151
|
Fisher EA, Ginsberg HN. Complexity in the secretory pathway: the assembly and secretion of apolipoprotein B-containing lipoproteins. J Biol Chem 2002; 277:17377-80. [PMID: 12006608 DOI: 10.1074/jbc.r100068200] [Citation(s) in RCA: 356] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Edward A Fisher
- Cardiovascular Institute and Departments of Medicine and Biochemistry, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | |
Collapse
|
152
|
Abstract
As the catalytic and regulatory centers of protein synthesis in cells, ribosomes are central to many aspects of cell and structural biology. Recent work highlights the unique properties and complexity of eukaryotic ribosomes and their component rRNAs and proteins.
Collapse
Affiliation(s)
- Jennifer A Doudna
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
153
|
George R, Walsh P, Beddoe T, Lithgow T. The nascent polypeptide-associated complex (NAC) promotes interaction of ribosomes with the mitochondrial surface in vivo. FEBS Lett 2002; 516:213-6. [PMID: 11959135 DOI: 10.1016/s0014-5793(02)02528-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The nascent polypeptide-associated complex (NAC) is a peripheral component of cytoplasmic ribosomes, and interacts with nascent chains as they leave the ribosome. Yeast mutants lacking NAC translate polypeptides normally, but have fewer ribosomes associated with the mitochondrial surface. The mutants lacking NAC suffer mitochondrial defects and have decreased levels of proteins like fumarase, normally targeted to mitochondria co-translationally. NAC might contribute to a ribosomal environment in which amino-terminal, mitochondrial targeting sequences can effectively adopt their appropriate conformation.
Collapse
Affiliation(s)
- Rebecca George
- Department of Biochemistry, La Trobe University, 3083, Bundoora, Australia
| | | | | | | |
Collapse
|
154
|
Abstract
The signal recognition particle (SRP) and its membrane-associated receptor (SR) catalyze targeting of nascent secretory and membrane proteins to the protein translocation apparatus of the cell. Components of the SRP pathway and salient features of the molecular mechanism of SRP-dependent protein targeting are conserved in all three kingdoms of life. Recent advances in the structure determination of a number of key components in the eukaryotic and prokaryotic SRP pathway provide new insight into the molecular basis of SRP function, and they set the stage for future work toward an integrated picture that takes into account the dynamic and contextual properties of this remarkable cellular machine.
Collapse
Affiliation(s)
- R J Keenan
- Maxygen, 515 Galveston Drive, Redwood City, California 94063, USA.
| | | | | | | |
Collapse
|
155
|
Bessonneau P, Besson V, Collinson I, Duong F. The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure. EMBO J 2002; 21:995-1003. [PMID: 11867527 PMCID: PMC125904 DOI: 10.1093/emboj/21.5.995] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Escherichia coli preprotein translocase comprises a membrane-embedded trimeric complex of SecY, SecE and SecG. Previous studies have shown that this complex forms ring-like assemblies, which are thought to represent the preprotein translocation channel across the membrane. We have analyzed the functional state and the quaternary structure of the SecYEG translocase by employing cross-linking and blue native gel electrophoresis. The results show that the SecYEG monomer is a highly dynamic structure, spontaneously and reversibly associating into dimers. SecG-dependent tetramers and higher order SecYEG multimers can also exist in the membrane, but these structures form at high SecYEG concentration or upon overproduction of the complex only. The translocation process does not affect the oligomeric state of the translocase and arrested preproteins can be trapped with SecYEG or SecYE dimers. Dissociation of the dimer into a monomer by detergent induces release of the trapped preprotein. These results provide direct evidence that preproteins cross the bacterial membrane, associated with a translocation channel formed by a dimer of SecYEG.
Collapse
Affiliation(s)
| | | | - Ian Collinson
- Laboratoire Transports et Signalisations Cellulaires, IBBMC-CNRS UMR 8619, Université de Paris XI, Bâtiment 430, Orsay 91405, France and
Department of Structural Biology, Max-Planck Institut für Biophysik, D-60528 Frankfurt, Germany Corresponding author e-mail:
| | - Franck Duong
- Laboratoire Transports et Signalisations Cellulaires, IBBMC-CNRS UMR 8619, Université de Paris XI, Bâtiment 430, Orsay 91405, France and
Department of Structural Biology, Max-Planck Institut für Biophysik, D-60528 Frankfurt, Germany Corresponding author e-mail:
| |
Collapse
|
156
|
Kim SJ, Mitra D, Salerno JR, Hegde RS. Signal sequences control gating of the protein translocation channel in a substrate-specific manner. Dev Cell 2002; 2:207-17. [PMID: 11832246 DOI: 10.1016/s1534-5807(01)00120-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-terminal signal sequences mediate targeting of nascent chains to the endoplasmic reticulum and facilitate opening of the protein translocation channel to the passage of substrate. We have assessed each of these steps for a diverse set of mammalian signals. While minimal differences were seen in their targeting function, signal sequences displayed a remarkable degree of variation in initiating nascent chain access to the lumenal environment. Such substrate-specific properties of signals were evolutionarily conserved, functionally matched to their respective mature domains, and important for the proper biogenesis of some proteins. Thus, the sequence variations of signals do not simply represent functional degeneracy, but instead encode critical differences in translocon gating that are coordinated with their respective passengers to facilitate efficient translocation.
Collapse
Affiliation(s)
- Soo Jung Kim
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
157
|
Kovermann P, Truscott KN, Guiard B, Rehling P, Sepuri NB, Müller H, Jensen RE, Wagner R, Pfanner N. Tim22, the essential core of the mitochondrial protein insertion complex, forms a voltage-activated and signal-gated channel. Mol Cell 2002; 9:363-73. [PMID: 11864609 DOI: 10.1016/s1097-2765(02)00446-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The protein insertion complex of the mitochondrial inner membrane is crucial for import of the numerous multitopic membrane proteins with internal targeting signals. Little is known about the molecular mechanism of this complex, including whether it forms a real channel or merely acts as scaffold for protein insertion. We report the unexpected observation that Tim22 is the only essential membrane-integrated subunit of the complex. Reconstituted Tim22 forms a hydrophilic, high-conductance channel with distinct opening states and pore diameters. The channel is voltage-activated and specifically responds to an internal targeting signal, but not to presequences. Thus, a protein insertion complex can combine three essential functions, signal recognition, channel formation, and energy transduction, in one central component.
Collapse
Affiliation(s)
- Peter Kovermann
- Biophysik, Universität Osnabrück, FB Biologie/Chemie, D-49034 Osnabrück, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Haigh NG, Johnson AE. A new role for BiP: closing the aqueous translocon pore during protein integration into the ER membrane. J Cell Biol 2002; 156:261-70. [PMID: 11807091 PMCID: PMC2199230 DOI: 10.1083/jcb.200110074] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In mammalian cells, most membrane proteins are inserted cotranslationally into the ER membrane at sites termed translocons. Although each translocon forms an aqueous pore, the permeability barrier of the membrane is maintained during integration, even when the otherwise tight ribosome-translocon seal is opened to allow the cytoplasmic domain of a nascent protein to enter the cytosol. To identify the mechanism by which membrane integrity is preserved, nascent chain exposure to each side of the membrane was determined at different stages of integration by collisional quenching of a fluorescent probe in the nascent chain. Comparing integration intermediates prepared with intact, empty, or BiP-loaded microsomes revealed that the lumenal end of the translocon pore is closed by BiP in an ATP-dependent process before the opening of the cytoplasmic ribosome-translocon seal during integration. This BiP function is distinct from its previously identified role in closing ribosome-free, empty translocons because of the presence of the ribosome at the translocon and the nascent membrane protein that extends through the translocon pore and into the lumen during integration. Therefore, BiP is a key component in a sophisticated mechanism that selectively closes the lumenal end of some, but not all, translocons occupied by a nascent chain. By using collisional quenchers of different sizes, the large internal diameter of the ribosome-bound aqueous translocon pore was found to contract when BiP was required to seal the pore during integration. Therefore, closure of the pore involves substantial conformational changes in the translocon that are coupled to a complex sequence of structural rearrangements on both sides of the ER membrane involving the ribosome and BiP.
