151
|
Endo M, Ozawa T. Strategies for development of optogenetic systems and their applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
152
|
Mühlhäuser WW, Fischer A, Weber W, Radziwill G. Optogenetics - Bringing light into the darkness of mammalian signal transduction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:280-292. [DOI: 10.1016/j.bbamcr.2016.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 01/01/2023]
|
153
|
Mondal P, Khamo JS, Krishnamurthy VV, Cai Q, Zhang K. Drive the Car(go)s-New Modalities to Control Cargo Trafficking in Live Cells. Front Mol Neurosci 2017; 10:4. [PMID: 28163671 PMCID: PMC5247435 DOI: 10.3389/fnmol.2017.00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022] Open
Abstract
Synaptic transmission is a fundamental molecular process underlying learning and memory. Successful synaptic transmission involves coupled interaction between electrical signals (action potentials) and chemical signals (neurotransmitters). Defective synaptic transmission has been reported in a variety of neurological disorders such as Autism and Alzheimer’s disease. A large variety of macromolecules and organelles are enriched near functional synapses. Although a portion of macromolecules can be produced locally at the synapse, a large number of synaptic components especially the membrane-bound receptors and peptide neurotransmitters require active transport machinery to reach their sites of action. This spatial relocation is mediated by energy-consuming, motor protein-driven cargo trafficking. Properly regulated cargo trafficking is of fundamental importance to neuronal functions, including synaptic transmission. In this review, we discuss the molecular machinery of cargo trafficking with emphasis on new experimental strategies that enable direct modulation of cargo trafficking in live cells. These strategies promise to provide insights into a quantitative understanding of cargo trafficking, which could lead to new intervention strategies for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Payel Mondal
- Department of Biochemistry, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - John S Khamo
- Department of Biochemistry, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | | | - Qi Cai
- Department of Biochemistry, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-ChampaignUrbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-ChampaignUrbana, IL, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| |
Collapse
|
154
|
Ni M, Zhuo S, So PTC, Yu H. Fluorescent probes for nanoscopy: four categories and multiple possibilities. JOURNAL OF BIOPHOTONICS 2017; 10:11-23. [PMID: 27221311 PMCID: PMC5775479 DOI: 10.1002/jbio.201600042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/08/2016] [Accepted: 05/03/2016] [Indexed: 05/08/2023]
Abstract
Nanoscopy enables breaking down the light diffraction limit and reveals the nanostructures of objects being studied using light. In 2014, three scientists pioneered the development of nanoscopy and won the Nobel Prize in Chemistry. This recognized the achievement of the past twenty years in the field of nanoscopy. However, fluorescent probes used in the field of nanoscopy are still numbered. Here, we review the currently available four categories of probes and existing methods to improve the performance of probes.
Collapse
Affiliation(s)
- Ming Ni
- Fujian Provincial Key Laboratory for Photonics Technology & Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- Corresponding authors: ; ;
| | - Shuangmu Zhuo
- Fujian Provincial Key Laboratory for Photonics Technology & Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602, Singapore
- Corresponding authors: ; ;
| | - Peter T. C. So
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602, Singapore
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore 117597, Singapore
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411, Singapore
- Corresponding authors: ; ;
| |
Collapse
|
155
|
Lyu S, Fang J, Duan T, Fu L, Liu J, Li H. Optically controlled reversible protein hydrogels based on photoswitchable fluorescent protein Dronpa. Chem Commun (Camb) 2017; 53:13375-13378. [DOI: 10.1039/c7cc06991j] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exploiting the optically controlled association and dissociation behavior of a photoswitchable fluorescent protein, Dronpa145N, here we demonstrate the engineering of an optically switchable reversible protein hydrogel using Dronpa145N-based protein building blocks.
Collapse
Affiliation(s)
- Shanshan Lyu
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
- State Key Laboratory of Organic–Inorganic Composite Materials
| | - Jing Fang
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Tianyu Duan
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Linglan Fu
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Junqiu Liu
- State Key Lab for Supramolecular Structure and Materials
- Jilin University Changchun
- Jilin
- P. R. China
| | - Hongbin Li
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
156
|
Brenker K, Osthof K, Yang J, Reth M. LED Thermo Flow - Combining Optogenetics with Flow Cytometry. J Vis Exp 2016. [PMID: 28060327 DOI: 10.3791/54707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Optogenetic tools allow isolated, functional investigations of almost any signaling molecule within complex signaling pathways. A major obstacle is the controlled delivery of light to the cell sample and hence the most popular tools for optogenetic studies are microscopy-based cell analyses and in vitro experiments. The flow cytometer has major advantages over a microscope, including the ability to rapidly measure thousands of cells at single cell resolution. However, it is not yet widely used in optogenetics. Here, we present a device that combines the power of optogenetics and flow cytometry: the LED Thermo Flow. This device illuminates cells at specific wavelengths, light intensities and temperatures during flow cytometric measurements. It can be built at low cost and be used with most common flow cytometers. To demonstrate its utility, we characterized the photoswitching kinetics of Dronpa proteins in vivo and in real time. This protocol can be adapted to almost all optically controlled substances and substantially expands the set of possible experiments. More importantly, it will greatly simplify the discovery and development of new optogenetic tools.
Collapse
Affiliation(s)
- Kathrin Brenker
- Max-Planck Institute for Immunobiology und Epigenetics; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg; Centre for Biological Signaling Studies, BIOSS, University of Freiburg;
| | - Kerstin Osthof
- Max-Planck Institute for Immunobiology und Epigenetics; Albert-Ludwigs-Universität
| | - Jianying Yang
- Max-Planck Institute for Immunobiology und Epigenetics; Centre for Biological Signaling Studies, BIOSS, University of Freiburg
| | - Michael Reth
- Max-Planck Institute for Immunobiology und Epigenetics; Centre for Biological Signaling Studies, BIOSS, University of Freiburg; Institute for Biology III (Mol. Immunology), Albert-Ludwigs-Universität
| |
Collapse
|
157
|
Mathur M, Xiang JS, Smolke CD. Mammalian synthetic biology for studying the cell. J Cell Biol 2016; 216:73-82. [PMID: 27932576 PMCID: PMC5223614 DOI: 10.1083/jcb.201611002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/25/2022] Open
Abstract
Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology.
Collapse
Affiliation(s)
- Melina Mathur
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Joy S Xiang
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | | |
Collapse
|
158
|
Rose JC, Huang PS, Camp ND, Ye J, Leidal AM, Goreshnik I, Trevillian BM, Dickinson MS, Cunningham-Bryant D, Debnath J, Baker D, Wolf-Yadlin A, Maly DJ. A computationally engineered RAS rheostat reveals RAS-ERK signaling dynamics. Nat Chem Biol 2016; 13:119-126. [PMID: 27870838 PMCID: PMC5161653 DOI: 10.1038/nchembio.2244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 09/08/2016] [Indexed: 01/07/2023]
Abstract
Synthetic protein switches controlled with user-defined inputs are powerful tools for studying and controlling dynamic cellular processes. To date, these approaches have relied primarily on intermolecular regulation. Here, we report a computationally-guided framework for engineering intramolecular regulation of protein function. We utilize this framework to develop Chemically Inducible Activator of RAS (CIAR), a single-component RAS rheostat that directly activates endogenous RAS in response to a small molecule. Using CIAR, we show that direct RAS activation elicits markedly different RAS/ERK signaling dynamics compared to growth factor stimulation, and that these dynamics differ between cell types. We also found that the clinically-approved RAF inhibitor vemurafenib potently primes cells to respond to direct wild-type RAS activation. These results demonstrate the utility of CIAR for quantitatively interrogating RAS signaling. Finally, we demonstrate the general utility of our approach to design intramolecularly-regulated protein tools by applying this methodology to the Rho Family GEFs.
