151
|
The actin cytoskeleton as a barrier to virus infection of polarized epithelial cells. Viruses 2011; 3:2462-77. [PMID: 22355449 PMCID: PMC3280511 DOI: 10.3390/v3122462] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 12/07/2011] [Accepted: 12/15/2011] [Indexed: 12/12/2022] Open
Abstract
Many diverse viruses target a polarized epithelial monolayer during host invasion. The polarized epithelium is adept at restricting the movement of solutes, ions, macromolecules, and pathogens across the mucosa. This regulation can be attributed to the presence of a junctional complex between adjacent cells and to an intricate network of actin filaments that provides support to the subapical membrane and stabilizes intercellular junctions. It is therefore not surprising that many viruses have evolved highly varied strategies to dissolve or modulate the cortical actin meshwork to promote infection of polarized cells. In this review, we will discuss the cell biological properties of the actin cytoskeleton in polarized epithelial cells and review the known mechanisms utilized by viral pathogens to manipulate this system in order to facilitate their infection.
Collapse
|
152
|
Genetic analyses reveal differences in the VP7 and VP4 antigenic epitopes between human rotaviruses circulating in Belgium and rotaviruses in Rotarix and RotaTeq. J Clin Microbiol 2011; 50:966-76. [PMID: 22189107 DOI: 10.1128/jcm.05590-11] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Two live-attenuated rotavirus group A (RVA) vaccines, Rotarix (G1P[8]) and RotaTeq (G1-G4, P[8]), have been successfully introduced in many countries worldwide, including Belgium. The parental RVA strains used to generate the vaccines were isolated more than 20 years ago in France (G4 parental strain in RotaTeq) and the United States (all other parental strains). At present, little is known about the relationship between currently circulating human RVAs and the vaccine strains. In this study, we determined sequences for the VP7 and VP4 outer capsid proteins of representative G1P[8], G2P[4], G3P[8], G4P[8], G9P[8], and G12P[8] RVAs circulating in Belgium during 2007 to 2009. The analyses showed that multiple amino acid differences existed between the VP7 and VP4 antigenic epitopes of the vaccine viruses and the Belgian isolates, regardless of their G and P genotypes. However, the highest variability was observed among the circulating G1P[8] RVA strains and the G1 and P[8] components of both RVA vaccines. In particular, RVA strains of the P[8] lineage 4 (OP354-like) showed a significant number of amino acid differences with the P[8] VP4 of both vaccines. In addition, the circulating Belgian G3 RVA strains were found to possibly possess an extra N-linked glycosylation site compared to the G3 RVA vaccine strain of RotaTeq. These results indicate that the antigenic epitopes of RVA strains contained in the vaccines differ substantially from those of the currently circulating RVA strains in Belgium. Over time, these differences might result in selection for strains that escape the RVA neutralizing-antibody pressure induced by vaccines.
Collapse
|
153
|
Didsbury A, Wang C, Verdon D, Sewell MA, McIntosh JD, Taylor JA. Rotavirus NSP4 is secreted from infected cells as an oligomeric lipoprotein and binds to glycosaminoglycans on the surface of non-infected cells. Virol J 2011; 8:551. [PMID: 22185400 PMCID: PMC3305486 DOI: 10.1186/1743-422x-8-551] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/20/2011] [Indexed: 12/22/2022] Open
Abstract
Background Nonstructural glycoprotein 4 (NSP4) encoded by rotavirus is the only viral protein currently believed to function as an enterotoxin. NSP4 is synthesized as an intracellular transmembrane glycoprotein and as such is essential for virus assembly. Infection of polarized Caco-2 cells with rotavirus also results in the secretion of glycosylated NSP4 apparently in a soluble form despite retention of its transmembrane domain. We have examined the structure, solubility and cell-binding properties of this secreted form of NSP4 to further understand the biochemical basis for its enterotoxic function. We show here that NSP4 is secreted as discrete detergent-sensitive oligomers in a complex with phospholipids and demonstrate that this secreted form of NSP4 can bind to glycosaminoglycans present on the surface of a range of different cell types. Methods NSP4 was purified from the medium of infected cells after ultracentrifugation and ultrafiltration by successive lectin-affinity and ion exchange chromatography. Oligomerisation of NSP4 was examined by density gradient centrifugation and chemical crosslinking and the lipid content was assessed by analytical thin layer chromatography and flame ionization detection. Binding of NSP4 to various cell lines was measured using a flow cytometric-based assay. Results Secreted NSP4 formed oligomers that contained phospholipid but dissociated to a dimeric species in the presence of non-ionic detergent. The purified glycoprotein binds to the surface of various non-infected cells of distinct lineage. Binding of NSP4 to HT-29, a cell line of intestinal origin, is saturable and independent of divalent cations. Complementary biochemical approaches reveal that NSP4 binds to sulfated glycosaminoglycans on the plasma membrane. Conclusion Our study is the first to analyze an authentic (i.e. non-recombinant) form of NSP4 that is secreted from virus-infected cells. Despite retention of the transmembrane domain, secreted NSP4 remains soluble in an aqueous environment as an oligomeric lipoprotein that can bind to various cell types via an interaction with glycosaminoglycans. This broad cellular tropism exhibited by NSP4 may have implications for the pathophysiology of rotavirus disease.
Collapse
Affiliation(s)
- Alicia Didsbury
- School of Biological Sciences, University of Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
154
|
Chacko AR, Jeyakanthan J, Ueno G, Sekar K, Rao CD, Dodson EJ, Suguna K, Read RJ. A new pentameric structure of rotavirus NSP4 revealed by molecular replacement. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 68:57-61. [DOI: 10.1107/s0907444911049705] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 11/21/2011] [Indexed: 11/10/2022]
|
155
|
Abstract
Diarrhea, a disease of poverty and poor sanitation, kills an estimated two million children each year. Oral rehydration therapy is a very simple and inexpensive treatment that has significantly reduced mortality from secretory diarrhea caused by rotavirus, cholera and enterotoxigenic Escherichia coli. The efficacy and adoption of oral rehydration therapy would be enhanced by a drug that reduces fluid loss associated with these diseases and alleviates disease symptoms. Secretion and absorption by the intestine offer a number of potential drug targets to reduce fluid loss. Among these, the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is the most attractive because it is the primary driver of secretion in cases of diarrhea caused by enterotoxigenic bacteria. CFTR can be inhibited by both natural products and synthetic small molecules. iOWH032 is a synthetic CFTR inhibitor that has recently entered clinical trials for this indication.
Collapse
|
156
|
Asano KM, Gregori F, Souza SP, Rotava D, Oliveira RN, Villarreal LYB, Richtzenhain LJ, Brandão PE. Bovine Rotavirus in Turkeys with Enteritis. Avian Dis 2011; 55:697-700. [DOI: 10.1637/9765-041911-resnote.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
157
|
Yang W, McCrae MA. The molecular biology of rotaviruses X: intercellular dissemination of rotavirus NSP4 requires glycosylation and is mediated by direct cell-cell contact through cytoplasmic extrusions. Arch Virol 2011; 157:305-14. [DOI: 10.1007/s00705-011-1174-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/08/2011] [Indexed: 01/11/2023]
|
158
|
Sastri NP, Pamidimukkala K, Marathahalli JR, Kaza S, Rao CD. Conformational Differences Unfold a Wide Range of Enterotoxigenic Abilities Exhibited by rNSP4 Peptides from Different Rotavirus Strains. Open Virol J 2011; 5:124-35. [PMID: 22253650 PMCID: PMC3256577 DOI: 10.2174/1874357901105010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/18/2011] [Accepted: 09/06/2011] [Indexed: 12/28/2022] Open
Abstract
NSP4 has been recognized as the rotavirus-encoded enterotoxin. However, a few studies failed to support its diarrheagenic activity. As recombinant NSP4 (rNSP4) peptides of different lengths were used in the limited number of studies, a comparison of relative diarrheagenic potential of NSP4 from different strains could not be possible. To better understand the diarrheagenic potential of NSP4 from different strains, in this report we have evaluated the enterotoxigenic activity of the deletion mutant ΔN72 that lacks the N-terminal 72 residues and the biologically relevant ΔN112 peptide which when derived from SA11 rotavirus strain were previously shown to be highly diarrheagenic in newborn mice. Detailed comparative analysis of biochemical and biophysical properties and diarrheagenic activity of the recombinant ΔN72 peptides from seventeen different strains under identical conditions revealed wide differences among themselves in their resistance to trypsin cleavage, thioflavin T (ThT) binding, multimerization and conformation without any correlation with their diarrhea inducing abilities. These results support our previously proposed concept for the requirement of a unique conformation for optimal biological functions conferred by cooperation between the N- and C-terminal regions of the cytoplasmic tail.