Collapse
Affiliation(s)
- Nora G Haigh
- Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | |
Collapse
|
159
|
Fewell SW, Travers KJ, Weissman JS, Brodsky JL. The action of molecular chaperones in the early secretory pathway. Annu Rev Genet 2002; 35:149-91. [PMID: 11700281 DOI: 10.1146/annurev.genet.35.102401.090313] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endoplasmic reticulum (ER) serves as a way-station during the biogenesis of nearly all secreted proteins, and associated with or housed within the ER are factors required to catalyze their import into the ER and facilitate their folding. To ensure that only properly folded proteins are secreted and to temper the effects of cellular stress, the ER can target aberrant proteins for degradation and/or adapt to the accumulation of misfolded proteins. Molecular chaperones play critical roles in each of these phenomena.
Collapse
Affiliation(s)
- S W Fewell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
160
|
Eichacker LA, Henry R. Function of a chloroplast SRP in thylakoid protein export. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1541:120-34. [PMID: 11750668 DOI: 10.1016/s0167-4889(01)00151-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein export systems derived from prokaryotes are used to transport proteins into or across the endoplasmic reticulum, the mitochondrial inner membrane, and the chloroplast thylakoid membrane. Signal recognition particle (SRP) and its receptor are essential components used exclusively for cotranslational export of endomembrane and secretory proteins to the endoplasmic reticulum in eukaryotes and export of polytopic membrane proteins to the cytoplasmic membrane in prokaryotes. An organellar SRP in chloroplasts (cpSRP) participates in cotranslational targeting of chloroplast synthesized integral thylakoid proteins. Remarkably, cpSRP is also used to posttranslationally localize a subset of nuclear encoded thylakoid proteins. Recent work has begun to reveal the basis for cpSRP's unique ability to function in co- and posttranslational protein localization, yet much is left to question. This review will attempt to highlight these advances and will also focus on the role of other soluble and membrane components that are part of this novel organellar SRP targeting pathway.
Collapse
|
161
|
Spahn CM, Beckmann R, Eswar N, Penczek PA, Sali A, Blobel G, Frank J. Structure of the 80S ribosome from Saccharomyces cerevisiae--tRNA-ribosome and subunit-subunit interactions. Cell 2001; 107:373-86. [PMID: 11701127 DOI: 10.1016/s0092-8674(01)00539-6] [Citation(s) in RCA: 387] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A cryo-EM reconstruction of the translating yeast 80S ribosome was analyzed. Computationally separated rRNA and protein densities were used for docking of appropriately modified rRNA models and homology models of yeast ribosomal proteins. The core of the ribosome shows a remarkable degree of conservation. However, some significant differences in functionally important regions and dramatic changes in the periphery due to expansion segments and additional ribosomal proteins are evident. As in the bacterial ribosome, bridges between the subunits are mainly formed by RNA contacts. Four new bridges are present at the periphery. The position of the P site tRNA coincides precisely with its prokaryotic counterpart, with mainly rRNA contributing to its molecular environment. This analysis presents an exhaustive inventory of an eukaryotic ribosome at the molecular level.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Cryoelectron Microscopy/methods
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 5.8S/chemistry
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Saccharomyces cerevisiae/genetics
Collapse
Affiliation(s)
- C M Spahn
- Howard Hughes Medical Institute, Health Research Inc., Albany, NY 12201, USA
| | | | | | | | | | | | | |
Collapse
|
162
|
Beckmann R, Spahn CM, Eswar N, Helmers J, Penczek PA, Sali A, Frank J, Blobel G. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 2001; 107:361-72. [PMID: 11701126 DOI: 10.1016/s0092-8674(01)00541-4] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In vitro assembled yeast ribosome-nascent chain complexes (RNCs) containing a signal sequence in the nascent chain were immunopurified and reconstituted with the purified protein-conducting channel (PCC) of yeast endoplasmic reticulum, the Sec61 complex. A cryo-EM reconstruction of the RNC-Sec61 complex at 15.4 A resolution shows a tRNA in the P site. Distinct rRNA elements and proteins of the large ribosomal subunit form four connections with the PCC across a gap of about 10-20 A. Binding of the PCC influences the position of the highly dynamic rRNA expansion segment 27. The RNC-bound Sec61 complex has a compact appearance and was estimated to be a trimer. We propose a binary model of cotranslational translocation entailing only two basic functional states of the translating ribosome-channel complex.
Collapse
Affiliation(s)
- R Beckmann
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Baumann O, Walz B. Endoplasmic reticulum of animal cells and its organization into structural and functional domains. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 205:149-214. [PMID: 11336391 DOI: 10.1016/s0074-7696(01)05004-5] [Citation(s) in RCA: 341] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The endoplasmic reticulum (ER) in animal cells is an extensive, morphologically continuous network of membrane tubules and flattened cisternae. The ER is a multifunctional organelle; the synthesis of membrane lipids, membrane and secretory proteins, and the regulation of intracellular calcium are prominent among its array of functions. Many of these functions are not homogeneously distributed throughout the ER but rather are confined to distinct ER subregions or domains. This review describes the structural and functional organization of the ER and highlights the dynamic properties of the ER network and the mechanisms that support the positioning of ER membranes within the cell. Furthermore, we outline processes involved in the establishment and maintenance of an anisotropic distribution of ER-resident proteins and, thus, in the organization of the ER into functionally and morphologically different subregions.
Collapse
Affiliation(s)
- O Baumann
- Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, Germany
| | | |
Collapse
|
164
|
Morrow MW, Brodsky JL. Yeast ribosomes bind to highly purified reconstituted Sec61p complex and to mammalian p180. Traffic 2001; 2:705-16. [PMID: 11576447 DOI: 10.1034/j.1600-0854.2001.21005.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To determine whether the yeast Sec61p translocation pore is a high-affinity ribosome receptor in the endoplasmic reticulum, we isolated the Sec61p complex using an improved protocol in which contaminants found previously to be associated with the complex are absent. The purified complex, which contains Sec61p with an amino terminal hexahistidine tag, was active since it rescued a sec61-3 post-translational translocation defect in a reconstituted system. Co-reconstitution of the Sec61p and Sec63p complexes into liposomes failed to support post-translational translocation, suggesting that Sec62p is required for this process. By Scatchard analysis, the purified Sec61p complex bound to yeast ribosomes when reconstituted into liposomes with a KD of 5.6 nM, a value similar to the KD obtained when ribosome binding to total microsomal protein was measured (2.7 nM). In addition, a mammalian protein, p180, which has been proposed to be a ribosome receptor, was expressed in yeast, and endoplasmic reticulum-derived microsomes isolated from this strain exhibited approximately 2.3-fold greater binding to yeast ribosomes. Despite this increase in ribosome binding, neither co- nor post-translational translocation was compromised in vivo. In sum, our data suggest that the Sec61p complex is a ribosome receptor in the yeast endoplasmic reticulum membrane.
Collapse
Affiliation(s)
- M W Morrow
- Department of Biological Sciences, University of Pittsburgh, 267 Crawford Hall, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
165
|
Veenendaal AK, van der Does C, Driessen AJ. Mapping the sites of interaction between SecY and SecE by cysteine scanning mutagenesis. J Biol Chem 2001; 276:32559-66. [PMID: 11445571 DOI: 10.1074/jbc.m103912200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, the SecYEG complex mediates the translocation and membrane integration of proteins. Both genetic and biochemical data indicate interactions of several transmembrane segments (TMSs) of SecY with SecE. By means of cysteine scanning mutagenesis, we have identified intermolecular sites of contact between TMS7 of SecY and TMS3 of SecE. The cross-linking of SecY to SecE demonstrates that these subunits are present in a one-to-one stoichiometry within the SecYEG complex. Sites in TMS3 of SecE involved in SecE dimerization are confined to a specific alpha-helical interface and occur in an oligomeric SecYEG complex. Although cross-linking reversibly inactivates translocation, the contact between TMS7 of SecY and TMS3 of SecE remains unaltered upon insertion of the preprotein into the translocation channel. These data support a model for an oligomeric translocation channel in which pairs of SecYEG complexes contact each other via SecE.
Collapse
Affiliation(s)
- A K Veenendaal
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
166
|
Abstract
Analysis of the Haloarcula marismortui large ribosomal subunit has revealed a common RNA structure that we call the kink-turn, or K-turn. The six K-turns in H.marismortui 23S rRNA superimpose with an r.m.s.d. of 1.7 A. There are two K-turns in the structure of Thermus thermophilus 16S rRNA, and the structures of U4 snRNA and L30e mRNA fragments form K-turns. The structure has a kink in the phosphodiester backbone that causes a sharp turn in the RNA helix. Its asymmetric internal loop is flanked by C-G base pairs on one side and sheared G-A base pairs on the other, with an A-minor interaction between these two helical stems. A derived consensus secondary structure for the K-turn includes 10 consensus nucleotides out of 15, and predicts its presence in the 5'-UTR of L10 mRNA, helix 78 in Escherichia coli 23S rRNA and human RNase MRP. Five K-turns in 23S rRNA interact with nine proteins. While the observed K-turns interact with proteins of unrelated structures in different ways, they interact with L7Ae and two homologous proteins in the same way.
