151
|
Abstract
Hypothalamic leptin action promotes negative energy balance and modulates glucose homeostasis, as well as serving as a permissive signal to the neuroendocrine axes that control growth and reproduction. Since the initial discovery of leptin 20 years ago, we have learned a great deal about the molecular mechanisms of leptin action. An important aspect of this has been the dissection of the cellular mechanisms of leptin signaling, and how specific leptin signals influence physiology. Leptin acts via the long form of the leptin receptor LepRb. LepRb activation and subsequent tyrosine phosphorylation recruits and activates multiple signaling pathways, including STAT transcription factors, SHP2 and ERK signaling, the IRS-protein/PI3Kinase pathway, and SH2B1. Each of these pathways controls specific aspects of leptin action and physiology. Important inhibitory pathways mediated by suppressor of cytokine signaling proteins and protein tyrosine phosphatases also limit physiologic leptin action. This review summarizes the signaling pathways engaged by LepRb and their effects on energy balance, glucose homeostasis, and reproduction. Particular emphasis is given to the multiple mouse models that have been used to elucidate these functions in vivo.
Collapse
Affiliation(s)
- Margaret B Allison
- Departments of Internal Medicineand Molecular and Integrative Physiology, University of Michigan, 1000 Wall Street, 6317 Brehm Tower, Ann Arbor, Michigan 48105, USA
| | - Martin G Myers
- Departments of Internal Medicineand Molecular and Integrative Physiology, University of Michigan, 1000 Wall Street, 6317 Brehm Tower, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
152
|
Jeong JK, Kim JG, Lee BJ. Participation of the central melanocortin system in metabolic regulation and energy homeostasis. Cell Mol Life Sci 2014; 71:3799-809. [PMID: 24894870 PMCID: PMC11113577 DOI: 10.1007/s00018-014-1650-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/23/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
Abstract
Obesity and metabolic disorders, such as type 2 diabetes and hypertension, have attracted considerable attention as life-threatening diseases not only in developed countries but also worldwide. Additionally, the rate of obesity in young people all over the world is rapidly increasing. Accumulated evidence suggests that the central nervous system may participate in the development of and/or protection from obesity. For example, in the brain, the hypothalamic melanocortin system senses and integrates central and peripheral metabolic signals and controls the degree of energy expenditure and feeding behavior, in concert with metabolic status, to regulate whole-body energy homeostasis. Currently, researchers are studying the mechanisms by which peripheral metabolic molecules control feeding behavior and energy balance through the central melanocortin system. Accordingly, recent studies have revealed that some inflammatory molecules and transcription factors participate in feeding behavior and energy balance by controlling the central melanocortin pathway, and have thus become new candidates as therapeutic targets to fight metabolic diseases such as obesity and diabetes.
Collapse
Affiliation(s)
- Jin Kwon Jeong
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77004 USA
| | - Jae Geun Kim
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749 South Korea
| |
Collapse
|
153
|
Abstract
This special issue of Journal of Endocrinology celebrates the 20th anniversary of the discovery of leptin, a hormone produced by adipose tissue, which provides critical signals to the organism regarding the status of its energy stores. The discovery of leptin not only revolutionised our understanding of endocrine physiology but has also resulted in a registered medicinal product which is already improving the health of patients with serious metabolic diseases. In this issue, we have gathered together a group of essays by some of the world leaders in leptin research, including an overview by Dr Jeffrey Friedman who, in his seminal article in December 1994, described the adipocyte-derived hormone, the lack of which was responsible for the severe obesity in ob/ob mice and suggested that it should be named leptin.
Collapse
Affiliation(s)
- Steve O'Rahilly
- MRC Metabolic Diseases UnitMetabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
154
|
Aimé P, Palouzier-Paulignan B, Salem R, Al Koborssy D, Garcia S, Duchamp C, Romestaing C, Julliard AK. Modulation of olfactory sensitivity and glucose-sensing by the feeding state in obese Zucker rats. Front Behav Neurosci 2014; 8:326. [PMID: 25278856 PMCID: PMC4166364 DOI: 10.3389/fnbeh.2014.00326] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/01/2014] [Indexed: 12/13/2022] Open
Abstract
The Zucker fa/fa rat has been widely used as an animal model to study obesity, since it recapitulates most of its behavioral and metabolic dysfunctions, such as hyperphagia, hyperglycemia and insulin resistance. Although it is well established that olfaction is under nutritional and hormonal influences, little is known about the impact of metabolic dysfunctions on olfactory performances and glucose-sensing in the olfactory system of the obese Zucker rat. In the present study, using a behavioral paradigm based on a conditioned olfactory aversion, we have shown that both obese and lean Zucker rats have a better olfactory sensitivity when they are fasted than when they are satiated. Interestingly, the obese Zucker rats displayed a higher olfactory sensitivity than their lean controls. By investigating the molecular mechanisms involved in glucose-sensing in the olfactory system, we demonstrated that sodium-coupled glucose transporters 1 (SGLT1) and insulin dependent glucose transporters 4 (GLUT4) are both expressed in the olfactory bulb (OB). By comparing the expression of GLUT4 and SGLT1 in OB of obese and lean Zucker rats, we found that only SGLT1 is regulated in genotype-dependent manner. Next, we used glucose oxidase biosensors to simultaneously measure in vivo the extracellular fluid glucose concentrations ([Gluc]ECF) in the OB and the cortex. Under metabolic steady state, we have determined that the OB contained twice the amount of glucose found in the cortex. In both regions, the [Gluc]ECF was 2 fold higher in obese rats compared to their lean controls. Under induced dynamic glycemia conditions, insulin injection produced a greater decrease of [Gluc]ECF in the OB than in the cortex. Glucose injection did not affect OB [Gluc]ECF in Zucker fa/fa rats. In conclusion, these results emphasize the importance of glucose for the OB network function and provide strong arguments towards establishing the OB glucose-sensing as a key factor for sensory olfactory processing.
Collapse
Affiliation(s)
- Pascaline Aimé
- Team "Olfaction: From Coding to Memory", Lyon Neuroscience Center, INSERM U1028-CNRS 5292- Université Lyon1 Lyon, France
| | - Brigitte Palouzier-Paulignan
- Team "Olfaction: From Coding to Memory", Lyon Neuroscience Center, INSERM U1028-CNRS 5292- Université Lyon1 Lyon, France
| | - Rita Salem
- Team "Olfaction: From Coding to Memory", Lyon Neuroscience Center, INSERM U1028-CNRS 5292- Université Lyon1 Lyon, France
| | - Dolly Al Koborssy
- Team "Olfaction: From Coding to Memory", Lyon Neuroscience Center, INSERM U1028-CNRS 5292- Université Lyon1 Lyon, France
| | - Samuel Garcia
- Team "Olfaction: From Coding to Memory", Lyon Neuroscience Center, INSERM U1028-CNRS 5292- Université Lyon1 Lyon, France
| | - Claude Duchamp
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés CNRS 5023, Villeurbanne, France
| | - Caroline Romestaing
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés CNRS 5023, Villeurbanne, France
| | - A Karyn Julliard
- Team "Olfaction: From Coding to Memory", Lyon Neuroscience Center, INSERM U1028-CNRS 5292- Université Lyon1 Lyon, France
| |
Collapse
|
155
|
Wada N, Hirako S, Takenoya F, Kageyama H, Okabe M, Shioda S. Leptin and its receptors. J Chem Neuroanat 2014; 61-62:191-9. [PMID: 25218975 DOI: 10.1016/j.jchemneu.2014.09.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/11/2022]
Abstract
Leptin is mainly produced in the white adipose tissue before being secreted into the blood and transported across the blood-brain barrier. Leptin binds to a specific receptor (LepR) that has numerous subtypes (LepRa, LepRb, LepRc, LepRd, LepRe, and LepRf). LepRb, in particular, is expressed in several brain nuclei, including the arcuate nucleus, the paraventricular nucleus, and the dorsomedial, lateral and ventromedial regions of the hypothalamus. LepRb is also co-expressed with several neuropeptides, including proopiomelanocortin, neuropeptide Y, galanin, galanin-like peptide, gonadotropin-releasing hormone, tyrosine hydroxylase and neuropeptide W. Functionally, LepRb induces activation of the JAK2/ERK, /STAT3, /STAT5 and IRS/PI3 kinase signaling cascades, which are important for the regulation of energy homeostasis and appetite in mammals. In this review, we discuss the structure, genetics and distribution of the leptin receptors, and their role in cell signaling mechanisms.