Collapse
|
159
|
Yang W, McCrae MA. The rotavirus enterotoxin (NSP4) promotes re-modeling of the intracellular microtubule network. Virus Res 2011; 163:269-74. [PMID: 22036730 DOI: 10.1016/j.virusres.2011.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/14/2011] [Accepted: 10/15/2011] [Indexed: 01/07/2023]
Abstract
Expression of the rotavirus enterotoxin (NSP4) in transfected monkey kidney cells was found to result in a dramatic re-modeling of the microtubule (MT) network. This important centrosome organized cytoskeletal element was dissolved by expression of NSP4 and re-formed in a ring array at the periphery of the cell, similar to that seen following normal virus infection. Site directed mutagenesis of the N-linked glycosylation sites in NSP4 was employed to show that glycosylation of NSP4 was not required for it to promote changes in the MT network. This result together with experiments using conventional inhibitors indicated that NSP4's ability to cause elevation of intracellular calcium levels was also not necessary to effect the changes in the MT network. Use of the centrosome function inhibitor nocodazole demonstrated that NSP4 based remodeling of the MT network was dominant over the normal organizational role of the centrosome. Finally the remodeling of the MT network was shown not to be linked to cellular apoptosis or necrosis. The potential importance of this newly recognised role for NSP4 in the overall process of intracellular pathogenesis by rotaviruses is discussed.
Collapse
Affiliation(s)
- Weiming Yang
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
160
|
Novel pentameric structure of the diarrhea-inducing region of the rotavirus enterotoxigenic protein NSP4. J Virol 2011; 85:12721-32. [PMID: 21917949 DOI: 10.1128/jvi.00349-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A novel pentameric structure which differs from the previously reported tetrameric form of the diarrhea-inducing region of the rotavirus enterotoxin NSP4 is reported here. A significant feature of this pentameric form is the absence of the calcium ion located in the core region of the tetrameric structures. The lysis of cells, the crystallization of the region spanning residues 95 to 146 of NSP4 (NSP4(95-146)) of strain ST3 (ST3:NSP4(95-146)) at acidic pH, and comparative studies of the recombinant purified peptide under different conditions by size-exclusion chromatography (SEC) and of the crystal structures suggested pH-, Ca(2+)-, and protein concentration-dependent oligomeric transitions in the peptide. Since the NSP4(95-146) mutant lacks the N-terminal amphipathic domain (AD) and most of the C-terminal flexible region (FR), to demonstrate that the pentameric transition is not a consequence of the lack of the N- and C-terminal regions, glutaraldehyde cross-linking of the ΔN72 and ΔN94 mutant proteins, which contain or lack the AD, respectively, but possess the complete C-terminal FR, was carried out. The results indicate the presence of pentamers in preparations of these longer mutants. Detailed SEC analyses of ΔN94 prepared under different conditions, however, revealed protein concentration-dependent but metal ion- and pH-independent pentamer accumulation at high concentrations which dissociated into tetramers and lower oligomers at low protein concentrations. While calcium appeared to stabilize the tetramer, magnesium in particular stabilized the dimer. ΔN72 existed primarily in the multimeric form under all conditions. These findings of a calcium-free NSP4 pentamer and its concentration-dependent and largely calcium-independent oligomeric transitions open up a new dimension in an understanding of the structural basis of its multitude of functions.
Collapse
|
161
|
Abstract
Bluetongue is a major infectious disease of ruminants that is caused by bluetongue virus (BTV). In this study, we analyzed virulence and genetic differences of (i) three BTV field strains from Italy maintained at either a low (L strains) or high (H strains) passage number in cell culture and (ii) three South African "reference" wild-type strains and their corresponding live attenuated vaccine strains. The Italian BTV L strains, in general, were lethal for both newborn NIH-Swiss mice inoculated intracerebrally and adult type I interferon receptor-deficient (IFNAR(-/-)) mice, while the virulence of the H strains was attenuated significantly in both experimental models. Similarly, the South African vaccine strains were not pathogenic for IFNAR(-/-) mice, while the corresponding wild-type strains were virulent. Thus, attenuation of the virulence of the BTV strains used in this study is not mediated by the presence of an intact interferon system. No clear distinction in virulence was observed for the South African BTV strains in newborn NIH-Swiss mice. Full genomic sequencing revealed relatively few amino acid substitutions, scattered in several different viral proteins, for the strains found to be attenuated in mice compared to the pathogenic related strains. However, only the genome segments encoding VP1, VP2, and NS2 consistently showed nonsynonymous changes between all virulent and attenuated strain pairs. This study established an experimental platform for investigating the determinants of BTV virulence. Future studies using reverse genetics will allow researchers to precisely map and "weight" the relative influences of the various genome segments and viral proteins on BTV virulence.
Collapse
|
162
|
Abstract
Understanding the mechanisms underlying the induction of immunity in the gastrointestinal mucosa following oral immunization and the cross-talk between mucosal and systemic immunity should expedite the development of vaccines to diminish the global burden caused by enteric pathogens. Identifying an immunological correlate of protection in the course of field trials of efficacy, animal models (when available), or human challenge studies is also invaluable. In industrialized country populations, live attenuated vaccines (e.g. polio, typhoid, and rotavirus) mimic natural infection and generate robust protective immune responses. In contrast, a major challenge is to understand and overcome the barriers responsible for the diminished immunogenicity and efficacy of the same enteric vaccines in underprivileged populations in developing countries. Success in developing vaccines against some enteric pathogens has heretofore been elusive (e.g. Shigella). Different types of oral vaccines can selectively or inclusively elicit mucosal secretory immunoglobulin A and serum immunoglobulin G antibodies and a variety of cell-mediated immune responses. Areas of research that require acceleration include interaction between the gut innate immune system and the stimulation of adaptive immunity, development of safe yet effective mucosal adjuvants, better understanding of homing to the mucosa of immunologically relevant cells, and elicitation of mucosal immunologic memory. This review dissects the immune responses elicited in humans by enteric vaccines.