Collapse
Affiliation(s)
- D.J. Klein
- Department of Molecular Biophysics and Biochemistry and Department of Chemistry, Yale University and Howard Hughes Medical Institute, New Haven, CT 06520-8114, USA Corresponding author e-mail:
D.J.Klein and T.M.Schmeing contributed equally to this work
| | - T.M. Schmeing
- Department of Molecular Biophysics and Biochemistry and Department of Chemistry, Yale University and Howard Hughes Medical Institute, New Haven, CT 06520-8114, USA Corresponding author e-mail:
D.J.Klein and T.M.Schmeing contributed equally to this work
| | - P.B. Moore
- Department of Molecular Biophysics and Biochemistry and Department of Chemistry, Yale University and Howard Hughes Medical Institute, New Haven, CT 06520-8114, USA Corresponding author e-mail:
D.J.Klein and T.M.Schmeing contributed equally to this work
| | - T.A. Steitz
- Department of Molecular Biophysics and Biochemistry and Department of Chemistry, Yale University and Howard Hughes Medical Institute, New Haven, CT 06520-8114, USA Corresponding author e-mail:
D.J.Klein and T.M.Schmeing contributed equally to this work
| |
Collapse
|
167
|
Abstract
Cryo-electron microscopy allows the visualization of macromolecules in their native state. Combined with techniques of three-dimensional reconstruction, cryo-EM images of single molecules can be used to study macromolecular interactions. The ribosome, a large RNA-protein complex with multiple binding interactions, is an excellent test case illustrating the power of these new techniques. Conformational changes during the binding of tRNA and protein factors to the ribosome can now be studied without the interference of crystal packing. Now that the first X-ray structures of ribosomal subunits have become available, conformational changes observed by cryo-EM in different functional states can be traced back to internal rearrangements of the underlying structural framework. Electron microscopy, X-ray crystallography, and modeling should be used together in the endeavor to understand the functioning of the translational machinery.
Collapse
Affiliation(s)
- J Frank
- Howard Hughes Medical Institute, Health Research, Inc. at the Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
| |
Collapse
|
168
|
Collinson I, Breyton C, Duong F, Tziatzios C, Schubert D, Or E, Rapoport T, Kühlbrandt W. Projection structure and oligomeric properties of a bacterial core protein translocase. EMBO J 2001; 20:2462-71. [PMID: 11350935 PMCID: PMC125464 DOI: 10.1093/emboj/20.10.2462] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The major route for protein export or membrane integration in bacteria occurs via the Sec-dependent transport apparatus. The core complex in the inner membrane, consisting of SecYEG, forms a protein-conducting channel, while the ATPase SecA drives translocation of substrate across the membrane. The SecYEG complex from Escherichia coli was overexpressed, purified and crystallized in two dimensions. A 9 A projection structure was calculated using electron cryo-microscopy. The structure exhibits P12(1) symmetry, having two asymmetric units inverted with respect to one another in the unit cell. The map shows elements of secondary structure that appear to be transmembrane helices. The crystallized form of SecYEG is too small to comprise the translocation channel and does not contain a large pore seen in other studies. In detergent solution, the SecYEG complex displays an equilibrium between monomeric and tetrameric forms. Our results therefore indicate that, unlike other known channels, the SecYEG complex can exist as both an assembled channel and an unassembled smaller unit, suggesting that transitions between the two states occur during a functional cycle.
Collapse
Affiliation(s)
- Ian Collinson
- Department of Cell Biology, Harvard Medical School/HHMI, Boston MA 02115, USA,
Department of Structural Biology, Max-Planck-Insitut für Biophysik, Frankfurt am Main 60596, Institut für Biophysik, JWG-Universität, Frankfurt am Main, Germany and Laboratoire Transports et Signalisation Cellulaires, Université de Paris XI, Orsay, France Corresponding author e-mail:
| | - Cécile Breyton
- Department of Cell Biology, Harvard Medical School/HHMI, Boston MA 02115, USA,
Department of Structural Biology, Max-Planck-Insitut für Biophysik, Frankfurt am Main 60596, Institut für Biophysik, JWG-Universität, Frankfurt am Main, Germany and Laboratoire Transports et Signalisation Cellulaires, Université de Paris XI, Orsay, France Corresponding author e-mail:
| | - Franck Duong
- Department of Cell Biology, Harvard Medical School/HHMI, Boston MA 02115, USA,
Department of Structural Biology, Max-Planck-Insitut für Biophysik, Frankfurt am Main 60596, Institut für Biophysik, JWG-Universität, Frankfurt am Main, Germany and Laboratoire Transports et Signalisation Cellulaires, Université de Paris XI, Orsay, France Corresponding author e-mail:
| | - Christos Tziatzios
- Department of Cell Biology, Harvard Medical School/HHMI, Boston MA 02115, USA,
Department of Structural Biology, Max-Planck-Insitut für Biophysik, Frankfurt am Main 60596, Institut für Biophysik, JWG-Universität, Frankfurt am Main, Germany and Laboratoire Transports et Signalisation Cellulaires, Université de Paris XI, Orsay, France Corresponding author e-mail:
| | - Dieter Schubert
- Department of Cell Biology, Harvard Medical School/HHMI, Boston MA 02115, USA,
Department of Structural Biology, Max-Planck-Insitut für Biophysik, Frankfurt am Main 60596, Institut für Biophysik, JWG-Universität, Frankfurt am Main, Germany and Laboratoire Transports et Signalisation Cellulaires, Université de Paris XI, Orsay, France Corresponding author e-mail:
| | | | | | - Werner Kühlbrandt
- Department of Cell Biology, Harvard Medical School/HHMI, Boston MA 02115, USA,
Department of Structural Biology, Max-Planck-Insitut für Biophysik, Frankfurt am Main 60596, Institut für Biophysik, JWG-Universität, Frankfurt am Main, Germany and Laboratoire Transports et Signalisation Cellulaires, Université de Paris XI, Orsay, France Corresponding author e-mail:
| |
Collapse
|
169
|
Gabashvili IS, Gregory ST, Valle M, Grassucci R, Worbs M, Wahl MC, Dahlberg AE, Frank J. The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Mol Cell 2001; 8:181-8. [PMID: 11511371 DOI: 10.1016/s1097-2765(01)00293-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Variations in the inner ribosomal landscape determining the topology of nascent protein transport have been studied by three-dimensional cryo-electron microscopy of erythromycin-resistant Escherichia coli 70S ribosomes. Significant differences in the mouth of the 50S subunit tunnel system visualized in the present study support a simple steric-hindrance explanation for the action of the drug. Examination of ribosomes in different functional states suggests that opening and closing of the main tunnel are dynamic features of the large subunit, possibly accompanied by changes in the L7/L12 stalk region. The existence and dynamic behavior of side tunnels suggest that ribosomal proteins L4 and L22 might be involved in the regulation of a multiple exit system facilitating cotranslational processing (or folding or directing) of nascent proteins.
Collapse
Affiliation(s)
- I S Gabashvili
- Wadsworth Center, State University of New York at Albany, P.O. Box 509, Albany, NY 12201, USA
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Heritage D, Wonderlin WF. Translocon pores in the endoplasmic reticulum are permeable to a neutral, polar molecule. J Biol Chem 2001; 276:22655-62. [PMID: 11303028 DOI: 10.1074/jbc.m102409200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pore of the translocon complex in the endoplasmic reticulum (ER) is large enough to be permeated by small molecules, but it is generally believed that permeation is prevented by a barrier at the luminal end of the pore. We tested the hypothesis that 4-methylumbelliferyl alpha-d-glucopyranoside (4MalphaG), a small, neutral dye molecule, cannot permeate an empty translocon pore by measuring its activation by an ER resident alpha-glucosidase, which is dependent on entry into the ER. The basal entry of dye into the ER of broken Chinese hamster ovary-S cells was remarkably high, and it was increased by the addition of puromycin, which purges translocon pores of nascent polypeptides, creating additional empty pores. The basal and puromycin-dependent entries of 4MalphaG were mediated by a common, salt-sensitive pathway that was partially blocked by spermine. A similar activation of 4MalphaG was observed in nystatin-perforated cells, indicating that the entry of 4MalphaG into the ER did not result simply from the loss of cytosolic factors in broken cells. We reject the hypothesis and conclude that a small, neutral molecule can permeate the empty pore of a translocon complex, and we propose that translationally inactive, ribosome-bound translocons could provide a pathway for small molecules to cross the ER membrane.
