151
|
Pott M, Tinzl M, Hayashi T, Ota Y, Dunkelmann D, Mittl PRE, Hilvert D. Noncanonical Heme Ligands Steer Carbene Transfer Reactivity in an Artificial Metalloenzyme*. Angew Chem Int Ed Engl 2021; 60:15063-15068. [PMID: 33880851 DOI: 10.1002/anie.202103437] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 11/06/2022]
Abstract
Changing the primary metal coordination sphere is a powerful strategy for tuning metalloprotein properties. Here we used amber stop codon suppression with engineered pyrrolysyl-tRNA synthetases, including two newly evolved enzymes, to replace the proximal histidine in myoglobin with Nδ -methylhistidine, 5-thiazoylalanine, 4-thiazoylalanine and 3-(3-thienyl)alanine. In addition to tuning the heme redox potential over a >200 mV range, these noncanonical ligands modulate the protein's carbene transfer activity with ethyl diazoacetate. Variants with increased reduction potential proved superior for cyclopropanation and N-H insertion, whereas variants with reduced Eo values gave higher S-H insertion activity. Given the functional importance of histidine in many enzymes, these genetically encoded analogues could be valuable tools for probing mechanism and enabling new chemistries.
Collapse
Affiliation(s)
- Moritz Pott
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Matthias Tinzl
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Takahiro Hayashi
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Yusuke Ota
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Daniel Dunkelmann
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Peer R E Mittl
- Department of Biochemistry, University of Zürich, 8057, Zürich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
152
|
Pott M, Tinzl M, Hayashi T, Ota Y, Dunkelmann D, Mittl PRE, Hilvert D. Noncanonical Heme Ligands Steer Carbene Transfer Reactivity in an Artificial Metalloenzyme**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Moritz Pott
- Laboratory of Organic Chemistry ETH Zürich 8093 Zürich Switzerland
| | - Matthias Tinzl
- Laboratory of Organic Chemistry ETH Zürich 8093 Zürich Switzerland
| | - Takahiro Hayashi
- Laboratory of Organic Chemistry ETH Zürich 8093 Zürich Switzerland
| | - Yusuke Ota
- Laboratory of Organic Chemistry ETH Zürich 8093 Zürich Switzerland
| | | | - Peer R. E. Mittl
- Department of Biochemistry University of Zürich 8057 Zürich Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry ETH Zürich 8093 Zürich Switzerland
| |
Collapse
|
153
|
Roelfes G. Repurposed and artificial heme enzymes for cyclopropanation reactions. J Inorg Biochem 2021; 222:111523. [PMID: 34217039 DOI: 10.1016/j.jinorgbio.2021.111523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
Heme enzymes are some of the most versatile catalysts in nature. In recent years it has been found that they can also catalyze reactions for which there are no equivalents in nature. This development has been driven by the abiological catalytic reactivity reported for bio-inspired and biomimetic iron porphyrin complexes. This review focuss es on heme enzymes for catalysis of cyclopropanation reactions. The two most important approaches used to create enzymes for cyclopropanation are repurposing of heme enzymes and the various strategies used to improve these enzymes such as mutagenesis and heme replacement, and artificial heme enzymes. These strategies are introduced and compared. Moreover, lessons learned with regard to mechanism and design principles are discussed.
Collapse
Affiliation(s)
- Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands.
| |
Collapse
|
154
|
Liu Z, Arnold FH. New-to-nature chemistry from old protein machinery: carbene and nitrene transferases. Curr Opin Biotechnol 2021; 69:43-51. [PMID: 33370622 PMCID: PMC8225731 DOI: 10.1016/j.copbio.2020.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/03/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
Hemoprotein-catalyzed carbene and nitrene transformations have emerged as powerful tools for constructing complex molecules; they also nicely illustrate how new protein catalysts can emerge, evolve and diversify. These laboratory-invented enzymes exploit the ability of proteins to tame highly reactive carbene and nitrene species and direct their fates with high selectivity. New-to-nature carbene and nitrene transferases catalyze many useful reactions, including some that have no precedent using chemical methods. Here we cover recent advances in this field, including alkyne cyclopropenation, arene cyclopropanation, carbene CH insertion, intramolecular nitrene CH insertion, alkene aminohydroxylation, and primary amination. For such transformations, biocatalysts have exceeded the performance of reported small-molecule catalysts in terms of selectivity and catalyst turnovers. Finally, we offer our thoughts on using these new enzymatic reactions in chemical synthesis, integrating them into biological pathways and chemo-enzymatic cascades, and on their current limitations.
Collapse
Affiliation(s)
- Zhen Liu
- Division of Chemistry and Chemical Engineering, 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA.
| |
Collapse
|
155
|
Wang L, Maranas CD. Computationally Prospecting Potential Pathways from Lignin Monomers and Dimers toward Aromatic Compounds. ACS Synth Biol 2021; 10:1064-1076. [PMID: 33877818 DOI: 10.1021/acssynbio.0c00598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The heterogeneity of the aromatic products originating from lignin catalytic depolymerization remains one of the major challenges associated with lignin valorization. Microbes have evolved catabolic pathways that can funnel heterogeneous intermediates to a few central aromatic products. These aromatic compounds can subsequently undergo intra- or extradiol ring opening to produce value-added chemicals. However, such funneling pathways are only partially characterized for a few organisms such as Sphingobium sp. SYK-6 and Pseudomonas putida KT2440. Herein, we apply the de novo pathway design tool (novoStoic) to computationally prospect possible ways of funneling lignin-derived mono- and biaryls. novoStoic employs reaction rules between molecular moieties to hypothesize de novo conversions by flagging known enzymes that carry out the same biotransformation on the most similar substrate. Both reaction rules and known reactions are then deployed by novoStoic to identify a mass-balanced biochemical network that converts a source to a target metabolite while minimizing the number of de novo steps. We demonstrate the application of novoStoic for (i) designing alternative pathways of funneling S, G, and H lignin monomers, and (ii) exploring cleavage pathways of β-1 and β-β dimers. By exploring the uncharted chemical space afforded by enzyme promiscuity, novoStoic can help predict previously unknown native pathways leveraging enzyme promiscuity and propose new carbon/energy efficient lignin funneling pathways with few heterologous enzymes.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
156
|
Hao J, Miao W, Lu S, Cheng Y, Jia G, Li C. Controllable stereoinversion in DNA-catalyzed olefin cyclopropanation via cofactor modification. Chem Sci 2021; 12:7918-7923. [PMID: 34168845 PMCID: PMC8188488 DOI: 10.1039/d1sc00755f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022] Open
Abstract
The assembly of DNA with metal-complex cofactors can form promising biocatalysts for asymmetric reactions, although catalytic performance is typically limited by low enantioselectivities and stereo-control remains a challenge. Here, we engineer G-quadruplex-based DNA biocatalysts for an asymmetric cyclopropanation reaction, achieving enantiomeric excess (eetrans) values of up to +91% with controllable stereoinversion, where the enantioselectivity switches to -72% eetrans through modification of the Fe-porphyrin cofactor. Complementary circular dichroism, nuclear magnetic resonance, and fluorescence titration experiments show that the porphyrin ligand of the cofactor participates in the regulation of the catalytic enantioselectivity via a synergetic effect with DNA residues at the active site. These findings underline the important role of cofactor modification in DNA catalysis and thus pave the way for the rational engineering of DNA-based biocatalysts.