Collapse
Affiliation(s)
- Nobuhiro Wada
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan
| | - Satoshi Hirako
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan
| | - Fumiko Takenoya
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan; Department of Physical Education, Hoshi University School of Pharmacy and Pharmaceutical Science, Tokyo 142-8501, Japan
| | - Haruaki Kageyama
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan; Department of Nutrition, Faculty of Health Care, Kiryu University, 606-7 Kasakakecho Azami, Midori City 379-2392, Gunma, Japan
| | - Mai Okabe
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan; Tokyo Shokuryo Dietitian Academy, Tokyo 154-0001, Japan
| | - Seiji Shioda
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|
156
|
GILES JONT. Adipokine Mediators of Inflammation and Cardiometabolic Comorbidity in Rheumatoid Arthritis: Is There a Master Adipokine? J Rheumatol 2014; 41:1725-7. [DOI: 10.3899/jrheum.140856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
157
|
Rui L. SH2B1 regulation of energy balance, body weight, and glucose metabolism. World J Diabetes 2014; 5:511-526. [PMID: 25126397 PMCID: PMC4127586 DOI: 10.4239/wjd.v5.i4.511] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/06/2014] [Accepted: 06/03/2014] [Indexed: 02/05/2023] Open
Abstract
The Src homology 2B (SH2B) family members (SH2B1, SH2B2 and SH2B3) are adaptor signaling proteins containing characteristic SH2 and PH domains. SH2B1 (also called SH2-B and PSM) and SH2B2 (also called APS) are able to form homo- or hetero-dimers via their N-terminal dimerization domains. Their C-terminal SH2 domains bind to tyrosyl phosphorylated proteins, including Janus kinase 2 (JAK2), TrkA, insulin receptors, insulin-like growth factor-1 receptors, insulin receptor substrate-1 (IRS1), and IRS2. SH2B1 enhances leptin signaling by both stimulating JAK2 activity and assembling a JAK2/IRS1/2 signaling complex. SH2B1 promotes insulin signaling by both enhancing insulin receptor catalytic activity and protecting against dephosphorylation of IRS proteins. Accordingly, genetic deletion of SH2B1 results in severe leptin resistance, insulin resistance, hyperphagia, obesity, and type 2 diabetes in mice. Neuron-specific overexpression of SH2B1β transgenes protects against diet-induced obesity and insulin resistance. SH2B1 in pancreatic β cells promotes β cell expansion and insulin secretion to counteract insulin resistance in obesity. Moreover, numerous SH2B1 mutations are genetically linked to leptin resistance, insulin resistance, obesity, and type 2 diabetes in humans. Unlike SH2B1, SH2B2 and SH2B3 are not required for the maintenance of normal energy and glucose homeostasis. The metabolic function of the SH2B family is conserved from insects to humans.
Collapse
|
158
|
Molinar-Toribio E, Pérez-Jiménez J, Ramos-Romero S, Lluís L, Sánchez-Martos V, Taltavull N, Romeu M, Pazos M, Méndez L, Miranda A, Cascante M, Medina I, Torres JL. Cardiovascular disease-related parameters and oxidative stress in SHROB rats, a model for metabolic syndrome. PLoS One 2014; 9:e104637. [PMID: 25115868 PMCID: PMC4130542 DOI: 10.1371/journal.pone.0104637] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/10/2014] [Indexed: 02/06/2023] Open
Abstract
SHROB rats have been suggested as a model for metabolic syndrome (MetS) as a situation prior to the onset of CVD or type-2 diabetes, but information on descriptive biochemical parameters for this model is limited. Here, we extensively evaluate parameters related to CVD and oxidative stress (OS) in SHROB rats. SHROB rats were monitored for 15 weeks and compared to a control group of Wistar rats. Body weight was recorded weekly. At the end of the study, parameters related to CVD and OS were evaluated in plasma, urine and different organs. SHROB rats presented statistically significant differences from Wistar rats in CVD risk factors: total cholesterol, LDL-cholesterol, triglycerides, apoA1, apoB100, abdominal fat, insulin, blood pressure, C-reactive protein, ICAM-1 and PAI-1. In adipose tissue, liver and brain, the endogenous antioxidant systems were activated, yet there was no significant oxidative damage to lipids (MDA) or proteins (carbonylation). We conclude that SHROB rats present significant alterations in parameters related to inflammation, endothelial dysfunction, thrombotic activity, insulin resistance and OS measured in plasma as well as enhanced redox defence systems in vital organs that will be useful as markers of MetS and CVD for nutrition interventions.
Collapse
Affiliation(s)
| | - Jara Pérez-Jiménez
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Sara Ramos-Romero
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Laura Lluís
- Unidad de Farmacología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Reus, Spain
| | - Vanessa Sánchez-Martos
- Unidad de Farmacología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Reus, Spain
| | - Núria Taltavull
- Unidad de Farmacología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Reus, Spain
| | - Marta Romeu
- Unidad de Farmacología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Reus, Spain
| | - Manuel Pazos
- Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Spain
| | - Lucía Méndez
- Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Spain
| | - Aníbal Miranda
- Department of Biochemistry and Molecular Biology, IBUB and unit associated with CSIC, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biology, IBUB and unit associated with CSIC, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabel Medina
- Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Spain
| | - Josep Lluís Torres
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| |
Collapse
|
159
|
Khanh DV, Choi YH, Moh SH, Kinyua AW, Kim KW. Leptin and insulin signaling in dopaminergic neurons: relationship between energy balance and reward system. Front Psychol 2014; 5:846. [PMID: 25147530 PMCID: PMC4124796 DOI: 10.3389/fpsyg.2014.00846] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/16/2014] [Indexed: 01/28/2023] Open
Abstract
The central actions of leptin and insulin are essential for the regulation of energy and glucose homeostasis. In addition to the crucial effects on the hypothalamus, emerging evidence suggests that the leptin and insulin signaling can act on other brain regions to mediate the reward value of nutrients. Recent studies have indicated the midbrain dopaminergic neurons as a potential site for leptin' and insulin's actions on mediating the feeding behaviors and therefore affecting the energy balance. Although molecular details about the integrative roles of leptin and insulin in this subset of neurons remain to be investigated, substantial body of evidence by far imply that the signaling pathways regulated by leptin and insulin may play an essential role in the regulation of energy balance through the control of food-associated reward. This review therefore describes the convergence of energy regulation and reward system, particularly focusing on leptin and insulin signaling in the midbrain dopaminergic neurons.
Collapse
Affiliation(s)
- Doan V. Khanh
- Departments of Pharmacology and Global Biomedical Science, Wonju College of Medicine, Yonsei UniversityWonju, South Korea
- Institute of Lifestyle Medicine and Nuclear Receptor Research Consortium, Wonju College of Medicine, Yonsei UniversityWonju, South Korea
| | - Yun-Hee Choi
- Institute of Lifestyle Medicine and Nuclear Receptor Research Consortium, Wonju College of Medicine, Yonsei UniversityWonju, South Korea
- Antiaging Research Institute of BIO-FD&C Co. Ltd.Incheon, South Korea
| | - Sang Hyun Moh
- Antiaging Research Institute of BIO-FD&C Co. Ltd.Incheon, South Korea
| | - Ann W. Kinyua
- Departments of Pharmacology and Global Biomedical Science, Wonju College of Medicine, Yonsei UniversityWonju, South Korea
- Institute of Lifestyle Medicine and Nuclear Receptor Research Consortium, Wonju College of Medicine, Yonsei UniversityWonju, South Korea
| | - Ki Woo Kim
- Departments of Pharmacology and Global Biomedical Science, Wonju College of Medicine, Yonsei UniversityWonju, South Korea
- Institute of Lifestyle Medicine and Nuclear Receptor Research Consortium, Wonju College of Medicine, Yonsei UniversityWonju, South Korea
| |
Collapse
|
160
|
Distribution of the neuronal inputs to the ventral premammillary nucleus of male and female rats. Brain Res 2014; 1582:77-90. [PMID: 25084037 DOI: 10.1016/j.brainres.2014.07.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 02/08/2023]
Abstract
The ventral premammillary nucleus (PMV) expresses dense collections of sex steroid receptors and receptors for metabolic cues, including leptin, insulin and ghrelin. The PMV responds to opposite sex odor stimulation and projects to areas involved in reproductive control, including direct innervation of gonadotropin releasing hormone neurons. Thus, the PMV is well positioned to integrate metabolic and reproductive cues, and control downstream targets that mediate reproductive function. In fact, lesions of PMV neurons blunt female reproductive function and maternal aggression. However, although the projections of PMV neurons have been well documented, little is known about the neuronal inputs received by PMV neurons. To fill this gap, we performed a systematic evaluation of the brain sites innervating the PMV neurons of male and female rats using the retrograde tracer subunit B of the cholera toxin (CTb). In general, we observed that males and females show a similar pattern of afferents. We also noticed that the PMV is preferentially innervated by neurons located in the forebrain, with very few projections coming from brainstem nuclei. The majority of inputs originated from the medial nucleus of the amygdala, the bed nucleus of the stria terminalis and the medial preoptic nucleus. A moderate to high density of afferents was also observed in the ventral subiculum, the arcuate nucleus and the ventrolateral subdivision of the ventromedial nucleus of the hypothalamus. Our findings strengthen the concept that the PMV is part of the vomeronasal system and integrates the brain circuitry controlling reproductive functions.
