151
|
Odell J, Lammerding J. Lamins as structural nuclear elements through evolution. Curr Opin Cell Biol 2023; 85:102267. [PMID: 37871500 PMCID: PMC10841731 DOI: 10.1016/j.ceb.2023.102267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023]
Abstract
Lamins are nuclear intermediate filament proteins with important, well-established roles in humans and other vertebrates. Lamins interact with DNA and numerous proteins at the nuclear envelope to determine the mechanical properties of the nucleus, coordinate chromatin organization, and modulate gene expression. Many of these functions are conserved in the lamin homologs found in basal metazoan organisms, including Drosophila and Caenorhabditis elegans. Lamin homologs have also been recently identified in non-metazoans, like the amoeba Dictyostelium discoideum, yet how these proteins compare functionally to the metazoan isoforms is only beginning to emerge. A better understanding of these distantly related lamins is not only valuable for a more complete picture of eukaryotic evolution, but may also provide new insights into the function of vertebrate lamins.
Collapse
Affiliation(s)
- Jacob Odell
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
152
|
Du Z, Yang S, Gong Q, Lin Z, Xiao G, Mi S. Research of restricted migration evaluation of MDA-MB-231 cells in 2D and 3D co-culture models. Exp Biol Med (Maywood) 2023; 248:2219-2226. [PMID: 38240216 PMCID: PMC10903235 DOI: 10.1177/15353702231214269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/01/2023] [Indexed: 01/23/2024] Open
Abstract
The restricted migration evaluation is conducive to more complex tumor migration research because of the conformity with in vivo tumors. However, the differences between restricted and unrestricted cell migration and the distinction between different evaluation methods have not been systematically studied, hindering related research. In this study, by constructing the restricted environments on chips, the influence of co-culture conditions on the cancer cell migration capacity was studied. The results showed that the restricted channels can discriminate the influence of weak tumor environmental factors on complex tumor migration behaviors by limiting the free growth instinct of tumor cells. Through the comparison of 2D and 3D restricted migration methods, the extracellular matrix (ECM) restriction was also helpful in distinguishing the influence of the weak tumor environmental factor. However, the 3D ECM can better reflect the tortuosity of the cell migration process and the cooperative behavior among cancer cells. In the anticancer drug evaluation, 3D ECM can more accurately reflect the cytotoxicity of drugs and is more consistent with the drug resistance in the human body. In conclusion, the research will help to distinguish different evaluation methods of cancer cell migration, help researchers select appropriate evaluation models, and promote the research of tumor metastasis.
Collapse
Affiliation(s)
- Zhichang Du
- College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shaohui Yang
- College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China
- Key Laboratory of Ocean Renewable Energy Equipment of Fujian Province, Jimei University, Xiamen 361021, China
| | - Qingzhong Gong
- College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China
| | - Zhonghua Lin
- College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China
| | - Guohong Xiao
- College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China
| | - Shengli Mi
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
153
|
Jackson JA, Romeo N, Mietke A, Burns KJ, Totz JF, Martin AC, Dunkel J, Alsous JI. Scaling behaviour and control of nuclear wrinkling. NATURE PHYSICS 2023; 19:1927-1935. [PMID: 38831923 PMCID: PMC11146749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The cell nucleus is enveloped by a complex membrane, whose wrinkling has been implicated in disease and cellular aging. The biophysical dynamics and spectral evolution of nuclear wrinkling during multicellular development remain poorly understood due to a lack of direct quantitative measurements. Here, we characterize the onset and dynamics of nuclear wrinkling during egg development in the fruit fly when nurse cell nuclei increase in size and display stereotypical wrinkling behavior. A spectral analysis of three-dimensional high-resolution live imaging data from several hundred nuclei reveals a robust asymptotic power-law scaling of angular fluctuations consistent with renormalization and scaling predictions from a nonlinear elastic shell model. We further demonstrate that nuclear wrinkling can be reversed through osmotic shock and suppressed by microtubule disruption, providing tuneable physical and biological control parameters for probing mechanical properties of the nuclear envelope. Our findings advance the biophysical understanding of nuclear membrane fluctuations during early multicellular development.
Collapse
Affiliation(s)
- Jonathan A. Jackson
- Department of Biology, Massachusetts Institute of Technology
- Graduate Program in Biophysics, Harvard University
| | - Nicolas Romeo
- Department of Mathematics, Massachusetts Institute of Technology
- Department of Physics, Massachusetts Institute of Technology
| | - Alexander Mietke
- Department of Mathematics, Massachusetts Institute of Technology
- School of Mathematics, University of Bristol
| | - Keaton J. Burns
- Department of Mathematics, Massachusetts Institute of Technology
| | - Jan F. Totz
- Department of Mathematics, Massachusetts Institute of Technology
| | - Adam C. Martin
- Department of Biology, Massachusetts Institute of Technology
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology
| | | |
Collapse
|
154
|
Zhang Z, Zhu H, Zhao G, Miao Y, Zhao L, Feng J, Zhang H, Miao R, Sun L, Gao B, Zhang W, Wang Z, Zhang J, Zhang Y, Guo H, Xu F, Lu TJ, Genin GM, Lin M. Programmable and Reversible Integrin-Mediated Cell Adhesion Reveals Hysteresis in Actin Kinetics that Alters Subsequent Mechanotransduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302421. [PMID: 37849221 PMCID: PMC10724447 DOI: 10.1002/advs.202302421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/16/2023] [Indexed: 10/19/2023]
Abstract
Dynamically evolving adhesions between cells and extracellular matrix (ECM) transmit time-varying signals that control cytoskeletal dynamics and cell fate. Dynamic cell adhesion and ECM stiffness regulate cellular mechanosensing cooperatively, but it has not previously been possible to characterize their individual effects because of challenges with controlling these factors independently. Therefore, a DNA-driven molecular system is developed wherein the integrin-binding ligand RGD can be reversibly presented and removed to achieve cyclic cell attachment/detachment on substrates of defined stiffness. Using this culture system, it is discovered that cyclic adhesion accelerates F-actin kinetics and nuclear mechanosensing in human mesenchymal stem cells (hMSCs), with the result that hysteresis can completely change how hMSCs transduce ECM stiffness. Results are dramatically different from well-known results for mechanotransduction on static substrates, but are consistent with a mathematical model of F-actin fragments retaining structure following loss of integrin ligation and participating in subsequent repolymerization. These findings suggest that cyclic integrin-mediated adhesion alters the mechanosensing of ECM stiffness by hMSCs through transient, hysteretic memory that is stored in F-actin.
Collapse
Affiliation(s)
- Zheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Hongyuan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Guoqing Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yunyi Miao
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Lingzhu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Jinteng Feng
- Department of Medical OncologyFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710061P. R. China
| | - Huan Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Run Miao
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Lin Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Bin Gao
- Department of EndocrinologySecond Affiliated Hospital of Air Force Military Medical UniversityXi'an710038P. R. China
| | - Wencheng Zhang
- Department of EndocrinologySecond Affiliated Hospital of Air Force Military Medical UniversityXi'an710038P. R. China
| | - Zheng Wang
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710061P. R. China
| | - Jianfang Zhang
- Department of Gynaecology and Obstetrics of Xijing Hospital, Fourth Military Medical University710054Xi'anP. R. China
| | - Ying Zhang
- Xijing 986 Hospital DepartmentFourth Military Medical UniversityXi'an710054P. R. China
| | - Hui Guo
- Department of Medical OncologyFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710061P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjing210016P. R. China
| | - Guy M. Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
- Department of Mechanical Engineering & Materials ScienceWashington University in St. LouisSt. LouisMO63130USA
- NSF Science and Technology Center for Engineering MechanobiologyWashington University in St. LouisSt. LouisMO63130USA
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| |
Collapse
|
155
|
Vahala D, Amos SE, Sacchi M, Soliman BG, Hepburn MS, Mowla A, Li J, Jeong JH, Astell C, Hwang Y, Kennedy BF, Lim KS, Choi YS. 3D Volumetric Mechanosensation of MCF7 Breast Cancer Spheroids in a Linear Stiffness Gradient GelAGE. Adv Healthc Mater 2023; 12:e2301506. [PMID: 37670531 PMCID: PMC11481087 DOI: 10.1002/adhm.202301506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/26/2023] [Indexed: 09/07/2023]
Abstract
The tumor microenvironment presents spatiotemporal shifts in biomechanical properties with cancer progression. Hydrogel biomaterials like GelAGE offer the stiffness tuneability to recapitulate dynamic changes in tumor tissues by altering photo-energy exposures. Here, a tuneable hydrogel with spatiotemporal control of stiffness and mesh-network is developed. The volume of MCF7 spheroids encapsulated in a linear stiffness gradient demonstrates an inverse relationship with stiffness (p < 0.0001). As spheroids are exposed to increased crosslinking (stiffer) and greater mechanical confinement, spheroid stiffness increases. Protein expression (TRPV4, β1 integrin, E-cadherin, and F-actin) decreases with increasing stiffness while showing strong correlations to spheroid volume (r2 > 0.9). To further investigate the role of volume, MCF7 spheroids are grown in a soft matrix for 5 days prior to a second polymerisation which presents a stiffness gradient to equally expanded spheroids. Despite being exposed to variable stiffness, these spheroids show even protein expression, confirming volume as a key regulator. Overall, this work showcases the versatility of GelAGE and demonstrates volume expansion as a key regulator of 3D mechanosensation in MCF7 breast cancer spheroids. This platform has the potential to further investigation into the role of stiffness and dimensionality in 3D spheroid culture for other types of cancers and diseases.
Collapse
Affiliation(s)
- Danielle Vahala
- School of Human SciencesThe University of Western AustraliaPerthWA6009Australia
| | - Sebastian E. Amos
- School of Human SciencesThe University of Western AustraliaPerthWA6009Australia
| | - Marta Sacchi
- School of Human SciencesThe University of Western AustraliaPerthWA6009Australia
| | - Bram G. Soliman
- Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of Otago ChristchurchChristchurch8140New Zealand
| | - Matt S. Hepburn
- Department of ElectricalElectronic & Computer EngineeringSchool of EngineeringThe University of Western AustraliaPerthWA6009Australia
- BRITElabHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlandsand Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
| | - Alireza Mowla
- Department of ElectricalElectronic & Computer EngineeringSchool of EngineeringThe University of Western AustraliaPerthWA6009Australia
- BRITElabHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlandsand Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
| | - Jiayue Li
- Department of ElectricalElectronic & Computer EngineeringSchool of EngineeringThe University of Western AustraliaPerthWA6009Australia
- BRITElabHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlandsand Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi‐Bio ScienceSoonchunhyang UniversityCheonan‐siChungcheongnam‐do31151South Korea
| | - Chrissie Astell
- School of Human SciencesThe University of Western AustraliaPerthWA6009Australia
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi‐Bio ScienceSoonchunhyang UniversityCheonan‐siChungcheongnam‐do31151South Korea
| | - Brendan F. Kennedy
- Department of ElectricalElectronic & Computer EngineeringSchool of EngineeringThe University of Western AustraliaPerthWA6009Australia
- BRITElabHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlandsand Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
| | - Khoon S. Lim
- Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of Otago ChristchurchChristchurch8140New Zealand
- School of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - Yu Suk Choi
- School of Human SciencesThe University of Western AustraliaPerthWA6009Australia
| |
Collapse
|
156
|
Carnicer-Lombarte A, Barone DG, Wronowski F, Malliaras GG, Fawcett JW, Franze K. Regenerative capacity of neural tissue scales with changes in tissue mechanics post injury. Biomaterials 2023; 303:122393. [PMID: 37977006 DOI: 10.1016/j.biomaterials.2023.122393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Spinal cord injuries have devastating consequences for humans, as mammalian neurons of the central nervous system (CNS) cannot regenerate. In the peripheral nervous system (PNS), however, neurons may regenerate to restore lost function following injury. While mammalian CNS tissue softens after injury, how PNS tissue mechanics changes in response to mechanical trauma is currently poorly understood. Here we characterised mechanical rat nerve tissue properties before and after in vivo crush and transection injuries using atomic force microscopy-based indentation measurements. Unlike CNS tissue, PNS tissue significantly stiffened after both types of tissue damage. This nerve tissue stiffening strongly correlated with an increase in collagen I levels. Schwann cells, which crucially support PNS regeneration, became more motile and proliferative on stiffer substrates in vitro, suggesting that changes in tissue stiffness may play a key role in facilitating or impeding nervous system regeneration.