Collapse
Affiliation(s)
- Jingya Hao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 101408 China
| | - Wenhui Miao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 101408 China
| | - Shengmei Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Yu Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 101408 China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| |
Collapse
|
157
|
Biggs GS, Klein OJ, Maslen SL, Skehel JM, Rutherford TJ, Freund SMV, Hollfelder F, Boss SR, Barker PD. Controlled Ligand Exchange Between Ruthenium Organometallic Cofactor Precursors and a Naïve Protein Scaffold Generates Artificial Metalloenzymes Catalysing Transfer Hydrogenation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- George S. Biggs
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Oskar James Klein
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Department of Biochemistry University of Cambridge Tennis Court Road Cambridge CB2 1GA UK
| | - Sarah L. Maslen
- MRC Laboratory of Molecular Biology Francis Crick Avenue, Cambridge Biomedical Campus Cambridge CB2 0QH UK
| | - J. Mark Skehel
- MRC Laboratory of Molecular Biology Francis Crick Avenue, Cambridge Biomedical Campus Cambridge CB2 0QH UK
| | - Trevor J. Rutherford
- MRC Laboratory of Molecular Biology Francis Crick Avenue, Cambridge Biomedical Campus Cambridge CB2 0QH UK
| | - Stefan M. V. Freund
- MRC Laboratory of Molecular Biology Francis Crick Avenue, Cambridge Biomedical Campus Cambridge CB2 0QH UK
| | - Florian Hollfelder
- Department of Biochemistry University of Cambridge Tennis Court Road Cambridge CB2 1GA UK
| | - Sally R. Boss
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Paul D. Barker
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
158
|
Biggs GS, Klein OJ, Maslen SL, Skehel JM, Rutherford TJ, Freund SMV, Hollfelder F, Boss SR, Barker PD. Controlled Ligand Exchange Between Ruthenium Organometallic Cofactor Precursors and a Naïve Protein Scaffold Generates Artificial Metalloenzymes Catalysing Transfer Hydrogenation. Angew Chem Int Ed Engl 2021; 60:10919-10927. [PMID: 33616271 PMCID: PMC8251807 DOI: 10.1002/anie.202015834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 11/05/2022]
Abstract
Many natural metalloenzymes assemble from proteins and biosynthesised complexes, generating potent catalysts by changing metal coordination. Here we adopt the same strategy to generate artificial metalloenzymes (ArMs) using ligand exchange to unmask catalytic activity. By systematically testing RuII (η6 -arene)(bipyridine) complexes designed to facilitate the displacement of functionalised bipyridines, we develop a fast and robust procedure for generating new enzymes via ligand exchange in a protein that has not evolved to bind such a complex. The resulting metal cofactors form peptidic coordination bonds but also retain a non-biological ligand. Tandem mass spectrometry and 19 F NMR spectroscopy were used to characterise the organometallic cofactors and identify the protein-derived ligands. By introduction of ruthenium cofactors into a 4-helical bundle, transfer hydrogenation catalysts were generated that displayed a 35-fold rate increase when compared to the respective small molecule reaction in solution.
Collapse
Affiliation(s)
- George S. Biggs
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Oskar James Klein
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1GAUK
| | - Sarah L. Maslen
- MRC Laboratory of Molecular BiologyFrancis Crick Avenue, Cambridge Biomedical CampusCambridgeCB2 0QHUK
| | - J. Mark Skehel
- MRC Laboratory of Molecular BiologyFrancis Crick Avenue, Cambridge Biomedical CampusCambridgeCB2 0QHUK
| | - Trevor J. Rutherford
- MRC Laboratory of Molecular BiologyFrancis Crick Avenue, Cambridge Biomedical CampusCambridgeCB2 0QHUK
| | - Stefan M. V. Freund
- MRC Laboratory of Molecular BiologyFrancis Crick Avenue, Cambridge Biomedical CampusCambridgeCB2 0QHUK
| | - Florian Hollfelder
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1GAUK
| | - Sally R. Boss
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Paul D. Barker
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
159
|
Silva LDSD, Souza AAD, Sá É. Computational considerations on the mechanism and stereoselectivity in cyclopropanation reactions via iron-carbenes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
160
|
Lin YW. Biodegradation of aromatic pollutants by metalloenzymes: A structural-functional-environmental perspective. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
161
|
Balhara R, Chatterjee R, Jindal G. A computational approach to understand the role of metals and axial ligands in artificial heme enzyme catalyzed C-H insertion. Phys Chem Chem Phys 2021; 23:9500-9511. [PMID: 33885085 DOI: 10.1039/d1cp00412c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Engineered heme enzymes such as myoglobin and cytochrome P450s metalloproteins are gaining widespread importance due to their efficiency in catalyzing non-natural reactions. In a recent strategy, the naturally occurring Fe metal in the heme unit was replaced with non-native metals such as Ir, Rh, Co, Cu, etc., and axial ligands to generate artificial metalloenzymes. Determining the best metal-ligand for a chemical transformation is not a trivial task. Here we demonstrate how computational approaches can be used in deciding the best metal-ligand combination which would be highly beneficial in designing new enzymes as well as small molecule catalysts. We have used Density Functional Theory (DFT) to shed light on the enhanced reactivity of an Ir system with varying axial ligands. We look at the insertion of a carbene group generated from diazo precursors via N2 extrusion into a C-H bond. For both Ir(Me) and Fe systems, the first step, i.e., N2 extrusion is the rate determining step. Strikingly, neither the better ligand overlap with 5d orbitals on Ir nor the electrophilicity on the carbene centre play a significant role. A comparison of Fe and Ir systems reveals that a lower distortion in the Ir(Me)-porphyrin on moving from the reactant to the transition state renders it catalytically more active. We notice that for both metal porphyrins, the free energy barriers are affected by axial ligand substitution. Further, for Fe porphyrin, the axial ligand also changes the preferred spin state. We show that for the carbene insertion into the C-H bond, Fe porphyrin systems undergo a stepwise HAT (hydrogen atom transfer) instead of a concerted hydride transfer process. Importantly, we find that the substitution of the axial Me ligand on Ir to imidazole or chloride, or without an axial substitution changes the rate determining step of the reaction. Therefore, an optimum ligand that can balance the barriers for both steps of the catalytic cycle is essential. We subsequently used the QM cluster approach to delineate the protein environment's role and mutations in improving the catalytic activity of the Ir(Me) system.
Collapse
Affiliation(s)
- Reena Balhara
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | | | | |
Collapse
|
162
|
Chen X, Wang Z, Lou Y, Peng Y, Zhu Q, Xu J, Wu Q. Intramolecular Stereoselective Stetter Reaction Catalyzed by Benzaldehyde Lyase. Angew Chem Int Ed Engl 2021; 60:9326-9329. [PMID: 33559383 DOI: 10.1002/anie.202100534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 11/08/2022]
Abstract
The reliable design and prediction of enzyme promiscuity to access transformations not observed in nature remains a long-standing challenge. Herein, we present the first example of an intramolecular stereoselective Stetter reaction catalyzed by benzaldehyde lyase, guided by the rational structure screening of various ThDP-dependent enzymes using molecular dynamics (MD) simulations. After optimization, high productivity (up to 99 %) and stereoselectivity (up to 99:1 e.r.) for this novel enzyme function was achieved.
Collapse
Affiliation(s)
- Xiaoyang Chen
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China.,College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Zhiguo Wang
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China.,Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yujiao Lou
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China
| | - Yongzhen Peng
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China
| | - Qiaoyan Zhu
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China
| | - Jian Xu
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China.,College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qi Wu
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
163
|
Li J, Lear MJ, Hayashi Y. Direct Cyclopropanation of α-Cyano β-Aryl Alkanes by Light-Mediated Single Electron Transfer Between Donor-Acceptor Pairs. Chemistry 2021; 27:5901-5905. [PMID: 33565170 DOI: 10.1002/chem.202100341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/08/2021] [Indexed: 12/21/2022]
Abstract
Cyclopropanes are traditionally prepared by the formal [2+1] addition of carbene or radical based C1 units to alkenes. In contrast, the one-pot intermolecular cyclopropanation of alkanes by redox active C1 units has remained unrealised. Herein, we achieved this process simply by exposing β-aryl propionitriles and C1 radical precursors (N-oxy esters) to base and blue light. The overall process is redox-neutral and a photocatalyst, whether metal- or organic-based, is not required. Our findings support that single electron transfer (SET) from the α-cyano carbanion of the propionitrile to the N-oxy ester is facilitated by blue-light via their electron donor-acceptor (EDA) complex. The α-cyano carbon radical thus formed can then lose a β-proton to form a π-resonance stabilised radical anion that preferentially couples at the benzylic β-position with a decarboxylated C1 radical unit. This new transition metal-free chemistry tolerates both electron rich and electron deficient (hetero)aryl systems, even sulfide or alkene functionality, to afford a range of cis-aryl/cyano cyclopropanes bearing congested tetrasubstituted quaternary carbons.