Collapse
Affiliation(s)
- John C Rose
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Po-Ssu Huang
- Department of Biochemistry, University of Washington, Seattle, Washington, USA.,Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Nathan D Camp
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Jordan Ye
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Andrew M Leidal
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | | | - Miles S Dickinson
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | | | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington, USA.,Institute for Protein Design, University of Washington, Seattle, Washington, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | | | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, Washington, USA.,Department of Biochemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
159
|
Rodriguez EA, Campbell RE, Lin JY, Lin MZ, Miyawaki A, Palmer AE, Shu X, Zhang J, Tsien RY. The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins. Trends Biochem Sci 2016; 42:111-129. [PMID: 27814948 DOI: 10.1016/j.tibs.2016.09.010] [Citation(s) in RCA: 435] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 02/08/2023]
Abstract
Over the past 20 years, protein engineering has been extensively used to improve and modify the fundamental properties of fluorescent proteins (FPs) with the goal of adapting them for a fantastic range of applications. FPs have been modified by a combination of rational design, structure-based mutagenesis, and countless cycles of directed evolution (gene diversification followed by selection of clones with desired properties) that have collectively pushed the properties to photophysical and biochemical extremes. In this review, we provide both a summary of the progress that has been made during the past two decades, and a broad overview of the current state of FP development and applications in mammalian systems.
Collapse
Affiliation(s)
- Erik A Rodriguez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
| | - John Y Lin
- School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia.
| | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA.
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Amy E Palmer
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, CO, 80303, USA.
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Roger Y Tsien
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
160
|
Acharya A, Bogdanov AM, Grigorenko BL, Bravaya KB, Nemukhin AV, Lukyanov KA, Krylov AI. Photoinduced Chemistry in Fluorescent Proteins: Curse or Blessing? Chem Rev 2016; 117:758-795. [PMID: 27754659 DOI: 10.1021/acs.chemrev.6b00238] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photoinduced reactions play an important role in the photocycle of fluorescent proteins from the green fluorescent protein (GFP) family. Among such processes are photoisomerization, photooxidation/photoreduction, breaking and making of covalent bonds, and excited-state proton transfer (ESPT). Many of these transformations are initiated by electron transfer (ET). The quantum yields of these processes vary significantly, from nearly 1 for ESPT to 10-4-10-6 for ET. Importantly, even when quantum yields are relatively small, at the conditions of repeated illumination the overall effect is significant. Depending on the task at hand, fluorescent protein photochemistry is regarded either as an asset facilitating new applications or as a nuisance leading to the loss of optical output. The phenomena arising due to phototransformations include (i) large Stokes shifts, (ii) photoconversions, photoactivation, and photoswitching, (iii) phototoxicity, (iv) blinking, (v) permanent bleaching, and (vi) formation of long-lived intermediates. The focus of this review is on the most recent experimental and theoretical work on photoinduced transformations in fluorescent proteins. We also provide an overview of the photophysics of fluorescent proteins, highlighting the interplay between photochemistry and other channels (fluorescence, radiationless relaxation, and intersystem crossing). The similarities and differences with photochemical processes in other biological systems and in dyes are also discussed.
Collapse
Affiliation(s)
- Atanu Acharya
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| | - Alexey M Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, Russia.,Nizhny Novgorod State Medical Academy , Nizhny Novgorod, Russia
| | - Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University , Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Moscow, Russia
| | - Ksenia B Bravaya
- Department of Chemistry, Boston University , Boston, Massachusetts United States
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University , Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Moscow, Russia
| | - Konstantin A Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, Russia.,Nizhny Novgorod State Medical Academy , Nizhny Novgorod, Russia
| | - Anna I Krylov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| |
Collapse
|
161
|
Guglielmi G, Falk HJ, De Renzis S. Optogenetic Control of Protein Function: From Intracellular Processes to Tissue Morphogenesis. Trends Cell Biol 2016; 26:864-874. [PMID: 27727011 PMCID: PMC5080449 DOI: 10.1016/j.tcb.2016.09.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/16/2022]
Abstract
Optogenetics is an emerging and powerful technique that allows the control of protein activity with light. The possibility of inhibiting or stimulating protein activity with the spatial and temporal precision of a pulse of laser light is opening new frontiers for the investigation of developmental pathways and cell biological bases underlying organismal development. With this powerful technique in hand, it will be possible to address old and novel questions about how cells, tissues, and organisms form. In this review, we focus on the applications of existing optogenetic tools for addressing issues in animal morphogenesis. Optogenetics allows the manipulation of gene expression and cell behaviors in individual cells or group of cells in the context of intact organisms. Precise spatiotemporal and quantitative perturbation of signaling systems using optogenetics provides a powerful new approach to study morphogenesis of multicellular systems. The possibility to combine optogenetics with genetically encoded biosensors (e.g., tension sensors) or chemical probes enables the perturbation and monitoring of biochemical reactions of interest in vivo. By allowing the control of key behaviors, such as cell motility, polarity, and proliferation, optogenetics will be instrumental for characterizing the mechanisms underlying organ regeneration and cancer growth/invasion in living organisms.
Collapse
Affiliation(s)
- Giorgia Guglielmi
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Henning Johannes Falk
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Stefano De Renzis
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
162
|
Genetically encoding new bioreactivity. N Biotechnol 2016; 38:16-25. [PMID: 27721014 DOI: 10.1016/j.nbt.2016.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/25/2016] [Accepted: 10/05/2016] [Indexed: 12/25/2022]
Abstract
The genetic code can be expanded to include unnatural amino acids (Uaas) by engineering orthogonal components involved in protein translation. To be compatible with live cells, side chains of Uaas have been limited to either chemically inert or bio-orthogonal (i.e., nonreactive toward biomolecules) functionalities. To introduce bioreactivity into live systems, the genetic code has recently been engineered to encode a new class of Uaas, the bioreactive Uaas. These Uaas, after being incorporated into proteins, specifically react with target natural amino acid residues via proximity-enabled bioreactivity, enabling the selective formation of new covalent linkages within and between proteins both in vitro and in live systems. The new covalent bonding ability has been harnessed within proteins to enhance photostability, increase thermostability, staple proteins recombinantly, and build optical nano-switches, and between proteins to pinpoint ligand-receptor interaction, target native receptors irreversibly, and generate covalent macromolecular inhibitors. These diverse bioreactivities, inaccessible to natural proteins, thus open doors to novel protein engineering and provide new avenues for biological studies, biotherapeutics and synthetic biology.