Collapse
Affiliation(s)
- Alejandro Carnicer-Lombarte
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK; Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
| | - Damiano G Barone
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Filip Wronowski
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK; Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Prague, Czech Republic
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK; Institute of Medical Physics and Micro-Tissue Engineering, Friedrich-Alexander Universität Erlangen-Nürnberg, 91052, Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91054, Erlangen, Germany.
| |
Collapse
|
157
|
Kim Y. The impact of altered lamin B1 levels on nuclear lamina structure and function in aging and human diseases. Curr Opin Cell Biol 2023; 85:102257. [PMID: 37806292 DOI: 10.1016/j.ceb.2023.102257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023]
Abstract
The role of lamin B1 in human health and aging has attracted increasing attention as mounting evidence reveals its significance in diverse cellular processes. Both upregulation and downregulation of lamin B1 have been implicated in age-associated organ dysfunctions and various human diseases, including central nervous system disorders. Additionally, lamin B1 levels undergo alterations in cancer cells, and a tumor-specific association exists between lamin B1 abundance and cancer aggressiveness. Investigating the connectivity between lamin B1 abundance and human health is of utmost importance for further research. This review presents recent advancements in understanding lamin B1's role in nuclear lamina function and its implications for human health.
Collapse
Affiliation(s)
- Youngjo Kim
- Department of Integrated Biomedical Science and Soonchunhyang Institute of Medi-Bioscience, Soonchunhyang University, Cheon-an 31151, Republic of Korea.
| |
Collapse
|
158
|
West G, Sedighi S, Agnetti G, Taimen P. Intermediate filaments in the heart: The dynamic duo of desmin and lamins orchestrates mechanical force transmission. Curr Opin Cell Biol 2023; 85:102280. [PMID: 37972529 DOI: 10.1016/j.ceb.2023.102280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
The intermediate filament (IF) cytoskeleton supports cellular structural integrity, particularly in response to mechanical stress. The most abundant IF proteins in mature cardiomyocytes are desmin and lamins. The desmin network tethers the contractile apparatus and organelles to the nuclear envelope and the sarcolemma, while lamins, as components of the nuclear lamina, provide structural stability to the nucleus and the genome. Mutations in desmin or A-type lamins typically result in cardiomyopathies and recent studies emphasized the synergistic roles of desmin and lamins in the maintenance of nuclear integrity in cardiac myocytes. Here we explore the emerging roles of the interdependent relationship between desmin and lamins in providing resilience to nuclear structure while transducing extracellular mechanical cues into the nucleus.
Collapse
Affiliation(s)
- Gun West
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20520, Turku, Finland
| | - Sogol Sedighi
- Johns Hopkins University School of Medicine, 21205, Baltimore, MD, USA
| | - Giulio Agnetti
- Johns Hopkins University School of Medicine, 21205, Baltimore, MD, USA; DIBINEM - University of Bologna, 40123, Bologna, Italy.
| | - Pekka Taimen
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20520, Turku, Finland; Department of Pathology, Turku University Hospital, 20520, Turku, Finland.
| |
Collapse
|
159
|
Worman HJ, Michaelis S. Prelamin A and ZMPSTE24 in premature and physiological aging. Nucleus 2023; 14:2270345. [PMID: 37885131 PMCID: PMC10730219 DOI: 10.1080/19491034.2023.2270345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
As human longevity increases, understanding the molecular mechanisms that drive aging becomes ever more critical to promote health and prevent age-related disorders. Premature aging disorders or progeroid syndromes can provide critical insights into aspects of physiological aging. A major cause of progeroid syndromes which result from mutations in the genes LMNA and ZMPSTE24 is disruption of the final posttranslational processing step in the production of the nuclear scaffold protein lamin A. LMNA encodes the lamin A precursor, prelamin A and ZMPSTE24 encodes the prelamin A processing enzyme, the zinc metalloprotease ZMPSTE24. Progeroid syndromes resulting from mutations in these genes include the clinically related disorders Hutchinson-Gilford progeria syndrome (HGPS), mandibuloacral dysplasia-type B, and restrictive dermopathy. These diseases have features that overlap with one another and with some aspects of physiological aging, including bone defects resembling osteoporosis and atherosclerosis (the latter primarily in HGPS). The progeroid syndromes have ignited keen interest in the relationship between defective prelamin A processing and its accumulation in normal physiological aging. In this review, we examine the hypothesis that diminished processing of prelamin A by ZMPSTE24 is a driver of physiological aging. We review features a new mouse (LmnaL648R/L648R) that produces solely unprocessed prelamin A and provides an ideal model for examining the effects of its accumulation during aging. We also discuss existing data on the accumulation of prelamin A or its variants in human physiological aging, which call out for further validation and more rigorous experimental approaches to determine if prelamin A contributes to normal aging.
Collapse
Affiliation(s)
- Howard J. Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
160
|
Hara Y. Physical forces modulate interphase nuclear size. Curr Opin Cell Biol 2023; 85:102253. [PMID: 37801797 DOI: 10.1016/j.ceb.2023.102253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 10/08/2023]
Abstract
The eukaryotic nucleus exhibits remarkable plasticity in size, adjusting dynamically to changes in cellular conditions such as during development and differentiation, and across species. Traditionally, the supply of structural constituents to the nuclear envelope has been proposed as the principal determinant of nuclear size. However, recent experimental and theoretical analyses have provided an alternative perspective, which emphasizes the crucial role of physical forces such as osmotic pressure and chromatin repulsion forces in regulating nuclear size. These forces can be modulated by the molecular profiles that traverse the nuclear envelope and assemble in the macromolecular complex. This leads to a new paradigm wherein multiple nuclear macromolecules that are not limited to only the structural constituents of the nuclear envelope, are involved in the control of nuclear size and related functions.
Collapse
Affiliation(s)
- Yuki Hara
- Evolutionary Cell Biology Laboratory, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi City, 753-8512, Japan.
| |
Collapse
|
161
|
Liang R, Song G. Matrix stiffness-driven cancer progression and the targeted therapeutic strategy. MECHANOBIOLOGY IN MEDICINE 2023; 1:100013. [PMID: 40395641 PMCID: PMC12082158 DOI: 10.1016/j.mbm.2023.100013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 05/22/2025]
Abstract
Increased matrix stiffness is a common phenomenon in solid tumor tissue and is regulated by both tumor and mesenchymal cells. The increase in collagen and lysyl oxidase family proteins in the extracellular matrix leads to deposition, contraction, and crosslinking of the stroma, promoting increased matrix stiffness in tumors. Matrix stiffness is critical to the progression of various solid tumors. As a mechanical factor in the tumor microenvironment, matrix stiffness is involved in tumor progression, promoting biological processes such as tumor cell proliferation, invasion, metastasis, angiogenesis, drug resistance, and immune escape. Reducing tissue stiffness can slow down tumor progression. Therefore targeting matrix stiffness is a potential option for tumor therapy. This article reviews the detailed mechanisms of matrix stiffness in different malignant tumor phenotypes and potential tumor therapies targeting matrix stiffness. Understanding the role and mechanisms of matrix stiffness in tumors could provide theoretical insights into the treatment of tumors and assist in the clinical development of new drug therapies.
Collapse
Affiliation(s)
- Rui Liang
- College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing 400030, China
| | - Guanbin Song
- College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing 400030, China
| |
Collapse
|
162
|
Jokl E, Mullan AF, Simpson K, Birchall L, Pearmain L, Martin K, Pritchett J, Raza S, Shah R, Hodson NW, Williams CJ, Camacho E, Zeef L, Donaldson I, Athwal VS, Hanley NA, Piper Hanley K. PAK1-dependent mechanotransduction enables myofibroblast nuclear adaptation and chromatin organization during fibrosis. Cell Rep 2023; 42:113414. [PMID: 37967011 DOI: 10.1016/j.celrep.2023.113414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023] Open
Abstract
Myofibroblasts are responsible for scarring during fibrosis. The scar propagates mechanical signals inducing a radical transformation in myofibroblast cell state and increasing profibrotic phenotype. Here, we show mechanical stress from progressive scarring induces nuclear softening and de-repression of heterochromatin. The parallel loss of H3K9Me3 enables a permissive state for distinct chromatin accessibility and profibrotic gene regulation. Integrating chromatin accessibility profiles with RNA expression provides insight into the transcription network underlying the switch in profibrotic myofibroblast states, emphasizing mechanoadaptive regulation of PAK1 as key drivers. Through genetic manipulation in liver and lung fibrosis, loss of PAK1-dependent signaling impairs the mechanoadaptive response in vitro and dramatically improves fibrosis in vivo. Moreover, we provide human validation for mechanisms underpinning PAK1-mediated mechanotransduction in liver and lung fibrosis. Collectively, these observations provide insight into the nuclear mechanics driving the profibrotic chromatin landscape in fibrosis, highlighting actomyosin-dependent mechanisms as potential therapeutic targets in fibrosis.
Collapse
Affiliation(s)
- Elliot Jokl
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Aoibheann F Mullan
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Kara Simpson
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Lindsay Birchall
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Laurence Pearmain
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Katherine Martin
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - James Pritchett
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Sayyid Raza
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Rajesh Shah
- Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Nigel W Hodson
- Core Facilities, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Craig J Williams
- Department of Materials, University of Manchester, Manchester, UK
| | - Elizabeth Camacho
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, University of Manchester, Manchester, UK
| | - Leo Zeef
- Core Facilities, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Ian Donaldson
- Core Facilities, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Varinder S Athwal
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK; Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Neil A Hanley
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK; Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK; College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK
| | - Karen Piper Hanley
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK; Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK.
| |
Collapse
|
163
|
So WY, Wong CS, Azubuike UF, Paul CD, Sangsari PR, Gordon PB, Gong H, Maity TK, Lim P, Yang Z, Haryanto CA, Batchelor E, Jenkins LM, Morgan NY, Tanner K. YAP localization mediates mechanical adaptation of human cancer cells during extravasation in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567015. [PMID: 38076880 PMCID: PMC10705547 DOI: 10.1101/2023.11.14.567015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Biophysical profiling of primary tumors has revealed that individual tumor cells fall along a highly heterogeneous continuum of mechanical phenotypes. One idea is that a subset of tumor cells is "softer" to facilitate detachment and escape from the primary site, a step required to initiate metastasis. However, it has also been postulated that cells must be able to deform and generate sufficient force to exit into distant sites. Here, we aimed to dissect the mechanical changes that occur during extravasation and organ colonization. Using multiplexed methods of intravital microscopy and optical tweezer based active microrheology, we obtained longitudinal images and mechanical profiles of cells during organ colonization in vivo. We determined that cells were softer, more liquid like upon exit of the vasculature but stiffened and became more solid like once in the new organ microenvironment. We also determined that a YAP mediated mechanogenotype influenced the global dissemination in our in vivo and in vitro models and that reducing mechanical heterogeneity could reduce extravasation. Moreover, our high throughput analysis of mechanical phenotypes of patient samples revealed that this mechanics was in part regulated by the external hydrodynamic forces that the cancer cells experienced within capillary mimetics. Our findings indicate that disseminated cancer cells can keep mutating with a continuum landscape of mechano-phenotypes, governed by the YAP-mediated mechanosensing of hydrodynamic flow.