Collapse
Affiliation(s)
- Jing Li
- Department of Chemistry, Graduate School of Science, Tohoku University, Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Martin J Lear
- School of Chemistry, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Yujiro Hayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
164
|
The number of catalytic cycles in an enzyme's lifetime and why it matters to metabolic engineering. Proc Natl Acad Sci U S A 2021; 118:2023348118. [PMID: 33753504 PMCID: PMC8020674 DOI: 10.1073/pnas.2023348118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The continuous replacement of enzymes and other proteins appropriates up to half the maintenance energy budget in microorganisms and plants. High enzyme replacement rates therefore cut the productivity of biosystems ranging from microbial fermentations to crops. However, yardsticks to assess what drives enzyme protein replacement and guidelines on how to reduce it are lacking. Accordingly, we compared enzymes’ life spans across kingdoms using a new yardstick (catalytic cycles until replacement [CCR]) and related CCR to enzyme reaction chemistry. We concluded that 1) many enzymes fail due to collateral damage from the reaction they catalyze, and 2) such damage and its attendant enzyme replacement costs are mitigable by engineering and are therefore promising targets for synthetic biology. Metabolic engineering uses enzymes as parts to build biosystems for specified tasks. Although a part’s working life and failure modes are key engineering performance indicators, this is not yet so in metabolic engineering because it is not known how long enzymes remain functional in vivo or whether cumulative deterioration (wear-out), sudden random failure, or other causes drive replacement. Consequently, enzymes cannot be engineered to extend life and cut the high energy costs of replacement. Guided by catalyst engineering, we adopted catalytic cycles until replacement (CCR) as a metric for enzyme functional life span in vivo. CCR is the number of catalytic cycles that an enzyme mediates in vivo before failure or replacement, i.e., metabolic flux rate/protein turnover rate. We used estimated fluxes and measured protein turnover rates to calculate CCRs for ∼100–200 enzymes each from Lactococcus lactis, yeast, and Arabidopsis. CCRs in these organisms had similar ranges (<103 to >107) but different median values (3–4 × 104 in L. lactis and yeast versus 4 × 105 in Arabidopsis). In all organisms, enzymes whose substrates, products, or mechanisms can attack reactive amino acid residues had significantly lower median CCR values than other enzymes. Taken with literature on mechanism-based inactivation, the latter finding supports the proposal that 1) random active-site damage by reaction chemistry is an important cause of enzyme failure, and 2) reactive noncatalytic residues in the active-site region are likely contributors to damage susceptibility. Enzyme engineering to raise CCRs and lower replacement costs may thus be both beneficial and feasible.
Collapse
|
165
|
Mirzaei MS, Ivanov MV, Taherpour AA, Mirzaei S. Mechanism-Based Inactivation of Cytochrome P450 Enzymes: Computational Insights. Chem Res Toxicol 2021; 34:959-987. [PMID: 33769041 DOI: 10.1021/acs.chemrestox.0c00483] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanism-based inactivation (MBI) refers to the metabolic bioactivation of a xenobiotic by cytochrome P450s to a highly reactive intermediate which subsequently binds to the enzyme and leads to the quasi-irreversible or irreversible inhibition. Xenobiotics, mainly drugs with specific functional units, are the major sources of MBI. Two possible consequences of MBI by medicinal compounds are drug-drug interaction and severe toxicity that are observed and highlighted by clinical experiments. Today almost all of these latent functional groups (e.g., thiophene, furan, alkylamines, etc.) are known, and their features and mechanisms of action, owing to the vast experimental and theoretical studies, are determined. In the past decade, molecular modeling techniques, mostly density functional theory, have revealed the most feasible mechanism that a drug undergoes by P450 enzymes to generate a highly reactive intermediate. In this review, we provide a comprehensive and detailed picture of computational advances toward the elucidation of the activation mechanisms of various known groups with MBI activity. To this aim, we briefly describe the computational concepts to carry out and analyze the mechanistic investigations, and then, we summarize the studies on compounds with known inhibition activity including thiophene, furan, alkylamines, terminal acetylene, etc. This study can be reference literature for both theoretical and experimental (bio)chemists in several different fields including rational drug design, the process of toxicity prevention, and the discovery of novel inhibitors and catalysts.
Collapse
Affiliation(s)
- M Saeed Mirzaei
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran 67149-67346
| | - Maxim V Ivanov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Avat Arman Taherpour
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran 67149-67346.,Medical Biology Research Centre, University of Medical Sciences, Kermanshah, Iran 67149-67346
| | - Saber Mirzaei
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
166
|
Carminati DM, Decaens J, Couve-Bonnaire S, Jubault P, Fasan R. Biocatalytic Strategy for the Highly Stereoselective Synthesis of CHF 2 -Containing Trisubstituted Cyclopropanes. Angew Chem Int Ed Engl 2021; 60:7072-7076. [PMID: 33337576 PMCID: PMC7969403 DOI: 10.1002/anie.202015895] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Indexed: 01/01/2023]
Abstract
The difluoromethyl (CHF2 ) group has attracted significant attention in drug discovery and development efforts, owing to its ability to serve as fluorinated bioisostere of methyl, hydroxyl, and thiol groups. Herein, we report an efficient biocatalytic method for the highly diastereo- and enantioselective synthesis of CHF2 -containing trisubstituted cyclopropanes. Using engineered myoglobin catalysts, a broad range of α-difluoromethyl alkenes are cyclopropanated in the presence of ethyl diazoacetate to give CHF2 -containing cyclopropanes in high yield (up to >99 %, up to 3000 TON) and with excellent stereoselectivity (up to >99 % de and ee). Enantiodivergent selectivity and extension of the method to the stereoselective cyclopropanation of mono- and trifluoromethylated olefins was also achieved. This methodology represents a powerful strategy for the stereoselective synthesis of high-value fluorinated building blocks for medicinal chemistry, as exemplified by the formal total synthesis of a CHF2 isostere of a TRPV1 inhibitor.
Collapse
Affiliation(s)
- Daniela M Carminati
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY, 14627, USA
| | - Jonathan Decaens
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | | | - Philippe Jubault
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY, 14627, USA
| |
Collapse
|
167
|
Chen X, Wang Z, Lou Y, Peng Y, Zhu Q, Xu J, Wu Q. Intramolecular Stereoselective Stetter Reaction Catalyzed by Benzaldehyde Lyase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiaoyang Chen
- Department of Chemistry Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
- College of Biological, Chemical Science and Engineering Jiaxing University Jiaxing 314001 China
| | - Zhiguo Wang
- Department of Chemistry Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
- Institute of Aging Research School of Medicine Hangzhou Normal University Hangzhou 311121 China
| | - Yujiao Lou
- Department of Chemistry Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
| | - Yongzhen Peng
- Department of Chemistry Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
| | - Qiaoyan Zhu
- Department of Chemistry Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
| | - Jian Xu
- Department of Chemistry Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
- College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
| | - Qi Wu
- Department of Chemistry Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
| |
Collapse
|
168
|
Jiang L, Wang Z, Armstrong M, Suero MG. β-Diazocarbonyl Compounds: Synthesis and their Rh(II)-Catalyzed 1,3 C-H Insertions. Angew Chem Int Ed Engl 2021; 60:6177-6184. [PMID: 33275325 DOI: 10.1002/anie.202015077] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 12/28/2022]
Abstract
Herein, we describe the first electrophilic diazomethylation of ketone silyl enol ethers with diazomethyl-substituted hypervalent iodine reagents that gives access to unusual β-diazocarbonyl compounds. The potential of this unexplored class of diazo compounds for the development of new reactions was demonstrated by the discovery of a rare Rh-catalyzed intramolecular 1,3 C-H carbene insertion that led to complex cyclopropanes with excellent stereocontrol.