Collapse
|
163
|
Krishnamurthy VV, Khamo JS, Mei W, Turgeon AJ, Ashraf HM, Mondal P, Patel DB, Risner N, Cho EE, Yang J, Zhang K. Reversible optogenetic control of kinase activity during differentiation and embryonic development. Development 2016; 143:4085-4094. [PMID: 27697903 DOI: 10.1242/dev.140889] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/19/2016] [Indexed: 12/16/2022]
Abstract
A limited number of signaling pathways are repeatedly used to regulate a wide variety of processes during development and differentiation. The lack of tools to manipulate signaling pathways dynamically in space and time has been a major technical challenge for biologists. Optogenetic techniques, which utilize light to control protein functions in a reversible fashion, hold promise for modulating intracellular signaling networks with high spatial and temporal resolution. Applications of optogenetics in multicellular organisms, however, have not been widely reported. Here, we create an optimized bicistronic optogenetic system using Arabidopsis thaliana cryptochrome 2 (CRY2) protein and the N-terminal domain of cryptochrome-interacting basic-helix-loop-helix (CIBN). In a proof-of-principle study, we develop an optogenetic Raf kinase that allows reversible light-controlled activation of the Raf/MEK/ERK signaling cascade. In PC12 cells, this system significantly improves light-induced cell differentiation compared with co-transfection. When applied to Xenopus embryos, this system enables blue light-dependent reversible Raf activation at any desired developmental stage in specific cell lineages. Our system offers a powerful optogenetic tool suitable for manipulation of signaling pathways with high spatial and temporal resolution in a wide range of experimental settings.
Collapse
Affiliation(s)
- Vishnu V Krishnamurthy
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - John S Khamo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenyan Mei
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Aurora J Turgeon
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Humza M Ashraf
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Payel Mondal
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dil B Patel
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Noah Risner
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ellen E Cho
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA .,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
164
|
Ross B, Mehta S, Zhang J. Molecular tools for acute spatiotemporal manipulation of signal transduction. Curr Opin Chem Biol 2016; 34:135-142. [PMID: 27639090 DOI: 10.1016/j.cbpa.2016.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 01/14/2023]
Abstract
The biochemical activities involved in signal transduction in cells are under tight spatiotemporal regulation. To study the effects of the spatial patterning and temporal dynamics of biochemical activities on downstream signaling, researchers require methods to manipulate signaling pathways acutely and rapidly. In this review, we summarize recent developments in the design of three broad classes of molecular tools for perturbing signal transduction, classified by their type of input signal: chemically induced, optically induced, and magnetically induced.
Collapse
Affiliation(s)
- Brian Ross
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
165
|
Watanabe S. Flash-and-Freeze: Coordinating Optogenetic Stimulation with Rapid Freezing to Visualize Membrane Dynamics at Synapses with Millisecond Resolution. Front Synaptic Neurosci 2016; 8:24. [PMID: 27594835 PMCID: PMC4990539 DOI: 10.3389/fnsyn.2016.00024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/03/2016] [Indexed: 01/12/2023] Open
Abstract
Electron microscopy depicts subcellular structures at synapses exquisitely but only captures static images. To visualize membrane dynamics, we have developed a novel technique, called flash-and-freeze, which induces neuronal activity with a flash of light and captures the membrane dynamics by rapid freezing. For characterizing membrane movements during synaptic transmission, a light-sensitive cation channel, channelrhodopsin, is heterologously expressed in mouse hippocampal neurons or in Caenorhabditis elegans motor neurons. A brief pulse of blue light activates channelrhodopsin and induces an action potential, leading to synaptic transmission. Following the light stimulation, neurons are frozen at different time intervals ranging from 10 ms to 20 s. Electron micrographs are then acquired from each time point to visualize the morphological changes. Using this approach, we have characterized a novel form of endocytosis, ultrafast endocytosis, which rapidly removes excess membrane added to the surface during neurotransmission. The flash-and-freeze approach can be adapted to study other cellular phenomena that can be induced by light-sensitive genetic or pharmacological tools.
Collapse
Affiliation(s)
- Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins UniversityBaltimore, MD, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimore, MD, USA
| |
Collapse
|
166
|
Niu J, Ben Johny M, Dick IE, Inoue T. Following Optogenetic Dimerizers and Quantitative Prospects. Biophys J 2016; 111:1132-1140. [PMID: 27542508 DOI: 10.1016/j.bpj.2016.07.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 01/06/2023] Open
Abstract
Optogenetics describes the use of genetically encoded photosensitive proteins to direct intended biological processes with light in recombinant and native systems. While most of these light-responsive proteins were originally discovered in photosynthetic organisms, the past few decades have been punctuated by experiments that not only commandeer but also engineer and enhance these natural tools to explore a wide variety of physiological questions. In addition, the ability to tune dynamic range and kinetic rates of optogenetic actuators is a challenging question that is heavily explored with computational methods devised to facilitate optimization of these systems. Here, we explain the basic mechanisms of a few popular photodimerizing optogenetic systems, discuss applications, compare optogenetic tools against more traditional chemical methods, and propose a simple quantitative understanding of how actuators exert their influence on targeted processes.
Collapse
Affiliation(s)
- Jacqueline Niu
- Department of Biomedical Engineering, School of Medicine, The Johns Hopkins University, Baltimore, Maryland.
| | - Manu Ben Johny
- Department of Biomedical Engineering, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Ivy E Dick
- Department of Biomedical Engineering, School of Medicine, The Johns Hopkins University, Baltimore, Maryland; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Takanari Inoue
- Department of Biomedical Engineering, School of Medicine, The Johns Hopkins University, Baltimore, Maryland; Department of Cell Biology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland; The Center for Cell Dynamics, Institute for Basic Biomedical Sciences, The Johns Hopkins University, Baltimore, Maryland; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
167
|
Ng HL, Lin MZ. Structure-guided wavelength tuning in far-red fluorescent proteins. Curr Opin Struct Biol 2016; 39:124-133. [PMID: 27468111 PMCID: PMC5548387 DOI: 10.1016/j.sbi.2016.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/28/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Abstract
In recent years, protein engineers have succeeded in tuning the excitation spectra of natural fluorescent proteins from green wavelengths into orange and red wavelengths, resulting in the creation of a series of fluorescent proteins with emission in the far-red portions of the optical spectrum. These results have arisen from the synergistic combination of structural knowledge of fluorescent proteins, chemical intuition, and high-throughput screening methods. Here we review structural features found in autocatalytic far-red fluorescent proteins, and discuss how they add to our understanding of the biophysical mechanisms of wavelength tuning in biological chromophores.
Collapse
Affiliation(s)
- Ho-Leung Ng
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI, USA; University of Hawaii Cancer Center, Honolulu, HI, USA.
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Pediatrics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
168
|
Gordley RM, Bugaj LJ, Lim WA. Modular engineering of cellular signaling proteins and networks. Curr Opin Struct Biol 2016; 39:106-114. [PMID: 27423114 DOI: 10.1016/j.sbi.2016.06.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/16/2016] [Accepted: 06/15/2016] [Indexed: 12/31/2022]
Abstract
Living cells respond to their environment using networks of signaling molecules that act as sensors, information processors, and actuators. These signaling systems are highly modular at both the molecular and network scales, and much evidence suggests that evolution has harnessed this modularity to rewire and generate new physiological behaviors. Conversely, we are now finding that, following nature's example, signaling modules can be recombined to form synthetic tools for monitoring, interrogating, and controlling the behavior of cells. Here we highlight recent progress in the modular design of synthetic receptors, optogenetic switches, and phospho-regulated proteins and circuits, and discuss the expanding role of combinatorial design in the engineering of cellular signaling proteins and networks.