Collapse
Affiliation(s)
- Woong Young So
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Claudia S. Wong
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | | | - Colin D. Paul
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Paniz Rezvan Sangsari
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health
| | | | - Hyeyeon Gong
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Tapan K. Maity
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Perry Lim
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Zhilin Yang
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | | | | | - Lisa M. Jenkins
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Nicole Y. Morgan
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health
| | - Kandice Tanner
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| |
Collapse
|
164
|
Pancheri NM, Daw JT, Ditton D, Schiele NR, Birks S, Uzer G, Jones CL, Penney BT, Theodossiou SK. The LINC complex regulates Achilles tendon elastic modulus, Achilles and tail tendon collagen crimp, and Achilles and tail tendon lateral expansion during early postnatal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566892. [PMID: 38014288 PMCID: PMC10680625 DOI: 10.1101/2023.11.13.566892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
There is limited understanding of how mechanical signals regulate tendon development. The nucleus has emerged as a major regulator of cellular mechanosensation, via the linker of nucleoskeleton and cytoskeleton (LINC) protein complex. Specific roles of LINC in tenogenesis have not been explored. In this study, we investigate how LINC regulates tendon development by disabling LINC-mediated mechanosensing via dominant negative (dn) expression of the Klarsicht, ANC-1, and Syne Homology (KASH) domain, which is necessary for LINC to function. We hypothesized that LINC regulates mechanotransduction in developing tendon, and that disabling LINC would impact tendon mechanical properties and structure in a mouse model of dnKASH. We used Achilles (AT) and tail (TT) tendons as representative energy-storing and limb-positioning tendons, respectively. Mechanical testing at postnatal day 10 showed that disabling the LINC complex via dnKASH significantly impacted tendon mechanical properties and cross-sectional area, and that effects differed between ATs and TTs. Collagen crimp distance was also impacted in dnKASH tendons, and was significantly decreased in ATs, and increased in TTs. Overall, we show that disruption to the LINC complex specifically impacts tendon mechanics and collagen crimp structure, with unique responses between an energy-storing and limb-positioning tendon. This suggests that nuclear mechanotransduction through LINC plays a role in regulating tendon formation during neonatal development.
Collapse
Affiliation(s)
- Nicholas M. Pancheri
- Chemical & Biological Engineering, University of Idaho, Moscow, ID 83844, United States
| | - Jordan T. Daw
- Mechanical & Biomedical Engineering, Boise State University, Boise, ID 83725, United States
| | - Destinee Ditton
- Chemical & Biological Engineering, University of Idaho, Moscow, ID 83844, United States
| | - Nathan R. Schiele
- Chemical & Biological Engineering, University of Idaho, Moscow, ID 83844, United States
| | - Scott Birks
- Mechanical & Biomedical Engineering, Boise State University, Boise, ID 83725, United States
| | - Gunes Uzer
- Mechanical & Biomedical Engineering, Boise State University, Boise, ID 83725, United States
| | - Calvin L. Jones
- Mechanical & Biomedical Engineering, Boise State University, Boise, ID 83725, United States
| | - Brian T. Penney
- Mechanical & Biomedical Engineering, Boise State University, Boise, ID 83725, United States
| | - Sophia K. Theodossiou
- Mechanical & Biomedical Engineering, Boise State University, Boise, ID 83725, United States
| |
Collapse
|
165
|
Dudaryeva OY, Bernhard S, Tibbitt MW, Labouesse C. Implications of Cellular Mechanical Memory in Bioengineering. ACS Biomater Sci Eng 2023; 9:5985-5998. [PMID: 37797187 PMCID: PMC10646820 DOI: 10.1021/acsbiomaterials.3c01007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The ability to maintain and differentiate cells in vitro is critical to many advances in the field of bioengineering. However, on traditional, stiff (E ≈ GPa) culture substrates, cells are subjected to sustained mechanical stress that can lead to phenotypic changes. Such changes may remain even after transferring the cells to another scaffold or engrafting them in vivo and bias the outcomes of the biological investigation or clinical treatment. This persistence─or mechanical memory─was initially observed for sustained myofibroblast activation of pulmonary fibroblasts after culturing them on stiff (E ≈ 100 kPa) substrates. Aspects of mechanical memory have now been described in many in vitro contexts. In this Review, we discuss the stiffness-induced effectors of mechanical memory: structural changes in the cytoskeleton and activity of transcription factors and epigenetic modifiers. We then focus on how mechanical memory impacts cell expansion and tissue regeneration outcomes in bioengineering applications relying on prolonged 2D plastic culture, such as stem cell therapies and disease models. We propose that alternatives to traditional cell culture substrates can be used to mitigate or erase mechanical memory and improve the efficiency of downstream cell-based bioengineering applications.
Collapse
Affiliation(s)
- Oksana Y Dudaryeva
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3584, Netherlands
| | - Stéphane Bernhard
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Céline Labouesse
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
166
|
Penfield L, Montell DJ. Nuclear lamin facilitates collective border cell invasion into confined spaces in vivo. J Cell Biol 2023; 222:e202212101. [PMID: 37695420 PMCID: PMC10494525 DOI: 10.1083/jcb.202212101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/05/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Cells migrate collectively through confined environments during development and cancer metastasis. The nucleus, a stiff organelle, impedes single cells from squeezing into narrow channels within artificial environments. However, how nuclei affect collective migration into compact tissues is unknown. Here, we use border cells in the fly ovary to study nuclear dynamics in collective, confined in vivo migration. Border cells delaminate from the follicular epithelium and squeeze into tiny spaces between cells called nurse cells. The lead cell nucleus transiently deforms within the lead cell protrusion, which then widens. The nuclei of follower cells deform less. Depletion of the Drosophila B-type lamin, Lam, compromises nuclear integrity, hinders expansion of leading protrusions, and impedes border cell movement. In wildtype, cortical myosin II accumulates behind the nucleus and pushes it into the protrusion, whereas in Lam-depleted cells, myosin accumulates but does not move the nucleus. These data suggest that the nucleus stabilizes lead cell protrusions, helping to wedge open spaces between nurse cells.
Collapse
Affiliation(s)
- Lauren Penfield
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Denise J. Montell
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
167
|
Ghosheh M, Ehrlich A, Ioannidis K, Ayyash M, Goldfracht I, Cohen M, Fischer A, Mintz Y, Gepstein L, Nahmias Y. Electro-metabolic coupling in multi-chambered vascularized human cardiac organoids. Nat Biomed Eng 2023; 7:1493-1513. [PMID: 37550423 DOI: 10.1038/s41551-023-01071-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/27/2023] [Indexed: 08/09/2023]
Abstract
The study of cardiac physiology is hindered by physiological differences between humans and small-animal models. Here we report the generation of multi-chambered self-paced vascularized human cardiac organoids formed under anisotropic stress and their applicability to the study of cardiac arrhythmia. Sensors embedded in the cardiac organoids enabled the simultaneous measurement of oxygen uptake, extracellular field potentials and cardiac contraction at resolutions higher than 10 Hz. This microphysiological system revealed 1 Hz cardiac respiratory cycles that are coupled to the electrical rather than the mechanical activity of cardiomyocytes. This electro-mitochondrial coupling was driven by mitochondrial calcium oscillations driving respiration cycles. Pharmaceutical or genetic inhibition of this coupling results in arrhythmogenic behaviour. We show that the chemotherapeutic mitoxantrone induces arrhythmia through disruption of this pathway, a process that can be partially reversed by the co-administration of metformin. Our microphysiological cardiac systems may further facilitate the study of the mitochondrial dynamics of cardiac rhythms and advance our understanding of human cardiac physiology.
Collapse
Affiliation(s)
- Mohammad Ghosheh
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avner Ehrlich
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Tissue Dynamics, LTD, Jerusalem, Israel
| | - Konstantinos Ioannidis
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Tissue Dynamics, LTD, Jerusalem, Israel
| | - Muneef Ayyash
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Idit Goldfracht
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, the Rappaport Faculty of Medicine and Research Institute, Technion- Israel Institute of Technology, Haifa, Israel
| | - Merav Cohen
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amit Fischer
- Department of Biological Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoav Mintz
- Department of General Surgery, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lior Gepstein
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, the Rappaport Faculty of Medicine and Research Institute, Technion- Israel Institute of Technology, Haifa, Israel
- Cardiology Department, Rambam Health Care Campus, Haifa, Israel
| | - Yaakov Nahmias
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Tissue Dynamics, LTD, Jerusalem, Israel.
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
168
|
Li Y, Wu J, He C, He H, Xie M, Yao K, He J, Duan Y, Zhaung L, Wang P, He Y. 3D Prestress Bioprinting of Directed Tissues. Adv Healthc Mater 2023; 12:e2301487. [PMID: 37249520 DOI: 10.1002/adhm.202301487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Many mammalian tissues adopt a specific cellular arrangement under stress stimulus that enables their unique function. However, conventional 3D encapsulation often fails to recapitulate the complexities of these arrangements, thus motivating the need for advanced cellular arrangement approaches. Here, an original 3D prestress bioprinting approach of directed tissues under the synergistic effect of static sustained tensile stress and molecular chain orientation, with an aid of slow crosslinking in bioink, is developed. The semi-crosslinking state of the designed bioink exhibits excellent elasticity for applying stress on the cells during the sewing-like process. After bioprinting, the bioink gradually forms complete crosslinking and keeps the applied stress force to induce cell-orientated growth. More importantly, multiple cell types can be arranged directionally by this approach, while the internal stress of the hydrogel filament is also adjustable. In addition, compared with conventional bioprinted skin, the 3D prestress bioprinted skin results in a better wound healing effect due to promoting the angiogenesis of granulation tissue. This study provides a prospective strategy to engineer skeletal muscles, as well as tendons, ligaments, vascular networks, or combinations thereof in the future.
Collapse
Affiliation(s)
- Yuanrong Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianguo Wu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chuanjiang He
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Honghui He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mingjun Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Ke Yao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jing He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yan Duan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liujing Zhaung
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
169
|
Chen G, Gao X, Chen J, Peng L, Chen S, Tang C, Dai Y, Wei Q, Luo D. Actomyosin Activity and Piezo1 Activity Synergistically Drive Urinary System Fibroblast Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303369. [PMID: 37867255 PMCID: PMC10667826 DOI: 10.1002/advs.202303369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/11/2023] [Indexed: 10/24/2023]
Abstract
Mechanical cues play a crucial role in activating myofibroblasts from quiescent fibroblasts during fibrosis, and the stiffness of the extracellular matrix is of significant importance in this process. While intracellular force mediated by myosin II and calcium influx regulated by Piezo1 are the primary mechanisms by which cells sense and respond to mechanical forces, their intercellular mechanical interaction remains to be elucidated. Here, hydrogels with tunable substrate are used to systematically investigate the crosstalk of myosin II and Piezo1 in fibroblast to myofibroblast transition (FMT). The findings reveal that the two distinct signaling pathways are integrated to convert mechanical stiffness signals into biochemical signals during bladder-specific FMT. Moreover, it is demonstrated that the crosstalk between myosin II and Piezo1 sensing mechanisms synergistically establishes a sustained feed-forward loop that contributes to chromatin remodeling, induces the expression of downstream target genes, and ultimately exacerbates FMT, in which the intracellular force activates Piezo1 by PI3K/PIP3 pathway-mediated membrane tension and the Piezo1-regulated calcium influx enhances intracellular force by the classical FAK/RhoA/ROCK pathway. Finally, the multifunctional Piezo1 in the complex feedback circuit of FMT drives to further identify that targeting Piezo1 as a therapeutic option for ameliorating bladder fibrosis and dysfunction.