Collapse
Affiliation(s)
- Liyin Jiang
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Zhaofeng Wang
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Melanie Armstrong
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Marcos G Suero
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| |
Collapse
|
169
|
Yang Y, Arnold FH. Navigating the Unnatural Reaction Space: Directed Evolution of Heme Proteins for Selective Carbene and Nitrene Transfer. Acc Chem Res 2021; 54:1209-1225. [PMID: 33491448 PMCID: PMC7931446 DOI: 10.1021/acs.accounts.0c00591] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Despite the astonishing diversity of naturally
occurring biocatalytic
processes, enzymes do not catalyze many of the transformations favored
by synthetic chemists. Either nature does not care about the specific
products, or if she does, she has adopted a different synthetic strategy.
In many cases, the appropriate reagents used by synthetic chemists
are not readily accessible to biological systems. Here, we discuss
our efforts to expand the catalytic repertoire of enzymes to encompass
powerful reactions previously known only in small-molecule catalysis:
formation and transfer of reactive carbene and nitrene intermediates
leading to a broad range of products, including products with bonds
not known in biology. In light of the structural similarity of iron
carbene (Fe=C(R1)(R2)) and iron nitrene
(Fe=NR) to the iron oxo (Fe=O) intermediate involved
in cytochrome P450-catalyzed oxidation, we have used synthetic carbene
and nitrene precursors that biological systems have not encountered
and repurposed P450s to catalyze reactions that are not known in the
natural world. The resulting protein catalysts are fully genetically
encoded and function in intact microbial cells or cell-free lysates,
where their performance can be improved and optimized by directed
evolution. By leveraging the catalytic promiscuity of P450 enzymes,
we evolved a range of carbene and nitrene transferases exhibiting
excellent activity toward these new-to-nature reactions. Since our
initial report in 2012, a number of other heme proteins including
myoglobins, protoglobins, and cytochromes c have
also been found and engineered to promote unnatural carbene and nitrene
transfer. Due to the altered active-site environments, these heme
proteins often displayed complementary activities and selectivities
to P450s. Using wild-type and engineered heme proteins, we and
others have
described a range of selective carbene transfer reactions, including
cyclopropanation, cyclopropenation, Si–H insertion, B–H
insertion, and C–H insertion. Similarly, a variety of asymmetric
nitrene transfer processes including aziridination, sulfide imidation,
C–H amidation, and, most recently, C–H amination have
been demonstrated. The scopes of these biocatalytic carbene and nitrene
transfer reactions are often complementary to the state-of-the-art
processes based on small-molecule transition-metal catalysts, making
engineered biocatalysts a valuable addition to the synthetic chemist’s
toolbox. Moreover, enabled by the exquisite regio- and stereocontrol
imposed by the enzyme catalyst, this biocatalytic platform provides
an exciting opportunity to address challenging problems in modern
synthetic chemistry and selective catalysis, including ones that have
eluded synthetic chemists for decades.
Collapse
Affiliation(s)
- Yang Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 210-41, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 210-41, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
170
|
Menchikov LG, Shulishov EV, Tomilov YV. Recent advances in the catalytic cyclopropanation of unsaturated compounds with diazomethane. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The main achievements and development trends of the past 10–15 years related to the catalytic cyclopropanation of unsaturated compounds with diazomethane are integrated and analyzed. The attention is focused on the most efficient catalysts based on palladium compounds. Data on the effects of substrate structure and nature of catalyst components on the regio- and stereoselectivity of these reactions are systematized. Characteristic features of safe methods for diazomethane generation are considered, including the use of membrane technologies and continuous-flow and in situ preparation methods, which have prospects for industrial application.
The bibliography includes 281 references.
Collapse
|
171
|
Abiotic reduction of ketones with silanes catalysed by carbonic anhydrase through an enzymatic zinc hydride. Nat Chem 2021; 13:312-318. [PMID: 33603222 PMCID: PMC8675236 DOI: 10.1038/s41557-020-00633-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022]
Abstract
Enzymatic reactions through mononuclear metal hydrides are unknown in nature, despite the prevalence of such intermediates in the reactions of synthetic transition-metal catalysts. If metalloenzymes would react through abiotic intermediates like these, then the scope of enzyme-catalyzed reactions would expand. Here we show that zinc-containing carbonic anhydrase enzymes catalyze hydride transfers from silanes to ketones with high enantioselectivity and report mechanistic data providing strong evidence that the process involves a mononuclear zinc hydride. This work shows that abiotic silanes can act as reducing equivalents in an enzyme-catalyzed process and that monomeric hydrides of electropositive metals, which are typically unstable in protic environments, can be catalytic intermediates in enzymatic processes. Overall, this work bridges a gap between the types of transformations in molecular catalysis and biocatalysis.
Collapse
|
172
|
Zhang X, Hu Y, Peng W, Gao C, Xing Q, Wang B, Li A. Exploring the Potential of Cytochrome P450 CYP109B1 Catalyzed Regio-and Stereoselective Steroid Hydroxylation. Front Chem 2021; 9:649000. [PMID: 33681151 PMCID: PMC7930613 DOI: 10.3389/fchem.2021.649000] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
Cytochrome P450 enzyme CYP109B1 is a versatile biocatalyst exhibiting hydroxylation activities toward various substrates. However, the regio- and stereoselective steroid hydroxylation by CYP109B1 is far less explored. In this study, the oxidizing activity of CYP109B1 is reconstituted by coupling redox pairs from different sources, or by fusing it to the reductase domain of two self-sufficient P450 enzymes P450RhF and P450BM3 to generate the fused enzyme. The recombinant Escherichia coli expressing necessary proteins are individually constructed and compared in steroid hydroxylation. The ferredoxin reductase (Fdr_0978) and ferredoxin (Fdx_1499) from Synechococcus elongates is found to be the best redox pair for CYP109B1, which gives above 99% conversion with 73% 15β selectivity for testosterone. By contrast, the rest ones and the fused enzymes show much less or negligible activity. With the aid of redox pair of Fdr_0978/Fdx_1499, CYP109B1 is used for hydroxylating different steroids. The results show that CYP109B1 displayed good to excellent activity and selectivity toward four testosterone derivatives, giving all 15β-hydroxylated steroids as main products except for 9 (10)-dehydronandrolone, for which the selectivity is shifted to 16β. While for substrates bearing bulky substitutions at C17 position, the activity is essentially lost. Finally, the origin of activity and selectivity for CYP109B1 catalyzed steroid hydroxylation is revealed by computational analysis, thus providing theoretical basis for directed evolution to further improve its catalytic properties.