Collapse
Affiliation(s)
- D Heritage
- Department of Biochemistry and Molecular Pharmacology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506-9142, USA
| | | |
Collapse
|
171
|
Fulga TA, Sinning I, Dobberstein B, Pool MR. SRbeta coordinates signal sequence release from SRP with ribosome binding to the translocon. EMBO J 2001; 20:2338-47. [PMID: 11331598 PMCID: PMC125438 DOI: 10.1093/emboj/20.9.2338] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Protein targeting to the endoplasmic reticulum (ER) membrane is regulated by three GTPases, the 54 kDa subunit of the signal recognition particle (SRP) and the alpha- and beta-subunits of the SRP receptor (SR). Using a soluble form of SR and an XTP-binding mutant of SRbeta, we show that SRbeta is essential for protein translocation across the ER membrane. SRbeta can be cross-linked to a 21 kDa ribosomal protein in its empty and GDP-bound state, but not when GTP is bound. GTP binding to SRbeta is required to induce signal sequence release from SRP. This is achieved by the presence of the translocon, which changes the interaction between the 21 kDa ribosomal protein and SRbeta and thereby allows SRbeta to bind GTP. We conclude that SRbeta coordinates the release of the signal sequence from SRP with the presence of the translocon.
Collapse
Affiliation(s)
| | - Irmgard Sinning
- Structural Biology Programme, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg and
Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), D-69120 Heidelberg, Germany Present address: Biochemiezentrum der Universität Heidelberg (BZH), D-69120 Heidelberg, Germany Corresponding author e-mail:
| | - Bernhard Dobberstein
- Structural Biology Programme, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg and
Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), D-69120 Heidelberg, Germany Present address: Biochemiezentrum der Universität Heidelberg (BZH), D-69120 Heidelberg, Germany Corresponding author e-mail:
| | - Martin R. Pool
- Structural Biology Programme, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg and
Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), D-69120 Heidelberg, Germany Present address: Biochemiezentrum der Universität Heidelberg (BZH), D-69120 Heidelberg, Germany Corresponding author e-mail:
| |
Collapse
|
172
|
Spahn CM, Kieft JS, Grassucci RA, Penczek PA, Zhou K, Doudna JA, Frank J. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunit. Science 2001; 291:1959-62. [PMID: 11239155 DOI: 10.1126/science.1058409] [Citation(s) in RCA: 379] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Initiation of protein synthesis in eukaryotes requires recruitment of the 40S ribosomal subunit to the messenger RNA (mRNA). In most cases, this depends on recognition of a modified nucleotide cap on the 5' end of the mRNA. However, an alternate pathway uses a structured RNA element in the 5' untranslated region of the messenger or viral RNA called an internal ribosomal entry site (IRES). Here, we present a cryo-electron microscopy map of the hepatitis C virus (HCV) IRES bound to the 40S ribosomal subunit at about 20 A resolution. IRES binding induces a pronounced conformational change in the 40S subunit and closes the mRNA binding cleft, suggesting a mechanism for IRES-mediated positioning of mRNA in the ribosomal decoding center.
Collapse
Affiliation(s)
- C M Spahn
- Howard Hughes Medical Institute, Health Research Inc. at the, Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
| | | | | | | | | | | | | |
Collapse
|
173
|
Mutka SC, Walter P. Multifaceted physiological response allows yeast to adapt to the loss of the signal recognition particle-dependent protein-targeting pathway. Mol Biol Cell 2001; 12:577-88. [PMID: 11251072 PMCID: PMC30965 DOI: 10.1091/mbc.12.3.577] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Translational control has recently been recognized as an important facet of adaptive responses to various stress conditions. We describe the adaptation response of the yeast Saccharomyces cerevisiae to the loss of one of two mechanisms to target proteins to the secretory pathway. Using inducible mutants that block the signal recognition particle (SRP) pathway, we find that cells demonstrate a physiological response to the loss of the SRP pathway that includes specific changes in global gene expression. Upon inducing the loss of the SRP pathway, SRP-dependent protein translocation is initially blocked, and cell growth is considerably slowed. Concomitantly, gene expression changes include the induction of heat shock genes and the repression of protein synthesis genes. Remarkably, within hours, the efficiency of protein sorting improves while cell growth remains slow in agreement with the persistent repression of protein synthesis genes. Our results suggest that heat shock gene induction serves to protect cells from mislocalized precursor proteins in the cytosol, whereas reduced protein synthesis helps to regain efficiency in protein sorting by reducing the load on the protein translocation apparatus. Thus, we suggest that cells trade speed in cell growth for fidelity in protein sorting to adjust to life without SRP.
Collapse
Affiliation(s)
- S C Mutka
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94143-0448, USA
| | | |
Collapse
|
174
|
Jiang QX, Chester DW, Sigworth FJ. Spherical reconstruction: a method for structure determination of membrane proteins from cryo-EM images. J Struct Biol 2001; 133:119-31. [PMID: 11472084 DOI: 10.1006/jsbi.2001.4376] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We propose a new method for single-particle reconstruction, which should be generally applicable to structure determination for membrane proteins. After reconstitution into a small spherical vesicle, a membrane protein takes a particular orientation relative to the membrane normal, and its position in the projected image of the vesicle directly defines two of its three Euler angles of orientation. The spherical constraint imposed by the vesicle effectively reduces the dimensionality of the alignment search from 5 to 3 and simplifies the detection of the particle. Projection images of particles in vesicles collectively take all possible orientations and therefore cover the whole Fourier space. Analysis of images of vesicles in ice showed that the vesicle density is well described by a simple model for membrane electron scattering density. In fitting this model we found that osmotically swollen vesicles remain nearly spherical through the freezing process. These results satisfy the basic experimental requirements for spherical reconstruction. A computer simulation of particles in vesicles showed that this method provides good estimates of the two Euler angles and thus may improve single-particle reconstruction and extend it to smaller membrane proteins.
Collapse
Affiliation(s)
- Q X Jiang
- Department of Cellular and Molecular Physiology, Yale University, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
175
|
Levy R, Wiedmann M, Kreibich G. In vitro binding of ribosomes to the beta subunit of the Sec61p protein translocation complex. J Biol Chem 2001; 276:2340-6. [PMID: 11036067 DOI: 10.1074/jbc.m004867200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Sec61p complex forms the core element of the protein translocation complex (translocon) in the rough endoplasmic reticulum (rough ER) membrane. Translating or nontranslating ribosomes bind with high affinity to ER membranes that have been stripped of ribosomes or to liposomes containing purified Sec61p. Here we present evidence that the beta subunit of the complex (Sec61beta) makes contact with nontranslating ribosomes. A fusion protein containing the Sec61beta cytoplasmic domain (Sec61beta(c)) prevents the binding of ribosomes to stripped ER-derived membranes and also binds to ribosomes directly with an affinity close to the affinity of ribosomes for stripped ER-derived membranes. The ribosome binding activity of Sec61beta(c), like that of native ER membranes, is sensitive to high salt concentrations and is not based on an unspecific charge-dependent interaction of the relatively basic Sec61beta(c) domain with ribosomal RNA. Like stripped ER membranes, the Sec61beta(c) sequence binds to large ribosomal subunits in preference over small subunits. Previous studies have shown that Sec61beta is inessential for ribosome binding and protein translocation, but translocation is impaired by the absence of Sec61beta, and it has been proposed that Sec61beta assists in the insertion of nascent proteins into the translocation pore. Our results suggest a physical interaction of the ribosome itself with Sec61beta; this may normally occur alongside interactions between the ribosome and other elements of Sec61p, or it may represent one stage in a temporal sequence of binding.