Collapse
Affiliation(s)
- Guo Chen
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Department of Urology and Pelvic surgeryWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Xiaoshuai Gao
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Jiawei Chen
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Liao Peng
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Shuang Chen
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Cai Tang
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Yi Dai
- Department of Urology and Pelvic surgeryWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Qiang Wei
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengduSichuan610065P. R. China
| | - Deyi Luo
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| |
Collapse
|
170
|
King MC. Dynamic regulation of LINC complex composition and function across tissues and contexts. FEBS Lett 2023; 597:2823-2832. [PMID: 37846646 DOI: 10.1002/1873-3468.14757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
The concept of mechanotransduction to the nucleus through a direct force transmission mechanism has fascinated cell biologists for decades. Central to such a mechanism is the linker of nucleoskeleton and cytoskeleton (LINC) complex, which spans the nuclear envelope to couple the cytoplasmic cytoskeleton to the nuclear lamina. In reality, there is not one LINC complex identity, but instead, a family of protein configurations of varied composition that exert both shared and unique functions. Regulated expression of LINC complex components, splice variants, and mechanoresponsive protein turnover mechanisms together shape the complement of LINC complex forms present in a given cell type. Disrupting specific gene(s) encoding LINC complex components therefore gives rise to a range of organismal defects. Moreover, evidence suggests that the mechanical environment remodels LINC complexes, providing a feedback mechanism by which cellular context influences the integration of the nucleus into the cytoskeleton. In particular, evidence for crosstalk between the nuclear and cytoplasmic intermediate filament networks communicated through the LINC complex represents an emerging theme in this active area of ongoing investigation.
Collapse
Affiliation(s)
- Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
171
|
Park S, Lee J, Ahn KS, Shim HW, Yoon J, Hyun J, Lee JH, Jang S, Yoo KH, Jang Y, Kim T, Kim HK, Lee MR, Jang J, Shim H, Kim H. Cyclic Stretch Promotes Cellular Reprogramming Process through Cytoskeletal-Nuclear Mechano-Coupling and Epigenetic Modification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303395. [PMID: 37727069 PMCID: PMC10646259 DOI: 10.1002/advs.202303395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/27/2023] [Indexed: 09/21/2023]
Abstract
Advancing the technologies for cellular reprogramming with high efficiency has significant impact on regenerative therapy, disease modeling, and drug discovery. Biophysical cues can tune the cell fate, yet the precise role of external physical forces during reprogramming remains elusive. Here the authors show that temporal cyclic-stretching of fibroblasts significantly enhances the efficiency of induced pluripotent stem cell (iPSC) production. Generated iPSCs are proven to express pluripotency markers and exhibit in vivo functionality. Bulk RNA-sequencing reveales that cyclic-stretching enhances biological characteristics required for pluripotency acquisition, including increased cell division and mesenchymal-epithelial transition. Of note, cyclic-stretching activates key mechanosensitive molecules (integrins, perinuclear actins, nesprin-2, and YAP), across the cytoskeletal-to-nuclear space. Furthermore, stretch-mediated cytoskeletal-nuclear mechano-coupling leads to altered epigenetic modifications, mainly downregulation in H3K9 methylation, and its global gene occupancy change, as revealed by genome-wide ChIP-sequencing and pharmacological inhibition tests. Single cell RNA-sequencing further identifies subcluster of mechano-responsive iPSCs and key epigenetic modifier in stretched cells. Collectively, cyclic-stretching activates iPSC reprogramming through mechanotransduction process and epigenetic changes accompanied by altered occupancy of mechanosensitive genes. This study highlights the strong link between external physical forces with subsequent mechanotransduction process and the epigenetic changes with expression of related genes in cellular reprogramming, holding substantial implications in the field of cell biology, tissue engineering, and regenerative medicine.
Collapse
|
172
|
Buxboim A, Kronenberg-Tenga R, Salajkova S, Avidan N, Shahak H, Thurston A, Medalia O. Scaffold, mechanics and functions of nuclear lamins. FEBS Lett 2023; 597:2791-2805. [PMID: 37813648 DOI: 10.1002/1873-3468.14750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Nuclear lamins are type-V intermediate filaments that are involved in many nuclear processes. In mammals, A- and B-type lamins assemble into separate physical meshwork underneath the inner nuclear membrane, the nuclear lamina, with some residual fraction localized within the nucleoplasm. Lamins are the major part of the nucleoskeleton, providing mechanical strength and flexibility to protect the genome and allow nuclear deformability, while also contributing to gene regulation via interactions with chromatin. While lamins are the evolutionary ancestors of all intermediate filament family proteins, their ultimate filamentous assembly is markedly different from their cytoplasmic counterparts. Interestingly, hundreds of genetic mutations in the lamina proteins have been causally linked with a broad range of human pathologies, termed laminopathies. These include muscular, neurological and metabolic disorders, as well as premature aging diseases. Recent technological advances have contributed to resolving the filamentous structure of lamins and the corresponding lamina organization. In this review, we revisit the multiscale lamin organization and discuss its implications on nuclear mechanics and chromatin organization within lamina-associated domains.
Collapse
Affiliation(s)
- Amnon Buxboim
- The Rachel and Selim Benin School of Computer Science and Engineering and The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | | | - Sarka Salajkova
- Department of Biochemistry, University of Zurich, Switzerland
| | - Nili Avidan
- The Rachel and Selim Benin School of Computer Science and Engineering and The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Hen Shahak
- The Rachel and Selim Benin School of Computer Science and Engineering and The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Alice Thurston
- Department of Biochemistry, University of Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Switzerland
| |
Collapse
|
173
|
Mogharehabed F, Czubryt MP. The role of fibrosis in the pathophysiology of muscular dystrophy. Am J Physiol Cell Physiol 2023; 325:C1326-C1335. [PMID: 37781738 DOI: 10.1152/ajpcell.00196.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Muscular dystrophy exerts significant and dramatic impacts on affected patients, including progressive muscle wasting leading to lung and heart failure, and results in severely curtailed lifespan. Although the focus for many years has been on the dysfunction induced by the loss of function of dystrophin or related components of the striated muscle costamere, recent studies have demonstrated that accompanying pathologies, particularly muscle fibrosis, also contribute adversely to patient outcomes. A significant body of research has now shown that therapeutically targeting these accompanying pathologies via their underlying molecular mechanisms may provide novel approaches to patient management that can complement the current standard of care. In this review, we discuss the interplay between muscle fibrosis and muscular dystrophy pathology. A better understanding of these processes will contribute to improved patient care options, restoration of muscle function, and reduced patient morbidity and mortality.
Collapse
Affiliation(s)
- Farnaz Mogharehabed
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael P Czubryt
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
174
|
Odell J, Gräf R, Lammerding J. Heterologous expression of Dictyostelium discoideum NE81 in mouse embryo fibroblasts reveals conserved mechanoprotective roles of lamins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543154. [PMID: 37398420 PMCID: PMC10312578 DOI: 10.1101/2023.05.31.543154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Lamins are nuclear intermediate filament proteins that are ubiquitously found in metazoan cells, where they contribute to nuclear morphology, stability, and gene expression. Lamin-like sequences have recently been identified in distantly related eukaryotes, but it remains unclear if these proteins share conserved functions with the lamins found in metazoans. Here, we investigate conserved features between metazoan and amoebozoan lamins using a genetic complementation system to express the Dictyostelium discoideum lamin-like protein NE81 in mammalian cells lacking either specific lamins or all endogenous lamins. We report that NE81 localizes to the nucleus in cells lacking Lamin A/C, and that NE81 expression improves nuclear circularity, reduces nuclear deformability, and prevents nuclear envelope rupture in these cells. However, NE81 did not completely rescue loss of Lamin A/C, and was unable to restore normal distribution of metazoan lamin interactors, such as emerin and nuclear pore complexes, which are frequently displaced in Lamin A/C deficient cells. Collectively, our results indicate that the ability of lamins to modulate the morphology and mechanical properties of nuclei may have been a feature present in the common ancestor of Dictyostelium and animals, whereas other, more specialized interactions may have evolved more recently in metazoan lineages.
Collapse
|
175
|
Guo H, Peng X, Dong X, Li J, Cheng C, Wei Q. Promoting Stem Cell Mechanosensing and Osteogenesis by Hybrid Soft Fibers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47880-47892. [PMID: 37788009 DOI: 10.1021/acsami.3c07999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Bone regenerative biomaterials are essential in treating bone defects as they serve as extracellular matrix (ECM) mimics, creating a favorable environment for cell attachment, proliferation, and differentiation. However, the currently used bone regenerative biomaterials mostly exhibit high stiffness, which may lead to difficulties in degradation and thus increase the risk of foreign body ingestion. In this study, we prepared soft fibrous scaffolds modified with Zn-MOF-74 nanoparticles via electrostatic spinning. The soft fibers (only 1 kPa) permit remodeling under cellular adhesive force, optimizing the mechanical cues in the microenvironment to support cell adhesion and mechanosensing. In addition, the incorporation of Zn-MOF-74 nanoparticles enables the stable and sustained release of zinc ions, promoting stem cell mechanotransduction and osteogenic differentiation. Therefore, the hybrid soft fibers facilitate the regeneration of new bone in the rat femoral defect model, which provides a promising approach for regenerative medicine.
Collapse
Affiliation(s)
- Hui Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Xu Peng
- West China School of Basic Medical Sciences & Forensic Medicine, Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, China
| | - Xiangyu Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiangge Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
176
|
Tai Y, Tonmoy TI, Win S, Brinkley NT, Park BH, Nam J. Enhanced peripheral nerve regeneration by mechano-electrical stimulation. NPJ Regen Med 2023; 8:57. [PMID: 37848428 PMCID: PMC10582163 DOI: 10.1038/s41536-023-00334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023] Open
Abstract
To address limitations in current approaches for treating large peripheral nerve defects, the presented study evaluated the feasibility of functional material-mediated physical stimuli on peripheral nerve regeneration. Electrospun piezoelectric poly(vinylidene fluoride-trifluoroethylene) nanofibers were utilized to deliver mechanical actuation-activated electrical stimulation to nerve cells/tissues in a non-invasive manner. Using morphologically and piezoelectrically optimized nanofibers for neurite extension and Schwann cell maturation based on in vitro experiments, piezoelectric nerve conduits were synthesized and implanted in a rat sciatic nerve transection model to bridge a critical-sized sciatic nerve defect (15 mm). A therapeutic shockwave system was utilized to periodically activate the piezoelectric effect of the implanted nerve conduit on demand. The piezoelectric nerve conduit-mediated mechano-electrical stimulation (MES) induced enhanced peripheral nerve regeneration, resulting in full axon reconnection with myelin regeneration from the proximal to the distal ends over the critical-sized nerve gap. In comparison, a control group, in which the implanted piezoelectric conduits were not activated in vivo, failed to exhibit such nerve regeneration. In addition, at both proximal and distal ends of the implanted conduits, a decreased number of damaged myelination (ovoids), an increased number of myelinated nerves, and a larger axonal diameter were observed under the MES condition as compared to the control condition. Furthermore, unlike the control group, the MES condition exhibited a superior functional nerve recovery, assessed by walking track analysis and polarization-sensitive optical coherence tomography, demonstrating the significant potential of the piezoelectric conduit-based physical stimulation approach for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Youyi Tai
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | | | - Shwe Win
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Natasha T Brinkley
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - B Hyle Park
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Jin Nam
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
177
|
Brown SJ, Šoltić D, Synowsky SA, Shirran SL, Chilcott E, Shorrock HK, Gillingwater TH, Yáñez-Muñoz RJ, Schneider B, Bowerman M, Fuller HR. AAV9-mediated SMN gene therapy rescues cardiac desmin but not lamin A/C and elastin dysregulation in Smn2B/- spinal muscular atrophy mice. Hum Mol Genet 2023; 32:2950-2965. [PMID: 37498175 PMCID: PMC10549791 DOI: 10.1093/hmg/ddad121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/27/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023] Open
Abstract
Structural, functional and molecular cardiac defects have been reported in spinal muscular atrophy (SMA) patients and mouse models. Previous quantitative proteomics analyses demonstrated widespread molecular defects in the severe Taiwanese SMA mouse model. Whether such changes are conserved across different mouse models, including less severe forms of the disease, has yet to be established. Here, using the same high-resolution proteomics approach in the less-severe Smn2B/- SMA mouse model, 277 proteins were found to be differentially abundant at a symptomatic timepoint (post-natal day (P) 18), 50 of which were similarly dysregulated in severe Taiwanese SMA mice. Bioinformatics analysis linked many of the differentially abundant proteins to cardiovascular development and function, with intermediate filaments highlighted as an enriched cellular compartment in both datasets. Lamin A/C was increased in the cardiac tissue, whereas another intermediate filament protein, desmin, was reduced. The extracellular matrix (ECM) protein, elastin, was also robustly decreased in the heart of Smn2B/- mice. AAV9-SMN1-mediated gene therapy rectified low levels of survival motor neuron protein and restored desmin levels in heart tissues of Smn2B/- mice. In contrast, AAV9-SMN1 therapy failed to correct lamin A/C or elastin levels. Intermediate filament proteins and the ECM have key roles in cardiac function and their dysregulation may explain cardiac impairment in SMA, especially since mutations in genes encoding these proteins cause other diseases with cardiac aberration. Cardiac pathology may need to be considered in the long-term care of SMA patients, as it is unclear whether currently available treatments can fully rescue peripheral pathology in SMA.