Collapse
Affiliation(s)
- Xiaodong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yun Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Chenghua Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Qiong Xing
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
173
|
Carminati DM, Decaens J, Couve‐Bonnaire S, Jubault P, Fasan R. Biocatalytic Strategy for the Highly Stereoselective Synthesis of CHF
2
‐Containing Trisubstituted Cyclopropanes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Daniela M. Carminati
- Department of Chemistry University of Rochester 120 Trustee Road Rochester NY 14627 USA
| | - Jonathan Decaens
- Normandie Univ INSA Rouen UNIROUEN CNRS, COBRA (UMR 6014) 76000 Rouen France
| | | | - Philippe Jubault
- Normandie Univ INSA Rouen UNIROUEN CNRS, COBRA (UMR 6014) 76000 Rouen France
| | - Rudi Fasan
- Department of Chemistry University of Rochester 120 Trustee Road Rochester NY 14627 USA
| |
Collapse
|
174
|
Cailler LP, Kroitor AP, Martynov AG, Gorbunova YG, Sorokin AB. Selective carbene transfer to amines and olefins catalyzed by ruthenium phthalocyanine complexes with donor substituents. Dalton Trans 2021; 50:2023-2031. [PMID: 33443525 DOI: 10.1039/d0dt04090h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron-rich ruthenium phthalocyanine complexes were evaluated in carbene transfer reactions from ethyl diazoacetate (EDA) to aromatic and aliphatic olefins as well as to a wide range of aromatic, heterocyclic and aliphatic amines for the first time. It was revealed that the ruthenium octabutoxyphthalocyanine carbonyl complex [(BuO)8Pc]Ru(CO) is the most efficient catalyst converting electron-rich and electron-poor aromatic olefins to cyclopropane derivatives with high yields (typically 80-100%) and high TON (up to 1000) under low catalyst loading and nearly equimolar substrate/EDA ratio. This catalyst shows a rare efficiency in the carbene insertion into amine N-H bonds. Using a 0.05 mol% catalyst loading, a high amine concentration (1 M) and 1.1 eq. of EDA, a number of structurally divergent amines were selectively converted to mono-substituted glycine derivatives with up to quantitative yields and turnover numbers reaching 2000. High selectivity, large substrate scope, low catalyst loading and practical reaction conditions place [(BuO)8Pc]Ru(CO) among the most efficient catalysts for the carbene insertion into amines.
Collapse
Affiliation(s)
- Lucie P Cailler
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 2 av. A. Einstein, 69626 Villeurbanne, France.
| | - Andrey P Kroitor
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leniskii pr., 31, bldg. 4, 119071 Moscow, Russia.
| | - Alexander G Martynov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leniskii pr., 31, bldg. 4, 119071 Moscow, Russia.
| | - Yulia G Gorbunova
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leniskii pr., 31, bldg. 4, 119071 Moscow, Russia. and N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leniskii pr., 31, 11991 Moscow, Russia.
| | - Alexander B Sorokin
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 2 av. A. Einstein, 69626 Villeurbanne, France.
| |
Collapse
|
175
|
Vong K, Nasibullin I, Tanaka K. Exploring and Adapting the Molecular Selectivity of Artificial Metalloenzymes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| | - Igor Nasibullin
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
| | - Katsunori Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| |
Collapse
|
176
|
Tseliou V, Schilder D, Masman MF, Knaus T, Mutti FG. Generation of Oxidoreductases with Dual Alcohol Dehydrogenase and Amine Dehydrogenase Activity. Chemistry 2021; 27:3315-3325. [PMID: 33073866 PMCID: PMC7898336 DOI: 10.1002/chem.202003140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/17/2020] [Indexed: 11/12/2022]
Abstract
The l-lysine-ϵ-dehydrogenase (LysEDH) from Geobacillus stearothermophilus naturally catalyzes the oxidative deamination of the ϵ-amino group of l-lysine. We previously engineered this enzyme to create amine dehydrogenase (AmDH) variants that possess a new hydrophobic cavity in their active site such that aromatic ketones can bind and be converted into α-chiral amines with excellent enantioselectivity. We also recently observed that LysEDH was capable of reducing aromatic aldehydes into primary alcohols. Herein, we harnessed the promiscuous alcohol dehydrogenase (ADH) activity of LysEDH to create new variants that exhibited enhanced catalytic activity for the reduction of substituted benzaldehydes and arylaliphatic aldehydes to primary alcohols. Notably, these novel engineered dehydrogenases also catalyzed the reductive amination of a variety of aldehydes and ketones with excellent enantioselectivity, thus exhibiting a dual AmDH/ADH activity. We envisioned that the catalytic bi-functionality of these enzymes could be applied for the direct conversion of alcohols into amines. As a proof-of-principle, we performed an unprecedented one-pot "hydrogen-borrowing" cascade to convert benzyl alcohol to benzylamine using a single enzyme. Conducting the same biocatalytic cascade in the presence of cofactor recycling enzymes (i.e., NADH-oxidase and formate dehydrogenase) increased the reaction yields. In summary, this work provides the first examples of enzymes showing "alcohol aminase" activity.
Collapse
Affiliation(s)
- Vasilis Tseliou
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Don Schilder
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Marcelo F. Masman
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Tanja Knaus
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Francesco G. Mutti
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
177
|
Oohora K, Hayashi T. Myoglobins engineered with artificial cofactors serve as artificial metalloenzymes and models of natural enzymes. Dalton Trans 2021; 50:1940-1949. [PMID: 33433532 DOI: 10.1039/d0dt03597a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metalloenzymes naturally achieve various reactivities by assembling limited types of cofactors with endogenous amino acid residues. Enzymes containing metal porphyrinoid cofactors such as heme, cobalamin and F430 exert precise control over the reactivities of the cofactors with protein matrices. This perspective article focuses on our recent efforts to assemble metal complexes of non-natural porphyrinoids within the protein matrix of myoglobin, an oxygen storage hemoprotein. Engineered myoglobins with suitable metal complexes as artificial cofactors demonstrate unique reactivities toward C-H bond hydroxylation, olefin cyclopropanation, methyl group transfer and methane generation. In these cases, the protein matrix enhances the catalytic activities of the cofactors and allows us to monitor the active intermediates. The present findings indicate that placing artificial cofactors in protein matrices provides a useful strategy for creating artificial metalloenzymes that catalyse otherwise unfavourable reactions and providing enzyme models for elucidating the complicated reaction mechanisms of natural enzymes.
Collapse
Affiliation(s)
- Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.
| | | |
Collapse
|
178
|
Cao Y, Li X, Ge J. Enzyme Catalyst Engineering toward the Integration of Biocatalysis and Chemocatalysis. Trends Biotechnol 2021; 39:1173-1183. [PMID: 33551176 DOI: 10.1016/j.tibtech.2021.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/30/2023]
Abstract
Enzymatic catalysis, which has been driving biological processes in a green, mild, and efficient manner for billions of years, is increasingly being used in industrial processes to manufacture chemicals, pharmaceuticals, and materials for human society. Since enzymes were discovered, strategies to adapt enzymes for use as catalysts for industrial processes, such as chemical modification, immobilization, site-directed mutagenesis, directed evolution of enzymes, artificial metalloenzymes, and computational design, have been continuously pursued. In contrast to these strategies, editing enzymes to easily integrate biocatalysis with chemocatalysis is a potential way to apply enzymes in industry. Enzyme catalyst editing focuses on fine-tuning the microenvironment surrounding the enzyme or achieving a new catalytic function to construct better biocatalysis under non-natural conditions for the enzyme.
Collapse
Affiliation(s)
- Yufei Cao
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoyang Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jun Ge
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| |
Collapse
|
179
|
|
180
|
Zong L, Gao R, Guo Z, Shao Z, Wang Y, Eser BE. Characterization and modification of two self-sufficient CYP102 family enzymes from Bacillus amyloliquefaciens DSM 7 with distinct regioselectivity towards fatty acid hydroxylation. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
181
|
Jiang L, Wang Z, Armstrong M, Suero MG. β‐Diazocarbonyl Compounds: Synthesis and their Rh(II)‐Catalyzed 1,3 C−H Insertions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Liyin Jiang
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Zhaofeng Wang
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Melanie Armstrong
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Marcos G. Suero
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| |
Collapse
|
182
|
Winkler C, Schrittwieser JH, Kroutil W. Power of Biocatalysis for Organic Synthesis. ACS CENTRAL SCIENCE 2021; 7:55-71. [PMID: 33532569 PMCID: PMC7844857 DOI: 10.1021/acscentsci.0c01496] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 05/05/2023]
Abstract
Biocatalysis, using defined enzymes for organic transformations, has become a common tool in organic synthesis, which is also frequently applied in industry. The generally high activity and outstanding stereo-, regio-, and chemoselectivity observed in many biotransformations are the result of a precise control of the reaction in the active site of the biocatalyst. This control is achieved by exact positioning of the reagents relative to each other in a fine-tuned 3D environment, by specific activating interactions between reagents and the protein, and by subtle movements of the catalyst. Enzyme engineering enables one to adapt the catalyst to the desired reaction and process. A well-filled biocatalytic toolbox is ready to be used for various reactions. Providing nonnatural reagents and conditions and evolving biocatalysts enables one to play with the myriad of options for creating novel transformations and thereby opening new, short pathways to desired target molecules. Combining several biocatalysts in one pot to perform several reactions concurrently increases the efficiency of biocatalysis even further.