Collapse
Affiliation(s)
- R Levy
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
176
|
Affiliation(s)
- E Nogales
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California Berkeley, 94720-3200, USA.
| | | |
Collapse
|
177
|
Mangos S, Krawetz R, Kelly GM. The Translocon-Associated Protein beta (TRAPbeta) in zebrafish embryogenesis. I. Enhanced expression of transcripts in notochord and hatching gland precursors. Mol Cell Biochem 2000; 215:93-101. [PMID: 11204460 DOI: 10.1023/a:1026598516681] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The normal translocation of nascent polypeptides into the lumen of the endoplasmic reticulum (ER) is thought to be aided in part by a translocon-associated protein (TRAP) complex consisting of 4 protein subunits. The association of mature proteins with the ER and Golgi, or other intracellular locales, such as lysosomes, depends on the initial targeting of the nascent polypeptide to the ER membrane. A similar scenario must also exist for proteins destined for secretion. We have identified a member of the TRAP complex using a two hybrid screen to isolate proteins that bind to zebrafish (Danio) Ran binding protein 1. The polypeptide predicted from the largest open reading frame contains 183 amino acids with a 86 and 87% sequence identity to the TRAPbeta subunits in human and chicken, respectively. Sequence analysis identified a cleavable amino-terminal signal peptide in the zebrafish TRAPbeta subunit and a region of the protein spans the membrane of the endoplasmic reticulum. A reverse transcriptase-polymerase chain reaction assay showed that TRAPbeta mRNA is expressed in the developing zebrafish embryo. TRAPbeta mRNA is maternally supplied to the egg and is expressed constitutively throughout development and in the adult. This pattern of expression indicates that the message encoding part of the machinery targeting nascent polypeptides to the ER lumen is available at the onset of embryogenesis when the rate of translation increases exponentially over that occurring in the oocyte. In situ hybridization was used to test whether or not TRAPbeta transcripts might become localized and/or enriched in the developing embryo. Homogeneous staining is seen in the blastula and early gastrula stages. At mid-to-late gastrula stages, however, the message becomes enriched in the developing notochord and polster, or hatching gland rudiment. The TRAPbeta gene, mapped using the LN54 mouse-zebrafish radiation hybrid panel to linkage group 19, resides next to a gene (Z15451) which has sequence homology to notch2 and vascular endothelial growth factor. TRAPbeta, however, does not appear to belong to a group of genes which are syntenic with orthologues or paralogues on human chromosomes.
Collapse
Affiliation(s)
- S Mangos
- Department of Zoology, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
178
|
Menetret JF, Neuhof A, Morgan DG, Plath K, Radermacher M, Rapoport TA, Akey CW. The structure of ribosome-channel complexes engaged in protein translocation. Mol Cell 2000; 6:1219-32. [PMID: 11106759 DOI: 10.1016/s1097-2765(00)00118-0] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cotranslational translocation of proteins requires ribosome binding to the Sec61p channel at the endoplasmic reticulum (ER) membrane. We have used electron cryomicroscopy to determine the structures of ribosome-channel complexes in the absence or presence of translocating polypeptide chains. Surprisingly, the structures are similar and contain 3-4 connections between the ribosome and channel that leave a lateral opening into the cytosol. Therefore, the ribosome-channel junction may allow the direct transfer of polypeptides into the channel and provide a path for the egress of some nascent chains into the cytosol. Moreover, complexes solubilized from mammalian ER membranes contain an additional membrane protein that has a large, lumenal protrusion and is intercalated into the wall of the Sec61p channel. Thus, the native channel contains a component that is not essential for translocation.
Collapse
Affiliation(s)
- J F Menetret
- Department of Physiology and Biophysics Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
179
|
Wittke S, Dünnwald M, Johnsson N. Sec62p, a component of the endoplasmic reticulum protein translocation machinery, contains multiple binding sites for the Sec-complex. Mol Biol Cell 2000; 11:3859-71. [PMID: 11071912 PMCID: PMC15042 DOI: 10.1091/mbc.11.11.3859] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
SEC62 encodes an essential component of the Sec-complex that is responsible for posttranslational protein translocation across the membrane of the endoplasmic reticulum in Saccharomyces cerevisiae. The specific role of Sec62p in translocation was not known and difficult to identify because it is part of an oligomeric protein complex in the endoplasmic reticulum membrane. An in vivo competition assay allowed us to characterize and dissect physical and functional interactions between Sec62p and components of the Sec-complex. We could show that Sec62p binds via its cytosolic N- and C-terminal domains to the Sec-complex. The N-terminal domain, which harbors the major interaction site, binds directly to the last 14 residues of Sec63p. The C-terminal binding site of Sec62p is less important for complex stability, but adjoins the region in Sec62p that might be involved in signal sequence recognition.
Collapse
Affiliation(s)
- S Wittke
- Max-Delbrück-Laboratorium, D-50829 Köln, Germany
| | | | | |
Collapse
|
180
|
Kabani M, Beckerich JM, Gaillardin C. Sls1p stimulates Sec63p-mediated activation of Kar2p in a conformation-dependent manner in the yeast endoplasmic reticulum. Mol Cell Biol 2000; 20:6923-34. [PMID: 10958688 PMCID: PMC88768 DOI: 10.1128/mcb.20.18.6923-6934.2000] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously characterized the SLS1 gene in the yeast Yarrowia lipolytica and showed that it interacts physically with YlKar2p to promote translocation across the endoplasmic-reticulum membrane (A. Boisramé, M. Kabani, J. M. Beckerich, E. Hartmann, and C. Gaillardin, J. Biol. Chem. 273:30903-30908, 1998). A Y. lipolytica Kar2p mutant was isolated that restored interaction with an Sls1p mutant, suggesting that the interaction with Sls1p could be nucleotide and/or conformation dependent. This result was used as a working hypothesis for more accurate investigations in Saccharomyces cerevisiae. We show by two-hybrid an in vitro assays that the S. cerevisiae homologue of Sls1p interacts with ScKar2p. Using dominant lethal mutants of ScKar2p, we were able to show that ScSls1p preferentially interacts with the ADP-bound conformation of the molecular chaperone. Synthetic lethality was observed between DeltaScsls1 and translocation-deficient kar2 or sec63-1 mutants, providing in vivo evidence for a role of ScSls1p in protein translocation. Synthetic lethality was also observed with ER-associated degradation and folding-deficient kar2 mutants, strongly suggesting that Sls1p functions are not restricted to the translocation process. We show that Sls1p stimulates in a dose-dependent manner the binding of ScKar2p on the lumenal J domain of Sec63p fused to glutathione S-transferase. Moreover, Sls1p is shown to promote the Sec63p-mediated activation of Kar2p's ATPase activity. Our data strongly suggest that Sls1p could be the first GrpE-like protein described in the endoplasmic reticulum.
Collapse
Affiliation(s)
- M Kabani
- Laboratoire de Génétique Moléculaire et Cellulaire, INRA-INA. PG-CNRS, Thiverval-Grignon, France
| | | | | |
Collapse
|
181
|
Prinz A, Hartmann E, Kalies KU. Sec61p is the main ribosome receptor in the endoplasmic reticulum of Saccharomyces cerevisiae. Biol Chem 2000; 381:1025-9. [PMID: 11076036 DOI: 10.1515/bc.2000.126] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A characteristic feature of the co-translational protein translocation into the endoplasmic reticulum (ER) is the tight association of the translating ribosomes with the translocation sites in the membrane. Biochemical analyses identified the Sec61 complex as the main ribosome receptor in the ER of mammalian cells. Similar experiments using purified homologues from the yeast Saccharomyces cerevisiae, the Sec61p complex and the Ssh1p complex, respectively, demonstrated that they bind ribosomes with an affinity similar to that of the mammalian Sec61 complex. However, these studies did not exclude the presence of other proteins that may form abundant ribosome binding sites in the yeast ER. We now show here that similar to the situation found in mammals in the yeast Saccharomyces cerevisiae the two Sec61-homologues Sec61p and Ssh1p are essential for the formation of high-affinity ribosome binding sites in the ER membrane. The number of binding sites formed by Ssh1p under standard growth conditions is at least 4 times less than those formed by Sec61p.
Collapse
Affiliation(s)
- A Prinz
- Abteilung Biochemie II, Zentrum Biochemie und Molekulare Zellbiologie, Georg-August-Universität Göttingen, Germany
| | | | | |
Collapse
|
182
|
Abstract
SecA insertion and deinsertion through SecYEG drive preprotein translocation at the Escherichia coli inner membrane. We present three assessments of the theory that oligomers of SecYEG might form functional translocation sites. (i) Formaldehyde cross- linking of translocase reveals cross-links between SecY, SecE and SecG, but not higher order oligomers. (ii) Cross-linking of membranes containing unmodified SecE and hemagglutinin-tagged SecE (SecE(HA)) reveals cross-links between SecY and SecE and between SecY and SecE(HA). However, anti-HA immunoprecipitates contain neither untagged SecE nor SecY cross-linked to SecE. (iii) Membranes containing similar amounts of SecE and SecE(HA) were saturated with translocation intermediate (I(29)) and detergent solubilized. Anti-HA immunoprecipitation of I(29) required SecYE(HA)G and SecA, yet untagged SecE was not present in this translocation complex. Likewise, anti-HA immunoprecipitates of membranes containing equal amounts of SecY and SecY(HA) were found to contain SecY(HA) but not SecY. Both immunoprecipitates contain more moles of I(29) than of the untagged subunit, again suggesting that translocation intermediates are not engaged with multiple copies of SecYEG. These studies suggest that the active form of preprotein translocase is monomeric SecYEG.