Collapse
Affiliation(s)
- Sharon J Brown
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Darija Šoltić
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Silvia A Synowsky
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, St Andrews KY16 9ST, UK
| | - Sally L Shirran
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, St Andrews KY16 9ST, UK
| | - Ellie Chilcott
- AGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Hannah K Shorrock
- Edinburgh Medical School: Biomedical Sciences, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Rafael J Yáñez-Muñoz
- AGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Bernard Schneider
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Melissa Bowerman
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
- School of Medicine, Keele University, Keele ST5 5BG, UK
| | - Heidi R Fuller
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| |
Collapse
|
178
|
Walther BK, Sears AP, Mojiri A, Avazmohammadi R, Gu J, Chumakova OV, Pandian NKR, Dominic A, Martiel JL, Yazdani SK, Cooke JP, Ohayon J, Pettigrew RI. Disrupted Stiffness Ratio Alters Nuclear Mechanosensing. MATTER 2023; 6:3608-3630. [PMID: 37937235 PMCID: PMC10627551 DOI: 10.1016/j.matt.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The ability of endothelial cells to sense and respond to dynamic changes in blood flow is critical for vascular homeostasis and cardiovascular health. The mechanical and geometric properties of the nuclear and cytoplasmic compartments affect mechanotransduction. We hypothesized that alterations to these parameters have resulting mechanosensory consequences. Using atomic force microscopy and mathematical modeling, we assessed how the nuclear and cytoplasmic compartment stiffnesses modulate shear stress transfer to the nucleus within aging endothelial cells. Our computational studies revealed that the critical parameter controlling shear transfer is not the individual mechanics of these compartments, but the stiffness ratio between them. Replicatively aged cells had a reduced stiffness ratio, attenuating shear transfer, while the ratio was not altered in a genetic model of accelerated aging. We provide a theoretical framework suggesting that dysregulation of the shear stress response can be uniquely imparted by relative mechanical changes in subcellular compartments.
Collapse
Affiliation(s)
- Brandon K. Walther
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
| | - Adam P. Sears
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
- Houston Methodist Hospital, Houston, TX 77030, USA
| | - Anahita Mojiri
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Reza Avazmohammadi
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
- Texas A&M University, Department of Mechanical Engineering, College Station, TX 77843, USA
| | - Jianhua Gu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Olga V. Chumakova
- University of Texas Health Science Center, Department of Integrative Biology and Pharmacology, Houston, TX 77030, USA
| | | | - Abishai Dominic
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | | | - Saami K. Yazdani
- Wake Forest University, Department of Engineering, Winston-Salem, NC 27101, USA
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
| | - Jacques Ohayon
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- University Grenoble Alpes, CNRS, TIMC UMR 5525, 38000 Grenoble, France
- Savoie Mont-Blanc University, Polytech Annecy-Chambéry, 73376 Le Bourget du Lac, France
| | - Roderic I. Pettigrew
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
- Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
179
|
Ho J, Guerrero LA, Libuda DE, Luxton GWG, Starr DA. Actin and CDC-42 contribute to nuclear migration through constricted spaces in C. elegans. Development 2023; 150:dev202115. [PMID: 37756590 PMCID: PMC10617605 DOI: 10.1242/dev.202115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Successful nuclear migration through constricted spaces between cells or in the extracellular matrix relies on the ability of the nucleus to deform. Little is known about how this takes place in vivo. We have studied confined nuclear migration in Caenorhabditis elegans larval P cells, which is mediated by the LINC complex to pull nuclei towards the minus ends of microtubules. Null mutations of the LINC component unc-84 lead to a temperature-dependent phenotype, suggesting a parallel pathway for P-cell nuclear migration. A forward genetic screen for enhancers of unc-84 identified cgef-1 (CDC-42 guanine nucleotide exchange factor). Knockdown of CDC-42 in the absence of the LINC complex led to a P-cell nuclear migration defect. Expression of constitutively active CDC-42 partially rescued nuclear migration in cgef-1; unc-84 double mutants, suggesting that CDC-42 functions downstream of CGEF-1. The Arp2/3 complex and non-muscle myosin II (NMY-2) were also found to function parallel to the LINC pathway. In our model, CGEF-1 activates CDC-42, which induces actin polymerization through the Arp2/3 complex to deform the nucleus during nuclear migration, and NMY-2 helps to push the nucleus through confined spaces.
Collapse
Affiliation(s)
- Jamie Ho
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Leslie A. Guerrero
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Diana E. Libuda
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - G. W. Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
180
|
Negri ML, D'Annunzio S, Vitali G, Zippo A. May the force be with you: Nuclear condensates function beyond transcription control: Potential nongenetic functions of nuclear condensates in physiological and pathological conditions. Bioessays 2023; 45:e2300075. [PMID: 37530178 DOI: 10.1002/bies.202300075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Over the past decade, research has revealed biomolecular condensates' relevance in diverse cellular functions. Through a phase separation process, they concentrate macromolecules in subcompartments shaping the cellular organization and physiology. In the nucleus, biomolecular condensates assemble relevant biomolecules that orchestrate gene expression. We here hypothesize that chromatin condensates can also modulate the nongenetic functions of the genome, including the nuclear mechanical properties. The importance of chromatin condensates is supported by the genetic evidence indicating that mutations in their members are causative of a group of rare Mendelian diseases named chromatinopathies (CPs). Despite a broad spectrum of clinical features and the perturbations of the epigenetic machinery characterizing the CPs, recent findings highlighted negligible changes in gene expression. These data argue in favor of possible noncanonical functions of chromatin condensates in regulating the genome's spatial organization and, consequently, the nuclear mechanics. In this review, we discuss how condensates may impact nuclear mechanical properties, thus affecting the cellular response to mechanical cues and, eventually, cell fate and identity. Chromatin condensates organize macromolecules in the nucleus orchestrating the transcription regulation and mutations in their members are responsible for rare diseases named chromatinopathies. We argue that chromatin condensates, in concert with the nuclear lamina, may also govern the nuclear mechanical properties affecting the cellular response to external cues.
Collapse
Affiliation(s)
- Maria Luce Negri
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Sarah D'Annunzio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giulia Vitali
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessio Zippo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
181
|
Mannion AJ, Holmgren L. Nuclear mechanosensing of the aortic endothelium in health and disease. Dis Model Mech 2023; 16:dmm050361. [PMID: 37909406 PMCID: PMC10629673 DOI: 10.1242/dmm.050361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
The endothelium, the monolayer of endothelial cells that line blood vessels, is exposed to a number of mechanical forces, including frictional shear flow, pulsatile stretching and changes in stiffness influenced by extracellular matrix composition. These forces are sensed by mechanosensors that facilitate their transduction to drive appropriate adaptation of the endothelium to maintain vascular homeostasis. In the aorta, the unique architecture of the vessel gives rise to changes in the fluid dynamics, which, in turn, shape cellular morphology, nuclear architecture, chromatin dynamics and gene regulation. In this Review, we discuss recent work focusing on how differential mechanical forces exerted on endothelial cells are sensed and transduced to influence their form and function in giving rise to spatial variation to the endothelium of the aorta. We will also discuss recent developments in understanding how nuclear mechanosensing is implicated in diseases of the aorta.
Collapse
Affiliation(s)
- Aarren J. Mannion
- Department of Oncology-Pathology, Karolinska Institute, Stockholm 171 64, Sweden
| | - Lars Holmgren
- Department of Oncology-Pathology, Karolinska Institute, Stockholm 171 64, Sweden
| |
Collapse
|
182
|
De Silva NS, Siewiera J, Alkhoury C, Nader GPF, Nadalin F, de Azevedo K, Couty M, Izquierdo HM, Bhargava A, Conrad C, Maurin M, Antoniadou K, Fouillade C, Londono-Vallejo A, Behrendt R, Bertotti K, Serdjebi C, Lanthiez F, Gallwitz L, Saftig P, Herrero-Fernández B, Saez A, González-Granado JM, van Niel G, Boissonnas A, Piel M, Manel N. Nuclear envelope disruption triggers hallmarks of aging in lung alveolar macrophages. NATURE AGING 2023; 3:1251-1268. [PMID: 37723209 DOI: 10.1038/s43587-023-00488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/16/2023] [Indexed: 09/20/2023]
Abstract
Aging is characterized by gradual immune dysfunction and increased disease risk. Genomic instability is considered central to the aging process, but the underlying mechanisms of DNA damage are insufficiently defined. Cells in confined environments experience forces applied to their nucleus, leading to transient nuclear envelope rupture (NER) and DNA damage. Here, we show that Lamin A/C protects lung alveolar macrophages (AMs) from NER and hallmarks of aging. AMs move within constricted spaces in the lung. Immune-specific ablation of lamin A/C results in selective depletion of AMs and heightened susceptibility to influenza virus-induced pathogenesis and lung cancer growth. Lamin A/C-deficient AMs that persist display constitutive NER marks, DNA damage and p53-dependent senescence. AMs from aged wild-type and from lamin A/C-deficient mice share a lysosomal signature comprising CD63. CD63 is required to limit damaged DNA in macrophages. We propose that NER-induced genomic instability represents a mechanism of aging in AMs.
Collapse
Affiliation(s)
| | - Johan Siewiera
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Chantal Alkhoury
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | | | | | - Kevin de Azevedo
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Mickaël Couty
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team van Niel, Paris, France
| | | | - Anvita Bhargava
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Cécile Conrad
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | | | - Charles Fouillade
- Institut Curie, PSL Research University, Université Paris-Saclay, CNRS, INSERM, UMR3347, U1021, Orsay, France
| | | | - Rayk Behrendt
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | | | - François Lanthiez
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Lisa Gallwitz
- Biochemical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Paul Saftig
- Biochemical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Beatriz Herrero-Fernández
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Angela Saez
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Spain
| | - José María González-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12). Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid. CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Guillaume van Niel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team van Niel, Paris, France
| | - Alexandre Boissonnas
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Nicolas Manel
- Institut Curie, PSL Research University, INSERM U932, Paris, France.
| |
Collapse
|
183
|
Gupta P, Alheib O, Shin JW. Towards single cell encapsulation for precision biology and medicine. Adv Drug Deliv Rev 2023; 201:115010. [PMID: 37454931 PMCID: PMC10798218 DOI: 10.1016/j.addr.2023.115010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The primary impetus of therapeutic cell encapsulation in the past several decades has been to broaden the options for donor cell sources by countering against immune-mediated rejection. However, another significant advantage of encapsulation is to provide donor cells with physiologically relevant cues that become compromised in disease. The advances in biomaterial design have led to the fundamental insight that cells sense and respond to various signals encoded in materials, ranging from biochemical to mechanical cues. The biomaterial design for cell encapsulation is becoming more sophisticated in controlling specific aspects of cellular phenotypes and more precise down to the single cell level. This recent progress offers a paradigm shift by designing single cell-encapsulating materials with predefined cues to precisely control donor cells after transplantation.