Collapse
Affiliation(s)
- Russell M Gordley
- Howard Hughes Medical Institute, United States; Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States
| | - Lukasz J Bugaj
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States
| | - Wendell A Lim
- Howard Hughes Medical Institute, United States; Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States.
| |
Collapse
|
169
|
Aper SJ, Merkx M. Rewiring Multidomain Protein Switches: Transforming a Fluorescent Zn(2+) Sensor into a Light-Responsive Zn(2+) Binding Protein. ACS Synth Biol 2016; 5:698-709. [PMID: 27031076 DOI: 10.1021/acssynbio.6b00027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein-based sensors and switches provide attractive tools for the real-time monitoring and control of molecular processes in complex biological environments. Fluorescent sensor proteins have been developed for a wide variety of small molecules, but the construction of genetically encoded light-responsive ligand binding proteins remains mostly unexplored. Here we present a generic approach to reengineer a previously developed FRET-based Zn(2+) sensor into a light-activatable Zn(2+) binding protein using a design strategy based on mutually exclusive domain interactions. These so-called VividZn proteins consist of two light-responsive Vivid domains that homodimerize upon illumination with blue light, thus preventing the binding of Zn(2+) between two Zn(2+) binding domains, Atox1 and WD4. Following optimization of the linker between WD4 and the N-terminus of one of the Vivid domains, VividZn variants were obtained that show a 9- to 55-fold decrease in Zn(2+) affinity upon illumination, which is fully reversible following dark adaptation. The Zn(2+) affinities of the switch could be rationally tuned between 1 pM and 2 nM by systematic variation of linker length and mutation of one of the Zn(2+) binding residues. Similarly, introduction of mutations in the Vivid domains allowed tuning of the switching kinetics between 10 min and 7 h. Low expression levels in mammalian cells precluded the demonstration of light-induced perturbation of cytosolic Zn(2+) levels. Nonetheless, our results firmly establish the use of intramolecular Vivid dimerization as an attractive light-sensitive input module to rationally engineer light-responsive protein switches based on mutually exclusive domain interactions.
Collapse
Affiliation(s)
- Stijn J.A. Aper
- Laboratory
of Chemical Biology
and Institute for Complex Molecular Systems (ICMS), Department of
Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Maarten Merkx
- Laboratory
of Chemical Biology
and Institute for Complex Molecular Systems (ICMS), Department of
Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
170
|
Nemet I, Ropelewski P, Imanishi Y. Applications of phototransformable fluorescent proteins for tracking the dynamics of cellular components. Photochem Photobiol Sci 2016; 14:1787-806. [PMID: 26345171 DOI: 10.1039/c5pp00174a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the past few decades, fluorescent proteins have revolutionized the field of cell biology. Phototransformable fluorescent proteins are capable of changing their excitation and emission spectra after being exposed to specific wavelength(s) of light. The majority of phototransformable fluorescent proteins have originated from marine organisms. Genetic engineering of these proteins has made available many choices for different colors, modes of conversion, and other biophysical properties. Their phototransformative property has allowed the highlighting and tracking of subpopulations of cells, organelles, and proteins in living systems. Furthermore, phototransformable fluorescent proteins have offered new methods for superresolution fluorescence microscopy and optogenetics manipulation of proteins. One of the major advantages of phototransformable fluorescent proteins is their applicability for visualizing newly synthesized proteins that are en route to their final destinations. In this paper, we will discuss the biological applications of phototransformable fluorescent proteins with special emphasis on the application of tracking membrane proteins in vertebrate photoreceptor cells.
Collapse
Affiliation(s)
- Ina Nemet
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
171
|
Buckley CE, Moore RE, Reade A, Goldberg AR, Weiner OD, Clarke JDW. Reversible Optogenetic Control of Subcellular Protein Localization in a Live Vertebrate Embryo. Dev Cell 2016; 36:117-126. [PMID: 26766447 PMCID: PMC4712025 DOI: 10.1016/j.devcel.2015.12.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 11/09/2015] [Accepted: 12/08/2015] [Indexed: 12/13/2022]
Abstract
We demonstrate the utility of the phytochrome system to rapidly and reversibly recruit proteins to specific subcellular regions within specific cells in a living vertebrate embryo. Light-induced heterodimerization using the phytochrome system has previously been used as a powerful tool to dissect signaling pathways for single cells in culture but has not previously been used to reversibly manipulate the precise subcellular location of proteins in multicellular organisms. Here we report the experimental conditions necessary to use this system to manipulate proteins in vivo. As proof of principle, we demonstrate that we can manipulate the localization of the apical polarity protein Pard3 with high temporal and spatial precision in both the neural tube and the embryo’s enveloping layer epithelium. Our optimizations of optogenetic component expression and chromophore purification and delivery should significantly lower the barrier for establishing this powerful optogenetic system in other multicellular organisms. The phytochrome system has been optimized for use within multicellular organisms Protein recruitment can be tightly controlled to a specific subcellular region Protein recruitment occurs with high binding and reversal kinetics The subcellular localization of the apical polarity protein Pard3 is manipulated
Collapse
Affiliation(s)
- Clare E Buckley
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Rachel E Moore
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Anna Reade
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158-9001, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158-2517, USA
| | - Anna R Goldberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158-9001, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158-2517, USA
| | - Orion D Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158-9001, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158-2517, USA.
| | - Jonathan D W Clarke
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| |
Collapse
|
172
|
Vennin C, Herrmann D, Lucas MC, Timpson P. Intravital imaging reveals new ancillary mechanisms co-opted by cancer cells to drive tumor progression. F1000Res 2016; 5. [PMID: 27239290 PMCID: PMC4870995 DOI: 10.12688/f1000research.8090.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2016] [Indexed: 12/15/2022] Open
Abstract
Intravital imaging is providing new insights into the dynamics of tumor progression in native tissues and has started to reveal the layers of complexity found in cancer. Recent advances in intravital imaging have allowed us to look deeper into cancer behavior and to dissect the interactions between tumor cells and the ancillary host niche that promote cancer development. In this review, we provide an insight into the latest advances in cancer biology achieved by intravital imaging, focusing on recently discovered mechanisms by which tumor cells manipulate normal tissue to facilitate disease progression.
Collapse
Affiliation(s)
- Claire Vennin
- The Kinghorn Cancer Centre, Cancer Division, The Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - David Herrmann
- The Kinghorn Cancer Centre, Cancer Division, The Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Morghan C Lucas
- The Kinghorn Cancer Centre, Cancer Division, The Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Cancer Division, The Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
173
|
Abstract
Rho GTPases are crucial signaling molecules that regulate a plethora of biological functions. Traditional biochemical, cell biological, and genetic approaches have founded the basis of Rho GTPase biology. The development of biosensors then allowed measuring Rho GTPase activity with unprecedented spatio-temporal resolution. This revealed that Rho GTPase activity fluctuates on time and length scales of tens of seconds and micrometers, respectively. In this review, we describe Rho GTPase activity patterns observed in different cell systems. We then discuss the growing body of evidence that upstream regulators such as guanine nucleotide exchange factors and GTPase-activating proteins shape these patterns by precisely controlling the spatio-temporal flux of Rho GTPase activity. Finally, we comment on additional mechanisms that might feed into the regulation of these signaling patterns and on novel technologies required to dissect this spatio-temporal complexity.