Collapse
Affiliation(s)
- Marcela F Pasetti
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore St., Room 480, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
163
|
Hagbom M, Istrate C, Engblom D, Karlsson T, Rodriguez-Diaz J, Buesa J, Taylor JA, Loitto VM, Magnusson KE, Ahlman H, Lundgren O, Svensson L. Rotavirus stimulates release of serotonin (5-HT) from human enterochromaffin cells and activates brain structures involved in nausea and vomiting. PLoS Pathog 2011; 7:e1002115. [PMID: 21779163 PMCID: PMC3136449 DOI: 10.1371/journal.ppat.1002115] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/26/2011] [Indexed: 11/18/2022] Open
Abstract
Rotavirus (RV) is the major cause of severe gastroenteritis in young children. A virus-encoded enterotoxin, NSP4 is proposed to play a major role in causing RV diarrhoea but how RV can induce emesis, a hallmark of the illness, remains unresolved. In this study we have addressed the hypothesis that RV-induced secretion of serotonin (5-hydroxytryptamine, 5-HT) by enterochromaffin (EC) cells plays a key role in the emetic reflex during RV infection resulting in activation of vagal afferent nerves connected to nucleus of the solitary tract (NTS) and area postrema in the brain stem, structures associated with nausea and vomiting. Our experiments revealed that RV can infect and replicate in human EC tumor cells ex vivo and in vitro and are localized to both EC cells and infected enterocytes in the close vicinity of EC cells in the jejunum of infected mice. Purified NSP4, but not purified virus particles, evoked release of 5-HT within 60 minutes and increased the intracellular Ca2+ concentration in a human midgut carcinoid EC cell line (GOT1) and ex vivo in human primary carcinoid EC cells concomitant with the release of 5-HT. Furthermore, NSP4 stimulated a modest production of inositol 1,4,5-triphosphate (IP3), but not of cAMP. RV infection in mice induced Fos expression in the NTS, as seen in animals which vomit after administration of chemotherapeutic drugs. The demonstration that RV can stimulate EC cells leads us to propose that RV disease includes participation of 5-HT, EC cells, the enteric nervous system and activation of vagal afferent nerves to brain structures associated with nausea and vomiting. This hypothesis is supported by treating vomiting in children with acute gastroenteritis with 5-HT3 receptor antagonists. Rotavirus (RV) can cause severe dehydration and is a leading cause of childhood deaths worldwide. While most deaths occur due to excessive loss of fluids and electrolytes through vomiting and diarrhoea, the pathophysiological mechanisms that underlie this life-threatening disease remain to be clarified. Our previous studies revealed that drugs that inhibit the function of the enteric nervous system can reduce symptoms of RV disease in mice. In this study we have addressed the hypothesis that RV infection triggers the release of serotonin (5-hydroxytryptamine, 5-HT) from enterochromaffin (EC) cells in the intestine leading to activation of vagal afferent nerves connected to brain stem structures associated with vomiting. RV activated Fos expression in the nucleus of the solitary tract of CNS, the main target for incoming fibers from the vagal nerve. Both secreted and recombinant forms of the viral enterotoxin (NSP4), increased intracellular Ca2+ concentration and released 5-HT from EC cells. 5-HT induced diarrhoea in mice within 60 min, thereby supporting the role of 5-HT in RV disease. Our study provides novel insight into the complex interaction between RV, EC cells, 5-HT and nerves.
Collapse
Affiliation(s)
- Marie Hagbom
- Division of Molecular Virology, Medical Faculty, University of Linköping, Linköping, Sweden
| | - Claudia Istrate
- Division of Molecular Virology, Medical Faculty, University of Linköping, Linköping, Sweden
- Unidade de Biologia Molecular, Centro de Malaria e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - David Engblom
- Division of Cell Biology, Medical Faculty, University of Linköping, Linköping, Sweden
| | - Thommie Karlsson
- Division of Medical Microbiology, Medical Faculty, University of Linköping, Linköping, Sweden
| | - Jesus Rodriguez-Diaz
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Javier Buesa
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - John A. Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Vesa-Matti Loitto
- Division of Medical Microbiology, Medical Faculty, University of Linköping, Linköping, Sweden
| | - Karl-Eric Magnusson
- Division of Medical Microbiology, Medical Faculty, University of Linköping, Linköping, Sweden
| | - Håkan Ahlman
- Department of Surgery, University of Gothenburg, Gothenburg, Sweden
| | - Ove Lundgren
- Department of Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Lennart Svensson
- Division of Molecular Virology, Medical Faculty, University of Linköping, Linköping, Sweden
- * E-mail:
| |
Collapse
|
164
|
Gibbons TF, Storey SM, Williams CV, McIntosh A, Mitchel DM, Parr RD, Schroeder ME, Schroeder F, Ball JM. Rotavirus NSP4: Cell type-dependent transport kinetics to the exofacial plasma membrane and release from intact infected cells. Virol J 2011; 8:278. [PMID: 21645398 PMCID: PMC3129587 DOI: 10.1186/1743-422x-8-278] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/06/2011] [Indexed: 11/10/2022] Open
Abstract
Background Rotavirus NSP4 localizes to multiple intracellular sites and is multifunctional, contributing to RV morphogenesis, replication and pathogenesis. One function of NSP4 is the induction of early secretory diarrhea by binding surface receptors to initiate signaling events. The aims of this study were to determine the transport kinetics of NSP4 to the exofacial plasma membrane (PM), the subsequent release from intact infected cells, and rebinding to naïve and/or neighboring cells in two cell types. Methods Transport kinetics was evaluated using surface-specific biotinylation/streptavidin pull-downs and exofacial exposure of NSP4 was confirmed by antibody binding to intact cells, and fluorescent resonant energy transfer. Transfected cells similarly were monitored to discern NSP4 movement in the absence of infection or other viral proteins. Endoglycosidase H digestions, preparation of CY3- or CY5- labeled F(ab)2 fragments, confocal imaging, and determination of preferential polarized transport employed standard laboratory techniques. Mock-infected, mock-biotinylated and non-specific antibodies served as controls. Results Only full-length (FL), endoglycosidase-sensitive NSP4 was detected on the exofacial surface of two cell types, whereas the corresponding cell lysates showed multiple glycosylated forms. The C-terminus of FL NSP4 was detected on exofacial-membrane surfaces at different times in different cell types prior to its release into culture media. Transport to the PM was rapid and distinct yet FL NSP4 was secreted from both cell types at a time similar to the release of virus. NSP4-containing, clarified media from both cells bound surface molecules of naïve cells, and imaging showed secreted NSP4 from one or more infected cells bound neighboring cell membranes in culture. Preferential sorting to apical or basolateral membranes also was distinct in different polarized cells. Conclusions The intracellular transport of NSP4 to the PM, translocation across the PM, exposure of the C-terminus on the cell surface and subsequent secretion occurs via an unusual, complex and likely cell-dependent process. The exofacial exposure of the C-terminus poses several questions and suggests an atypical mechanism by which NSP4 traverses the PM and interacts with membrane lipids. Mechanistic details of the unconventional trafficking of NSP4, interactions with host-cell specific molecules and subsequent release require additional study.
Collapse
Affiliation(s)
- Thomas F Gibbons
- Department of Pathobiology Texas A&M University, TVMC, College Station, TX 77843-4467, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Abstract
OBJECTIVES Few methods exist to noninvasively study in vivo gastrointestinal motility in animal models of enteric infections. None have been used on mouse pups, which often display more severe symptoms during enteric infections than adult mice. This study sought to determine whether digital fluoroscopy could be used to evaluate gastrointestinal motility in mouse pups as well as adult mice. MATERIALS AND METHODS Fluoroscopic imaging studies were performed on normal 6- to 8-week-old adult mice and 12-day-old pups to develop protocols for evaluating gastric and intestinal wall movements and changes in stomach sizes. These protocols were then applied to evaluate motility in an established rotavirus mouse model. Imaging studies were performed on adult mice at 0, 2, and 4 days postinfection and on 12-day-old pups at 2 days postinfection. RESULTS Fluoroscopic studies revealed postnatal differences of gastric peristalsis and rates of intestinal contractions between normal mouse pups and adult mice. Studies of the rotavirus mouse model revealed that differences in gastric function occur between rotavirus-infected and control mouse pups, but no discernible difference occurs between infected and control adult mice. In contrast, there were no detectable differences in rates of intestinal wall movements between control pups with normal stools and infected pups with loose stools. CONCLUSIONS These results demonstrate that fluoroscopy can evaluate in vivo motility in mouse pups and by doing so provide findings that are clinically relevant to the study of enteric infections in young.