Collapse
Affiliation(s)
- Prerak Gupta
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Omar Alheib
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
184
|
Buchwalter A. Intermediate, but not average: The unusual lives of the nuclear lamin proteins. Curr Opin Cell Biol 2023; 84:102220. [PMID: 37619289 PMCID: PMC12049094 DOI: 10.1016/j.ceb.2023.102220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
The nuclear lamins are polymeric intermediate filament proteins that scaffold the nucleus and organize the genome in nearly all eukaryotic cells. This review focuses on the dynamic regulation of lamin filaments through their biogenesis, assembly, disassembly, and degradation. The lamins are unusually long-lived proteins under homeostatic conditions, but their turnover can be induced in select contexts that are highlighted in this review. Finally, we discuss recent investigations into the influence of laminopathy-linked mutations on the assembly, folding, and stability of the nuclear lamins.
Collapse
Affiliation(s)
- Abigail Buchwalter
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
185
|
Blunt EL, Choi J, Sussman H, Christopherson RC, Keen P, Rahmati Ishka M, Li LY, Idrovo JM, Julkowska MM, Van Eck J, Richards EJ. The nuclear lamina is required for proper development and nuclear shape distortion in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5500-5513. [PMID: 37503569 PMCID: PMC10540737 DOI: 10.1093/jxb/erad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
The nuclear lamina in plant cells is composed of plant-specific proteins, including nuclear matrix constituent proteins (NMCPs), which have been postulated to be functional analogs of lamin proteins that provide structural integrity to the organelle and help stabilize the three-dimensional organization of the genome. Using genomic editing, we generated alleles for the three genes encoding NMCPs in cultivated tomato (Solanum lycopersicum) to determine if the consequences of perturbing the nuclear lamina in this crop species were similar to or distinct from those observed in the model Arabidopsis thaliana. Loss of the sole NMCP2-class protein was lethal in tomato but is tolerated in Arabidopsis. Moreover, depletion of NMCP1-type nuclear lamina proteins leads to distinct developmental phenotypes in tomato, including leaf morphology defects and reduced root growth rate (in nmcp1b mutants), compared with cognate mutants in Arabidopsis. These findings suggest that the nuclear lamina interfaces with different developmental and signaling pathways in tomato compared with Arabidopsis. At the subcellular level, however, tomato nmcp mutants resembled their Arabidopsis counterparts in displaying smaller and more spherical nuclei in differentiated cells. This result argues that the plant nuclear lamina facilitates nuclear shape distortion in response to forces exerted on the organelle within the cell.
Collapse
Affiliation(s)
- Endia L Blunt
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | - Junsik Choi
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | - Hayley Sussman
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | | | - Patricia Keen
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | | | - Linda Y Li
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | - Joanna M Idrovo
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | | | - Joyce Van Eck
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | - Eric J Richards
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| |
Collapse
|
186
|
Saini K, Cho S, Tewari M, Jalil AR, Wang M, Kasznel AJ, Yamamoto K, Chenoweth DM, Discher DE. Pan-tissue scaling of stiffness versus fibrillar collagen reflects contractility-driven strain that inhibits fibril degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559759. [PMID: 37808742 PMCID: PMC10557712 DOI: 10.1101/2023.09.27.559759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Polymer network properties such as stiffness often exhibit characteristic power laws in polymer density and other parameters. However, it remains unclear whether diverse animal tissues, composed of many distinct polymers, exhibit such scaling. Here, we examined many diverse tissues from adult mouse and embryonic chick to determine if stiffness ( E tissue ) follows a power law in relation to the most abundant animal protein, Collagen-I, even with molecular perturbations. We quantified fibrillar collagen in intact tissue by second harmonic generation (SHG) imaging and from tissue extracts by mass spectrometry (MS), and collagenase-mediated decreases were also tracked. Pan-tissue power laws for tissue stiffness versus Collagen-I levels measured by SHG or MS exhibit sub-linear scaling that aligns with results from cellularized gels of Collagen-I but not acellular gels. Inhibition of cellular myosin-II based contraction fits the scaling, and combination with inhibitors of matrix metalloproteinases (MMPs) show collagenase activity is strain - not stress- suppressed in tissues, consistent with past studies of gels and fibrils. Beating embryonic hearts and tendons, which differ in both collagen levels and stiffness by >1000-fold, similarly suppressed collagenases at physiological strains of ∼5%, with fiber-orientation regulating degradation. Scaling of E tissue based on 'use-it-or-lose-it' kinetics provides insight into scaling of organ size, microgravity effects, and regeneration processes while suggesting contractility-driven therapeutics.
Collapse
|
187
|
Khan A, Metts JM, Collins LC, Mills CA, Li K, Brademeyer AL, Bowman BM, Major MB, Aubé J, Herring LE, Davis IJ, Strahl BD. SETD2 maintains nuclear lamina stability to safeguard the genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.560032. [PMID: 37808753 PMCID: PMC10557632 DOI: 10.1101/2023.09.28.560032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Histone methyltransferases play essential roles in the organization and function of chromatin. They are also frequently mutated in human diseases including cancer1. One such often mutated methyltransferase, SETD2, associates co-transcriptionally with RNA polymerase II and catalyzes histone H3 lysine 36 trimethylation (H3K36me3) - a modification that contributes to gene transcription, splicing, and DNA repair2. While studies on SETD2 have largely focused on the consequences of its catalytic activity, the non-catalytic functions of SETD2 are largely unknown. Here we report a catalysis-independent function of SETD2 in maintaining nuclear lamina stability and genome integrity. We found that SETD2, via its intrinsically disordered N-terminus, associates with nuclear lamina proteins including lamin A/C, lamin B1, and emerin. Depletion of SETD2, or deletion of its N-terminus, resulted in widespread nuclear morphology abnormalities and genome stability defects that were reminiscent of a defective nuclear lamina. Mechanistically, the N-terminus of SETD2 facilitates the association of the mitotic kinase CDK1 with lamins, thereby promoting lamin phosphorylation and depolymerization required for nuclear envelope disassembly during mitosis. Taken together, our findings reveal an unanticipated link between the N-terminus of SETD2 and nuclear lamina organization that may underlie how SETD2 acts as a tumor suppressor.
Collapse
Affiliation(s)
- Abid Khan
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - James M. Metts
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Lucas C. Collins
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - C. Allie Mills
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, 27599, USA
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Amanda L. Brademeyer
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Brittany M. Bowman
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Cell Biology & Physiology, Washington University in St. Louis
| | - M. Ben Major
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Cell Biology & Physiology, Washington University in St. Louis
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, 27599, USA
| | - Ian J. Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina 27514
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
188
|
Ross JA, Arcos-Villacis N, Battey E, Boogerd C, Orellana CA, Marhuenda E, Swiatlowska P, Hodzic D, Prin F, Mohun T, Catibog N, Tapia O, Gerace L, Iskratsch T, Shah AM, Stroud MJ. Lem2 is essential for cardiac development by maintaining nuclear integrity. Cardiovasc Res 2023; 119:2074-2088. [PMID: 37067297 PMCID: PMC10478753 DOI: 10.1093/cvr/cvad061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 04/18/2023] Open
Abstract
AIMS Nuclear envelope integrity is essential for the compartmentalization of the nucleus and cytoplasm. Importantly, mutations in genes encoding nuclear envelope (NE) and associated proteins are the second highest cause of familial dilated cardiomyopathy. One such NE protein that causes cardiomyopathy in humans and affects mouse heart development is Lem2. However, its role in the heart remains poorly understood. METHODS AND RESULTS We generated mice in which Lem2 was specifically ablated either in embryonic cardiomyocytes (Lem2 cKO) or in adult cardiomyocytes (Lem2 iCKO) and carried out detailed physiological, tissue, and cellular analyses. High-resolution episcopic microscopy was used for three-dimensional reconstructions and detailed morphological analyses. RNA-sequencing and immunofluorescence identified altered pathways and cellular phenotypes, and cardiomyocytes were isolated to interrogate nuclear integrity in more detail. In addition, echocardiography provided a physiological assessment of Lem2 iCKO adult mice. We found that Lem2 was essential for cardiac development, and hearts from Lem2 cKO mice were morphologically and transcriptionally underdeveloped. Lem2 cKO hearts displayed high levels of DNA damage, nuclear rupture, and apoptosis. Crucially, we found that these defects were driven by muscle contraction as they were ameliorated by inhibiting myosin contraction and L-type calcium channels. Conversely, reducing Lem2 levels to ∼45% in adult cardiomyocytes did not lead to overt cardiac dysfunction up to 18 months of age. CONCLUSIONS Our data suggest that Lem2 is critical for integrity at the nascent NE in foetal hearts, and protects the nucleus from the mechanical forces of muscle contraction. In contrast, the adult heart is not detectably affected by partial Lem2 depletion, perhaps owing to a more established NE and increased adaptation to mechanical stress. Taken together, these data provide insights into mechanisms underlying cardiomyopathy in patients with mutations in Lem2 and cardio-laminopathies in general.
Collapse
Affiliation(s)
- Jacob A Ross
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular & Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Nathaly Arcos-Villacis
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular & Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Edmund Battey
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular & Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, UK
| | - Cornelis Boogerd
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | - Constanza Avalos Orellana
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular & Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Emilie Marhuenda
- Division of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Pamela Swiatlowska
- Division of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Didier Hodzic
- Department of Developmental Biology, Washington University School of Medicine, 660S. Euclid Avenue, St Louis, MO 63110, USA
| | - Fabrice Prin
- Crick Advanced Light Microscopy Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Tim Mohun
- Crick Advanced Light Microscopy Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Norman Catibog
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular & Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Olga Tapia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander 39011, Spain
- Department of Basic Medical Sciences, Institute of Biomedical Technologies, University of La Laguna, Tenerife 38200, Spain
| | - Larry Gerace
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Ajay M Shah
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular & Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Matthew J Stroud
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular & Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
189
|
Qu K, Wang C, Huang L, Qin X, Zhang K, Qiu J, Wang G. Oscillatory shear stress-induced downregulation of TET1s injures vascular endothelial planar cell polarity by suppression of actin polymerization. APL Bioeng 2023; 7:036104. [PMID: 37533755 PMCID: PMC10393427 DOI: 10.1063/5.0141289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/29/2023] [Indexed: 08/04/2023] Open
Abstract
Vascular endothelial polarity induced by blood flow plays crucial roles in the development of atherosclerosis. Loss of endothelial polarity leads to an increase in permeability and leukocyte recruitment, which are crucial hallmarks of atherosclerotic initiation. Endothelial cells exhibit a morphological adaptation to hemodynamic shear stress and possesses planar cell polarity to the direction of blood flow. However, the mechanism of how hemodynamic shear stress regulates endothelial planar cell polarity has not been firmly established. Here, we found that TET1s, a short isoform of Tet methylcytosine dioxygenase 1, was a mediator in the regulation of the planar cell polarity in endothelial cells in response to hemodynamic shear stress. In the process, low expression of TET1s induced by oscillatory shear stress led to the endothelial planar polarity damage through inhibition of F-actin polymerization. TET1s can regulate demethylation level of the sFRP-1 promoter to alter the expression of sFRP-1, which affects the interaction of sFRP-1/Fzd4 and F-actin polymerization. Our study revealed the mechanism of how TET1s mediates endothelial planar cell polarity in response to hemodynamic shear stress and provides a new insight for the prevention of atherosclerosis.