Collapse
Affiliation(s)
| | - Olivier Pertz
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|
174
|
Niopek D, Wehler P, Roensch J, Eils R, Di Ventura B. Optogenetic control of nuclear protein export. Nat Commun 2016; 7:10624. [PMID: 26853913 PMCID: PMC4748110 DOI: 10.1038/ncomms10624] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022] Open
Abstract
Active nucleocytoplasmic transport is a key mechanism underlying protein regulation in eukaryotes. While nuclear protein import can be controlled in space and time with a portfolio of optogenetic tools, protein export has not been tackled so far. Here we present a light-inducible nuclear export system (LEXY) based on a single, genetically encoded tag, which enables precise spatiotemporal control over the export of tagged proteins. A constitutively nuclear, chromatin-anchored LEXY variant expands the method towards light inhibition of endogenous protein export by sequestering cellular CRM1 receptors. We showcase the utility of LEXY for cell biology applications by regulating a synthetic repressor as well as human p53 transcriptional activity with light. LEXY is a powerful addition to the optogenetic toolbox, allowing various novel applications in synthetic and cell biology.
Collapse
Affiliation(s)
- Dominik Niopek
- Department of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Bioinformatics and Functional Genomics, Synthetic Biology Group, Institute for Pharmacy and Biotechnology (IPMB), University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Pierre Wehler
- Department of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Julia Roensch
- Department of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Roland Eils
- Department of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Bioinformatics and Functional Genomics, Synthetic Biology Group, Institute for Pharmacy and Biotechnology (IPMB), University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Barbara Di Ventura
- Department of Bioinformatics and Functional Genomics, Synthetic Biology Group, Institute for Pharmacy and Biotechnology (IPMB), University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| |
Collapse
|
175
|
Abstract
Sensory photoreceptors underpin optogenetics by mediating the noninvasive and reversible perturbation of living cells by light with unprecedented temporal and spatial resolution. Spurred by seminal optogenetic applications of natural photoreceptors, the engineering of photoreceptors has recently garnered wide interest and has led to the construction of a broad palette of novel light-regulated actuators. Photoreceptors are modularly built of photosensors that receive light signals, and of effectors that carry out specific cellular functions. These modules have to be precisely connected to allow efficient communication, such that light stimuli are relayed from photosensor to effector. The engineering of photoreceptors benefits from a thorough understanding of the underlying signaling mechanisms. This chapter gives a brief overview of key characteristics and signal-transduction mechanisms of sensory photoreceptors. Adaptation of these concepts in photoreceptor engineering has enabled the generation of novel optogenetic tools that greatly transcend the repertoire of natural photoreceptors.
Collapse
Affiliation(s)
- Thea Ziegler
- Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
- Lehrstuhl für Biochemie, Universität Bayreuth, Universitätstraße 30, Bldg. NW III, 95440, Bayreuth, Germany
| | | | - Andreas Möglich
- Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Berlin, Germany.
- Faculty of Biology, Chemistry and Earth Sciences, Lehrstuhl für Biochemie, Universität Bayreuth, Universitätstraße 30, Bldg. NW III, 95440, Bayreuth, Germany.
| |
Collapse
|
176
|
|
177
|
Abstract
The discovery of light-gated ion channels and their application to controlling neural activities have had a transformative impact on the field of neuroscience. In recent years, the concept of using light-activated proteins to control biological processes has greatly diversified into other fields, driven by the natural diversity of photoreceptors and decades of knowledge obtained from their biophysical characterization. In this chapter, we will briefly discuss the origin and development of optogenetics and highlight the basic concepts that make it such a powerful technology. We will review how these enabling concepts have developed over the past decade, and discuss future perspectives.
Collapse
Affiliation(s)
- Yong Ku Cho
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA. .,Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
| | - Dan Li
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
178
|
Dobrin A, Saxena P, Fussenegger M. Synthetic biology: applying biological circuits beyond novel therapies. Integr Biol (Camb) 2015; 8:409-30. [DOI: 10.1039/c5ib00263j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Anton Dobrin
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Pratik Saxena
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| |
Collapse
|
179
|
Abstract
The local structure and composition of the outer membrane of an animal cell are important factors in the control of many membrane processes and mechanisms. These include signaling, sorting, and exo- and endocytic processes that are occurring all the time in a living cell. Paradoxically, not only are the local structure and composition of the membrane matters of much debate and discussion, the mechanisms that govern its genesis remain highly controversial. Here, we discuss a swathe of new technological advances that may be applied to understand the local structure and composition of the membrane of a living cell from the molecular scale to the scale of the whole membrane.
Collapse
Affiliation(s)
- Thomas S van Zanten
- National Centre for Biological Sciences (TIFR), Bellary Road, Bangalore, 560065, India
| | - Satyajit Mayor
- National Centre for Biological Sciences (TIFR), Bellary Road, Bangalore, 560065, India
| |
Collapse
|
180
|
Valon L, Etoc F, Remorino A, di Pietro F, Morin X, Dahan M, Coppey M. Predictive Spatiotemporal Manipulation of Signaling Perturbations Using Optogenetics. Biophys J 2015; 109:1785-97. [PMID: 26536256 PMCID: PMC4643200 DOI: 10.1016/j.bpj.2015.08.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/22/2015] [Accepted: 08/03/2015] [Indexed: 11/17/2022] Open
Abstract
Recently developed optogenetic methods promise to revolutionize cell biology by allowing signaling perturbations to be controlled in space and time with light. However, a quantitative analysis of the relationship between a custom-defined illumination pattern and the resulting signaling perturbation is lacking. Here, we characterize the biophysical processes governing the localized recruitment of the Cryptochrome CRY2 to its membrane-anchored CIBN partner. We develop a quantitative framework and present simple procedures that enable predictive manipulation of protein distributions on the plasma membrane with a spatial resolution of 5 μm. We show that protein gradients of desired levels can be established in a few tens of seconds and then steadily maintained. These protein gradients can be entirely relocalized in a few minutes. We apply our approach to the control of the Cdc42 Rho GTPase activity. By inducing strong localized signaling perturbation, we are able to monitor the initiation of cell polarity and migration with a remarkable reproducibility despite cell-to-cell variability.
Collapse
Affiliation(s)
- Leo Valon
- Laboratoire Physico-Chimie, Institut Curie, Centre National de la Recherche Scientifique UMR168, Paris-Science Lettres, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Fred Etoc
- Center for Studies in Physics and Biology, The Rockefeller University, New York, New York
| | - Amanda Remorino
- Laboratoire Physico-Chimie, Institut Curie, Centre National de la Recherche Scientifique UMR168, Paris-Science Lettres, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Florencia di Pietro
- Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
| | - Xavier Morin
- Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
| | - Maxime Dahan
- Laboratoire Physico-Chimie, Institut Curie, Centre National de la Recherche Scientifique UMR168, Paris-Science Lettres, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Mathieu Coppey
- Laboratoire Physico-Chimie, Institut Curie, Centre National de la Recherche Scientifique UMR168, Paris-Science Lettres, Université Pierre et Marie Curie-Paris 6, Paris, France.
| |
Collapse
|
181
|
Beyer HM, Juillot S, Herbst K, Samodelov SL, Müller K, Schamel WW, Römer W, Schäfer E, Nagy F, Strähle U, Weber W, Zurbriggen MD. Red Light-Regulated Reversible Nuclear Localization of Proteins in Mammalian Cells and Zebrafish. ACS Synth Biol 2015; 4:951-8. [PMID: 25803699 DOI: 10.1021/acssynbio.5b00004] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein trafficking in and out of the nucleus represents a key step in controlling cell fate and function. Here we report the development of a red light-inducible and far-red light-reversible synthetic system for controlling nuclear localization of proteins in mammalian cells and zebrafish. First, we synthetically reconstructed and validated the red light-dependent Arabidopsis phytochrome B nuclear import mediated by phytochrome-interacting factor 3 in a nonplant environment and support current hypotheses on the import mechanism in planta. On the basis of this principle we next regulated nuclear import and activity of target proteins by the spatiotemporal projection of light patterns. A synthetic transcription factor was translocated into the nucleus of mammalian cells and zebrafish to drive transgene expression. These data demonstrate the first in vivo application of a plant phytochrome-based optogenetic tool in vertebrates and expand the repertoire of available light-regulated molecular devices.