Collapse
|
166
|
Anoctamins. Pflugers Arch 2011; 462:195-208. [DOI: 10.1007/s00424-011-0975-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 01/14/2023]
|
167
|
Clinical and molecular observations of two fatal cases of rotavirus-associated enteritis in children in Italy. J Clin Microbiol 2011; 49:2733-9. [PMID: 21525221 DOI: 10.1128/jcm.01358-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two fatal cases of infantile rotavirus enteritis occurred in northern Italy in 2005. Both children were severely dehydrated, and death was related to severe cerebral edema. Histological examination demonstrated extensive damage of the intestinal epithelium, villous atrophy or blunting, and macrophage infiltration. The two rotavirus strains were of the G1P[8] type and the long electropherotype. The 2005 G1P[8] rotaviruses differed in the NSP4, VP3, VP4, and VP7 genes from G1P[8] rotaviruses circulating in 2004, suggesting the onset of a new G1P[8] strain in the local population.
Collapse
|
168
|
Gómez MM, de Mendonça MCL, Volotão EDM, Tort LFL, da Silva MFM, Cristina J, Leite JPG. Rotavirus A genotype P[4]G2: Genetic diversity and reassortment events among strains circulating in Brazil between 2005 and 2009. J Med Virol 2011; 83:1093-106. [DOI: 10.1002/jmv.22071] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
169
|
Desselberger U, Huppertz HI. Immune responses to rotavirus infection and vaccination and associated correlates of protection. J Infect Dis 2011; 203:188-95. [PMID: 21288818 DOI: 10.1093/infdis/jiq031] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.
| | | |
Collapse
|
170
|
Ousingsawat J, Mirza M, Tian Y, Roussa E, Schreiber R, Cook DI, Kunzelmann K. Rotavirus toxin NSP4 induces diarrhea by activation of TMEM16A and inhibition of Na+ absorption. Pflugers Arch 2011; 461:579-89. [PMID: 21399895 DOI: 10.1007/s00424-011-0947-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/18/2011] [Accepted: 02/21/2011] [Indexed: 01/05/2023]
Abstract
Rotavirus infection is the most frequent cause for severe diarrhea in infants, killing more than 600,000 every year. The nonstructural protein NSP4 acts as a rotavirus enterotoxin, inducing secretory diarrhea without any structural organ damage. Electrolyte transport was assessed in the colonic epithelium from pups and adult mice using Ussing chamber recordings. Western blots and immunocytochemistry was performed in intestinal tissues from wild-type and TMEM16A knockout mice. Ion channel currents were recorded using patch clamp techniques. We show that the synthetic NSP4(114-135) peptide uses multiple pro-secretory pathways to induce diarrhea, by activating the recently identified Ca2+ -activated Cl- channel TMEM16A, and by inhibiting Na+ absorption by the epithelial Na+ channel ENaC and the Na+ /glucose cotransporter SGLT1. Activation of secretion and inhibition of Na+ absorption by NSP4(114-135), respectively, could be potently suppressed by wheat germ agglutinin which probably competes with NSP4(114-135) for binding to an unknown glycolipid receptor. The present paper gives a clue as to mechanisms of rotavirus-induced diarrhea and suggests wheat germ agglutinin as a simple and effective therapy.
Collapse
Affiliation(s)
- Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
171
|
Full genomic analysis of Indian G1P[8] rotavirus strains. INFECTION GENETICS AND EVOLUTION 2011; 11:504-11. [DOI: 10.1016/j.meegid.2011.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/27/2010] [Accepted: 01/04/2011] [Indexed: 01/05/2023]
|
172
|
Infectious Diarrhea. PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2011. [PMCID: PMC7151906 DOI: 10.1016/b978-1-4377-0774-8.10039-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
173
|
Araújo IT, Heinemann MB, Fialho AM, Leite JPG. Detection and Molecular Characterization of Human Group C Rotavirus in Brazil. Intervirology 2011; 54:261-7. [DOI: 10.1159/000321350] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 09/14/2010] [Indexed: 11/19/2022] Open
|
174
|
Buragohain M, Dhale GS, Raut CG, Kang G, Chitambar SD. Analyses of clinical, pathological and virological features of human rotavirus strain, YO induced gastroenteritis in infant BALB/c mice. Microbes Infect 2010; 13:331-8. [PMID: 21163362 DOI: 10.1016/j.micinf.2010.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
Abstract
Experimental studies of human rotavirus infections in mice are limited and there is lack of information on the quantitative assessment of rotaviral replication and its relationship with histological changes. In the present study, consequences of human rotavirus strain, YO induced gastroenteritis in infant BALB/c mice were analyzed for the occurrence of clinical symptoms, histopathology and virological events. The infected animals developed diarrhea and dehydration and showed accumulation of vacuolated enterocytes with lodging of the rotavirus antigens and shortening of villi in the intestine over a period of 5 days. The ileum was identified as the most susceptible and supportive part of small intestine for perpetuation of rotavirus infection in mice. Rotaviral antigen/RNA in stool and RNA in intestine were detected throughout the clinical disease period. At 48-72 h post inoculation, diarrhea was at the peak (90-95%) in the infected animals with increased load of viral RNA and intense pathological lesions suggesting it as the critical time point in the course of infection. The rising titers of antirotavirus neutralizing antibodies ascertained the replication of human rotavirus strain, YO in mice. These data may contribute to the understanding of pathophysiological, immunological and virological characteristics of rotavirus infections in mice.
Collapse
Affiliation(s)
- Manika Buragohain
- Enteric Viruses Department, National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune - 411 001, India
| | | | | | | | | |
Collapse
|
175
|
Tate JE, Patel MM, Steele AD, Gentsch JR, Payne DC, Cortese MM, Nakagomi O, Cunliffe NA, Jiang B, Neuzil KM, de Oliveira LH, Glass RI, Parashar UD. Global impact of rotavirus vaccines. Expert Rev Vaccines 2010; 9:395-407. [PMID: 20370550 DOI: 10.1586/erv.10.17] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The WHO has recently recommended the inclusion of rotavirus vaccine in the national immunization programs of all countries. In countries in the Americas, Europe and Australia that have adopted routine childhood immunization against rotavirus, significant reductions in the burden of severe childhood diarrhea have been observed. Besides protecting vaccinated children, disease rates also appear to be reduced in unvaccinated children, suggesting indirect benefits from vaccination (i.e., herd protection). Early clinical trial data from Africa and Asia are promising, and further efforts are needed to optimize the benefits of vaccination in developing countries where vaccines are likely to have their greatest impact.
Collapse
Affiliation(s)
- Jacqueline E Tate
- National Center for Immunization and Respiratory Diseases, US CDC, 1600 Clifton Rd NE, MS-A47, Atlanta, GA 30333, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Hillenbrand B, Günzel D, Richter JF, Höhne M, Schreier E, Schulzke JD, Mankertz J. Norovirus non-structural protein p20 leads to impaired restitution of epithelial defects by inhibition of actin cytoskeleton remodelling. Scand J Gastroenterol 2010; 45:1307-19. [PMID: 20695836 DOI: 10.3109/00365521.2010.483013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Norovirus is the most common cause of acute gastroenteritis in humans worldwide. Typical symptoms are vomiting, nausea and severe watery diarrhea. Because of the lack of cell lines susceptible to human norovirus infection, pathomechanisms and replication cycle are largely unknown. Here, we address the issue of how norovirus infection could lead to epithelial barrier dysfunction. MATERIAL AND METHODS Expression of the non-structural norovirus protein p20 in the epithelial cell line HT-29/B6 was activated through a tetracycline sensitive promoter. Tight junction proteins were studied by Western blot and confocal laser scanning microscopy. Apoptoses were detected in TUNEL stainings. Epithelial restitution was monitored by conductance scanning after induction of single cell lesions. RESULTS Changes in the expression or localization of the tight junction proteins occludin and/or claudin-1, -2,- 3, -4, -5, -7 and -8 could be ruled out to mediate epithelial barrier modulation. Cell motility was also unaltered by p20. Investigation of epithelial apoptosis revealed an accumulation of apoptic cells in epithelial monolayers after induction of p20 expression. In epithelial cell restitution assays, an arrest was identified in p20 expressing cells. Fluorescence microscopy revealed an inability for condensation and redistribution of cellular actin, which led to a reduced transepithelial electrical resistance. CONCLUSIONS Functional data for norovirus protein p20 suggest a role in modulation of the actin cytoskeleton leading to barrier dysfunction through impairment of restitution of epithelial defects.