Collapse
Affiliation(s)
- T L Yahr
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755-3844, USA
| | | |
Collapse
|
183
|
Frank J, Penczek P, Agrawal RK, Grassucci RA, Heagle AB. Three-dimensional cryoelectron microscopy of ribosomes. Methods Enzymol 2000; 317:276-91. [PMID: 10829286 DOI: 10.1016/s0076-6879(00)17020-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- J Frank
- Howard Hughes Medical Institute, Wadsworth Center, New York, USA
| | | | | | | | | |
Collapse
|
184
|
Morgan DG, Ménétret JF, Radermacher M, Neuhof A, Akey IV, Rapoport TA, Akey CW. A comparison of the yeast and rabbit 80 S ribosome reveals the topology of the nascent chain exit tunnel, inter-subunit bridges and mammalian rRNA expansion segments. J Mol Biol 2000; 301:301-21. [PMID: 10926511 DOI: 10.1006/jmbi.2000.3947] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein synthesis in eukaryotes is mediated by both cytoplasmic and membrane-bound ribosomes. During the co-translational translocation of secretory and membrane proteins, eukaryotic ribosomes dock with the protein conducting channel of the endoplasmic reticulum. An understanding of these processes will require the detailed structure of a eukaryotic ribosome. To this end, we have compared the three-dimensional structures of yeast and rabbit ribosomes at 24 A resolution. In general, we find that the active sites for protein synthesis and translocation have been highly conserved. It is interesting that a channel was visualized in the neck of the small subunit whose entrance is formed by a deep groove. By analogy with the prokaryotic small subunit, this channel may provide a conserved portal through which mRNA is threaded into the decoding center. In addition, both the small and large subunits are built around a dense tubular network. Our analysis further suggests that the nascent chain exit tunnel and the docking surface for the endoplasmic reticulum channel are formed by this network. We surmise that many of these features correspond to rRNA, based on biochemical and structural data. Ribosomal function is critically dependent on the specific association of small and large subunits. Our analysis of eukaryotic ribosomes reveals four conserved inter-subunit bridges with a geometry similar to that found in prokaryotes. In particular, a double-bridge connects the small subunit platform with the interface canyon on the large subunit. Moreover, a novel bridge is formed between the platform and the base of the L1 domain. Finally, size differences between mammalian and yeast large subunit rRNAs have been correlated with five expansion segments that form two large spines and three extended fingers. Overall, we find that expansion segments within the large subunit rRNA have been incorporated at positions distinct from the active sites for protein synthesis and translocation.
Collapse
Affiliation(s)
- D G Morgan
- Department of Physiology and Structural Biology, Boston University School of Medicine, 700 Albany St., Boston, MA 02218-2526, USA
| | | | | | | | | | | | | |
Collapse
|
185
|
Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 2000; 289:905-20. [PMID: 10937989 DOI: 10.1126/science.289.5481.905] [Citation(s) in RCA: 2326] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The large ribosomal subunit catalyzes peptide bond formation and binds initiation, termination, and elongation factors. We have determined the crystal structure of the large ribosomal subunit from Haloarcula marismortui at 2.4 angstrom resolution, and it includes 2833 of the subunit's 3045 nucleotides and 27 of its 31 proteins. The domains of its RNAs all have irregular shapes and fit together in the ribosome like the pieces of a three-dimensional jigsaw puzzle to form a large, monolithic structure. Proteins are abundant everywhere on its surface except in the active site where peptide bond formation occurs and where it contacts the small subunit. Most of the proteins stabilize the structure by interacting with several RNA domains, often using idiosyncratically folded extensions that reach into the subunit's interior.
Collapse
MESH Headings
- Archaeal Proteins/chemistry
- Archaeal Proteins/metabolism
- Base Sequence
- Binding Sites
- Conserved Sequence
- Crystallography, X-Ray
- Haloarcula marismortui/chemistry
- Haloarcula marismortui/ultrastructure
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Conformation
- Protein Folding
- RNA, Archaeal/chemistry
- RNA, Archaeal/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/ultrastructure
Collapse
Affiliation(s)
- N Ban
- Department of Molecular Biophysics & Biochemistry and Howard Hughes Medical Institute, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
186
|
Nissen P, Hansen J, Ban N, Moore PB, Steitz TA. The structural basis of ribosome activity in peptide bond synthesis. Science 2000; 289:920-30. [PMID: 10937990 DOI: 10.1126/science.289.5481.920] [Citation(s) in RCA: 1505] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Using the atomic structures of the large ribosomal subunit from Haloarcula marismortui and its complexes with two substrate analogs, we establish that the ribosome is a ribozyme and address the catalytic properties of its all-RNA active site. Both substrate analogs are contacted exclusively by conserved ribosomal RNA (rRNA) residues from domain V of 23S rRNA; there are no protein side-chain atoms closer than about 18 angstroms to the peptide bond being synthesized. The mechanism of peptide bond synthesis appears to resemble the reverse of the acylation step in serine proteases, with the base of A2486 (A2451 in Escherichia coli) playing the same general base role as histidine-57 in chymotrypsin. The unusual pK(a) (where K(a) is the acid dissociation constant) required for A2486 to perform this function may derive in part from its hydrogen bonding to G2482 (G2447 in E. coli), which also interacts with a buried phosphate that could stabilize unusual tautomers of these two bases. The polypeptide exit tunnel is largely formed by RNA but has significant contributions from proteins L4, L22, and L39e, and its exit is encircled by proteins L19, L22, L23, L24, L29, and L31e.
Collapse
MESH Headings
- Archaeal Proteins/chemistry
- Archaeal Proteins/metabolism
- Base Pairing
- Base Sequence
- Binding Sites
- Catalysis
- Crystallization
- Evolution, Molecular
- Haloarcula marismortui/chemistry
- Haloarcula marismortui/metabolism
- Haloarcula marismortui/ultrastructure
- Hydrogen Bonding
- Hydrogen-Ion Concentration
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Oligonucleotides/metabolism
- Peptide Biosynthesis
- Peptides/metabolism
- Peptidyl Transferases/antagonists & inhibitors
- Peptidyl Transferases/chemistry
- Peptidyl Transferases/metabolism
- Phosphates/chemistry
- Phosphates/metabolism
- Protein Conformation
- Puromycin/metabolism
- RNA, Archaeal/chemistry
- RNA, Archaeal/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
Collapse
Affiliation(s)
- P Nissen
- Department of Molecular Biophysics and Biochemistry and Department of Chemistry, Yale University, and Howard Hughes Medical Institute, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
187
|
Raden D, Song W, Gilmore R. Role of the cytoplasmic segments of Sec61alpha in the ribosome-binding and translocation-promoting activities of the Sec61 complex. J Cell Biol 2000; 150:53-64. [PMID: 10893256 PMCID: PMC2185549 DOI: 10.1083/jcb.150.1.53] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/1999] [Accepted: 05/31/2000] [Indexed: 11/22/2022] Open
Abstract
The Sec61 complex performs a dual function in protein translocation across the RER, serving as both the high affinity ribosome receptor and the translocation channel. To define regions of the Sec61 complex that are involved in ribosome binding and translocation promotion, ribosome-stripped microsomes were subjected to limited digestions using proteases with different cleavage specificities. Protein immunoblot analysis using antibodies specific for the NH(2) and COOH terminus of Sec61alpha was used to map the location of proteolysis cleavage sites. We observed a striking correlation between the loss of binding activity for nontranslating ribosomes and the digestion of the COOH- terminal tail or cytoplasmic loop 8 of Sec61alpha. The proteolyzed microsomes were assayed for SRP-independent translocation activity to determine whether high affinity binding of the ribosome to the Sec61 complex is a prerequisite for nascent chain transport. Microsomes that do not bind nontranslating ribosomes at physiological ionic strength remain active in SRP-independent translocation, indicating that the ribosome binding and translocation promotion activities of the Sec61 complex do not strictly correlate. Translocation-promoting activity was most severely inhibited by cleavage of cytosolic loop 6, indicating that this segment is a critical determinant for this function of the Sec61 complex.