Collapse
|
161
|
Ratra DV, Elias CF. Chemical identity of hypothalamic neurons engaged by leptin in reproductive control. J Chem Neuroanat 2014; 61-62:233-8. [PMID: 24915437 DOI: 10.1016/j.jchemneu.2014.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 01/31/2023]
Abstract
The adipocyte-derived hormone leptin plays a critical role as a metabolic cue for the reproductive system. Conditions of low leptin levels observed in negative energy balance and loss-of-function mutations of leptin or leptin receptor genes are characterized by decreased fertility. In recent years, advances have been made for identifying possible hypothalamic neurons relaying leptin's neuroendocrine control of reproductive function. Studies from different laboratories have demonstrated that leptin action in the hypothalamo-pituitary-gonadal (HPG) axis is exerted via hypothalamic interneurons regulating gonadotropin-releasing hormone (GnRH) cells, oppose to direct action on GnRH neurons. Following this observation, studies focused on identifying leptin responsive interneurons. Using a Cre-loxP system to re-express or delete the leptin receptor long form (LepRb) from kisspeptin neurons, our laboratory found that leptin's action on kiss1 cells is neither required nor sufficient for leptin's role in reproductive function. Endogenous re-expression of LepRb however, in glutamatergic neurons of the ventral premammilary nucleus (PMV) or ablation of agouti-related protein (AgRP) neurons from leptin signaling-deficient mice are both sufficient to induce puberty and improve fertility. Recent studies have also shown that leptin action in first order GABAergic neurons is required for fertility. Together, these studies begin to delineate key neuronal populations involved in leptin's action in reproduction. In this review, we discuss recent advances made in the field and highlight the questions yet to be answered.
Collapse
Affiliation(s)
- Dhirender V Ratra
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carol F Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
162
|
Wasik AA, Koskelainen S, Hyvönen ME, Musante L, Lehtonen E, Koskenniemi K, Tienari J, Vaheri A, Kerjaschki D, Szalay C, Révész C, Varmanen P, Nyman TA, Hamar P, Holthöfer H, Lehtonen S. Ezrin Is Down-Regulated in Diabetic Kidney Glomeruli and Regulates Actin Reorganization and Glucose Uptake via GLUT1 in Cultured Podocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1727-39. [DOI: 10.1016/j.ajpath.2014.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/28/2014] [Accepted: 03/05/2014] [Indexed: 01/27/2023]
|
163
|
Rozalski M, Kassassir H, Siewiera K, Klepacka A, Sychowski R, Watala C. Platelet activation patterns are different in mouse models of diabetes and chronic inhibition of nitric oxide synthesis. Thromb Res 2014; 133:1097-104. [DOI: 10.1016/j.thromres.2014.03.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/26/2014] [Accepted: 03/26/2014] [Indexed: 01/05/2023]
|
164
|
Pan H, Guo J, Su Z. Advances in understanding the interrelations between leptin resistance and obesity. Physiol Behav 2014; 130:157-69. [PMID: 24726399 DOI: 10.1016/j.physbeh.2014.04.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/07/2014] [Accepted: 04/02/2014] [Indexed: 02/09/2023]
Abstract
Obesity, which has developed into a global epidemic, is a risk factor in most chronic diseases and some forms of malignancy. The discovery of leptin in 1994 has opened a new field in obesity research. Currently, we know that leptin is the primary signal from energy stores and exerts negative feedback effects on energy intake. However, most individuals with diet-induced obesity (DIO) develop leptin resistance, which is characterized by elevated circulating leptin levels and decreased leptin sensitivity. To date, though various mechanisms have been proposed to explain leptin resistance, the exact mechanisms of leptin resistance in obesity are poorly understood. Consequently, it's an important issue worth discussing regarding what the exact interrelations between leptin resistance and obesity are. Here, we review the latest advancements in the molecular mechanisms of leptin resistance and the exact interrelations between leptin resistance, obesity, and obesity-related diseases, in order to supply new ideas for the study of obesity.
Collapse
Affiliation(s)
- Haitao Pan
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiao Guo
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China.
| | - Zhengquan Su
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China.
| |
Collapse
|
165
|
Geary N. A physiological perspective on the neuroscience of eating. Physiol Behav 2014; 136:3-14. [PMID: 24704192 DOI: 10.1016/j.physbeh.2014.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/17/2014] [Indexed: 12/31/2022]
Abstract
I present the thesis that 'being physiological,' i.e., analyzing eating under conditions that do not perturb, or minimally perturb, the organism's endogenous processes, should be a central goal of the neuroscience of eating. I describe my understanding of 'being physiological' based on [i] the central neural-network heuristic of CNS function that traces back to Cajal and Sherrington, [ii] research on one of the simpler problems in the neuroscience of eating, identification of endocrine signals that control eating. In this context I consider natural meals, physiological doses and ranges, and antagonist studies. Several examples involve CCK. Next I describe my view of the cutting edge in the molecular neuroscience of eating as it has evolved from the discovery of leptin signaling through the application of optogenetic and pharmacogenetic methods. Finally I describe some novel approaches that may advance the neuroscience of eating in the foreseeable future. I conclude that [i] the neuroscience of eating may soon be able to discern 'physiological' function in the operation of CNS networks mediating eating, [ii] the neuroscience of eating should capitalize on methods developed in other areas of neuroscience, e.g., improved methods to record and manipulate CNS function in behaving animals, identification of canonical regional circuits, use of population electrophysiology, etc., and [iii] subjective aspects of eating are crucial aspects of eating science, but remain beyond mechanistic understanding.
Collapse
Affiliation(s)
- Nori Geary
- Department of Psychiatry, Weill Medical College of Cornell University, New York, NY, United States.
| |
Collapse
|
166
|
Acs P, Bauer PO, Mayer B, Bera T, Macallister R, Mezey E, Pastan I. A novel form of ciliopathy underlies hyperphagia and obesity in Ankrd26 knockout mice. Brain Struct Funct 2014; 220:1511-28. [PMID: 24633808 DOI: 10.1007/s00429-014-0741-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/19/2014] [Indexed: 02/06/2023]
Abstract
Human ciliopathies are genetic disorders caused by mutations in genes responsible for the formation and function of primary cilia. Some are associated with hyperphagia and obesity (e.g., Bardet-Biedl Syndrome, Alström Syndrome), but the mechanisms underlying these problems are not fully understood. The human gene ANKRD26 is located on 10p12, a locus that is associated with some forms of hereditary obesity. Previously, we reported that disruption of this gene causes hyperphagia, obesity and gigantism in mice. In the present study, we looked for the mechanisms that induce hyperphagia in the Ankrd26-/- mice and found defects in primary cilia in regions of the central nervous system that control appetite and energy homeostasis.
Collapse
Affiliation(s)
- Peter Acs
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, USA
| | | | | | | | | | | | | |
Collapse
|
167
|
Ezquer F, Ezquer M, Arango-Rodriguez M, Conget P. Could donor multipotent mesenchymal stromal cells prevent or delay the onset of diabetic retinopathy? Acta Ophthalmol 2014; 92:e86-95. [PMID: 23773776 DOI: 10.1111/aos.12113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a complex metabolic disease that has become a global epidemic with more than 285 million cases worldwide. Major medical advances over the past decades have substantially improved its management, extending patients' survival. The latter is accompanied by an increased risk of developing chronic macro- and microvascular complications. Amongst them, diabetic retinopathy (DR) is the most common and frightening. Furthermore, during the past two decades, it has become the leading cause of visual loss. Irrespective of the type of diabetes, DR follows a well-known clinical and temporal course characterized by pericytes and neuronal cell loss, formation of acellular-occluded capillaries, occasional microaneurysms, increased leucostasis and thickening of the vascular basement membrane. These alterations progressively affect the integrity of retinal microvessels, leading to the breakdown of the blood-retinal barrier, widespread haemorrhage and neovascularization. Finally, tractional retinal detachment occurs leading to blindness. Nowadays, there is growing evidence that local inflammation and oxidative stress play pivotal roles in the pathogenesis of DR. Both processes have been associated with pericytes and neuronal degeneration observed early during DR progression. They may also be linked to sustained retinal vasculature damage that results in abnormal neovascularization. Currently, DR therapeutic options depend on highly invasive surgical procedures performed only at advanced stages of the disease, and which have proved to be ineffective to restore visual acuity. Therefore, the availability of less invasive and more effective strategies aimed to prevent or delay the onset of DR is highly desirable. Multipotent mesenchymal stromal cells, also referred to as mesenchymal stem cells (MSCs), are promising healing agents as they contribute to tissue regeneration by pleiotropic mechanisms, with no evidence of significant adverse events. Here, we revise the pathophysiology of DR to identify therapeutic targets for donor MSCs. Also, we discuss whether an MSC-based therapy could prevent or delay the onset of DR.
Collapse
Affiliation(s)
- Fernando Ezquer
- Institute of Science, Faculty of Medicine Clinica Alemana Universidad del Desarrollo, Lo Barnechea, Santiago, Chile
| | | | | | | |
Collapse
|
168
|
Wang B, Chandrasekera PC, Pippin JJ. Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes. Curr Diabetes Rev 2014; 10:131-45. [PMID: 24809394 PMCID: PMC4082168 DOI: 10.2174/1573399810666140508121012] [Citation(s) in RCA: 369] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 12/11/2022]
Abstract
Among the most widely used animal models in obesity-induced type 2 diabetes mellitus (T2DM) research are the congenital leptin- and leptin receptor-deficient rodent models. These include the leptin-deficient ob/ob mice and the leptin receptor-deficient db/db mice, Zucker fatty rats, Zucker diabetic fatty rats, SHR/N-cp rats, and JCR:LA-cp rats. After decades of mechanistic and therapeutic research schemes with these animal models, many species differences have been uncovered, but researchers continue to overlook these differences, leading to untranslatable research. The purpose of this review is to analyze and comprehensively recapitulate the most common leptin/leptin receptor-based animal models with respect to their relevance and translatability to human T2DM. Our analysis revealed that, although these rodents develop obesity due to hyperphagia caused by abnormal leptin/leptin receptor signaling with the subsequent appearance of T2DM-like manifestations, these are in fact secondary to genetic mutations that do not reflect disease etiology in humans, for whom leptin or leptin receptor deficiency is not an important contributor to T2DM. A detailed comparison of the roles of genetic susceptibility, obesity, hyperglycemia, hyperinsulinemia, insulin resistance, and diabetic complications as well as leptin expression, signaling, and other factors that confound translation are presented here. There are substantial differences between these animal models and human T2DM that limit reliable, reproducible, and translatable insight into human T2DM. Therefore, it is imperative that researchers recognize and acknowledge the limitations of the leptin/leptin receptor- based rodent models and invest in research methods that would be directly and reliably applicable to humans in order to advance T2DM management.