Collapse
Affiliation(s)
- Christoph
K. Winkler
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
| | - Joerg H. Schrittwieser
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
- Field
of Excellence BioHealth − University of Graz, 8010 Graz, Austria
- BioTechMed
Graz, 8010 Graz, Austria
| |
Collapse
|
183
|
Kaur P, Tyagi V. Recent Advances in Iron‐Catalyzed Chemical and Enzymatic Carbene‐Transfer Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001158] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Parmjeet Kaur
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 Punjab India
| | - Vikas Tyagi
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 Punjab India
| |
Collapse
|
184
|
Nam D, Steck V, Potenzino RJ, Fasan R. A Diverse Library of Chiral Cyclopropane Scaffolds via Chemoenzymatic Assembly and Diversification of Cyclopropyl Ketones. J Am Chem Soc 2021; 143:2221-2231. [DOI: 10.1021/jacs.0c09504] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Donggeon Nam
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Viktoria Steck
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Robert J. Potenzino
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
185
|
Wang Z, Shaik S, Wang B. Conformational Motion of Ferredoxin Enables Efficient Electron Transfer to Heme in the Full-Length P450 TT. J Am Chem Soc 2021; 143:1005-1016. [PMID: 33426875 DOI: 10.1021/jacs.0c11279] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450 monooxygenases (P450s) are versatile biocatalysts used in natural products biosynthesis, xenobiotic metabolisms, and biotechnologies. In P450s, the electrons required for O2 activation are supplied by NAD(P)H through stepwise electron transfers (ETs) mediated by redox partners. While much is known about the machinery of the catalytic cycle of P450s, the mechanisms of long-range ET are largely unknown. Very recently, the first crystal structure of full-length P450TT was solved. This enables us to decipher the interdomain ET mechanism between the [2Fe-2S]-containing ferredoxin and the heme, by use of molecular dynamics simulations. In contrast to the "distal" conformation characterized in the crystal structure where the [2Fe-2S] cluster is ∼28 Å away from heme-Fe, our simulations demonstrated a "proximal" conformation of [2Fe-2S] that is ∼17 Å [and 13.7 Å edge-to-edge] away from heme-Fe, which may enable the interdomain ET. Key residues involved in ET pathways and interdomain complexation were identified, some of which have already been verified by recent mutation studies. The conformational transit of ferredoxin between "distal" and "proximal" was found to be controlled mostly by the long-range electrostatic interactions between the ferredoxin domain and the other two domains. Furthermore, our simulations show that the full-length P450TT utilizes a flexible ET pathway that resembles either P450Scc or P450cam. Thus, this study provides a uniform picture of the ET process between reductase domains and heme domain.
Collapse
Affiliation(s)
- Zhanfeng Wang
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Binju Wang
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
186
|
Jana S, Guo Y, Koenigs RM. Recent Perspectives on Rearrangement Reactions of Ylides via Carbene Transfer Reactions. Chemistry 2021; 27:1270-1281. [PMID: 32754993 PMCID: PMC7894496 DOI: 10.1002/chem.202002556] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/29/2020] [Indexed: 01/24/2023]
Abstract
Among the available methods to increase the molecular complexity, sigmatropic rearrangements occupy a distinct position in organic synthesis. Despite being known for over a century sigmatropic rearrangement reactions of ylides via carbene transfer reaction have only recently come of age. Most of the ylide mediated rearrangement processes involve rupture of a σ-bond and formation of a new bond between π-bond and negatively charged atom followed by simultaneous redistribution of π-electrons. This minireview describes the advances in this research area made in recent years, which now opens up metal-catalyzed enantioselective sigmatropic rearrangement reactions, metal-free photochemical rearrangement reactions and novel reaction pathways that can be accessed via ylide intermediates.
Collapse
Affiliation(s)
- Sripati Jana
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Yujing Guo
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Rene M. Koenigs
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
187
|
Katsimpouras C, Stephanopoulos G. Enzymes in biotechnology: Critical platform technologies for bioprocess development. Curr Opin Biotechnol 2021; 69:91-102. [PMID: 33422914 DOI: 10.1016/j.copbio.2020.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/09/2020] [Accepted: 12/08/2020] [Indexed: 01/02/2023]
Abstract
Enzymes are core elements of biosynthetic pathways employed in the synthesis of numerous bioproducts. Here, we review enzyme promiscuity, enzyme engineering, enzyme immobilization, and cell-free systems as fundamental strategies of bioprocess development. Initially, promiscuous enzymes are the first candidates in the quest for new activities to power new, artificial, or bypass pathways that expand substrate range and catalyze the production of new products. If the activity or regulation of available enzymes is unsuitable for a process, protein engineering can be applied to improve them to the required level. When cell toxicity and low productivity cannot be engineered away, cell-free systems are an attractive option, especially in combination with enzyme immobilization that allows extended enzyme use. Overall, the above methods support powerful platforms for bioprocess development and optimization.
Collapse
Affiliation(s)
- Constantinos Katsimpouras
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139 MA, USA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139 MA, USA.
| |
Collapse
|
188
|
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew Chem Int Ed Engl 2021; 60:88-119. [PMID: 32558088 PMCID: PMC7818486 DOI: 10.1002/anie.202006648] [Citation(s) in RCA: 649] [Impact Index Per Article: 162.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Biocatalysis has found numerous applications in various fields as an alternative to chemical catalysis. The use of enzymes in organic synthesis, especially to make chiral compounds for pharmaceuticals as well for the flavors and fragrance industry, are the most prominent examples. In addition, biocatalysts are used on a large scale to make specialty and even bulk chemicals. This review intends to give illustrative examples in this field with a special focus on scalable chemical production using enzymes. It also discusses the opportunities and limitations of enzymatic syntheses using distinct examples and provides an outlook on emerging enzyme classes.
Collapse
Affiliation(s)
- Shuke Wu
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Radka Snajdrova
- Novartis Institutes for BioMedical ResearchGlobal Discovery Chemistry4056BaselSwitzerland
| | - Jeffrey C. Moore
- Process Research and DevelopmentMerck & Co., Inc.126 E. Lincoln AveRahwayNJ07065USA
| | - Kai Baldenius
- Baldenius Biotech ConsultingHafenstr. 3168159MannheimGermany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| |
Collapse
|
189
|
Ren X, Liu N, Chandgude AL, Fasan R. An Enzymatic Platform for the Highly Enantioselective and Stereodivergent Construction of Cyclopropyl‐δ‐lactones. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xinkun Ren
- Department of Chemistry University of Rochester 120 Trustee Road Rochester NY 16427 USA
| | - Ningyu Liu
- Department of Chemistry University of Rochester 120 Trustee Road Rochester NY 16427 USA
| | - Ajay L. Chandgude
- Department of Chemistry University of Rochester 120 Trustee Road Rochester NY 16427 USA
| | - Rudi Fasan
- Department of Chemistry University of Rochester 120 Trustee Road Rochester NY 16427 USA
| |
Collapse
|
190
|
Zhou W, Hou J, Li Y, Zhou H, Huang H, Zhang L, Hayat Nawaz MA, Yu C. Protein discrimination based on DNA induced perylene probe self-assembly. Talanta 2020; 224:121897. [PMID: 33379104 DOI: 10.1016/j.talanta.2020.121897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 10/23/2022]
Abstract
The development of a simple and effective method for the highly sensitive and selective discrimination of proteins is a subject of enormous interest. Herein, we report the construction of a novel fluorescence detection method based on a perylene probe for the highly efficient discrimination of multiple proteins. Single-stranded DNA (ssDNA) could induce aggregation of the perylene probe which caused quenching of probe fluorescence. After the addition of a protein, the protein could interact with the ssDNA-probe assembly complex with "turn-on" or further "turn-off" fluorescence response. A sensor array was designed based on the above phenomena which could realize the successful discrimination of proteins with 100% accuracy of cross validation. Nine representative proteins were successfully recognized. Moreover, it was observed that a protein could induce characteristic effect on the DNA-probe assembly with varying pH of assay buffer. Thus, different proteins showed unique fluorescence response towards assay buffers having different pH values. The assay buffer pH was then utilized as a sensing channel. Based on Linear Discriminant Analysis (LDA) nine proteins were successfully discriminated at the nanomolar concentration with 100% accuracy of cross validation. Furthermore, the sensor array also demonstrated differentiation of the nine proteins regardless of their concentration. The developed sensor array could also detect the proteins with great precision in human urine sample at a quite low concentration, which suggests its practical applicability for analysis of biological fluids.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Jiaze Hou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; College of Food Science and Engineering, Jilin University, Changchun, 130025, PR China
| | - Yongxin Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; College of New Energy and Environment, Jilin University, Changchun, 130021, PR China.