Collapse
Affiliation(s)
- Hannes M. Beyer
- Faculty
of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- BIOSS
− Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- SGBM
− Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany
| | - Samuel Juillot
- Faculty
of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- BIOSS
− Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- SGBM
− Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany
| | - Kathrin Herbst
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology and University of Heidelberg, D-76344 Eggenstein-Leopoldshafen, Germany
- BIF-IGS − BioInterfaces International Graduate School, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Sophia L. Samodelov
- Faculty
of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- BIOSS
− Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- SGBM
− Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany
| | - Konrad Müller
- Faculty
of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Wolfgang W. Schamel
- Faculty
of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- BIOSS
− Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- SGBM
− Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany
- CCI, Centre
for Chronic Immunodeficiency, University Clinincs Freiburg, Breisacher
Strasse 117, 79106 Freiburg, Germany
| | - Winfried Römer
- Faculty
of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- BIOSS
− Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- SGBM
− Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany
| | - Eberhard Schäfer
- Faculty
of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Ferenc Nagy
- Faculty
of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- Biological
Research Centre, Institute of Plant Biology, H-6726 Szeged, Hungary
| | - Uwe Strähle
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology and University of Heidelberg, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Wilfried Weber
- Faculty
of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- BIOSS
− Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- SGBM
− Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany
- ZBSA
− Centre for Biosystems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
| | - Matias D. Zurbriggen
- Faculty
of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- BIOSS
− Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| |
Collapse
|
182
|
Abstract
The structural plasticity of dendritic spines is considered to be essential for various forms of synaptic plasticity, learning, and memory. The process is mediated by a complex signaling network consisting of numerous species of molecules. Furthermore, the spatiotemporal dynamics of the biochemical signaling are regulated in a complicated manner because of geometrical restrictions from the unique morphology of the dendritic branches and spines. Recent advances in optical techniques have enabled the exploration of the spatiotemporal aspects of the signal regulations in spines and dendrites and have provided many insights into the principle of the biochemical computation that underlies spine structural plasticity.
Collapse
Affiliation(s)
- Jun Nishiyama
- Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL 33458, USA
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL 33458, USA.
| |
Collapse
|
183
|
Hoppmann C, Maslennikov I, Choe S, Wang L. In Situ Formation of an Azo Bridge on Proteins Controllable by Visible Light. J Am Chem Soc 2015; 137:11218-21. [PMID: 26301538 DOI: 10.1021/jacs.5b06234] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Optical modulation of proteins provides superior spatiotemporal resolution for understanding biological processes, and photoswitches built on light-sensitive proteins have been significantly advancing neuronal and cellular studies. Small molecule photoswitches could complement protein-based switches by mitigating potential interference and affording high specificity for modulation sites. However, genetic encodability and responsiveness to nonultraviolet light, two desired properties possessed by protein photoswitches, are challenging to be engineered into small molecule photoswitches. Here we developed a small molecule photoswitch that can be genetically installed onto proteins in situ and controlled by visible light. A pentafluoro azobenzene-based photoswitchable click amino acid (F-PSCaa) was designed to isomerize in response to visible light. After genetic incorporation into proteins via the expansion of the genetic code, F-PSCaa reacts with a nearby cysteine within the protein generating an azo bridge in situ. The resultant bridge is switchable by visible light and allows conformation and binding of CaM to be regulated by such light. This photoswitch should prove valuable in optobiology for its minimal interference, site flexibility, genetic encodability, and response to the more biocompatible visible light.
Collapse
Affiliation(s)
- Christian Hoppmann
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco , San Francisco, California 94158, United States
| | - Innokentiy Maslennikov
- Structural Biology Laboratory, Qualcomm Institute, University of California San Diego , San Diego, California 92093, United States
| | - Senyon Choe
- Structural Biology Laboratory, Qualcomm Institute, University of California San Diego , San Diego, California 92093, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco , San Francisco, California 94158, United States
| |
Collapse
|
184
|
Enterina JR, Wu L, Campbell RE. Emerging fluorescent protein technologies. Curr Opin Chem Biol 2015; 27:10-7. [DOI: 10.1016/j.cbpa.2015.05.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/07/2015] [Indexed: 11/28/2022]
|
185
|
Zhou XX, Pan M, Lin MZ. Investigating neuronal function with optically controllable proteins. Front Mol Neurosci 2015; 8:37. [PMID: 26257603 PMCID: PMC4508517 DOI: 10.3389/fnmol.2015.00037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/09/2015] [Indexed: 11/13/2022] Open
Abstract
In the nervous system, protein activities are highly regulated in space and time. This regulation allows for fine modulation of neuronal structure and function during development and adaptive responses. For example, neurite extension and synaptogenesis both involve localized and transient activation of cytoskeletal and signaling proteins, allowing changes in microarchitecture to occur rapidly and in a localized manner. To investigate the role of specific protein regulation events in these processes, methods to optically control the activity of specific proteins have been developed. In this review, we focus on how photosensory domains enable optical control over protein activity and have been used in neuroscience applications. These tools have demonstrated versatility in controlling various proteins and thereby cellular functions, and possess enormous potential for future applications in nervous systems. Just as optogenetic control of neuronal firing using opsins has changed how we investigate the function of cellular circuits in vivo, optical control may yet yield another revolution in how we study the circuitry of intracellular signaling in the brain.
Collapse
Affiliation(s)
- Xin X Zhou
- Department of Bioengineering, Stanford University Stanford, CA, USA
| | - Michael Pan
- Department of Pediatrics, Stanford University Stanford, CA, USA
| | - Michael Z Lin
- Department of Bioengineering, Stanford University Stanford, CA, USA ; Department of Pediatrics, Stanford University Stanford, CA, USA
| |
Collapse
|
186
|
O'Neill PR, Gautam N. Optimizing optogenetic constructs for control over signaling and cell behaviours. Photochem Photobiol Sci 2015; 14:1578-85. [PMID: 26135203 DOI: 10.1039/c5pp00171d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optogenetic tools have recently been developed that enable dynamic control over the activities of select signaling proteins. They provide the unique ability to rapidly turn signaling events on or off with subcellular control in living cells and organisms. This capability is leading to new insights into how the spatial and temporal coordination of signaling events governs dynamic cell behaviours such as migration and neurite outgrowth. These tools can also be used to dissect a protein's signaling functions at different organelles. Here we review the properties of photoreceptors from diverse organisms that have been leveraged to control signaling in mammalian cells. We emphasize recent engineering approaches that have been used to create optogenetic constructs with optimized spectral, kinetic, and signaling properties for controlling cell behaviours.