Collapse
Affiliation(s)
- Bernd Hillenbrand
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
177
|
Brugere-Picoux J, Tessier P. Gastro-entérites virales des animaux domestiques et zoonoses. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2010. [PMID: 22046708 PMCID: PMC7111075 DOI: 10.1016/s0001-4079(19)32174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pendant longtemps les méthodes de diagnostic des diarrhées infectieuses ont été limitées aux bactéries et aux protozoaires et il a fallu les nouvelles techniques de la microscopie électronique et de la biologie moléculaire pour démontrer que les diarrhées pouvaient aussi reconnaître une origine virale chez l’Homme comme chez les animaux. En 1969, c’est chez le veau que l’utilisation de la microcopie électronique a permis d’identifier pour la première fois un virus responsable d’une diarrhée. Ce « réo-like virus » était un rotavirus et ce n’est que quatre années plus tard que l’on a découvert qu’il était aussi à l’origine des diarrhées sévères observées chez les jeunes enfants. A la même période les norovirus, en particulier le virus Norwalk humain, ont été découverts puis, selon les espèces, les coronavirus, les sapovirus, les pestivirus, les astrovirus, les adénovirus entéritiques, les torovirus, les picobirnavirus... Certains de ces virus rencontrés chez l’animal pourraient jouer un rôle zoonotique. Il s’agit principalement des rotavirus. Les rotavirus identifiés dans de nombreuses espèces animales sont généralement spécifiques de l’espèce hôte mais une transmission zoonotique est suggérée soit en raison de l’observation de cas de contaminations croisées, notamment par des reproductions expérimentales, soit par la comparaison des séquences génétiques montrant l’existence d’une parenté étroite entre certains rotavirus animaux et humains ou encore après la découverte, lors de la surveillance épidémiologique des rotaviroses humaines, de nouveaux génotypes qui s’avèrent d’origine animale. Quelques souches animales de norovirus, de sapovirus, de picobirnavirus ou d’astrovirus peuvent présenter des similitudes génétiques avec des souches humaines mais le risque de zoonose n’a jamais été démontré.
Collapse
|
178
|
Abstract
PURPOSE OF REVIEW The cellular secretory pathway, composed of the endoplasmic reticulum, Golgi apparatus, and cellular vesicles, mediates the intracellular trafficking of proteins and lipids. Gastrointestinal pathogens frequently affect the functions of enterocytes, the differentiated cells involved in secretion and absorption of extracellular molecules. Microbial pathogenesis can be enhanced by altering the trafficking of key molecules such as brush border enzymes, soluble immune mediators such as cytokines and chemokines, and MHC Class I molecules, all of which rely on the secretory pathway for their appropriate cellular localization. This review focuses on our current understanding of the distinct mechanisms employed by enteric pathogens to antagonize the secretory pathway. RECENT FINDINGS Many pathogens encode individual or multiple proteins to antagonize the secretory pathway, including disrupting the trafficking of vesicles between the endoplasmic reticulum, Golgi, and plasma membrane. This antagonism allows for increased pathogenesis and can assist, directly or indirectly, in microbial replication. Virtually all arms of the secretory pathway are targeted by intestinal pathogens, supporting the pathogenic significance of shutting this pathway down. SUMMARY This review summarizes the mechanisms utilized by gut pathogens to disrupt the cellular secretory pathway and addresses potential therapeutic targets to combat these highly prevalent and burdensome microbes.
Collapse
Affiliation(s)
- Tyler M Sharp
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
179
|
Tatte VS, Rawal KN, Chitambar SD. Sequence and phylogenetic analysis of the VP6 and NSP4 genes of human rotavirus strains: Evidence of discordance in their genetic linkage. INFECTION GENETICS AND EVOLUTION 2010; 10:940-9. [DOI: 10.1016/j.meegid.2010.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/28/2010] [Accepted: 05/28/2010] [Indexed: 12/25/2022]
|
180
|
Toxin mediated diarrhea in the 21 century: the pathophysiology of intestinal ion transport in the course of ETEC, V. cholerae and rotavirus infection. Toxins (Basel) 2010; 2:2132-57. [PMID: 22069677 PMCID: PMC3153279 DOI: 10.3390/toxins2082132] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/09/2010] [Indexed: 12/31/2022] Open
Abstract
An estimated 4 billion episodes of diarrhea occur each year. As a result, 2–3 million children and 0.5–1 million adults succumb to the consequences of this major healthcare concern. The majority of these deaths can be attributed to toxin mediated diarrhea by infectious agents, such as E. coli, V. cholerae or Rotavirus. Our understanding of the pathophysiological processes underlying these infectious diseases has notably improved over the last years. This review will focus on the cellular mechanism of action of the most common enterotoxins and the latest specific therapeutic approaches that have been developed to contain their lethal effects.
Collapse
|
181
|
The genome segments of a group D rotavirus possess group A-like conserved termini but encode group-specific proteins. J Virol 2010; 84:10254-65. [PMID: 20631147 DOI: 10.1128/jvi.00332-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rotaviruses are a leading cause of viral acute gastroenteritis in humans and animals. They are grouped according to gene composition and antigenicity of VP6. Whereas group A, B, and C rotaviruses are found in humans and animals, group D rotaviruses have been exclusively detected in birds. Despite their broad distribution among chickens, no nucleotide sequence data exist so far. Here, the first complete genome sequence of a group D rotavirus (strain 05V0049) is presented, which was amplified using sequence-independent amplification strategies and degenerate primers. Open reading frames encoding homologues of rotavirus proteins VP1 to VP4, VP6, VP7, and NSP1 to NSP5 were identified. Amino acid sequence identities between the group D rotavirus and the group A, B, and C rotaviruses varied between 12.3% and 51.7%, 11.0% and 23.1%, and 9.5% and 46.9%, respectively. Segment 10 of the group D rotavirus has an additional open reading frame. Generally, phylogenetic analysis indicated a common evolution of group A, C, and D rotaviruses, separate from that of group B. However, the NSP4 sequence of group C has only very low identities in comparison with cogent sequences of all other groups. The avian group A NSP1 sequences are more closely related to those of group D than those of mammalian group A rotaviruses. Most interestingly, the nucleotide sequences at the termini of the 11 genome segments are identical between group D and group A rotaviruses. Further investigations should clarify whether these conserved structures allow an exchange of genome segments between group A and group D rotaviruses.
Collapse
|
182
|
Namkung W, Thiagarajah JR, Phuan PW, Verkman AS. Inhibition of Ca2+-activated Cl- channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea. FASEB J 2010; 24:4178-86. [PMID: 20581223 DOI: 10.1096/fj.10-160648] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
TMEM16A was found recently to be a calcium-activated Cl(-) channel (CaCC). CaCCs perform important functions in cell physiology, including regulation of epithelial secretion, cardiac and neuronal excitability, and smooth muscle contraction. CaCC modulators are of potential utility for treatment of hypertension, diarrhea, and cystic fibrosis. Screening of drug and natural product collections identified tannic acid as an inhibitor of TMEM16A, with IC(50) ∼ 6 μM and ∼100% inhibition at higher concentrations. Tannic acid inhibited CaCCs in multiple cell types but did not affect CFTR Cl(-) channels. Structure-activity analysis indicated the requirement of gallic or digallic acid substituents on a macromolecular scaffold (gallotannins), as are present in green tea and red wine. Other polyphenolic components of teas and wines, including epicatechin, catechin, and malvidin-3-glucoside, poorly inhibited CaCCs. Remarkably, a 1000-fold dilution of red wine and 100-fold dilution of green tea inhibited CaCCs by >50%. Tannic acid, red wine, and green tea inhibited arterial smooth muscle contraction and intestinal Cl(-) secretion. Gallotannins are thus potent CaCC inhibitors whose biological activity provides a potential molecular basis for the cardioprotective and antisecretory benefits of red wine and green tea.