| | - Huipeng Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun, 130025, PR China
| | - Ling Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130025, PR China
| | - Muhammad Azhar Hayat Nawaz
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
191
|
Voskarides K. Directed Evolution. The Legacy of a Nobel Prize. J Mol Evol 2020; 89:189-191. [PMID: 33184672 DOI: 10.1007/s00239-020-09972-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
This article is part of an anniversary issue of Journal of Molecular Evolution, commenting on a paper published on 1999 by the Nobel laureate Frances Arnold and her colleague Kentaro Miyazaki. The paper by Miyazaki and Arnold presented saturation mutagenesis as an alternative method to random mutagenesis for obtaining enzymes with increasing stability. Both techniques were conceived to accomplish directed evolution, an approach honoured by the Nobel Prize of Chemistry 2018. Here, I am commenting on the pros and cons of random and saturation mutagenesis, while also discussing important results from directed evolution. I conclude that molecular evolution is finding new applications in science and it is definitely an integral part of the genomic era's revolution.
Collapse
|
192
|
Engineered biosynthetic pathways and biocatalytic cascades for sustainable synthesis. Curr Opin Chem Biol 2020; 58:146-154. [PMID: 33152607 DOI: 10.1016/j.cbpa.2020.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
Nature exploits biosynthetic cascades to construct numerous molecules from a limited set of starting materials. A deeper understanding of biosynthesis and extraordinary developments in gene technology has allowed the manipulation of natural pathways and construction of artificial cascades for the preparation of a range of molecules, which would be challenging to access using traditional synthetic chemical approaches. Alongside these metabolic engineering strategies, there has been continued interest in developing in vivo and in vitro biocatalytic cascades. Advancements in both metabolic engineering and biocatalysis are complementary, and this article aims to highlight some of the most exciting developments in these two areas with a particular focus on exploring those that have the potential to advance both pathway engineering and more traditional biocatalytic cascade development.
Collapse
|
193
|
Marín-Valls R, Hernández K, Bolte M, Parella T, Joglar J, Bujons J, Clapés P. Biocatalytic Construction of Quaternary Centers by Aldol Addition of 3,3-Disubstituted 2-Oxoacid Derivatives to Aldehydes. J Am Chem Soc 2020; 142:19754-19762. [PMID: 33147013 DOI: 10.1021/jacs.0c09994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The congested nature of quaternary carbons hinders their preparation, most notably when stereocontrol is required. Here we report a biocatalytic method for the creation of quaternary carbon centers with broad substrate scope, leading to different compound classes bearing this structural feature. The key step comprises the aldol addition of 3,3-disubstituted 2-oxoacids to aldehydes catalyzed by metal dependent 3-methyl-2-oxobutanoate hydroxymethyltransferase from E. coli (KPHMT) and variants thereof. The 3,3,3-trisubstituted 2-oxoacids thus produced were converted into 2-oxolactones and 3-hydroxy acids and directly to ulosonic acid derivatives, all bearing gem-dialkyl, gem-cycloalkyl, and spirocyclic quaternary centers. In addition, some of these reactions use a single enantiomer from racemic nucleophiles to afford stereopure quaternary carbons. The notable substrate tolerance and stereocontrol of these enzymes are indicative of their potential for the synthesis of structurally intricate molecules.
Collapse
Affiliation(s)
- Roser Marín-Valls
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Karel Hernández
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Michael Bolte
- Institut für Anorganische Chemie, J.-W.-Goethe-Universität, Frankfurt/Main, Germany
| | - Teodor Parella
- Servei de Ressonancia Magnetica Nuclear, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jesús Joglar
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jordi Bujons
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Pere Clapés
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
194
|
Abstract
Three- and four-membered rings, widespread motifs in nature and medicinal chemistry, have fascinated chemists ever since their discovery. However, due to energetic considerations, small rings are often difficult to assemble. In this regard, homogeneous gold catalysis has emerged as a powerful tool to construct these highly strained carbocycles. This review aims to provide a comprehensive summary of all the major advances and discoveries made in the gold-catalyzed synthesis of cyclopropanes, cyclopropenes, cyclobutanes, cyclobutenes, and their corresponding heterocyclic or heterosubstituted analogs.
Collapse
Affiliation(s)
- Mauro Mato
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Allegra Franchino
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Cristina Garcı A-Morales
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
195
|
Popa S, Inamoto I, Thuronyi BW, Shin JA. Phage-Assisted Continuous Evolution (PACE): A Guide Focused on Evolving Protein-DNA Interactions. ACS OMEGA 2020; 5:26957-26966. [PMID: 33134656 PMCID: PMC7593997 DOI: 10.1021/acsomega.0c03508] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/06/2020] [Indexed: 05/08/2023]
Abstract
The uptake of directed evolution methods is increasing, as these powerful systems can be utilized to develop new biomolecules with altered/novel activities, for example, proteins with new catalytic functions or substrate specificities and nucleic acids that recognize an intended target. Especially useful are systems that incorporate continuous evolution, where the protein under selective pressure undergoes continuous mutagenesis with little-to-no input from the researcher once the system is started. However, continuous evolution methods can be challenging to implement and a daunting investment of time and resources. Our intent is to provide basic information and helpful suggestions that we have gained from our experience with bacterial phage-assisted continuous evolution (PACE) toward the evolution of proteins that bind to a specific DNA target. We discuss factors to consider before adopting PACE for a given evolution scheme with focus on the PACE bacterial one-hybrid selection system and what optimization of a PACE selection circuit may look like using the evolution of the DNA-binding protein ME47 as a case study. We outline different types of selection circuits and techniques that may be added onto a basic PACE setup. With this information, researchers will be better equipped to determine whether PACE is a valid strategy to adopt for their research program and how to set up a valid selection circuit.