Collapse
Affiliation(s)
| | | | - John J Pippin
- Physicians Committee for Responsible Medicine, 5100 Wisconsin Avenue NW, Suite 400, Washington, DC 20016, USA.
| |
Collapse
|
169
|
Proteomics and diabetic nephropathy: what have we learned from a decade of clinical proteomics studies? J Nephrol 2014; 27:221-8. [PMID: 24567069 DOI: 10.1007/s40620-014-0044-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/15/2013] [Indexed: 02/02/2023]
Abstract
Diabetic nephropathy (DN) has become the most frequent cause of chronic kidney disease worldwide due to the constant increase of the incidence of type 2 diabetes mellitus in developed and developing countries. The understanding of the pathophysiological mechanisms of human diseases through a large-scale characterization of the protein content of a biological sample is the key feature of the proteomics approach to the study of human disease. We discuss the main results of over 10 years of tissue and urine proteomics studies applied to DN in order to understand how far we have come and how far we still have to go before obtaining a full comprehension of the molecular mechanisms involved in the pathogenesis of DN and identifying reliable biomarkers for accurate management of patients.
Collapse
|
170
|
Maniscalco JW, Rinaman L. Systemic leptin dose-dependently increases STAT3 phosphorylation within hypothalamic and hindbrain nuclei. Am J Physiol Regul Integr Comp Physiol 2014; 306:R576-85. [PMID: 24523344 DOI: 10.1152/ajpregu.00017.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Leptin released peripherally acts within the central nervous system (CNS) to modulate numerous physiological and behavioral functions. Histochemical identification of leptin-responsive CNS cells can reveal the specific cellular phenotypes and neural circuits through which leptin signaling modulates these functions. Leptin signaling elicits phosphorylation of signal transducer and activator of transcription 3 (pSTAT3), making pSTAT3-immunoreactivity (ir) a useful proxy for identifying leptin-responsive cells. Relatively low systemic doses of leptin (i.e., 10-130 μg/kg body wt) are sufficient to decrease food intake, inhibit gastric emptying, and increase sympathetic activity, but there are no histological reports of central pSTAT3-ir following leptin doses within this range. Considering this, we quantified central pSTAT3-ir in rats after intraperitoneal injections of leptin at doses ranging from 50 to 800 μg/kg body wt. Tissue sections were processed to identify pSTAT3-ir alone or in combination with immunolabeling for cocaine- and amphetamine-regulated transcript (CART), glucagon-like peptide-1 (GLP-1), prolactin-releasing peptide (PrRP), or dopamine-β-hydroxylase (DβH). Leptin doses as low as 50, 100, and 200 μg/kg body wt significantly increased the number of pSTAT3-ir cells in the arcuate nucleus of the hypothalamus (ARC), nucleus of the solitary tract (NTS), and ventromedial nucleus of the hypothalamus, respectively, and also led to robust pSTAT3 labeling in neural processes. The differential dose-dependent increases in pSTAT3-ir across brain regions provide new information regarding central leptin sensitivity. Within the ARC, CART-ir and pSTAT3-ir were often colocalized, consistent with evidence of leptin sensitivity in this neural population. Conversely, within the NTS, pSTAT3 only rarely colocalized with PrRP and/or DβH, and never with GLP-1.
Collapse
Affiliation(s)
- James W Maniscalco
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | |
Collapse
|
171
|
Abstract
Modern medicine wields the power to treat large numbers of diseases and injuries most of us would have died from just a hundred years ago, yet many of the most devastating diseases of our time are still untreatable. Chronic conditions of age such as cardiovascular disease, diabetes, osteoarthritis or Alzheimer's disease turn out to be of a complexity that may require transformative ideas and paradigms to understand and treat them. Parabiosis, which is characterised by a shared blood supply between two surgically connected animals, may just provide such a transformative experimental paradigm. Although forgotten and shunned now in many countries, it has contributed to major breakthroughs in tumour biology, endocrinology and transplantation research in the past century. Interestingly, recent studies from the United States and Britain are reporting stunning advances in stem cell biology and tissue regeneration using parabiosis between young and old mice, indicating a possible revival of this paradigm. We review here briefly the history of parabiosis and discuss its utility to study physiological and pathophysiological processes. We argue that parabiosis is a technique that should enjoy wider acceptance and application, and that policies should be revisited to allow its use in biomedical research.
Collapse
|
172
|
Uddin S, Hussain AR, Khan OS, Al-Kuraya KS. Role of dysregulated expression of leptin and leptin receptors in colorectal carcinogenesis. Tumour Biol 2014; 35:871-879. [PMID: 24014051 DOI: 10.1007/s13277-013-1166-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/29/2013] [Indexed: 12/13/2022] Open
Abstract
Leptin is a multifunctional adipose-derived cytokine that plays a critical role in bodyweight homeostasis and energy balance. Plasma level of leptin is an indicator of the amount of energy stored in adipose tissues. Recently, leptin and leptin receptor dysregulation have been reported in a variety of malignant cells including colorectal cancers (CRCs). There are growing evidence that leptin may be the link between obesity and CRC carcinogenesis. Leptin influence the growth and proliferation of cancer cells via activation of various growth and survival signaling pathways including JAK/STAT, PI3-kinase/AKT, and/or MAP kinases. In this review, current understanding of leptin and its receptor's roles in the pathogenesis of colonogenic cancer has been described.
Collapse
Affiliation(s)
- Shahab Uddin
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211, Saudi Arabia,
| | | | | | | |
Collapse
|
173
|
Tsou RC, Rak KS, Zimmer DJ, Bence KK. Improved metabolic phenotype of hypothalamic PTP1B-deficiency is dependent upon the leptin receptor. Mol Metab 2014; 3:301-12. [PMID: 24749060 PMCID: PMC3986631 DOI: 10.1016/j.molmet.2014.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/05/2014] [Accepted: 01/11/2014] [Indexed: 12/14/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a known regulator of central metabolic signaling, and mice with whole brain-, leptin receptor (LepRb) expressing cell-, or proopiomelanocortin neuron-specific PTP1B-deficiency are lean, leptin hypersensitive, and display improved glucose homeostasis. However, whether the metabolic effects of central PTP1B-deficiency are due to action within the hypothalamus remains unclear. Moreover, whether or not these effects are exclusively due to enhanced leptin signaling is unknown. Here we report that mice with hypothalamic PTP1B-deficiency (Nkx2.1-PTP1B(-/-)) display decreased body weight and adiposity on high-fat diet with no associated improvements in glucose tolerance. Consistent with previous reports, we find that hypothalamic deletion of the LepRb in mice (Nkx2.1-LepRb(-/-)) results in extreme hyperphagia and obesity. Interestingly, deletion of hypothalamic PTP1B and LepRb (Nkx2.1-PTP1B(-/-):LepRb(-/-)) does not rescue the hyperphagia or obesity of Nkx2.1-LepRb(-/-) mice, suggesting that hypothalamic PTP1B contributes to the central control of energy balance through a leptin receptor-dependent pathway.