Collapse
Affiliation(s)
| | - Caihong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | | | | | | | - Juhui Qiu
- Authors to whom correspondence should be addressed: and
| | - Guixue Wang
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
190
|
Donnaloja F, Raimondi MT, Messa L, Barzaghini B, Carnevali F, Colombo E, Mazza D, Martinelli C, Boeri L, Rey F, Cereda C, Osellame R, Cerullo G, Carelli S, Soncini M, Jacchetti E. 3D photopolymerized microstructured scaffolds influence nuclear deformation, nucleo/cytoskeletal protein organization, and gene regulation in mesenchymal stem cells. APL Bioeng 2023; 7:036112. [PMID: 37692376 PMCID: PMC10491463 DOI: 10.1063/5.0153215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Mechanical stimuli from the extracellular environment affect cell morphology and functionality. Recently, we reported that mesenchymal stem cells (MSCs) grown in a custom-made 3D microscaffold, the Nichoid, are able to express higher levels of stemness markers. In fact, the Nichoid is an interesting device for autologous MSC expansion in clinical translation and would appear to regulate gene activity by altering intracellular force transmission. To corroborate this hypothesis, we investigated mechanotransduction-related nuclear mechanisms, and we also treated spread cells with a drug that destroys the actin cytoskeleton. We observed a roundish nuclear shape in MSCs cultured in the Nichoid and correlated the nuclear curvature with the import of transcription factors. We observed a more homogeneous euchromatin distribution in cells cultured in the Nichoid with respect to the Flat sample, corresponding to a standard glass coverslip. These results suggest a different gene regulation, which we confirmed by an RNA-seq analysis that revealed the dysregulation of 1843 genes. We also observed a low structured lamina mesh, which, according to the implemented molecular dynamic simulations, indicates reduced damping activity, thus supporting the hypothesis of low intracellular force transmission. Also, our investigations regarding lamin expression and spatial organization support the hypothesis that the gene dysregulation induced by the Nichoid is mainly related to a reduction in force transmission. In conclusion, our findings revealing the Nichoid's effects on MSC behavior is a step forward in the control of stem cells via mechanical manipulation, thus paving the way to new strategies for MSC translation to clinical applications.
Collapse
Affiliation(s)
- Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | | | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Federica Carnevali
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | | | - Davide Mazza
- Istituto Scientifico Ospedale San Raffaele, Centro di Imaging Sperimentale, Milan, Italy
| | - Chiara Martinelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Federica Rey
- Pediatric Research Center “Romeo ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Cristina Cereda
- Center of Functional Genomic and Rare Diseases, “V. Buzzi” Children's Hospital, 20154 Milan, Italy
| | - Roberto Osellame
- Institute for Photonics and Nanotechnologies—CNR, and Physics Department, Politecnico di Milano, Milan, Italy
| | - Giulio Cerullo
- Institute for Photonics and Nanotechnologies—CNR, and Physics Department, Politecnico di Milano, Milan, Italy
| | | | - Monica Soncini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| |
Collapse
|
191
|
Coscarella IL, Landim-Vieira M, Rastegarpouyani H, Chase PB, Irianto J, Pinto JR. Nucleus Mechanosensing in Cardiomyocytes. Int J Mol Sci 2023; 24:13341. [PMID: 37686151 PMCID: PMC10487505 DOI: 10.3390/ijms241713341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Cardiac muscle contraction is distinct from the contraction of other muscle types. The heart continuously undergoes contraction-relaxation cycles throughout an animal's lifespan. It must respond to constantly varying physical and energetic burdens over the short term on a beat-to-beat basis and relies on different mechanisms over the long term. Muscle contractility is based on actin and myosin interactions that are regulated by cytoplasmic calcium ions. Genetic variants of sarcomeric proteins can lead to the pathophysiological development of cardiac dysfunction. The sarcomere is physically connected to other cytoskeletal components. Actin filaments, microtubules and desmin proteins are responsible for these interactions. Therefore, mechanical as well as biochemical signals from sarcomeric contractions are transmitted to and sensed by other parts of the cardiomyocyte, particularly the nucleus which can respond to these stimuli. Proteins anchored to the nuclear envelope display a broad response which remodels the structure of the nucleus. In this review, we examine the central aspects of mechanotransduction in the cardiomyocyte where the transmission of mechanical signals to the nucleus can result in changes in gene expression and nucleus morphology. The correlation of nucleus sensing and dysfunction of sarcomeric proteins may assist the understanding of a wide range of functional responses in the progress of cardiomyopathic diseases.
Collapse
Affiliation(s)
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Hosna Rastegarpouyani
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Institute for Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jerome Irianto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
192
|
Wallace M, Zahr H, Perati S, Morsink CD, Johnson LE, Gacita AM, Lai S, Wallrath LL, Benjamin IJ, McNally EM, Kirby TJ, Lammerding J. Nuclear damage in LMNA mutant iPSC-derived cardiomyocytes is associated with impaired lamin localization to the nuclear envelope. Mol Biol Cell 2023; 34:mbcE21100527. [PMID: 37585285 PMCID: PMC10846625 DOI: 10.1091/mbc.e21-10-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
The LMNA gene encodes the nuclear envelope proteins Lamins A and C, which comprise a major part of the nuclear lamina, provide mechanical support to the nucleus, and participate in diverse intracellular signaling. LMNA mutations give rise to a collection of diseases called laminopathies, including dilated cardiomyopathy (LMNA-DCM) and muscular dystrophies. Although nuclear deformities are a hallmark of LMNA-DCM, the role of nuclear abnormalities in the pathogenesis of LMNA-DCM remains incompletely understood. Using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from LMNA mutant patients and healthy controls, we show that LMNA mutant iPSC-CM nuclei have altered shape or increased size compared to healthy control iPSC-CM nuclei. The LMNA mutation exhibiting the most severe nuclear deformities, R249Q, additionally caused reduced nuclear stiffness and increased nuclear fragility. Importantly, for all cell lines, the degree of nuclear abnormalities corresponded to the degree of Lamin A/C and Lamin B1 mislocalization from the nuclear envelope. The mislocalization was likely due to altered assembly of Lamin A/C. Collectively, these results point to the importance of correct lamin assembly at the nuclear envelope in providing mechanical stability to the nucleus and suggest that defects in nuclear lamina organization may contribute to the nuclear and cellular dysfunction in LMNA-DCM.
Collapse
Affiliation(s)
- Melanie Wallace
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Ithaca, NY 14853
| | - Hind Zahr
- Weill Institute for Cell and Molecular Biology, Ithaca, NY 14853
| | - Shriya Perati
- Weill Institute for Cell and Molecular Biology, Ithaca, NY 14853
| | - Chloé D. Morsink
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, VU Medical Center, 1081 HZ Amsterdam, The Netherlands
| | | | - Anthony M. Gacita
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern Medicine, Chicago, IL 60611
| | - Shuping Lai
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Lori L. Wallrath
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
| | - Ivor J. Benjamin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern Medicine, Chicago, IL 60611
| | - Tyler J. Kirby
- Weill Institute for Cell and Molecular Biology, Ithaca, NY 14853
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, VU Medical Center, 1081 HZ Amsterdam, The Netherlands
| | - Jan Lammerding
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Ithaca, NY 14853
| |
Collapse
|
193
|
Abdelrahman S, Ge R, Susapto HH, Liu Y, Samkari F, Moretti M, Liu X, Hoehndorf R, Emwas AH, Jaremko M, Rawas RH, Hauser CAE. The Impact of Mechanical Cues on the Metabolomic and Transcriptomic Profiles of Human Dermal Fibroblasts Cultured in Ultrashort Self-Assembling Peptide 3D Scaffolds. ACS NANO 2023; 17:14508-14531. [PMID: 37477873 DOI: 10.1021/acsnano.3c01176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Cells' interactions with their microenvironment influence their morphological features and regulate crucial cellular functions including proliferation, differentiation, metabolism, and gene expression. Most biological data available are based on in vitro two-dimensional (2D) cellular models, which fail to recapitulate the three-dimensional (3D) in vivo systems. This can be attributed to the lack of cell-matrix interaction and the limitless access to nutrients and oxygen, in contrast to in vivo systems. Despite the emergence of a plethora of 3D matrices to address this challenge, there are few reports offering a proper characterization of these matrices or studying how the cell-matrix interaction influences cellular metabolism in correlation with gene expression. In this study, two tetrameric ultrashort self-assembling peptide sequences, FFIK and FIIK, were used to create in vitro 3D models using well-described human dermal fibroblast cells. The peptide sequences are derived from naturally occurring amino acids that are capable of self-assembling into stable hydrogels without UV or chemical cross-linking. Our results showed that 2D cultured fibroblasts exhibited distinct metabolic and transcriptomic profiles compared to 3D cultured cells. The observed changes in the metabolomic and transcriptomic profiles were closely interconnected and influenced several important metabolic pathways including the TCA cycle, glycolysis, MAPK signaling cascades, and hemostasis. Data provided here may lead to clearer insights into the influence of the surrounding microenvironment on human dermal fibroblast metabolic patterns and molecular mechanisms, underscoring the importance of utilizing efficient 3D in vitro models to study such complex mechanisms.
Collapse
Affiliation(s)
- Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Rui Ge
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hepi H Susapto
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yang Liu
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Faris Samkari
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Manola Moretti
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Xinzhi Liu
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Robert Hoehndorf
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computer, Electrical and Mathematical Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Ranim H Rawas
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Charlotte A E Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
194
|
Ivanovska IL, Tobin MP, Bai T, Dooling LJ, Discher DE. Small lipid droplets are rigid enough to indent a nucleus, dilute the lamina, and cause rupture. J Cell Biol 2023; 222:e202208123. [PMID: 37212777 PMCID: PMC10202833 DOI: 10.1083/jcb.202208123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/24/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023] Open
Abstract
The nucleus in many cell types is a stiff organelle, but fat-filled lipid droplets (FDs) in cytoplasm are seen to indent and displace the nucleus. FDs are phase-separated liquids with a poorly understood interfacial tension γ that determines how FDs interact with other organelles. Here, micron-sized FDs remain spherical as they indent peri-nuclear actomyosin and the nucleus, while causing local dilution of Lamin-B1 independent of Lamin-A,C and sometimes triggering nuclear rupture. Focal accumulation of the cytosolic DNA sensor cGAS at the rupture site is accompanied by sustained mislocalization of DNA repair factors to cytoplasm, increased DNA damage, and delayed cell cycle. Macrophages show FDs and engulfed rigid beads cause similar indentation dilution. Spherical shapes of small FDs indicate a high γ, which we measure for FDs mechanically isolated from fresh adipose tissue as ∼40 mN/m. This value is far higher than that of protein condensates, but typical of oils in water and sufficiently rigid to perturb cell structures including nuclei.
Collapse
Affiliation(s)
- Irena L. Ivanovska
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P. Tobin
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Tianyi Bai
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Lawrence J. Dooling
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Dennis E. Discher
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
195
|
Flaum E, Prakash M. Curved crease origami and topological singularities at a cellular scale enable hyper-extensibility of Lacrymaria olor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551915. [PMID: 37577489 PMCID: PMC10418517 DOI: 10.1101/2023.08.04.551915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Eukaryotic cells undergo dramatic morphological changes during cell division, phagocytosis and motility. Fundamental limits of cellular morphodynamics such as how fast or how much cellular shapes can change without harm to a living cell remain poorly understood. Here we describe hyper-extensibility in the single-celled protist Lacrymaria olor, a 40 μm cell which is capable of reversible and repeatable extensions (neck-like protrusions) up to 1500 μm in 30 seconds. We discover that a unique and intricate organization of cortical cytoskeleton and membrane enables these hyper-extensions that can be described as the first cellular scale curved crease origami. Furthermore, we show how these topological singularities including d-cones and twisted domain walls provide a geometrical control mechanism for the deployment of membrane and microtubule sheets as they repeatably spool thousands of time from the cell body. We lastly build physical origami models to understand how these topological singularities provide a mechanism for the cell to control the hyper-extensile deployable structure. This new geometrical motif where a cell employs curved crease origami to perform a physiological function has wide ranging implications in understanding cellular morphodynamics and direct applications in deployable micro-robotics.