Collapse
Affiliation(s)
- David Raden
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0103
| | - Weiqun Song
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0103
| | - Reid Gilmore
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0103
| |
Collapse
|
188
|
Heymann JA, Subramaniam S. Integration of deletion mutants of bovine rhodopsin into the membrane of the endoplasmic reticulum. Mol Membr Biol 2000; 17:165-74. [PMID: 11128975 DOI: 10.1080/09687680050197392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Newly synthesized eukaryotic membrane proteins must be integrated into the membrane of the endoplasmic reticulum with the correct topology to enable the subsequent acquisition of the correctly folded, functional conformation. Here, an analysis is presented of N-terminal glycosylation and steady-state membrane orientation of a series of truncation mutants of the seven-helix protein rhodopsin expressed in COS-1 cells. Mutants containing one, three, or five N-terminal transmembrane segments of rhodopsin, as well as mutants containing only the first transmembrane segment, but with hydrophilic extensions at the C-terminus were studied. The findings demonstrate that the C-terminal transmembrane segments play a crucial role in determining the final orientation of rhodopsin, and that the commitment to the correct orientation occurs only after the synthesis of at least three transmembrane segments. The experiments also suggest that the molecular machinery involved in the integration of a newly synthesized seven-helix membrane protein into the endoplasmic reticulum membrane is sensitive to the overall hydrophobicity of the sequence that follows the first transmembrane segment.
Collapse
Affiliation(s)
- J A Heymann
- National Cancer Institute, NIH, Laboratory of Biochemistry, Bethesda, MD 20892, USA.
| | | |
Collapse
|
189
|
Abstract
Protein translocation across the bacterial cytoplasmic membrane has been studied extensively in Escherichia coli. The identification of the components involved and subsequent reconstitution of the purified translocation reaction have defined the minimal constituents that allowed extensive biochemical characterization of the so-called translocase. This functional enzyme complex consists of the SecYEG integral membrane protein complex and a peripherally bound ATPase, SecA. Under translocation conditions, four SecYEG heterotrimers assemble into one large protein complex, forming a putative protein-conducting channel. This tetrameric arrangement of SecYEG complexes and the highly dynamic SecA dimer together form a proton-motive force- and ATP-driven molecular machine that drives the stepwise translocation of targeted polypeptides across the cytoplasmic membrane. Recent findings concerning the translocase structure and mechanism of protein translocation are discussed and shine new light on controversies in the field.
Collapse
Affiliation(s)
- E H Manting
- Department of Microbiology and Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
190
|
Abstract
The ribosome is the site in the cell where proteins are synthesized. Cryo-electron microscopy and X-ray crystallography have revealed the ribosome as a particle made of two subunits, each formed as an intricate mesh of RNAs and many proteins. Ligand-binding experiments followed by cryo-electron microscopy have helped to determine some of the key stages of interaction between the ribosome and the main ligand molecules.
Collapse
Affiliation(s)
- J Frank
- Department of Biomedical Science, Howard Hughes Medical Institute, Health Research, Inc., Wadsworth Center, State University of New York at Albany, Albany, 12201-0509 ,USA.
| |
Collapse
|
191
|
Gomez-Lorenzo MG, Spahn CM, Agrawal RK, Grassucci RA, Penczek P, Chakraburtty K, Ballesta JP, Lavandera JL, Garcia-Bustos JF, Frank J. Three-dimensional cryo-electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 A resolution. EMBO J 2000; 19:2710-8. [PMID: 10835368 PMCID: PMC212750 DOI: 10.1093/emboj/19.11.2710] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2000] [Revised: 03/28/2000] [Accepted: 04/04/2000] [Indexed: 11/14/2022] Open
Abstract
Using a sordarin derivative, an antifungal drug, it was possible to determine the structure of a eukaryotic ribosome small middle dotEF2 complex at 17.5 A resolution by three-dimensional (3D) cryo-electron microscopy. EF2 is directly visible in the 3D map and the overall arrangement of the complex from Saccharomyces cerevisiae corresponds to that previously seen in Escherichia coli. However, pronounced differences were found in two prominent regions. First, in the yeast system the interaction between the elongation factor and the stalk region of the large subunit is much more extensive. Secondly, domain IV of EF2 contains additional mass that appears to interact with the head of the 40S subunit and the region of the main bridge of the 60S subunit. The shape and position of domain IV of EF2 suggest that it might interact directly with P-site-bound tRNA.
Collapse
Affiliation(s)
- M G Gomez-Lorenzo
- Health Research Inc. at Wadsworth Center, State University of New York at Albany, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Meyer HA, Grau H, Kraft R, Kostka S, Prehn S, Kalies KU, Hartmann E. Mammalian Sec61 is associated with Sec62 and Sec63. J Biol Chem 2000; 275:14550-7. [PMID: 10799540 DOI: 10.1074/jbc.275.19.14550] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In yeast, efficient protein transport across the endoplasmic reticulum (ER) membrane may occur co-translationally or post-translationally. The latter process is mediated by a membrane protein complex that consists of the Sec61p complex and the Sec62p-Sec63p subcomplex. In contrast, in mammalian cells protein translocation is almost exclusively co-translational. This transport depends on the Sec61 complex, which is homologous to the yeast Sec61p complex and has been identified in mammals as a ribosome-bound pore-forming membrane protein complex. We report here the existence of ribosome-free mammalian Sec61 complexes that associate with two ubiquitous proteins of the ER membrane. According to primary sequence analysis both proteins display homology to the yeast proteins Sec62p and Sec63p and are therefore named Sec62 and Sec63, respectively. The probable function of the mammalian Sec61-Sec62-Sec63 complex is discussed with respect to its abundance in ER membranes, which, in contrast to yeast ER membranes, apparently lack efficient post-translational translocation activity.
Collapse
Affiliation(s)
- H A Meyer
- Universität Göttingen, Zentrum Biochemie und Molekulare Zellbiologie, Biochemie II, Heinrich-Düker-Weg 12, Göttingen 37073, Germany
| | | | | | | | | | | | | |
Collapse
|
193
|
|
194
|
Mueller F, Sommer I, Baranov P, Matadeen R, Stoldt M, Wöhnert J, Görlach M, van Heel M, Brimacombe R. The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution. J Mol Biol 2000; 298:35-59. [PMID: 10756104 DOI: 10.1006/jmbi.2000.3635] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Escherichia coli 23 S and 5 S rRNA molecules have been fitted helix by helix to a cryo-electron microscopic (EM) reconstruction of the 50 S ribosomal subunit, using an unfiltered version of the recently published 50 S reconstruction at 7.5 A resolution. At this resolution, the EM density shows a well-defined network of fine structural elements, in which the major and minor grooves of the rRNA helices can be discerned at many locations. The 3D folding of the rRNA molecules within this EM density is constrained by their well-established secondary structures, and further constraints are provided by intra and inter-rRNA crosslinking data, as well as by tertiary interactions and pseudoknots. RNA-protein cross-link and foot-print sites on the 23 S and 5 S rRNA were used to position the rRNA elements concerned in relation to the known arrangement of the ribosomal proteins as determined by immuno-electron microscopy. The published X-ray or NMR structures of seven 50 S ribosomal proteins or RNA-protein complexes were incorporated into the EM density. The 3D locations of cross-link and foot-print sites to the 23 S rRNA from tRNA bound to the ribosomal A, P or E sites were correlated with the positions of the tRNA molecules directly observed in earlier reconstructions of the 70 S ribosome at 13 A or 20 A. Similarly, the positions of cross-link sites within the peptidyl transferase ring of the 23 S rRNA from the aminoacyl residue of tRNA were correlated with the locations of the CCA ends of the A and P site tRNA. Sites on the 23 S rRNA that are cross-linked to the N termini of peptides of different lengths were all found to lie within or close to the internal tunnel connecting the peptidyl transferase region with the presumed peptide exit site on the solvent side of the 50 S subunit. The post-transcriptionally modified bases in the 23 S rRNA form a cluster close to the peptidyl transferase area. The minimum conserved core elements of the secondary structure of the 23 S rRNA form a compact block within the 3D structure and, conversely, the points corresponding to the locations of expansion segments in 28 S rRNA all lie on the outside of the structure.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Computer Simulation
- Conserved Sequence/genetics
- Cross-Linking Reagents
- Cryoelectron Microscopy
- Crystallography, X-Ray
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Fungal Proteins/metabolism
- Microscopy, Immunoelectron
- Models, Molecular
- Molecular Sequence Data
- Nuclear Magnetic Resonance, Biomolecular
- Nucleic Acid Conformation
- Peptide Elongation Factor Tu/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Bacterial/ultrastructure
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 23S/ultrastructure
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- RNA, Ribosomal, 5S/ultrastructure
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer/ultrastructure
- Ribonucleases/metabolism
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Ricin/metabolism
- Thermodynamics
Collapse
Affiliation(s)
- F Mueller
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, Berlin, 14195, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Prinz A, Behrens C, Rapoport TA, Hartmann E, Kalies KU. Evolutionarily conserved binding of ribosomes to the translocation channel via the large ribosomal RNA. EMBO J 2000; 19:1900-6. [PMID: 10775273 PMCID: PMC302021 DOI: 10.1093/emboj/19.8.1900] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During early stages of cotranslational protein translocation across the endoplasmic reticulum (ER) membrane the ribosome is targeted to the heterotrimeric Sec61p complex, the major component of the protein-conducting channel. We demonstrate that this interaction is mediated by the 28S rRNA of the eukaryotic large ribosomal subunit. Bacterial ribosomes also bind via their 23S rRNA to the bacterial homolog of the Sec61p complex, the SecYEG complex. Eukaryotic ribosomes bind to the SecYEG complex, and prokaryotic ribosomes to the Sec61p complex. These data indicate that rRNA-mediated interaction of ribosomes with the translocation channel occurred early in evolution and has been conserved.