Collapse
Key Words
- BAT, Brown adipose tissue
- CNTF, Ciliary neurotrophic factor
- Cre, Cre recombinase
- GTT, Glucose tolerance test
- HFD, High-fat diet
- HPA, hypothalamus–pituitary–adrenal
- Hypothalamus
- IL-6, Interleukin-6
- ITT, Insulin tolerance test
- JAK2, Janus kinase 2
- LepRb, Leptin receptor long form
- Leptin
- Nkx2.1, NK2 homeobox 1 protein or thyroid transcription factor-1
- Obesity
- PI3K, Phosphatidylinositol 3-kinase
- POMC, Proopiomelanocortin
- PTP1B, Protein tyrosine phosphatase 1B
- PTPs, Protein tyrosine phosphatases
- Phosphatase
- Prdm16, PR domain containing 16
- SHP2, Src homology 2 domain-containing protein tyrosine phosphatase
- STAT3, Signal transducer and activator of transcription 3
- UCP1, Uncoupling protein 1
- WAT, White adipose tissue
- db/db, Leptin receptor-deficient mice
- ob/ob, leptin-deficient mice
Collapse
Affiliation(s)
- Ryan C Tsou
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly S Rak
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Derek J Zimmer
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kendra K Bence
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
174
|
Neuhofer A, Wernly B, Leitner L, Sarabi A, Sommer NG, Staffler G, Zeyda M, Stulnig TM. An accelerated mouse model for atherosclerosis and adipose tissue inflammation. Cardiovasc Diabetol 2014; 13:23. [PMID: 24438079 PMCID: PMC3902066 DOI: 10.1186/1475-2840-13-23] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/21/2013] [Indexed: 01/09/2023] Open
Abstract
Background Obesity and particularly the metabolic syndrome, which is often associated with obesity, combine a major risk for type 2 diabetes and cardiovascular disease. Emerging evidence indicate obesity-associated subclinical inflammation primarily originating from adipose tissue as a common cause for type 2 diabetes and cardiovascular disease. However, a suitable and well-characterized mouse model to simultaneously study obesity-associated metabolic disorders and atherosclerosis is not available yet. Here we established and characterized a murine model combining diet-induced obesity and associated adipose tissue inflammation and metabolic deteriorations as well as atherosclerosis, hence reflecting the human situation of cardio-metabolic disease. Methods We compared a common high-fat diet with 0.15% cholesterol (HFC), and a high-fat, high-sucrose diet with 0.15% cholesterol (HFSC) fed to LDL receptor-deficient (LDLR-/-) mice. Insulin resistance, glucose tolerance, atherosclerotic lesion formation, hepatic lipid accumulation, and inflammatory gene expression in adipose tissue and liver were assessed. Results After 12–16 weeks, LDLR-/- mice fed HFSC or HFC developed significant diet-induced obesity, adipose tissue inflammation, insulin resistance, and impaired glucose tolerance compared to lean controls. Notably, HFSC-fed mice developed significantly higher adipose tissue inflammation in parallel with significantly elevated atherosclerotic lesion area compared to those on HFC. Moreover, LDLR-/- mice on HFSC showed increased insulin resistance and impaired glucose tolerance relative to those on HFC. After prolonged feeding (20 weeks), however, no significant differences in inflammatory and metabolic parameters as well as atherosclerotic lesion formation were detectable any more between LDLR-/- mice fed HFSC or HFC. Conclusion The use of high sucrose rather than more complex carbohydrates in high-fat diets significantly accelerates development of obesity-driven metabolic complications and atherosclerotic plaque formation parallel to obesity-induced adipose tissue inflammation in LDLR-/- mice. Hence LDLR-/- mice fed high-fat high-sucrose cholesterol-enriched diet appear to be a suitable and time-saving animal model for cardio-metabolic disease. Moreover our results support the suggested interrelation between adipose tissue inflammation and atherosclerotic plaque formation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Thomas M Stulnig
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
175
|
Di Yorio MP, Bilbao MG, Faletti AG. Neuropeptide Y regulates the leptin receptors in rat hypothalamic and pituitary explant cultures. ACTA ACUST UNITED AC 2014; 188:13-20. [DOI: 10.1016/j.regpep.2013.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/05/2013] [Accepted: 11/19/2013] [Indexed: 01/01/2023]
|
176
|
Heterozygosity for leptin receptor (fa) accelerates hepatic triglyceride accumulation without hyperphagia in Zucker rats. Obes Res Clin Pract 2013; 3:1-52. [PMID: 24345539 DOI: 10.1016/j.orcp.2008.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 09/17/2008] [Accepted: 10/14/2008] [Indexed: 11/20/2022]
Abstract
SUMMARY Leptin, ob gene product, and its receptors are involved in the regulation of peripheral lipid and glucose metabolism. The present study sought to clarify the functional role of peripheral leptin receptors in hepatic lipid metabolism through analysis of Zucker rats (fa/fa, +/fa), as complete or partial leptin receptor insufficiency models, respectively. In Zucker fa/fa rats, calorie intake, body weight, liver weight, hepatic triglyceride content and serum insulin, triglycerides, FFA, and leptin were elevated compared to lean littermates (+/+ rats). In contrast, Zucker +/fa rats showed no remarkable changes in calorie intake, body weight and serum FFA compared with +/+ rats. Nevertheless, hepatic triglyceride content, liver weight and other serum parameters such as insulin, triglyceride and leptin were higher than in +/+ rats. In the representation of fatty acids component in the liver, there were no changes in +/fa rats relative to +/+ rats. Thus, in Zucker +/fa rats, fatty liver may develop in the absence of hyperphagia, obesity or changes in hepatic fatty acid metabolism. These results indicate that partial insufficiency of leptin receptor rather than changes in serum insulin, triglyceride and leptin may contribute to the increase in hepatic triglyceride content observed in +/fa rats.:
Collapse
|
177
|
Elias CF. A critical view of the use of genetic tools to unveil neural circuits: the case of leptin action in reproduction. Am J Physiol Regul Integr Comp Physiol 2013; 306:R1-9. [PMID: 24196667 DOI: 10.1152/ajpregu.00444.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The remarkable development and refinement of the Cre-loxP system coupled with the nonstop production of new mouse models and virus vectors have impelled the growth of various fields of investigation. In this article, I will discuss the data collected using these genetic tools in our area of interest, giving specific emphasis to the identification of the neuronal populations that relay leptin action in reproductive physiology. A series of mouse models that allow manipulation of the leptin receptor gene have been generated. Of those, I will discuss the use of two models of leptin receptor gene reexpression (LepR(neo/neo) and LepR(loxTB/loxTB)) and one model of leptin signaling blockade (LepR(flox/flox)). I will also highlight the differences of using stereotaxic delivery of virus vectors expressing DNA-recombinases (Flp and Cre) and mouse models expressing Cre-recombinase. Our findings indicate that leptin action in the ventral premammillary nucleus is sufficient, but not required, for leptin action in reproduction and that leptin action in Kiss1 neurons arises after pubertal maturation; therefore, direct leptin signaling in Kiss1 neurons is neither required nor sufficient for the permissive action of leptin in pubertal development. It also became evident that the full action of leptin in the reproductive neuroendocrine axis requires the engagement of an integrated circuitry, yet to be fully unveiled.
Collapse
Affiliation(s)
- Carol F Elias
- Department of Molecular and Integrative Physiology and Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
178
|
Down-regulation of hypothalamic pro-opiomelanocortin (POMC) expression after weaning is associated with hyperphagia-induced obesity in JCR rats overexpressing neuropeptide Y. Br J Nutr 2013; 111:924-32. [DOI: 10.1017/s0007114513003061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We hypothesised that hypothalamic feeding-related neuropeptides are differentially expressed in obese-prone and lean-prone rats and trigger overeating-induced obesity. To test this hypothesis, in the present study, we measured energy balance and hypothalamic neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) mRNA expressions in male JCR:LA-cp rats. We compared, in independent cohorts, free-feeding obese-prone (Obese-FF) and lean-prone (Lean-FF) rats at pre-weaning (10 d old), weaning (21–25 d old) and early adulthood (8–12 weeks). A group of Obese-pair-feeding (PF) rats pair-fed to the Lean-FF rats was included in the adult cohort. The body weights of 10-d-old Obese-FF and Lean-FF pups were not significantly different. However, when the pups were shifted from dams' milk to solid food (weaning), the obese-prone rats exhibited more energy intake over the days than the lean-prone rats and higher body and fat pad weights and fasting plasma glucose, leptin, insulin and lipid levels. These differences were consistent with higher energy consumption and lower energy expenditure. In the young adult cohort, the differences between the Obese-FF and Lean-FF rats became more pronounced, yielding significant age effects on most of the parameters of the metabolic syndrome, which were reduced in the Obese-PF rats. The obese-prone rats displayed higher NPY expression than the lean-prone rats at pre-weaning and weaning, and the expression levels did not differ by age. In contrast, POMC expression exhibited significant age-by-genotype differences. At pre-weaning, there was no genotype difference in POMC expression, but in the weanling cohort, obese-prone pups exhibited lower POMC expression than the lean-prone rats. This genotype difference became more pronounced at adulthood. Overall, the development of hyperphagia-induced obesity in obese-prone JCR rats is related to POMC expression down-regulation in the presence of established NPY overexpression.
Collapse
|
179
|
Stamatikos AD, Paton CM. Role of stearoyl-CoA desaturase-1 in skeletal muscle function and metabolism. Am J Physiol Endocrinol Metab 2013; 305:E767-E775. [PMID: 23941875 DOI: 10.1152/ajpendo.00268.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Stearoyl-CoA desaturase-1 (SCD1) converts saturated fatty acids (SFA) into monounsaturated fatty acids and is necessary for proper liver, adipose tissue, and skeletal muscle lipid metabolism. While there is a wealth of information regarding SCD1 expression in the liver, research on its effect in skeletal muscle is scarce. Furthermore, the majority of information about its role is derived from global knockout mice, which are known to be hypermetabolic and fail to accumulate SCD1's substrate, SFA. We now know that SCD1 expression is important in regulating lipid bilayer fluidity, increasing triglyceride formation, and enabling lipogenesis and may protect against SFA-induced lipotoxicity. Exercise has been shown to increase SCD1 expression, which may contribute to an increase in intramyocellular triglyceride at the expense of free fatty acids and diacylglycerol. This review is intended to define the role of SCD1 in skeletal muscle and discuss the potential benefits of its activity in the context of lipid metabolism, insulin sensitivity, exercise training, and obesity.
