of ZP3 in the cytoplasm, thereby preventing the formation of the zona pellucida around the oocyte.
Collapse
Affiliation(s)
- Hua-Lin Huang
- From the Institute of Reproduction and Stem Cell Engineering, Central South University (H.-L.H., C.L., W.L., G.-X.L., H.-M.X.), Reproductive and Genetic Hospital of CITIC-Xiangya (W.L., G.-X.L., H.-M.X.), and the First High School of Changsha (X.T.), Changsha, and Xiamen Maternal and Child Health Care Hospital (X.-M.H., P.L.) and PLA Hospital No.174 (A.-G.S.), Xiamen - all in China; the Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans (H.-L.H., Y.-C.Z., H.-W.D.); and the School of Medicine, University of Missouri-Kansas City, Kansas City (C.J.P.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Xin AJ, Cheng L, Diao H, Wang P, Gu YH, Wu B, Wu YC, Chen GW, Zhou SM, Guo SJ, Shi HJ, Tao SC. Comprehensive profiling of accessible surface glycans of mammalian sperm using a lectin microarray. Clin Proteomics 2014; 11:10. [PMID: 24629138 PMCID: PMC4003823 DOI: 10.1186/1559-0275-11-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/04/2014] [Indexed: 11/10/2022] Open
Abstract
It is well known that cell surface glycans or glycocalyx play important roles in sperm motility, maturation and fertilization. A comprehensive profile of the sperm surface glycans will greatly facilitate both basic research (sperm glycobiology) and clinical studies, such as diagnostics of infertility. As a group of natural glycan binders, lectin is an ideal tool for cell surface glycan profiling. However, because of the lack of effective technology, only a few lectins have been tested for lectin-sperm binding profiles. To address this challenge, we have developed a procedure for high-throughput probing of mammalian sperm with 91 lectins on lectin microarrays. Normal sperm from human, boar, bull, goat and rabbit were collected and analyzed on the lectin microarrays. Positive bindings of a set of ~50 lectins were observed for all the sperm of 5 species, which indicated a wide range of glycans are on the surface of mammalian sperm. Species specific lectin bindings were also observed. Clustering analysis revealed that the distances of the five species according to the lectin binding profiles are consistent with that of the genome sequence based phylogenetic tree except for rabbit. The procedure that we established in this study could be generally applicable for sperm from other species or defect sperm from the same species. We believe the lectin binding profiles of the mammalian sperm that we established in this study are valuable for both basic research and clinical studies.
Collapse
Affiliation(s)
- Ai-Jie Xin
- Shanghai Jiai Genetics & IVF Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 20037, China
| | - Li Cheng
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Diao
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Shanghai 200032, China
| | - Peng Wang
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Shanghai 200032, China
| | - Yi-Hua Gu
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Shanghai 200032, China
| | - Bin Wu
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Shanghai 200032, China
| | - Yan-Cheng Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 20037, China
| | - Guo-Wu Chen
- Shanghai Jiai Genetics & IVF Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| | - Shu-Min Zhou
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China
| | - Shu-Juan Guo
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui-Juan Shi
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Shanghai 200032, China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
198
|
Clark GF. The role of glycans in immune evasion: the human fetoembryonic defence system hypothesis revisited. Mol Hum Reprod 2014; 20:185-99. [PMID: 24043694 PMCID: PMC3925329 DOI: 10.1093/molehr/gat064] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/15/2013] [Accepted: 09/03/2013] [Indexed: 02/06/2023] Open
Abstract
Emerging data suggest that mechanisms to evade the human immune system may be shared by the conceptus, tumour cells, persistent pathogens and viruses. It is therefore timely to revisit the human fetoembryonic defense system (Hu-FEDS) hypothesis that was proposed in two papers in the 1990s. The initial paper suggested that glycoconjugates expressed in the human reproductive system inhibited immune responses directed against gametes and the developing human by employing their carbohydrate sequences as functional groups. These glycoconjugates were proposed to block specific binding interactions and interact with lectins linked to signal transduction pathways that modulated immune cell functions. The second article suggested that aggressive tumour cells and persistent pathogens (HIV, H. pylori, schistosomes) either mimicked or acquired the same carbohydrate functional groups employed in this system to evade immune responses. This subterfuge enabled these pathogens and tumour cells to couple their survival to the human reproductive imperative. The Hu-FEDS model has been repeatedly tested since its inception. Data relevant to this model have also been obtained in other studies. Herein, the Hu-FEDS hypothesis is revisited in the context of these more recent findings. Far more supportive evidence for this model now exists than when it was first proposed, and many of the original predictions have been validated. This type of subterfuge by pathogens and tumour cells likely applies to all sexually reproducing metazoans that must protect their gametes from immune responses. Intervention in these pathological states will likely remain problematic until this system of immune evasion is fully understood and appreciated.