Collapse
Affiliation(s)
- P R O'Neill
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
187
|
Abstract
Sensory photoreceptors not only control diverse adaptive responses in Nature, but as light-regulated actuators they also provide the foundation for optogenetics, the non-invasive and spatiotemporally precise manipulation of cellular events by light. Novel photoreceptors have been engineered that establish control by light over manifold biological processes previously inaccessible to optogenetic intervention. Recently, photoreceptor engineering has witnessed a rapid development, and light-regulated actuators for the perturbation of a plethora of cellular events are now available. Here, we review fundamental principles of photoreceptors and light-regulated allostery. Photoreceptors dichotomize into associating receptors that alter their oligomeric state as part of light-regulated allostery and non-associating receptors that do not. A survey of engineered photoreceptors pinpoints light-regulated association reactions and order-disorder transitions as particularly powerful and versatile design principles. Photochromic photoreceptors that are bidirectionally toggled by two light colors augur enhanced spatiotemporal resolution and use as photoactivatable fluorophores. By identifying desirable traits in engineered photoreceptors, we provide pointers for the design of future, light-regulated actuators.
Collapse
Affiliation(s)
- Thea Ziegler
- Biophysikalische Chemie, Institut für Biologie, Humboldt-Universität zu Berlin Berlin, Germany ; Lehrstuhl für Biochemie, Universität Bayreuth Bayreuth, Germany
| | - Andreas Möglich
- Biophysikalische Chemie, Institut für Biologie, Humboldt-Universität zu Berlin Berlin, Germany ; Lehrstuhl für Biochemie, Universität Bayreuth Bayreuth, Germany
| |
Collapse
|
188
|
Chemical biology strategies for posttranslational control of protein function. ACTA ACUST UNITED AC 2015; 21:1238-52. [PMID: 25237866 DOI: 10.1016/j.chembiol.2014.08.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/08/2014] [Accepted: 08/25/2014] [Indexed: 02/07/2023]
Abstract
A common strategy to understand a biological system is to selectively perturb it and observe its response. Although technologies now exist to manipulate cellular systems at the genetic and transcript level, the direct manipulation of functions at the protein level can offer significant advantages in precision, speed, and reversibility. Combining the specificity of genetic manipulation and the spatiotemporal resolution of light- and small molecule-based approaches now allows exquisite control over biological systems to subtly perturb a system of interest in vitro and in vivo. Conditional perturbation mechanisms may be broadly characterized by change in intracellular localization, intramolecular activation, or degradation of a protein-of-interest. Here we review recent advances in technologies for conditional regulation of protein function and suggest further areas of potential development.
Collapse
|
189
|
In vivo single-cell labeling by confined primed conversion. Nat Methods 2015; 12:645-8. [PMID: 25984699 DOI: 10.1038/nmeth.3405] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/11/2015] [Indexed: 11/09/2022]
Abstract
Spatially confined green-to-red photoconversion of fluorescent proteins with high-power, pulsed laser illumination is negligible, thus precluding optical selection of single cells in vivo. We report primed conversion, in which low-power, dual-wavelength, continuous-wave illumination results in pronounced photoconversion. With a straightforward addition to a conventional confocal microscope, we show confined primed conversion in living zebrafish and reveal the complex anatomy of individual neurons packed between neighboring cells.
Collapse
|
190
|
Bugaj LJ, Spelke DP, Mesuda CK, Varedi M, Kane RS, Schaffer DV. Regulation of endogenous transmembrane receptors through optogenetic Cry2 clustering. Nat Commun 2015; 6:6898. [PMID: 25902152 PMCID: PMC4408875 DOI: 10.1038/ncomms7898] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 03/11/2015] [Indexed: 12/27/2022] Open
Abstract
Transmembrane receptors are the predominant conduit through which cells sense and transduce extracellular information into intracellular biochemical signals. Current methods to control and study receptor function, however, suffer from poor resolution in space and time and often employ receptor overexpression, which can introduce experimental artifacts. We report a genetically-encoded approach, termed Clustering Indirectly using Cryptochrome 2 (CLICR), for spatiotemporal control over endogenous transmembrane receptor activation, enabled through the optical regulation of target receptor clustering and downstream signaling using non-covalent interactions with engineered Arabidopsis Cryptochrome 2 (Cry2). CLICR offers a modular platform to enable photocontrol of the clustering of diverse transmembrane receptors including FGFR, PDGFR, and integrins in multiple cell types including neural stem cells. Furthermore, light-inducible manipulation of endogenous receptor tyrosine kinase (RTK) activity can modulate cell polarity and establish phototaxis in fibroblasts. The resulting spatiotemporal control over cellular signaling represents a powerful new optogenetic framework for investigating and controlling cell function and fate.
Collapse
Affiliation(s)
- L J Bugaj
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, USA.,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, California 94720, USA
| | - D P Spelke
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, USA.,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, California 94720, USA
| | - C K Mesuda
- Department of Chemical Engineering, University of California, Berkeley, Berkeley, California 94720, USA
| | - M Varedi
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, USA
| | - R S Kane
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - D V Schaffer
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, USA.,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, California 94720, USA.,Department of Chemical Engineering, University of California, Berkeley, Berkeley, California 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
191
|
Fan LZ, Lin MZ. Optical control of biological processes by light-switchable proteins. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:545-54. [PMID: 25858669 DOI: 10.1002/wdev.188] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/27/2015] [Accepted: 02/26/2015] [Indexed: 01/01/2023]
Abstract
Cellular processes such as proliferation, differentiation, or migration depend on precise spatiotemporal coordination of protein activities. Correspondingly, reaching a quantitative understanding of cellular behavior requires experimental approaches that enable spatial and temporal modulation of protein activity. Recently, a variety of light-sensitive protein domains have been engineered as optogenetic actuators to spatiotemporally control protein activity. In the present review, we discuss the principle of these optical control methods and examples of their applications in modulating signaling pathways. By controlling protein activity with spatiotemporal specificity, tunable dynamics, and quantitative control, light-controllable proteins promise to accelerate our understanding of cellular and organismal biology.
Collapse
Affiliation(s)
- Linlin Z Fan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Department of Pediatrics, Stanford University, Stanford, CA, USA
| |
Collapse
|
192
|
You M, Jaffrey SR. Designing optogenetically controlled RNA for regulating biological systems. Ann N Y Acad Sci 2015; 1352:13-9. [PMID: 25758022 DOI: 10.1111/nyas.12660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Light-responsive proteins have been used in the field of optogenetics to control cellular functions. However, surprisingly, analogous approaches to regulate and alter the functions of RNA molecules by light remain underdeveloped. RNA aptamers and RNA devices can perform diverse intracellular functions and are important tools in synthetic biology. This report explores the challenges of and potential strategies for engineering light regulation into functional RNAs in cells. We discuss approaches for using existing light-regulated proteins and small molecules to control RNA function in living cells. In addition, applications of light-regulated RNAs for synthetic biology and for studying functions of endogenously expressed RNAs are discussed.
Collapse
Affiliation(s)
- Mingxu You
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
193
|
Stein V, Alexandrov K. Synthetic protein switches: design principles and applications. Trends Biotechnol 2015; 33:101-10. [DOI: 10.1016/j.tibtech.2014.11.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 12/22/2022]
|
194
|
Schmidt D, Cho YK. Natural photoreceptors and their application to synthetic biology. Trends Biotechnol 2015; 33:80-91. [DOI: 10.1016/j.tibtech.2014.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/19/2014] [Accepted: 10/20/2014] [Indexed: 01/22/2023]
|
195
|
Kaucikas M, Fitzpatrick A, Bryan E, Struve A, Henning R, Kosheleva I, Srajer V, Groenhof G, Van Thor JJ. Room temperature crystal structure of the fast switching M159T mutant of the fluorescent protein dronpa. Proteins 2015; 83:397-402. [PMID: 25524427 DOI: 10.1002/prot.24742] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 11/15/2014] [Accepted: 11/26/2014] [Indexed: 01/01/2023]
Abstract
The fluorescent protein Dronpa undergoes reversible photoswitching reactions between the bright "on" and dark "off" states via photoisomerization and proton transfer reactions. We report the room temperature crystal structure of the fast switching Met159Thr mutant of Dronpa at 2.0-Å resolution in the bright on state. Structural differences with the wild type include shifted backbone positions of strand β8 containing Thr159 as well as an altered A-C dimer interface involving strands β7, β8, β10, and β11. The Met159Thr mutation increases the cavity volume for the p-hydroxybenzylidene-imidazolinone chromophore as a result of both the side chain difference and the backbone positional differences.