Collapse
|
180
|
Gomes AC, Falcão-Pires I, Pires AL, Brás-Silva C, Leite-Moreira AF. Rodent models of heart failure: an updated review. Heart Fail Rev 2013; 18:219-49. [PMID: 22446984 DOI: 10.1007/s10741-012-9305-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Heart failure (HF) is one of the major health and economic burdens worldwide, and its prevalence is continuously increasing. The study of HF requires reliable animal models to study the chronic changes and pharmacologic interventions in myocardial structure and function and to follow its progression toward HF. Indeed, during the past 40 years, basic and translational scientists have used small animal models to understand the pathophysiology of HF and find more efficient ways of preventing and managing patients suffering from congestive HF (CHF). Each species and each animal model has advantages and disadvantages, and the choice of one model over another should take them into account for a good experimental design. The aim of this review is to describe and highlight the advantages and drawbacks of some commonly used HF rodents models, including both non-genetically and genetically engineered models, with a specific subchapter concerning diastolic HF models.
Collapse
Affiliation(s)
- A C Gomes
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
| | | | | | | | | |
Collapse
|
181
|
Feng H, Zheng L, Feng Z, Zhao Y, Zhang N. The role of leptin in obesity and the potential for leptin replacement therapy. Endocrine 2013; 44:33-9. [PMID: 23274948 DOI: 10.1007/s12020-012-9865-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/15/2012] [Indexed: 12/13/2022]
Abstract
Leptin (from the Greek word "lepto'' meaning "thin") is a 167-amino acid peptide hormone encoded by the obesity (ob) gene and secreted by white adipocytes. Blood leptin concentrations are increased in obese individuals. Leptin is a satiety hormone that provides negative feedback to the hypothalamus, controlling appetite and energy expenditure. Leptin binds to presynaptic GABAergic neurons to produce its effect, raising the distinct possibility that GABAergic axon terminals are the ultimate subcellular site of action for its effects. Released into the circulation, leptin crosses the blood-brain barrier and binds to leptin receptors, influencing the activity of various hypothalamic neurons, as well as encoding orexigenic and anorexigenic neuropeptides. Moreover, leptin affects a wide range of metabolic functions in the peripheral tissue. In this review, we discuss some physiologic functions of leptin, including effects on obesity and some effects of leptin replacement therapy.
Collapse
Affiliation(s)
- Helin Feng
- Department of Orthopedics, The Fourth Affiliated Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, 050011, China.
| | | | | | | | | |
Collapse
|
182
|
Yonekura S, Tokutake Y, Hirota S, Rose MT, Katoh K, Aso H. Proliferating bovine intramuscular preadipocyte cells synthesize leptin. Domest Anim Endocrinol 2013; 45:33-7. [PMID: 23623201 DOI: 10.1016/j.domaniend.2013.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 11/16/2022]
Abstract
Leptin is thought to be not only a satiety factor but also a stimulator of angiogenesis. We examined leptin, PPARγ2, and vascular endothelial growth factor (VEGF) expression in bovine intramuscular preadipocyte (BIP) cells during proliferation. The cells were seeded at 0.85 × 10(4) cells/cm(2) and collected every day until the fifth day after passage. Leptin mRNA was present in the cells between days 2 and 4, as indicated by RT-PCR analysis. Western blot analysis showed a band for leptin at approximately 16 kDa on all of the days during growth, and the cytoplasmic concentration of leptin was highest on day 2 and decreased gradually thereafter. A PPARγ2 band at approximately 54 kDa was also observed on all days. The concentration was highest on day 2 and decreased thereafter, which is similar to the expression pattern of leptin. In constant, the expression level of VEGF protein did not change while in culture. We have demonstrated that BIP cells can synthesize both leptin and PPARγ2, with maximal synthesis occurring during maximal proliferation. Given the role of leptin in angiogenesis, we speculate that leptin is involved in the neovascularization of adipose tissue, because new organization of adipose tissue requires the growth of new blood vessels.
Collapse
Affiliation(s)
- S Yonekura
- Department of Animal Physiology, Faculty of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan.
| | | | | | | | | | | |
Collapse
|
183
|
Moon HS, Dalamaga M, Kim SY, Polyzos SA, Hamnvik OP, Magkos F, Paruthi J, Mantzoros CS. Leptin's role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocr Rev 2013; 34:377-412. [PMID: 23475416 PMCID: PMC3660716 DOI: 10.1210/er.2012-1053] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Leptin is an adipocyte-secreted hormone that has been proposed to regulate energy homeostasis as well as metabolic, reproductive, neuroendocrine, and immune functions. In the context of open-label uncontrolled studies, leptin administration has demonstrated insulin-sensitizing effects in patients with congenital lipodystrophy associated with relative leptin deficiency. Leptin administration has also been shown to decrease central fat mass and improve insulin sensitivity and fasting insulin and glucose levels in HIV-infected patients with highly active antiretroviral therapy (HAART)-induced lipodystrophy, insulin resistance, and leptin deficiency. On the contrary, the effects of leptin treatment in leptin-replete or hyperleptinemic obese individuals with glucose intolerance and diabetes mellitus have been minimal or null, presumably due to leptin tolerance or resistance that impairs leptin action. Similarly, experimental evidence suggests a null or a possibly adverse role of leptin treatment in nonlipodystrophic patients with nonalcoholic fatty liver disease. In this review, we present a description of leptin biology and signaling; we summarize leptin's contribution to glucose metabolism in animals and humans in vitro, ex vivo, and in vivo; and we provide insights into the emerging clinical applications and therapeutic uses of leptin in humans with lipodystrophy and/or diabetes.
Collapse
Affiliation(s)
- Hyun-Seuk Moon
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Kontos A, de Menezes RC, Ootsuka Y, Blessing W. Brown adipose tissue thermogenesis precedes food intake in genetically obese Zucker (fa/fa) rats. Physiol Behav 2013; 118:129-37. [PMID: 23685234 DOI: 10.1016/j.physbeh.2013.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 03/22/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
In Sprague-Dawley rats, brown adipose tissue (BAT) thermogenesis occurs in an episodic ultradian manner (BAT on-periods) as part of the basic rest-activity cycle (BRAC). Eating occurs approximately 15min after the onset of BAT on-periods. Zucker obese (fa/fa) rats eat larger less frequent meals than control rats. In chronically instrumented conscious unrestrained Zucker obese rats we examined ultradian fluctuations in BAT, body and brain temperatures, and the relation between BAT temperature and eating. The interval between BAT temperature peaks for the 12hour dark phase was 121±3 (mean±SE) min for Zucker obese rats and 91±3min for control lean rats (p<0.01). Corresponding values for the light phase were 148±6 and 118±4min (p<0.01). Mean BAT and body temperatures were lower in Zucker obese rats, in comparison with lean controls, during both BAT on-periods and BAT off-periods. Mean brain temperatures were lower during BAT off-periods. Amplitudes of the BRAC-related increases in all 3 temperatures were greater in the Zucker obese rats. Meal onset in Zucker obese rats commenced 15±1min after the onset of a BAT on-period, not significantly different for the delay observed in lean control rats (18±1min, p>0.05). Thus periods between eating are increased in the Zucker obese rats, but the action of leptin, absent in these animals, is not crucial for the timing of eating in relation to increases in BAT and body temperature. Lack of the normal excitatory action of leptin on brain-regulated BAT sympathetic discharge could also contribute to lower BAT thermogenesis in Zucker obese rats.
Collapse
Affiliation(s)
- Anna Kontos
- Centre for Neuroscience, Department of Human Physiology, Flinders University, Adelaide, SA 5042, Australia
| | | | | | | |
Collapse
|
185
|
Schmidt BA, Horsley V. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development 2013; 140:1517-27. [PMID: 23482487 DOI: 10.1242/dev.087593] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acute wound healing in the skin involves the communication of multiple cell types to coordinate keratinocyte and fibroblast proliferation and migration for epidermal and dermal repair. Many studies have focused on the interplay between hematopoietic cells, keratinocytes and fibroblasts during skin wound healing, yet the possible roles for other cell types within the skin, such as intradermal adipocytes, have not been investigated during this process. Here, we identify that adipocyte lineage cells are activated and function during acute skin wound healing. We find that adipocyte precursor cells proliferate and mature adipocytes repopulate skin wounds following inflammation and in parallel with fibroblast migration. Functional analysis of mice with defects in adipogenesis demonstrates that adipocytes are necessary for fibroblast recruitment and dermal reconstruction. These data implicate adipocytes as a key component of the intercellular communication that mediates fibroblast function during skin wound healing.
Collapse
Affiliation(s)
- Barbara A Schmidt
- Yale University, Department of Molecular, Cellular and Developmental Biology, New Haven, CT 06520, USA
| | | |
Collapse
|
186
|
Selective deletion of leptin receptors in adult hippocampus induces depression-related behaviours. Int J Neuropsychopharmacol 2013; 16:857-67. [PMID: 22932068 PMCID: PMC3612133 DOI: 10.1017/s1461145712000703] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Previous studies have demonstrated that leptin and its receptors (LepRb) in the central nervous system play an important role in regulating depression- and anxiety-related behaviours. However, the physiological functions of LepRb in specific brain regions for mediating different emotional behaviours remain to be defined. In this study, we examined the behavioural effects of LepRb ablation in the adult hippocampus using a series of behavioural paradigms for assessing depression- and anxiety-related behaviours. Targeted deletion of LepRb was achieved using the Cre/loxP site-specific recombination system through bilateral stereotaxic delivery of an adeno-associated virus expressing Cre-recombinase (AAV-Cre) into the dentate gyrus of adult mice homozygous for a floxed leptin receptor allele. AAV-Cre-mediated deletion of the floxed region of LepRb was detected 2 wk after injection. In accordance with this, leptin-stimulated phosphorylation of Akt was attenuated in the hippocampus of AAV-Cre injected mice. Mice injected with AAV-Cre displayed normal locomotor activity and anxiety-like behaviour, as determined in the elevated plus-maze, light-dark box and open field tests, but showed increased depression-like behaviours in the tail suspension, saccharin preference and learned helplessness tests. Taken together, these data suggest that deletion of LepRb in the adult hippocampus is sufficient to induce depression-like behaviours. Our results support the view that leptin signalling in the hippocampus may be essential for positive mood states and active coping to stress.