Collapse
Affiliation(s)
- Wan Namkung
- Department of Medicine , University of California, San Francisco, CA 94143-0521, USA
| | | | | | | |
Collapse
|
183
|
Gac M, Bigda J, Vahlenkamp TW. Increased mitochondrial superoxide dismutase expression and lowered production of reactive oxygen species during rotavirus infection. Virology 2010; 404:293-303. [PMID: 20538313 DOI: 10.1016/j.virol.2010.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 04/08/2010] [Accepted: 05/17/2010] [Indexed: 12/13/2022]
Abstract
Rotaviruses are responsible for severe diarrhea in infants and substantial economic losses in animal husbandry worldwide. We investigated the oxidant/antioxidant status in rotavirus-infected human colon adenocarcinoma (Caco-2) cell line. Our results show that within the initial 48 h of infection the expression of the mitochondrial superoxide dismutase (MnSOD) is significantly increased, which correlates with a decrease in reactive oxygen species production, and with a lack of cellular glutathione depletion. During this period the mitochondria display a hyperpolarization of the inner membrane, which leads to an increased mitochondrial membrane potential. No increase in apoptosis was detected in the infected cultures. In contrast to many viral infections which cause redox imbalance in host cells, the described virus-host interaction suggests that rotavirus infection does not lead to an induction of oxidative stress, possibly to prolong cell survival and to allow for accumulation of viral particles before cell destruction and virus release.
Collapse
Affiliation(s)
- Małgorzata Gac
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | | |
Collapse
|
184
|
Halasz P, Holloway G, Coulson BS. Death mechanisms in epithelial cells following rotavirus infection, exposure to inactivated rotavirus or genome transfection. J Gen Virol 2010; 91:2007-2018. [PMID: 20392902 DOI: 10.1099/vir.0.018275-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intestinal epithelial cell death following rotavirus infection is associated with villus atrophy and gastroenteritis. Roles for both apoptosis and necrosis in cytocidal activity within rotavirus-infected epithelial cells have been proposed. Additionally, inactivated rotavirus has been reported to induce diarrhoea in infant mice. We further examined the death mechanisms induced in epithelial cell lines following rotavirus infection or inactivated rotavirus exposure. Monolayer integrity changes in MA104, HT-29 and partially differentiated Caco-2 cells following inactivated rotavirus exposure or RRV or CRW-8 rotavirus infection paralleled cell metabolic activity and viability reductions. MA104 cell exposure to rotavirus dsRNA also altered monolayer integrity. Inactivated rotaviruses induced delayed cell function losses that were unrelated to apoptosis. Phosphatidylserine externalization, indicating early apoptosis, occurred in MA104 and HT-29 but not in partially differentiated Caco-2 cells by 11 h after infection. Rotavirus activation of phosphatidylinositol 3-kinase partially protected MA104 and HT-29 cells from early apoptosis. In contrast, activation of the stress-activated protein kinase JNK by rotavirus did not influence apoptosis induction in these cells. RRV infection produced DNA fragmentation, indicating late-stage apoptosis, in fully differentiated Caco-2 cells only. These studies show that the apoptosis initiation and cell death mechanism induced by rotavirus infection depend on cell type and degree of differentiation. Early stage apoptosis resulting from rotavirus infection is probably counter-balanced by virus-induced phosphatidylinositol 3-kinase activation. The ability of inactivated rotaviruses and rotavirus dsRNA to perturb monolayer integrity supports a potential role for these rotavirus components in disease pathogenesis.
Collapse
Affiliation(s)
- Peter Halasz
- Department of Microbiology and Immunology, The University of Melbourne, VIC 3010, Australia
| | - Gavan Holloway
- Department of Microbiology and Immunology, The University of Melbourne, VIC 3010, Australia
| | - Barbara S Coulson
- Department of Microbiology and Immunology, The University of Melbourne, VIC 3010, Australia
| |
Collapse
|
185
|
Kavanagh OV, Ajami NJ, Cheng E, Ciarlet M, Guerrero RA, Zeng CQY, Crawford SE, Estes MK. Rotavirus enterotoxin NSP4 has mucosal adjuvant properties. Vaccine 2010; 28:3106-11. [PMID: 20197138 DOI: 10.1016/j.vaccine.2010.02.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 02/08/2010] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
Abstract
Rotavirus nonstructural protein 4 (NSP4) is a protein with pleiotropic properties. It functions in rotavirus morphogenesis, pathogenesis, and is the first described viral enterotoxin. Since many bacterial toxins function as potent mucosal adjuvants, we evaluated whether baculovirus-expressed recombinant simian rotavirus SA11 NSP4 possesses adjuvant activity by co-administering NSP4 with keyhole limpet hemocyanin (KLH), tetanus toxoid (TT) or ovalbumin (OVA) as model antigens in mice. Following intranasal immunization, NSP4 significantly enhanced both systemic and mucosal immune responses to model immunogens, as compared to the control group, in an antigen-specific manner. Both full-length and a cleavage product of SA11 NSP4 had adjuvant activity, localizing this activity to the C-terminus of the protein. NSP4 forms from virulent and avirulent porcine rotavirus OSU strain, and SA11 NSP4 localized within a 2/6-virus-like particle (VLP) also exhibited adjuvant effects. These studies suggest that the rotavirus enterotoxin NSP4 can function as an adjuvant to enhance immune responses for a co-administered antigen.
Collapse
Affiliation(s)
- Owen V Kavanagh
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Gentsch JR, Parashar UD, Glass RI. Impact of rotavirus vaccination: the importance of monitoring strains. Future Microbiol 2010; 4:1231-4. [PMID: 19995181 DOI: 10.2217/fmb.09.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
187
|
Hodges K, Gill R. Infectious diarrhea: Cellular and molecular mechanisms. Gut Microbes 2010; 1:4-21. [PMID: 21327112 PMCID: PMC3035144 DOI: 10.4161/gmic.1.1.11036] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/15/2009] [Accepted: 12/28/2009] [Indexed: 02/03/2023] Open
Abstract
Diarrhea caused by enteric infections is a major factor in morbidity and mortality worldwide. An estimated 2-4 billion episodes of infectious diarrhea occur each year and are especially prevalent in infants. This review highlights the cellular and molecular mechanisms underlying diarrhea associated with the three classes of infectious agents, i.e., bacteria, viruses and parasites. Several bacterial pathogens have been chosen as model organisms, including Vibrio cholerae as a classical example of secretory diarrhea, Clostridium difficile and Shigella species as agents of inflammatory diarrhea and selected strains of pathogenic Escherichia coli (E. coli) to discuss the recent advances in alteration of epithelial ion absorption. Many of the recent studies addressing epithelial ion transport and barrier function have been carried out using viruses and parasites. Here, we focus on the rapidly developing field of viral diarrhea including rotavirus, norovirus and astrovirus infections. Finally we discuss Giardia lamblia and Entamoeba histolytica as examples of parasitic diarrhea. Parasites have a greater complexity than the other pathogens and are capable of creating molecules similar to those produced by the host, such as serotonin and PGE(2). The underlying mechanisms of infectious diarrhea discussed include alterations in ion transport and tight junctions as well as the virulence factors, which alter these processes either through direct effects or indirectly through inflammation and neurotransmitters.