Collapse
Affiliation(s)
- Marius Kaucikas
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Zhang K, Cui B. Optogenetic control of intracellular signaling pathways. Trends Biotechnol 2014; 33:92-100. [PMID: 25529484 DOI: 10.1016/j.tibtech.2014.11.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/29/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
Abstract
Cells employ a plethora of signaling pathways to make their life-and-death decisions. Extensive genetic, biochemical, and physiological studies have led to the accumulation of knowledge about signaling components and their interactions within signaling networks. These conventional approaches, although useful, lack the ability to control the spatial and temporal aspects of signaling processes. The recently emerged optogenetic tools open exciting opportunities by enabling signaling regulation with superior temporal and spatial resolution, easy delivery, rapid reversibility, fewer off-target side effects, and the ability to dissect complex signaling networks. Here we review recent achievements in using light to control intracellular signaling pathways and discuss future prospects for the field, including integration of new genetic approaches into optogenetics.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
197
|
Karunarathne WKA, O'Neill PR, Gautam N. Subcellular optogenetics - controlling signaling and single-cell behavior. J Cell Sci 2014; 128:15-25. [PMID: 25433038 DOI: 10.1242/jcs.154435] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Variation in signaling activity across a cell plays a crucial role in processes such as cell migration. Signaling activity specific to organelles within a cell also likely plays a key role in regulating cellular functions. To understand how such spatially confined signaling within a cell regulates cell behavior, tools that exert experimental control over subcellular signaling activity are required. Here, we discuss the advantages of using optogenetic approaches to achieve this control. We focus on a set of optical triggers that allow subcellular control over signaling through the activation of G-protein-coupled receptors (GPCRs), receptor tyrosine kinases and downstream signaling proteins, as well as those that inhibit endogenous signaling proteins. We also discuss the specific insights with regard to signaling and cell behavior that these subcellular optogenetic approaches can provide.
Collapse
Affiliation(s)
- W K Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Patrick R O'Neill
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Narasimhan Gautam
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
198
|
Abstract
![]()
Optical dimerizers are a powerful
new class of optogenetic tools
that allow light-inducible control of protein–protein interactions.
Such tools have been useful for regulating cellular pathways and processes
with high spatiotemporal resolution in live cells, and a growing number
of dimerizer systems are available. As these systems have been characterized
by different groups using different methods, it has been difficult
for users to compare their properties. Here, we set about to systematically
benchmark the properties of four optical dimerizer systems, CRY2/CIB1,
TULIPs, phyB/PIF3, and phyB/PIF6. Using a yeast transcriptional assay,
we find significant differences in light sensitivity and fold-activation
levels between the red light regulated systems but similar responses
between the CRY2/CIB and TULIP systems. Further comparison of the
ability of the CRY2/CIB1 and TULIP systems to regulate a yeast MAPK
signaling pathway also showed similar responses, with slightly less
background activity in the dark observed with CRY2/CIB. In the process
of developing this work, we also generated an improved blue-light-regulated
transcriptional system using CRY2/CIB in yeast. In addition, we demonstrate
successful application of the CRY2/CIB dimerizers using a membrane-tethered
CRY2, which may allow for better local control of protein interactions.
Taken together, this work allows for a better understanding of the
capacities of these different dimerization systems and demonstrates
new uses of these dimerizers to control signaling and transcription
in yeast.
Collapse
Affiliation(s)
- Gopal P. Pathak
- Department
of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Devin Strickland
- Department
of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Justin D. Vrana
- Department
of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Chandra L. Tucker
- Department
of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| |
Collapse
|
199
|
Kaucikas M, Tros M, van Thor JJ. Photoisomerization and proton transfer in the forward and reverse photoswitching of the fast-switching M159T mutant of the Dronpa fluorescent protein. J Phys Chem B 2014; 119:2350-62. [PMID: 25369171 DOI: 10.1021/jp506640q] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fast-switching M159T mutant of the reversibly photoswitchable fluorescent protein Dronpa has an enhanced yield for the on-to-off reaction. The forward and reverse photoreactions proceed via cis-trans and trans-cis photoisomerization, yet protonation and deprotonation of the hydroxyphenyl oxygen of the chromophore is responsible for the majority of the resulting spectroscopic contrast. Ultrafast visible-pump, infrared-probe spectroscopy was used to detect the picosecond, nanosecond, as well as metastable millisecond intermediates. Additionally, static FTIR difference measurements of the Dronpa-M159T mutant correspond very closely to those of the wild type Dronpa, identifying the p-hydroxybenzylidene-imidazolinone chromophore in the cis anion and trans neutral forms in the bright "on" and dark "off" states, respectively. Green excitation of the on state is followed by dominant radiative decay with characteristic time constants of 1.9 ps, 185 ps, and 1.1 ns, and additionally reveals spectral changes belonging to the species decaying with a 1.1 ns time constant, associated with both protein and chromophore modes. A 1 ms measurement of the on state identifies bleach features that correspond to those seen in the static off-minus-on Fourier transform infrared (FTIR) difference spectrum, indicating that thermal protonation of the hydroxyphenyl oxygen proceeds within this time window. Blue excitation of the off state directly resolves the formation of the primary photoproduct with 0.6 and 14 ps time constants, which is stable on the nanosecond time scale. Assignment of the primary photoproduct to the cis neutral chromophore in the electronic ground state is supported by the frequency positions expected relative to those for the nonplanar distorted geometry for the off state. A 1 ms measurement of the off state corresponds closely with the on-minus-off FTIR difference spectrum, indicating thermal deprotonation and rearrangement of the Arg66 side chain to be complete.
Collapse
Affiliation(s)
- Marius Kaucikas
- Imperial College London , South Kensington Campus, SW7 2AZ London, United Kingdom
| | | | | |
Collapse
|
200
|
Fluorescent-protein-based probes: general principles and practices. Anal Bioanal Chem 2014; 407:9-15. [PMID: 25326886 DOI: 10.1007/s00216-014-8236-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/17/2014] [Accepted: 10/02/2014] [Indexed: 01/05/2023]
Abstract
An important application of fluorescent proteins is to derive genetically encoded fluorescent probes that can actively respond to cellular dynamics such as pH change, redox signaling, calcium oscillation, enzyme activities, and membrane potential. Despite the large diverse group of fluorescent-protein-based probes, a few basic principles have been established and are shared by most of these probes. In this article, the focus is on these general principles and strategies that guide the development of fluorescent-protein-based probes. A few examples are provided in each category to illustrate the corresponding principles. Since these principles are quite straightforward, others may adapt them to create fluorescent probes for their own interest. Hopefully, the development of the ever-growing family of fluorescent-protein-based probes will no longer be limited to a small number of laboratories specialized in senor development, leading to the situation that biological studies will be bettered assisted by genetically encoded sensors.
Collapse
|