Collapse
|
187
|
Abstract
Leptin is secreted into the bloodstream by adipocytes and is required for the maintenance of energy homeostasis and body weight. Leptin deficiency or genetic defects in the components of the leptin signaling pathways cause obesity. Leptin controls energy balance and body weight mainly through leptin receptor b (LEPRb)-expressing neurons in the brain, particularly in the hypothalamus. These LEPRb-expressing neurons function as the first-order neurons that project to the second-order neurons located within and outside the hypothalamus, forming a neural network that controls the energy homeostasis and body weight. Multiple factors, including inflammation and endoplasmic reticulum (ER) stress, contribute to leptin resistance. Leptin resistance is the key risk factor for obesity. This review is focused on recent advance about leptin action, leptin signaling, and leptin resistance.
Collapse
|
188
|
Thanos PK, Robison LS, Robinson JK, Michaelides M, Wang GJ, Volkow ND. Obese rats with deficient leptin signaling exhibit heightened sensitivity to olfactory food cues. Synapse 2013; 67:171-8. [PMID: 23172699 PMCID: PMC3578169 DOI: 10.1002/syn.21627] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 11/13/2012] [Indexed: 01/23/2023]
Abstract
The Zucker rat is used as a model of genetic obesity, and while Zucker rats have been well studied for their reduced sensitivity to leptin signaling and subsequent weight gain, little work has examined their responses to environmental signals that are associated with "hedonic" feeding. This study evaluated the effects of a high-fat food olfactory cue (bacon) in stimulating nose-poke food-seeking behavior on first exposure (novel) and after a period of access for consumption (familiar) in lean and obese Zucker rats at either 4 or 12 months of age, and under ad-lib fed (unrestricted; U) or chronically food-restricted (70% of ad-lib; R) conditions. Baseline nose-poke levels were comparable amongst all groups. At 4 months of age, only ObU rats displayed increased behavioral activation to familiar food cues. Twelve-month-old Ob rats, regardless of diet, exhibited substantially greater food-seeking behavior when exposed to both the novel and familiar olfactory cues. A strong positive correlation between body weight and nose-poke entries for the familiar food cue was observed at both ages, while this correlation for the novel food cue was significant in 12-month-old rats only. Similarly, there were strong positive correlations between food intake and poke entries for the familiar food cue was observed at both ages, while this correlation for the novel food cue was significant in 12-month-old rats only. Although it is possible that differences in olfactory sensitivity contribute to these behavioral effects, our findings support the interactions between food intake, obesity, and food-seeking behavior and are consistent with leptin inhibiting the brain's reactivity to food cues and suggest that the enhanced sensitivity to the food cues with leptin deficiency is likely to contribute to overeating and weight gain.
Collapse
Affiliation(s)
- Panayotis K Thanos
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
189
|
Donovan MH, Tecott LH. Serotonin and the regulation of mammalian energy balance. Front Neurosci 2013; 7:36. [PMID: 23543912 PMCID: PMC3608917 DOI: 10.3389/fnins.2013.00036] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/03/2013] [Indexed: 01/17/2023] Open
Abstract
Maintenance of energy balance requires regulation of the amount and timing of food intake. Decades of experiments utilizing pharmacological and later genetic manipulations have demonstrated the importance of serotonin signaling in this regulation. Much progress has been made in recent years in understanding how central nervous system (CNS) serotonin systems acting through a diverse array of serotonin receptors impact feeding behavior and metabolism. Particular attention has been paid to mechanisms through which serotonin impacts energy balance pathways within the hypothalamus. How upstream factors relevant to energy balance regulate the release of hypothalamic serotonin is less clear, but work addressing this issue is underway. Generally, investigation into the central serotonergic regulation of energy balance has had a predominantly “hypothalamocentric” focus, yet non-hypothalamic structures that have been implicated in energy balance regulation also receive serotonergic innervation and express multiple subtypes of serotonin receptors. Moreover, there is a growing appreciation of the diverse mechanisms through which peripheral serotonin impacts energy balance regulation. Clearly, the serotonergic regulation of energy balance is a field characterized by both rapid advances and by an extensive and diverse set of central and peripheral mechanisms yet to be delineated.
Collapse
Affiliation(s)
- Michael H Donovan
- Department of Psychiatry, University of California San Francisco CA, USA
| | | |
Collapse
|
190
|
Vanevski F, Xu B. Molecular and neural bases underlying roles of BDNF in the control of body weight. Front Neurosci 2013; 7:37. [PMID: 23519010 PMCID: PMC3604627 DOI: 10.3389/fnins.2013.00037] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 03/03/2013] [Indexed: 01/05/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a potent regulator of neuronal development and synaptic plasticity that is fundamental to neural circuit formation and cognition. It is also involved in the control of appetite and body weight, with mutations in the genes for BDNF and its receptor, TrkB, resulting in remarkable hyperphagia and severe obesity in humans and mice. Recent studies have made significant progress in elucidating the source, action sites, and regulatory pathways of BDNF with regard to its role in the control of energy homeostasis, and have shed light on the relationships between BDNF and other molecules involved in the control of body weight. Here we provide a comprehensive review of evidence from pharmacological, genetic, and mechanistic studies, linking BDNF to the control of body weight. This review also aims to organize the main findings on this subject into a more refined framework and to discuss the future research directions necessary to advance the field.
Collapse
Affiliation(s)
- Filip Vanevski
- Department of Pharmacology and Physiology, Georgetown University Medical Center Washington, DC, USA
| | | |
Collapse
|
191
|
Hypertension in metabolic syndrome: vascular pathophysiology. Int J Hypertens 2013; 2013:230868. [PMID: 23573411 PMCID: PMC3615624 DOI: 10.1155/2013/230868] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/05/2013] [Accepted: 02/13/2013] [Indexed: 12/12/2022] Open
Abstract
METABOLIC SYNDROME IS A CLUSTER OF METABOLIC AND CARDIOVASCULAR SYMPTOMS: insulin resistance (IR), obesity, dyslipemia. Hypertension and vascular disorders are central to this syndrome. After a brief historical review, we discuss the role of sympathetic tone. Subsequently, we examine the link between endothelial dysfunction and IR. NO is involved in the insulin-elicited capillary vasodilatation. The insulin-signaling pathways causing NO release are different to the classical. There is a vasodilatory pathway with activation of NO synthase through Akt, and a vasoconstrictor pathway that involves the release of endothelin-1 via MAPK. IR is associated with an imbalance between both pathways in favour of the vasoconstrictor one. We also consider the link between hypertension and IR: the insulin hypothesis of hypertension. Next we discuss the importance of perivascular adipose tissue and the role of adipokines that possess vasoactive properties. Finally, animal models used in the study of vascular function of metabolic syndrome are reviewed. In particular, the Zucker fatty rat and the spontaneously hypertensive obese rat (SHROB). This one suffers macro- and microvascular malfunction due to a failure in the NO system and an abnormally high release of vasoconstrictor prostaglandins, all this alleviated with glitazones used for metabolic syndrome therapy.
Collapse
|
192
|
IMAI TOSHIO, CHO YOUNGMAN, TAKAHASHI MAMI, KITAHASHI TSUKASA, TAKAMI SHIGEAKI, NISHIKAWA AKIYOSHI, OGAWA KUMIKO. High susceptibility of heterozygous (+/fa) lean Zucker rats to 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis. Oncol Rep 2013; 29:1914-22. [DOI: 10.3892/or.2013.2326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/22/2013] [Indexed: 11/06/2022] Open
|
193
|
Harcourt BE, Penfold SA, Forbes JM. Coming full circle in diabetes mellitus: from complications to initiation. Nat Rev Endocrinol 2013; 9:113-23. [PMID: 23296171 DOI: 10.1038/nrendo.2012.236] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glycaemic control, reduction of blood pressure using agents that block the renin-angiotensin system and control of dyslipidaemia are the major strategies used in the clinical management of patients with diabetes mellitus. Each of these approaches interrupts a number of pathological pathways, which directly contributes to the vascular complications of diabetes mellitus, including renal disease, blindness, neuropathy and cardiovascular disease. However, research published over the past few years has indicated that many of the pathological pathways important in the development of the vascular complications of diabetes mellitus are equally relevant to the initiation of diabetes mellitus itself. These pathways include insulin signalling, generation of cellular energy, post-translational modifications and redox imbalances. This Review will examine how the development of diabetes mellitus has come full circle from initiation to complications and suggests that the development of diabetes mellitus and the progression to chronic complications both require the same mechanistic triggers.