Collapse
Affiliation(s)
- Serban
C. Popa
- Department
of Chemistry, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Ichiro Inamoto
- Department
of Chemistry, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Benjamin W. Thuronyi
- Department
of Chemistry, Williams College, 47 Lab Campus Drive, Williamstown, Massachusetts 01267, United States
| | - Jumi A. Shin
- Department
of Chemistry, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
196
|
Dunham NP, Arnold FH. Nature's Machinery, Repurposed: Expanding the Repertoire of Iron-Dependent Oxygenases. ACS Catal 2020; 10:12239-12255. [PMID: 33282461 PMCID: PMC7710332 DOI: 10.1021/acscatal.0c03606] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iron is an especially important redox-active cofactor in biology because of its ability to mediate reactions with atmospheric O2. Iron-dependent oxygenases exploit this earth-abundant transition metal for the insertion of oxygen atoms into organic compounds. Throughout the astounding diversity of transformations catalyzed by these enzymes, the protein framework directs reactive intermediates toward the precise formation of products, which, in many cases, necessitates the cleavage of strong C-H bonds. In recent years, members of several iron-dependent oxygenase families have been engineered for new-to-nature transformations that offer advantages over conventional synthetic methods. In this Perspective, we first explore what is known about the reactivity of heme-dependent cytochrome P450 oxygenases and nonheme iron-dependent oxygenases bearing the 2-His-1-carboxylate facial triad by reviewing mechanistic studies with an emphasis on how the protein scaffold maximizes the catalytic potential of the iron-heme and iron cofactors. We then review how these cofactors have been repurposed for abiological transformations by engineering the protein frameworks of these enzymes. Finally, we discuss contemporary challenges associated with engineering these platforms and comment on their roles in biocatalysis moving forward.
Collapse
Affiliation(s)
- Noah P. Dunham
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| |
Collapse
|
197
|
Steck V, Carminati DM, Johnson NR, Fasan R. Enantioselective Synthesis of Chiral Amines via Biocatalytic Carbene N-H Insertion. ACS Catal 2020; 10:10967-10977. [PMID: 34484852 DOI: 10.1021/acscatal.0c02794] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Optically active amines represent highly valuable building blocks for the synthesis of advanced pharmaceutical intermediates, drug molecules, and biologically active natural products. Hemoproteins have recently emerged as promising biocatalysts for the formation of C-N bonds via carbene transfer, but asymmetric N-H carbene insertion reactions using these or other enzymes have so far been elusive. Here, we report the successful development of a biocatalytic strategy for the asymmetric N-H carbene insertion of aromatic amines with 2-diazopropanoate esters using engineered variants of myoglobin. High activity and stereoinduction in this reaction could be achieved by tuning the chiral environment around the heme cofactor in the metalloprotein in combination with catalyst-matching and tailoring of the diazo reagent. Using this approach, an efficient biocatalytic protocol for the synthesis of a broad range of substituted aryl amines with up to 82% ee was obtained. In addition, a stereocomplementary catalyst useful for accessing the mirror-image form of the N-H insertion products was identified. This work paves the way to asymmetric amine synthesis via biocatalytic carbene transfer, and the present strategy based on the synergistic combination of protein and diazo reagent engineering is expected to prove useful in the context of these as well as other challenging asymmetric carbene transfer reactions.
Collapse
Affiliation(s)
- Viktoria Steck
- Department of Chemistry, University of Rochester, 14627 Rochester, New York United States
| | - Daniela M. Carminati
- Department of Chemistry, University of Rochester, 14627 Rochester, New York United States
| | - Nathan R. Johnson
- Department of Chemistry, University of Rochester, 14627 Rochester, New York United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, 14627 Rochester, New York United States
| |
Collapse
|
198
|
Biggs GS, Klein OJ, Boss SR, Barker PD. Unlocking the Full Evolutionary Potential of Artificial Metalloenzymes Through Direct Metal-Protein Coordination : A review of recent advances for catalyst development. JOHNSON MATTHEY TECHNOLOGY REVIEW 2020. [DOI: 10.1595/205651320x15928204097766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Generation of artificial metalloenzymes (ArMs) has gained much inspiration from the general understanding of natural metalloenzymes. Over the last decade, a multitude of methods generating transition metal-protein hybrids have been developed and many of these new-to-nature constructs
catalyse reactions previously reserved for the realm of synthetic chemistry. This perspective will focus on ArMs incorporating 4d and 5d transition metals. It aims to summarise the significant advances made to date and asks whether there are chemical strategies, used in nature to optimise
metal catalysts, that have yet to be fully recognised in the synthetic enzyme world, particularly whether artificial enzymes produced to date fully take advantage of the structural and energetic context provided by the protein. Further, the argument is put forward that, based on precedence,
in the majority of naturally evolved metalloenzymes the direct coordination bonding between the metal and the protein scaffold is integral to catalysis. Therefore, the protein can attenuate metal activity by positioning ligand atoms in the form of amino acids, as well as making non-covalent
contributions to catalysis, through intermolecular interactions that pre-organise substrates and stabilise transition states. This highlights the often neglected but crucial element of natural systems that is the energetic contribution towards activating metal centres through protein fold
energy. Finally, general principles needed for a different approach to the formation of ArMs are set out, utilising direct coordination inspired by the activation of an organometallic cofactor upon protein binding. This methodology, observed in nature, delivers true interdependence between
metal and protein. When combined with the ability to efficiently evolve enzymes, new problems in catalysis could be addressed in a faster and more specific manner than with simpler small molecule catalysts.
Collapse
Affiliation(s)
- George S. Biggs
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW UK
| | - Oskar James Klein
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW UK
| | - Sally R. Boss
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW UK
| | - Paul D. Barker
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW UK
| |
Collapse
|
199
|
Wood AB, Cortes-Clerget M, Kincaid JRA, Akkachairin B, Singhania V, Gallou F, Lipshutz BH. Nickel Nanoparticle Catalyzed Mono- and Di-Reductions of gem-Dibromocyclopropanes Under Mild, Aqueous Micellar Conditions. Angew Chem Int Ed Engl 2020; 59:17587-17593. [PMID: 32579762 DOI: 10.1002/anie.202006162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 11/06/2022]
Abstract
Mild mono- and di-hydrodehalogenative reductions of gem-dibromocyclopropanes are described, providing an easy and green approach towards the synthesis of cyclopropanes. The methodology utilizes 0.5-5 mol % TMPhen-nickel as the catalyst, which, when activated with a hydride source such as sodium borohydride, cleanly and selectively dehalogenates dibromocyclopropanes. Double reduction proceeds in a single operation at temperatures between 20-45 °C and at atmospheric pressure in an aqueous designer surfactant medium. At lower loading and either in the absence of ligand or in the presence of 2,2'-bipyridine, this new technology can also be used to gain access to not only monobrominated cyclopropanes, interesting building blocks for further use in synthesis, but also mono- or di-deuterated analogues. Taken together, this base-metal-catalyzed process provides access to cyclopropyl-containing products and is achieved under environmentally responsible conditions.
Collapse
Affiliation(s)
- Alex B Wood
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Margery Cortes-Clerget
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Joseph R A Kincaid
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Bhornrawin Akkachairin
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Vani Singhania
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | | | - Bruce H Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
200
|
Suzuki K, Shisaka Y, Stanfield JK, Watanabe Y, Shoji O. Enhanced cis- and enantioselective cyclopropanation of styrene catalysed by cytochrome P450BM3 using decoy molecules. Chem Commun (Camb) 2020; 56:11026-11029. [PMID: 32895681 DOI: 10.1039/d0cc04883f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the enhanced cis- and enantioselective cyclopropanation of styrene catalysed by cytochrome P450BM3 in the presence of dummy substrates, i.e. decoy molecules. With the aid of the decoy molecule R-Ibu-Phe, diastereoselectivity for the cis diastereomers reached 91%, and the enantiomeric ratio for the (1S,2R) isomer reached 94%. Molecular dynamics simulations underpin the experimental data, revealing the mechanism of how enantioselectivity is controlled by the addition of decoy molecules.
Collapse
Affiliation(s)
- Kazuto Suzuki
- Department of Chemistry, School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-0802, Japan.
| | - Yuma Shisaka
- Department of Chemistry, School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-0802, Japan.
| | - Joshua Kyle Stanfield
- Department of Chemistry, School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-0802, Japan.
| | - Yoshihito Watanabe
- Department of Chemistry, School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-0802, Japan.
| | - Osami Shoji
- Department of Chemistry, School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-0802, Japan. and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 5 Sanban-cho, Chiyoda-ku, Tokyo, 102-0075, Japan
| |
Collapse
|