Collapse
Affiliation(s)
- A Prinz
- Abteilung Biochemie II, Zentrum Biochemie und Molekulare Zellbiologie, Georg-August-Universität, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
| | | | | | | | | |
Collapse
|
196
|
Abstract
After endocytosis cholera toxin is transported to the endoplasmic reticulum (ER), from where its A1 subunit (CTA1) is assumed to be transferred to the cytosol by an as-yet unknown mechanism. Here, export of CTA1 from the ER to the cytosol was investigated in a cell-free assay using either microsomes loaded with CTA1 by in vitro translation or reconstituted microsomes containing CTA1 purified from V. cholerae. Export of CTA1 from the microsomes was time- and adenosine triphosphate-dependent and required lumenal ER proteins. By coimmunoprecipitation CTA1 was shown to be associated during export with the Sec61p complex, which mediates import of proteins into the ER. Export of CTA1 was inhibited when the Sec61p complexes were blocked by nascent polypeptides arrested during import, demonstrating that the export of CTA1 depended on translocation-competent Sec61p complexes. Export of CTA1 from the reconstituted microsomes indicated the de novo insertion of the toxin into the Sec61p complex from the lumenal side. Our results suggest that Sec61p complex-mediated protein export from the ER is not restricted to ER-associated protein degradation but is also used by bacterial toxins, enabling their entry into the cytosol of the target cell.
Collapse
Affiliation(s)
- A Schmitz
- Institut für Zellbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53121 Bonn, Germany.
| | | | | | | |
Collapse
|
197
|
Manting EH, van Der Does C, Remigy H, Engel A, Driessen AJ. SecYEG assembles into a tetramer to form the active protein translocation channel. EMBO J 2000; 19:852-61. [PMID: 10698927 PMCID: PMC305625 DOI: 10.1093/emboj/19.5.852] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Translocase mediates preprotein translocation across the Escherichia coli inner membrane. It consists of the SecYEG integral membrane protein complex and the peripheral ATPase SecA. Here we show by functional assays, negative-stain electron microscopy and mass measurements with the scanning transmission microscope that SecA recruits SecYEG complexes to form the active translocation channel. The active assembly of SecYEG has a side length of 10.5 nm and exhibits an approximately 5 nm central cavity. The mass and structure of this SecYEG as well as the subunit stoichiometry of SecA and SecY in a soluble translocase-precursor complex reveal that translocase consists of the SecA homodimer and four SecYEG complexes.
Collapse
Affiliation(s)
- E H Manting
- Department of Microbiology, Groningen Biomolecular Sciences, Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | |
Collapse
|
198
|
Song W, Raden D, Mandon EC, Gilmore R. Role of Sec61alpha in the regulated transfer of the ribosome-nascent chain complex from the signal recognition particle to the translocation channel. Cell 2000; 100:333-43. [PMID: 10676815 DOI: 10.1016/s0092-8674(00)80669-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Targeting of ribosome-nascent chain complexes to the translocon in the endoplasmic reticulum is mediated by the concerted action of the signal recognition particle (SRP) and the SRP receptor (SR). Ribosome-stripped microsomes were digested with proteases to sever cytoplasmic domains of SRalpha, SRbeta, TRAM, and the Sec61 complex. We characterized protein translocation intermediates that accumulate when Sec61alpha or SRbeta is inactivated by proteolysis. In the absence of a functional Sec61 complex, dissociation of SRP54 from the signal sequence is blocked. Experiments using SR proteoliposomes confirmed the assembly of a membrane-bound posttargeting intermediate. These results strongly suggest that the Sec61 complex regulates the GTP hydrolysis cycle of the SRP-SR complex at the stage of signal sequence dissociation from SRP54.
Collapse
Affiliation(s)
- W Song
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester 01655-0103, USA
| | | | | | | |
Collapse
|
199
|
Potter MD, Nicchitta CV. Ribosome-independent regulation of translocon composition and Sec61alpha conformation. J Biol Chem 2000; 275:2037-45. [PMID: 10636907 DOI: 10.1074/jbc.275.3.2037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, the contributions of membrane-bound ribosomes to the regulation of endoplasmic reticulum translocon composition and Sec61alpha conformation were examined. Following solubilization of rough microsomes (RM) with digitonin, ribosomes co-sedimented in complexes containing the translocon proteins Sec61alpha, ribophorin I, and TRAPalpha, and endoplasmic reticulum phospholipids. Complexes of similar composition were identified in digitonin extracts of ribosome-free membranes, indicating that the ribosome does not define the composition of the digitonin-soluble translocon. Whereas in digitonin solution a highly electrostatic ribosome-translocon junction is observed, no stable interactions between ribosomes and Sec61alpha, ribophorin I, or TRAPalpha were observed following solubilization of RM with lipid-derived detergents at physiological salt concentrations. Sec61alpha was found to exist in at least two conformational states, as defined by mild proteolysis. A protease-resistant form was observed in RM and detergent-solubilized RM. Removal of peripheral proteins and ribosomes markedly enhanced the sensitivity of Sec61alpha to proteolysis, yet the readdition of inactive ribosomes to salt-washed membranes yielded only modest reductions in protease sensitivity. Addition of sublytic concentrations of detergents to salt-washed RM markedly decreased the protease sensitivity of Sec61alpha, indicating that a protease-resistant conformation of Sec61alpha can be conferred in a ribosome-independent manner.
Collapse
Affiliation(s)
- M D Potter
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
200
|
Wilkinson BM, Tyson JR, Reid PJ, Stirling CJ. Distinct domains within yeast Sec61p involved in post-translational translocation and protein dislocation. J Biol Chem 2000; 275:521-9. [PMID: 10617647 DOI: 10.1074/jbc.275.1.521] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The translocation of secretory polypeptides into and across the membrane of the endoplasmic reticulum (ER) occurs at the translocon, a pore-forming structure that orchestrates the transport and maturation of polypeptides at the ER membrane. Recent data also suggest that misfolded or unassembled polypeptides exit the ER via the translocon for degradation by the cytosolic ubiquitin/proteasome pathway. Sec61p is a highly conserved multispanning membrane protein that constitutes a core component of the translocon. We have found that the essential function of the Saccharomyces cerevisiae Sec61p is retained upon deletion of either of two internal regions that include transmembrane domains 2 and 3, respectively. However, a deletion mutation encompassing both of these domains was found to be nonfunctional. Characterization of yeast mutants expressing the viable deletion alleles of Sec61p has revealed defects in post-translational translocation. In addition, the transmembrane domain 3 deletion mutant is induced for the unfolded protein response and is defective in the dislocation of a misfolded ER protein. These data demonstrate that the various activities of Sec61p can be functionally dissected. In particular, the transmembrane domain 2 region plays a role in post-translational translocation that is required neither for cotranslational translocation nor for protein dislocation.
Collapse
Affiliation(s)
- B M Wilkinson
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | | | | | | |
Collapse
|