Collapse
|
188
|
Gastañaduy AS, Bégué RE. Acute gastroenteritis viruses. Infect Dis (Lond) 2010. [PMCID: PMC7173416 DOI: 10.1016/b978-0-323-04579-7.00151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
189
|
Abstract
PURPOSE OF REVIEW The authors discuss the most relevant information in the field of rotavirus vaccines published from October 2007 to June 2009; new information on the virus, host response and disease burden that relate to our understanding of vaccine mechanisms and impact are discussed. The review will focus on the role of the vaccines for the developing world but this does not preclude the relevance of these vaccines for children living in the industrialized world. RECENT FINDINGS Immune mechanisms involved in rotavirus-associated immunity potentially relevant for vaccine-associated immunity continue to be identified including anti-NSP4 antibodies, cellular and mucosal mechanisms. Rotavirus-associated disease burden is high, causing approximately 40% of diarrhea-associated hospitalizations in children less than 5 years of age worldwide; G12, G8 and P[6] antigenic types emerging in developing countries are increasing in prevalence and may share worldwide circulation with the other five more common serotypes. The two currently available vaccines, based on different immune concepts, (VP7/VP4 homotypic specificity for RotaTeq vs. homotypic and heterotypic specificity for Rotarix) have demonstrated high and sustained efficacy in middle and high-income countries. Recent efficacy and effectiveness studies demonstrate acceptable protection levels in the poorest countries of the world against most antigenic types, leading to universal vaccine recommendation. Postlicensure surveillance has not detected any signal of increased risk for intussusception in children vaccinated with any of the two vaccines. SUMMARY Rotavirus vaccines are well tolerated and provide adequate protection against moderate to severe disease in high, middle and low-income regions. Partnerships between governments, industry, and funding agencies will now be urgently needed to promote vaccine use, especially in the less privileged countries of the world.
Collapse
|
190
|
Nakagomi T, Nakagomi O. A critical review on a globally-licensed, live, orally-administrable, monovalent human rotavirus vaccine: Rotarix. Expert Opin Biol Ther 2009; 9:1073-86. [PMID: 19591630 DOI: 10.1517/14712590903103787] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Rotavirus is the major cause of severe gastroenteritis in children worldwide, and two, live, orally-administrable vaccines are licensed globally. They are Rotarix, a monovalent, human rotavirus-based vaccine (GlaxoSmithKline), and RotaTeq, a pentavalent, bovine-human reassortant vaccine (Merck). The RIX4414 strain, a G1P[8] virus, is contained in the Rotarix vaccine. It grows efficiently in the human intestine, as evidenced by vaccine virus shedding into faeces. Efficient multiplication of RIX4414 in the intestines may play a role in stimulating immune effectors other than neutralizing antibodies that may explain the protective immunity against fully heterotypic G2P[4] strains. The protective efficacy against severe rotavirus gastroenteritis afforded by Rotarix is consistently better against strains that share with RIX4414 both G and P serotypes (i.e., G1P[8]), or only P serotype (i.e., G3P[8], G4P[8] and G9P[8]). The Rotarix vaccine is safe regarding intussusception if its first dose is administered between 6 and 12 weeks of age and the last dose by 24 weeks of age with a minimum interval of 4 weeks between the two doses. The expansion by Advisory Committee on Immunization Practices, USA, of the age limit for the first dose to age <15 weeks, and the last dose by 8 months requires close monitoring.
Collapse
Affiliation(s)
- Toyoko Nakagomi
- Nagasaki University, The Global Centre of Excellence, Graduate School of Biomedical Sciences, Department of Molecular Microbiology and Immunology, Nagasaki, Japan
| | | |
Collapse
|
191
|
Desselberger U. Towards achieving a high-resolution structure of rotavirus particles. Future Virol 2009. [DOI: 10.2217/fvl.09.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evaluation of: Aoki ST, Settembre EC, Trask SD, Greenberg HB, Harrison SC, Dormitzer PR: Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science 324 (5993), 1444–1447 (2009). The determination of the molecular structure of the trimer of VP7, one of the outer layer proteins of rotaviruses, has significantly contributed to the knowledge of the overall structure of rotavirus particles. The molecular mechanism of rotavirus neutralization has been clarified and a topological explanation been found for the emergence of antibody escape mutants. Furthermore, translational work was enabled by engineering VP7 mutants, which form stable trimers by means of novel disulfide bridges linking the different subunits together; such a construct could become an attractive and safe vaccine candidate.
Collapse
Affiliation(s)
- Ulrich Desselberger
- University of Cambridge, Department of Medicine, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
192
|
Abstract
The virology, immunology, diagnosis, clinical symptoms, treatment, epidemiology and prevention measures relating to the most common viral causes of acute gastroenteritis (rotaviruses, human caliciviruses, astroviruses and enteric adenoviruses) are briefly reviewed. Uncommon viral causes of acute gastroenteritis and viruses causing gastroenteritis in immunodeficient patients are mentioned. The main change over the past three years has been the development, licensing and wide application of new live attenuated rotavirus vaccines.
Collapse
Affiliation(s)
- Ulrich Desselberger
- is a Director of Research, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK. Competing interests: none declared
- is a Head of the Enteric Virus Unit, Virus Reference Department, Centre for Infections, Health Protection Agency, London, UK. Competing interests: none declared
| | - Jim Gray
- is a Director of Research, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK. Competing interests: none declared
- is a Head of the Enteric Virus Unit, Virus Reference Department, Centre for Infections, Health Protection Agency, London, UK. Competing interests: none declared
| |
Collapse
|
193
|
Ousingsawat J, Martins JR, Schreiber R, Rock JR, Harfe BD, Kunzelmann K. Loss of TMEM16A causes a defect in epithelial Ca2+-dependent chloride transport. J Biol Chem 2009; 284:28698-703. [PMID: 19679661 DOI: 10.1074/jbc.m109.012120] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular identification of the Ca(2+)-dependent chloride channel TMEM16A (ANO1) provided a fundamental step in understanding Ca(2+)-dependent Cl(-) secretion in epithelia. TMEM16A is an intrinsic constituent of Ca(2+)-dependent Cl(-) channels in cultured epithelia and may control salivary output, but its physiological role in native epithelial tissues remains largely obscure. Here, we demonstrate that Cl(-) secretion in native epithelia activated by Ca(2+)-dependent agonists is missing in mice lacking expression of TMEM16A. Ca(2+)-dependent Cl(-) transport was missing or largely reduced in isolated tracheal and colonic epithelia, as well as hepatocytes and acinar cells from pancreatic and submandibular glands of TMEM16A(-/-) animals. Measurement of particle transport on the surface of tracheas ex vivo indicated largely reduced mucociliary clearance in TMEM16A(-/-) mice. These results clearly demonstrate the broad physiological role of TMEM16A(-/-) for Ca(2+)-dependent Cl(-) secretion and provide the basis for novel treatments in cystic fibrosis, infectious diarrhea, and Sjöegren syndrome.
Collapse
Affiliation(s)
- Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
194
|
Abstract
Diarrhoea is an alteration of normal bowel movement characterized by an increase in the water content, volume, or frequency of stools. Diarrhoea needs to be classified according to the trends over time (acute or chronic) and to the characteristics of the stools (watery, fatty, inflammatory). Secretory diarrhoeas, mostly acute and of viral aetiology in more than 70% of cases, are by far the most important subtype of diarrhoeas in terms of frequency, incidence and mortality (over 2.5 million deaths/year in developing countries). Natural and synthetic opiates such as morphine, codeine, and loperamide which react with endogenous opiates (enkephalins, beta-endorphins, dynorphins) mainly act on intestinal motility and slow down transit. An antidiarrhoeal drug developed in recent years, racecadotril, acts as an enkephalinase inhibitor. Clinical studies have shown that it is just as effective as loperamide in resolving acute diarrhoea but with greater reduction in pain and abdominal distension. Some studies have explored the prevalence of diarrhoea in old age. An epidemiological study carried out in Italy by 133 General Practitioners on 5515 elderly outpatients reported a prevalence of diarrhoea, defined according to the Rome criteria, of 9.1%. Infectious diseases (19%) and drug use (16%) were the most common causes of diarrhoea in old age. Regardless of the cause, the treatment of elderly patients with diarrhoea must include rehydration and nutritional support. Every year, more than 50 million tourists travel from industrialized countries to places where hygiene levels are poor. At least 75% of those travelling for short periods mention health problems, and in particular traveller’s diarrhoea.