Collapse
Affiliation(s)
- Eliott Flaum
- Graduate Program in Biophysics
- Department of Bioengineering
- Stanford University
| | - Manu Prakash
- Graduate Program in Biophysics
- Department of Bioengineering
- Department of Biology (courtesy)
- Department of Oceans (courtesy)
- Stanford University
| |
Collapse
|
196
|
Murtada SI, Kawamura Y, Cavinato C, Wang M, Ramachandra AB, Spronck B, Li DS, Tellides G, Humphrey JD. Biomechanical and transcriptional evidence that smooth muscle cell death drives an osteochondrogenic phenotype and severe proximal vascular disease in progeria. Biomech Model Mechanobiol 2023; 22:1333-1347. [PMID: 37149823 PMCID: PMC10544720 DOI: 10.1007/s10237-023-01722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
Hutchinson-Gilford Progeria Syndrome results in rapid aging and severe cardiovascular sequelae that accelerate near end-of-life. We found a progressive disease process in proximal elastic arteries that was less evident in distal muscular arteries. Changes in aortic structure and function were then associated with changes in transcriptomics assessed via both bulk and single cell RNA sequencing, which suggested a novel sequence of progressive aortic disease: adverse extracellular matrix remodeling followed by mechanical stress-induced smooth muscle cell death, leading a subset of remnant smooth muscle cells to an osteochondrogenic phenotype that results in an accumulation of proteoglycans that thickens the aortic wall and increases pulse wave velocity, with late calcification exacerbating these effects. Increased central artery pulse wave velocity is known to drive left ventricular diastolic dysfunction, the primary diagnosis in progeria children. It appears that mechanical stresses above ~ 80 kPa initiate this progressive aortic disease process, explaining why elastic lamellar structures that are organized early in development under low wall stresses appear to be nearly normal whereas other medial constituents worsen progressively in adulthood. Mitigating early mechanical stress-driven smooth muscle cell loss/phenotypic modulation promises to have important cardiovascular implications in progeria patients.
Collapse
Affiliation(s)
- Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Yuki Kawamura
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Molly Wang
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Maastricht University, Maastricht, Netherlands
| | - David S Li
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
197
|
Oses C, De Rossi MC, Bruno L, Verneri P, Diaz MC, Benítez B, Guberman A, Levi V. From the membrane to the nucleus: mechanical signals and transcription regulation. Biophys Rev 2023; 15:671-683. [PMID: 37681098 PMCID: PMC10480138 DOI: 10.1007/s12551-023-01103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/20/2023] [Indexed: 09/09/2023] Open
Abstract
Mechanical forces drive and modulate a wide variety of processes in eukaryotic cells including those occurring in the nucleus. Relevantly, forces are fundamental during development since they guide lineage specifications of embryonic stem cells. A sophisticated macromolecular machinery transduces mechanical stimuli received at the cell surface into a biochemical output; a key component in this mechanical communication is the cytoskeleton, a complex network of biofilaments in constant remodeling that links the cell membrane to the nuclear envelope. Recent evidence highlights that forces transmitted through the cytoskeleton directly affect the organization of chromatin and the accessibility of transcription-related molecules to their targets in the DNA. Consequently, mechanical forces can directly modulate transcription and change gene expression programs. Here, we will revise the biophysical toolbox involved in the mechanical communication with the cell nucleus and discuss how mechanical forces impact on the organization of this organelle and more specifically, on transcription. We will also discuss how live-cell fluorescence imaging is producing exquisite information to understand the mechanical response of cells and to quantify the landscape of interactions of transcription factors with chromatin in embryonic stem cells. These studies are building new biophysical insights that could be fundamental to achieve the goal of manipulating forces to guide cell differentiation in culture systems.
Collapse
Affiliation(s)
- Camila Oses
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), Facultad de Ciencias Exactas Y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - María Cecilia De Rossi
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), Facultad de Ciencias Exactas Y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Luciana Bruno
- Facultad de Ciencias Exactas Y Naturales, Instituto de Cálculo (IC), CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Paula Verneri
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), Facultad de Ciencias Exactas Y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - María Candelaria Diaz
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), Facultad de Ciencias Exactas Y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Belén Benítez
- Instituto de Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), Facultad de Ciencias Exactas Y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Alejandra Guberman
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), Facultad de Ciencias Exactas Y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
- Facultad de Ciencias Exactas Y Naturales, Departamento de Fisiología, Universidad de Buenos Aires, Biología Molecular Y Celular, C1428EGA Buenos Aires, Argentina
| | - Valeria Levi
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), Facultad de Ciencias Exactas Y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
- Facultad de Ciencias Exactas Y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
198
|
Wang YJ, Liang H, Liu Y, Bao Q, Yang S, Xu XX, Chen YC, Liu W, Shi X, Shi Y, Liu X, Liu B, Gao H, Jiu Y, Liu YJ. Lamin A/C and Vimentin as a Coordinated Regulator during Amoeboid Migration in Microscale Confined Microenvironments. NANO LETTERS 2023; 23:6727-6735. [PMID: 37459599 DOI: 10.1021/acs.nanolett.3c02096] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Cell migration occurs in confined microenvironments, which plays a vital role in the process of tumor metastasis. However, it is challenging to study their behaviors in vivo. Here we developed a cell squeeze system that can be scaled down to micrometers to mimic native physical confined microenvironments, wherein degrees of surface adhesion and mechanical constraints could be manipulated in order to investigate cell-migrating behaviors. Based on the microscale cell squeeze system, we found the synergistic role of lamin A/C and vimentin in cell transition and migration under strong confinement. The dynamic variations in lamin A/C and vimentin expression establish a positive feedback loop in response to confinement, effectively promoting amoeboid migration by modulating nuclear deformability while ensuring cell viability. This work shed light on modulating cell response to microenvironments by altering the expression of lamin A/C and/or vimentin, which may be a more efficient way of inhibiting cancer metastasis.
Collapse
Affiliation(s)
- Ya-Jun Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Hong Liang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Yixin Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Qiyuan Bao
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Shanghai 200025, China
| | - Shuang Yang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Xin-Xin Xu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Yu-Chen Chen
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Wei Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Xuemeng Shi
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuheng Shi
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Xiaohui Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Baohong Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Hai Gao
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Yaming Jiu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Jun Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai 200032, China
| |
Collapse
|
199
|
López-Guajardo A, Zafar A, Al Hennawi K, Rossi V, Alrwaili A, Medcalf JD, Dunning M, Nordgren N, Pettersson T, Estabrook ID, Hawkins RJ, Gad AKB. Regulation of cellular contractile force, shape and migration of fibroblasts by oncogenes and Histone deacetylase 6. Front Mol Biosci 2023; 10:1197814. [PMID: 37564130 PMCID: PMC10411354 DOI: 10.3389/fmolb.2023.1197814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
The capacity of cells to adhere to, exert forces upon and migrate through their surrounding environment governs tissue regeneration and cancer metastasis. The role of the physical contractile forces that cells exert in this process, and the underlying molecular mechanisms are not fully understood. We, therefore, aimed to clarify if the extracellular forces that cells exert on their environment and/or the intracellular forces that deform the cell nucleus, and the link between these forces, are defective in transformed and invasive fibroblasts, and to indicate the underlying molecular mechanism of control. Confocal, Epifluorescence and Traction force microscopy, followed by computational analysis, showed an increased maximum contractile force that cells apply on their environment and a decreased intracellular force on the cell nucleus in the invasive fibroblasts, as compared to normal control cells. Loss of HDAC6 activity by tubacin-treatment and siRNA-mediated HDAC6 knockdown also reversed the reduced size and more circular shape and defective migration of the transformed and invasive cells to normal. However, only tubacin-mediated, and not siRNA knockdown reversed the increased force of the invasive cells on their surrounding environment to normal, with no effects on nuclear forces. We observed that the forces on the environment and the nucleus were weakly positively correlated, with the exception of HDAC6 siRNA-treated cells, in which the correlation was weakly negative. The transformed and invasive fibroblasts showed an increased number and smaller cell-matrix adhesions than control, and neither tubacin-treatment, nor HDAC6 knockdown reversed this phenotype to normal, but instead increased it further. This highlights the possibility that the control of contractile force requires separate functions of HDAC6, than the control of cell adhesions, spreading and shape. These data are consistent with the possibility that defective force-transduction from the extracellular environment to the nucleus contributes to metastasis, via a mechanism that depends upon HDAC6. To our knowledge, our findings present the first correlation between the cellular forces that deforms the surrounding environment and the nucleus in fibroblasts, and it expands our understanding of how cells generate contractile forces that contribute to cell invasion and metastasis.
Collapse
Affiliation(s)
- Ana López-Guajardo
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Azeer Zafar
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Khairat Al Hennawi
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Valentina Rossi
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Abdulaziz Alrwaili
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Jessica D. Medcalf
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Mark Dunning
- Bioinformatics Core, The Medical School, The University of Sheffield, Sheffield, United Kingdom
| | - Niklas Nordgren
- Division Bioeconomy and Health, RISE Research Institutes of Sweden, Stockholm, Sweden
| | - Torbjörn Pettersson
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ian D. Estabrook
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Germany
| | - Rhoda J. Hawkins
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
- African Institute for Mathematical Sciences, Accra, Ghana
| | - Annica K. B. Gad
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
- Madeira Chemistry Research Centre, University of Madeira, Funchal, Portugal
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
200
|
Fu Y, Jing Z, Chen T, Xu X, Wang X, Ren M, Wu Y, Wu T, Li Y, Zhang H, Ji P, Yang S. Nanotube patterning reduces macrophage inflammatory response via nuclear mechanotransduction. J Nanobiotechnology 2023; 21:229. [PMID: 37468894 DOI: 10.1186/s12951-023-01912-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/26/2023] [Indexed: 07/21/2023] Open
Abstract
The inflammatory immune environment surrounding titanium bone implants determines the formation of osseointegration, and nanopatterning on implant surfaces modulates the immune microenvironment in the implant region. Among many related mechanisms, the mechanism by which nanopatterning controls macrophage inflammatory response still needs to be elucidated. In this paper, we found that inhibition of the nuclear envelope protein lamin A/C by titania nanotubes (TNTs) reduced the macrophage inflammatory response. Knockdown of lamin A/C reduced macrophage inflammatory marker expression, while overexpression of lamin A/C significantly elevated inflammatory marker expression. We further found that suppression of lamin A/C by TNTs limited actin polymerization, thereby reducing the nuclear translocation of the actin-dependent transcriptional cofactor MRTF-A, which subsequently reduced the inflammatory response. In addition, emerin, which is a key link between lamin A/C and actin, was delocalized from the nucleus in response to mechanical stimulation by TNTs, resulting in reduced actin organization. Under inflammatory conditions, TNTs exerted favourable osteoimmunomodulatory effects on the osteogenic differentiation of mouse bone marrow-derived stem cells (mBMSCs) in vitro and osseointegration in vivo. This study shows and confirms for the first time that lamin A/C-mediated nuclear mechanotransduction controls macrophage inflammatory response, and this study provides a theoretical basis for the future design of immunomodulatory nanomorphologies on the surface of metallic bone implants.
Collapse
Affiliation(s)
- Yiru Fu
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Zheng Jing
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tao Chen
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Xinxin Xu
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Xu Wang
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Mingxing Ren
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Yanqiu Wu
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Tianli Wu
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Yuzhou Li
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - He Zhang
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Sheng Yang
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|