Collapse
Affiliation(s)
- Brooke E Harcourt
- Glycation and Diabetes Complications, Mater Medical Research Institute, Raymond Terrace, South Brisbane, QLD, Australia
| | | | | |
Collapse
|
194
|
Abstract
It has long been known that there is a genetic component to obesity, and that characterizing this underlying factor would likely offer the possibility of better intervention in the future. Monogenic obesity has proved to be relatively straightforward, with a combination of linkage analysis and mouse models facilitating the identification of multiple genes. In contrast, genome-wide association studies have successfully revealed a variety of genetic loci associated with the more common form of obesity, allowing for very strong consensus on the underlying genetic architecture of the phenotype for the first time. Although a number of significant findings have been made, it appears that very little of the apparent heritability of body mass index has actually been explained to date. New approaches for data analyses and advances in technology will be required to uncover the elusive missing heritability, and to aid in the identification of the key causative genetic underpinnings of obesity.
Collapse
Affiliation(s)
- Qianghua Xia
- Division of Human Genetics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | | |
Collapse
|
195
|
Basu S, Nachat-Kappes R, Caldefie-Chézet F, Vasson MP. Eicosanoids and adipokines in breast cancer: from molecular mechanisms to clinical considerations. Antioxid Redox Signal 2013; 18:323-60. [PMID: 22746381 DOI: 10.1089/ars.2011.4408] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic inflammation is one of the foremost risk factors for different types of malignancies, including breast cancer. Additional risk factors of this pathology in postmenopausal women are weight gain, obesity, estrogen secretion, and an imbalance in the production of adipokines, such as leptin and adiponectin. Various signaling products of transcription factor, nuclear factor-kappaB, in particular inflammatory eicosanoids, reactive oxygen species (ROS), and cytokines, are thought to be involved in chronic inflammation-induced cancer. Together, these key components have an influence on inflammatory reactions in malignant tissue damage when their levels are deregulated endogenously. Prostaglandins (PGs) are well recognized in inflammation and cancer, and they are solely biosynthesized through cyclooxygenases (COXs) from arachidonic acid. Concurrently, ROS give rise to bioactive isoprostanes from arachidonic acid precursors that are also involved in acute and chronic inflammation, but their specific characteristics in breast cancer are less demonstrated. Higher aromatase activity, a cytochrome P-450 enzyme, is intimately connected to tumor growth in the breast through estrogen synthesis, and is interrelated to COXs that catalyze the formation of both inflammatory and anti-inflammatory PGs such as PGE(2), PGF(2α), PGD(2), and PGJ(2) synchronously under the influence of specific mediators and downstream enzymes. Some of the latter compounds upsurge the intracellular cyclic adenosine monophosphate concentration and appear to be associated with estrogen synthesis. This review discusses the role of COX- and ROS-catalyzed eicosanoids and adipokines in breast cancer, and therefore ranges from their molecular mechanisms to clinical aspects to understand the impact of inflammation.
Collapse
Affiliation(s)
- Samar Basu
- Biochemistry, Molecular Biology and Nutrition, University of Auvergne, Clermont-Ferrand, France.
| | | | | | | |
Collapse
|
196
|
Li M, Ikehara S. Bone marrow stem cell as a potential treatment for diabetes. J Diabetes Res 2013; 2013:329596. [PMID: 23671865 PMCID: PMC3647566 DOI: 10.1155/2013/329596] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/08/2013] [Indexed: 01/01/2023] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic diseases in which a person has high blood glucose levels resulting from defects in insulin secretion and insulin action. The chronic hyperglycemia damages the eyes, kidneys, nerves, heart, and blood vessels. Curative therapies mainly include diet, insulin, and oral hypoglycemic agents. However, these therapies fail to maintain blood glucose levels in the normal range all the time. Although pancreas or islet-cell transplantation achieves better glucose control, a major obstacle is the shortage of donor organs. Recently, research has focused on stem cells which can be classified into embryonic stem cells (ESCs) and tissue stem cells (TSCs) to generate functional β cells. TSCs include the bone-marrow-, liver-, and pancreas-derived stem cells. In this review, we focus on treatment using bone marrow stem cells for type 1 and 2 DM.
Collapse
Affiliation(s)
- Ming Li
- Department of Stem Cell Disorders, Kansai Medical University, Moriguchi, Osaka 570-8506, Japan
| | - Susumu Ikehara
- Department of Stem Cell Disorders, Kansai Medical University, Moriguchi, Osaka 570-8506, Japan
- *Susumu Ikehara:
| |
Collapse
|
197
|
Kong LL, Wu H, Cui WP, Zhou WH, Luo P, Sun J, Yuan H, Miao LN. Advances in murine models of diabetic nephropathy. J Diabetes Res 2013; 2013:797548. [PMID: 23844375 PMCID: PMC3697778 DOI: 10.1155/2013/797548] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 05/21/2013] [Indexed: 12/20/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the microvascular complications of both type 1 and type 2 diabetes, which is also associated with a poor life expectancy of diabetic patients. However, the pathogenesis of DN is still unclear. Thus, it is of great use to establish appropriate animal models of DN for doing research on pathogenesis and developing novel therapeutic strategies. Although a large number of murine models of DN including artificially induced, spontaneous, and genetically engineered (knockout and transgenic) animal models have been developed, none of them develops renal changes sufficiently reflecting those seen in humans. Here we review the identified murine models of DN from the aspects of genetic background, type of diabetes, method of induction, gene deficiency, animal age and gender, kidney histopathology, and phenotypic alterations in the hope of enhancing our comprehension of genetic susceptibility and molecular mechanisms responsible for this disease and providing new clues as to how to choose appropriate animal models of DN.
Collapse
Affiliation(s)
- Li-li Kong
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Hao Wu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wen-peng Cui
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wen-hua Zhou
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jing Sun
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Hang Yuan
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Li-ning Miao
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
- *Li-ning Miao:
| |
Collapse
|
198
|
|
199
|
Leptin and leucine synergistically regulate protein metabolism in C2C12 myotubes and mouse skeletal muscles. Br J Nutr 2012; 110:256-64. [PMID: 23211060 DOI: 10.1017/s0007114512004849] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Leucine and leptin play important roles in regulating protein synthesis and degradation in skeletal muscles in vitro and in vivo. However, the objective of the present study was to determine whether leptin and leucine function synergistically in regulating protein metabolism of skeletal muscles. In the in vitro experiment, C2C12 myotubes were cultured for 2 h in the presence of 5 mm-leucine and/or 50 ng/ml of leptin. In the in vivo experiment, C57BL/6 and ob/ob mice were randomly assigned to be fed a non-purified diet supplemented with 3 % L-leucine or 2·04 % L-alanine (isonitrogenous control) for 14 d. Ob/ob mice were injected intraperitoneally with sterile PBS or recombinant mouse leptin (0·1 μg/g body weight) for 14 d. In C57BL/6 mice, dietary leucine supplementation increased (P< 0·05) plasma leptin, leptin receptor expression and protein synthesis in skeletal muscles, but reduced (P< 0·05) plasma urea and protein degradation in skeletal muscles. Dietary leucine supplementation and leptin injection increased the relative weight of the gastrocnemius and soleus muscles in ob/ob mice. Moreover, leucine and leptin treatments stimulated (P< 0·05) protein synthesis and inhibited (P< 0·05) protein degradation in C2C12 myotubes and skeletal muscles of ob/ob mice. There were interactions (P< 0·05) between the leucine and leptin treatments with regard to protein metabolism in C2C12 myotubes and soleus muscles of ob/ob mice but not in the gastrocnemius muscles of ob/ob mice. Collectively, these results suggest that leptin and leucine synergistically regulate protein metabolism in skeletal muscles both in vitro and in vivo.
Collapse
|
200
|
Larco DO, Cruthirds DF, Weiser MJ, Handa RJ, Wu TJ. The effect of chronic immobilization stress on leptin signaling in the ovariectomized (OVX) rat. Endocrine 2012; 42:717-25. [PMID: 22706604 DOI: 10.1007/s12020-012-9716-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
Abstract
Previous studies have shown that both 17β-estradiol (E2) treatment and chronic stress may attenuate post-OVX weight gain in the female rat. However, the interaction between E2 and stress is unclear. This study examined the effect of E2 treatment and chronic immobilization stress on body weight. Adult OVX Sprague-Dawley rats were randomly assigned to one of four treatment groups in a 2X2 factorial design examining hormone treatment [vehicle (VEH) or E2, sc] and stress (no stress vs stress 60 min/day for 22 days). After 22 days, E2 significantly inhibited weight gain and food intake in OVX rats. In contrast, chronic stress reduced body weight only in control OVX animals but did not affect food intake. E2 reduced circulating leptin levels in non-stressed animals, but not in animals subjected to chronic immobilization. Western blot analysis indicated that E2 treatment increased leptin receptor (Ob-Rb) expression in the medial basal hypothalamus (MBH); however, this treatment also increased suppressor of cytokine signaling 3 (SOCS3), which is an inhibitor of leptin signaling. Chronic immobilization stress blunted the E2-induced increase in Ob-Rb and SOCS3 levels. These results suggest that chronic stress counteracts E2 effects on leptin signaling in the MBH without altering body weight.
Collapse
Affiliation(s)
- Darwin O Larco
- Program in Molecular and Cellular Biology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road # B2015, Bethesda, MD 20814, USA
| | | | | | | | | |
Collapse
|