Collapse
|
195
|
Iijima Y, Iwamoto T, Nukuzuma S, Ohishi H, Hayashi K, Kobayashi N. An outbreak of rotavirus infection among adults in an institution for rehabilitation: long-term residence in a closed community as a risk factor for rotavirus illness. ACTA ACUST UNITED AC 2009; 38:490-6. [PMID: 16798700 DOI: 10.1080/00365540500532134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
An outbreak of group A rotavirus infection resulted in gastroenteritis among disabled adults in an isolated rehabilitation institution in Kobe, Japan. Of the 95 residents, 16 were diagnosed with rotavirus illness. The causative agent was a single strain of typical human group A rotavirus belonging to VP7 serotype G2, VP4 genotype P[4], and NSP4 genotype A. Mean duration of stay was significantly longer for residents with rotavirus illness (22.1+/-11.8 years) than for residents without the disease (13.5+/-10.6 years; P=0.01). Age, sex, disability and location of resident rooms displayed no significant relationships with illness. These observations suggest that long-term residence in a closed community, which might be related to absence of immuno-stimulation, represents a risk factor for rotavirus illness.
Collapse
Affiliation(s)
- Yoshio Iijima
- Department of Microbiology, Kobe Institute of Health, Minatojima-nakamachi, Kobe 650-0046, Japan.
| | | | | | | | | | | |
Collapse
|
196
|
Nagashima S, Kobayashi N, Paul SK, Alam MM, Chawla-Sarkar M, Krishnan T. Characterization of full-length VP4 genes of OP354-like P[8] human rotavirus strains detected in Bangladesh representing a novel P[8] subtype. Arch Virol 2009; 154:1223-31. [PMID: 19572186 DOI: 10.1007/s00705-009-0436-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022]
Abstract
The G1 and G9 rotavirus strains MMC71 and MMC38 (subgroup II, NSP4 genogroup B), respectively, isolated from children in Bangladesh, were analyzed genetically. Full-length VP4 genes of these strains had 98.9% identity to each other and showed 83.9-89.4% identity to those of the P[4] and P[8] rotaviruses. Phylogenetic analysis of VP4 nucleotide sequences revealed that strains MMC38 and MMC71 were located in a lineage of P[8] strains. However, the cluster was highly divergent from the previously established P[8] strains. The VP8* portions of strains MMC38 and MMC71 showed more than 93.9% nucleotide sequence identity to OP354-like P[8] strains, and these strains were clustered into the same lineage. These findings indicate that the VP4 of these strains should be classified into a subtype of the P[8] genotype (P[8]b) that is distinct from that of common P[8] rotaviruses (P[8]a).
Collapse
Affiliation(s)
- Shigeo Nagashima
- Department of Hygiene, Sapporo Medical University School of Medicine, S-1 W-17 Chuo-ku, Sapporo, Hokkaido 060-8556, Japan.
| | | | | | | | | | | |
Collapse
|
197
|
Incecik F, Hergüner MO, Altunbaşak S, Solgun H. Acute encephalopathy associated rotavirus gastroenteritis. J Pediatr Neurosci 2009; 4:141-3. [PMID: 21887204 PMCID: PMC3162788 DOI: 10.4103/1817-1745.57337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Faruk Incecik
- Division of Pediatric Neurology, Department of Pediatrics, Çukurova University Faculty of Medicine, Adana, Turkey
| | | | | | | |
Collapse
|
198
|
Zhou Y, Frey TK, Yang JJ. Viral calciomics: interplays between Ca2+ and virus. Cell Calcium 2009; 46:1-17. [PMID: 19535138 PMCID: PMC3449087 DOI: 10.1016/j.ceca.2009.05.005] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 12/23/2022]
Abstract
Ca2+ is one of the most universal and versatile signaling molecules and is involved in almost every aspect of cellular processes. Viruses are adept at utilizing the universal Ca2+ signal to create a tailored cellular environment that meets their own demands. This review summarizes most of the known mechanisms by which viruses perturb Ca2+ homeostasis and utilize Ca2+ and cellular Ca2+-binding proteins to their benefit in their replication cycles. Ca2+ plays important roles in virion structure formation, virus entry, viral gene expression, posttranslational processing of viral proteins and virion maturation and release. As part of the review, we introduce an algorithm to identify linear “EF-hand” Ca2+-binding motifs which resulted in the prediction of a total of 93 previously unrecognized Ca2+-binding motifs in virus proteins. Many of these proteins are nonstructural proteins, a class of proteins among which Ca2+ interactions had not been formerly appreciated. The presence of linear Ca2+-binding motifs in viral proteins enlarges the spectrum of Ca2+–virus interplay and expands the total scenario of viral calciomics.
Collapse
Affiliation(s)
- Yubin Zhou
- Department of Chemistry, Georgia State University, 50 Decatur St., Atlanta, GA 30303 USA
| | | | | |
Collapse
|
199
|
Abstract
Infectious diarrhea in calves is most commonly associated with enterotoxigenic Escherichia coli, Cryptosporidium parvum, rotavirus, coronavirus, or some combination of these pathogens. Each of these agents leads to diarrhea through either secretion or malabsorption/maldigestion, though the specific mechanisms and pathways may differ. Specific pharmacologic control and treatment are dependent on gaining a greater understanding of the pathophysiology of these organisms.
Collapse
Affiliation(s)
- D M Foster
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA.
| | | |
Collapse
|
200
|
Greenberg HB, Estes MK. Rotaviruses: from pathogenesis to vaccination. Gastroenterology 2009; 136:1939-51. [PMID: 19457420 PMCID: PMC3690811 DOI: 10.1053/j.gastro.2009.02.076] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 02/17/2009] [Indexed: 01/14/2023]
Abstract
Rotaviruses cause life-threatening gastroenteritis in children worldwide; the enormous disease burden has focused efforts to develop vaccines and led to the discovery of novel mechanisms of gastrointestinal virus pathogenesis and host responses to infection. Two live-attenuated vaccines for gastroenteritis (Rotateq [Merck] and Rotarix) have been licensed in many countries. This review summarizes the latest data on these vaccines, their effectiveness, and challenges to global vaccination. Recent insights into rotavirus pathogenesis also are discussed, including information on extraintestinal infection, viral antagonists of the interferon response, and the first described viral enterotoxin. Rotavirus-induced diarrhea now is considered to be a disease that can be prevented through vaccination, although there are many challenges to achieving global effectiveness. Molecular biology studies of rotavirus replication and pathogenesis have identified unique viral targets that might be useful in developing therapies for immunocompromised children with chronic infections.
Collapse
Affiliation(s)
- Harry B. Greenberg
- Senior Associate Dean for Research, Joseph D. Grant Professor of Medicine and Microbiology & Immunology, Stanford University School of Medicine, Alway Bldg, Rm M-121
- 300 Pasteur Dr, Stanford, CA 94305-5119, phone: 650-725-9722, fax: 650-725-7368
| | - Mary K. Estes
- Cullen Endowed Chair of Molecular and Human Virology, Departments of Molecular Virology and Microbiology and Medicine -GI, Baylor College of Medicine, One Baylor Plaza BCM-385, Houston, TX 77030-3498, 713-798-3585, 713-798-3586 fax
| |
Collapse
|