Collapse
Affiliation(s)
- Gary F. Clark
- Department of Obstetrics, Gynecology and Women's Health, Division of Reproductive and Perinatal Research and Division of Reproductive Medicine and Fertility, University of Missouri School of Medicine, Columbia, MO 65211, USA
| |
Collapse
|
199
|
Wu L, Sampson NS. Fucose, mannose, and β-N-acetylglucosamine glycopolymers initiate the mouse sperm acrosome reaction through convergent signaling pathways. ACS Chem Biol 2014; 9:468-75. [PMID: 24252131 PMCID: PMC4049243 DOI: 10.1021/cb400550j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
The sperm acrosome reaction (AR),
an essential exocytosis step
in mammalian fertilization, is mediated by a species-specific interaction
of sperm surface molecules with glycans on the egg. Previous studies
indicate that a subset of terminal carbohydrates on the mouse egg
zona pellucida (ZP) trigger the AR by cross-linking or aggregating
receptors on the sperm membrane. However, the exact role of those
carbohydrates in AR has not been identified and the mechanism underlying
the AR still needs further investigation. To study this process, a
series of glycopolymers was synthesized. The glycopolymers are composed
of a multivalent scaffold (norbornene), a functional ligand (previously
identified ZP terminal monosaccharides), and a linker connecting the
ligand and the scaffold. The polymers were tested for their ability
to initiate AR and through which signaling pathways AR induction occurred.
Our data demonstrate that mannose, fucose, and β-N-acetylglucosamine 10-mers and 100-mers initiate AR in a dose-dependent
manner, and the 100-mers are more potent on a per monomer basis than
the 10-mers. Although nearly equipotent in inducing the AR at the
optimal concentrations, their AR activation kinetics are not identical.
Similar to mouse ZP3, all 100-mer-activated AR are sensitive to guanine-binding
regulatory proteins (G-proteins), tyrosine kinase, protein kinase
A, protein kinase C, and Ca2+-related antagonists. Thus,
the chemotypes of synthetic glycopolymers imitate the physiologic
AR-activation agents and provide evidence that occupation of one of
at least three different receptor binding sites is sufficient to initiate
the AR.
Collapse
Affiliation(s)
- Linghui Wu
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
200
|
Hudak JE, Bertozzi CR. Glycotherapy: new advances inspire a reemergence of glycans in medicine. CHEMISTRY & BIOLOGY 2014; 21:16-37. [PMID: 24269151 PMCID: PMC4111574 DOI: 10.1016/j.chembiol.2013.09.010] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/16/2013] [Accepted: 09/30/2013] [Indexed: 12/21/2022]
Abstract
The beginning of the 20(th) century marked the dawn of modern medicine with glycan-based therapies at the forefront. However, glycans quickly became overshadowed as DNA- and protein-focused treatments became readily accessible. The recent development of new tools and techniques to study and produce structurally defined carbohydrates has spurred renewed interest in the therapeutic applications of glycans. This review focuses on advances within the past decade that are bringing glycan-based treatments back to the forefront of medicine and the technologies that are driving these efforts. These include the use of glycans themselves as therapeutic molecules as well as engineering protein and cell surface glycans to suit clinical applications. Glycan therapeutics offer a rich and promising frontier for developments in the academic, biopharmaceutical, and medical fields.
Collapse
Affiliation(s)
- Jason E Hudak
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|