151
|
Chao Y, Zhang T, Yang Q, Kang J, Sun Y, Gruber MY, Qin Z. Expression of the alfalfa CCCH-type zinc finger protein gene MsZFN delays flowering time in transgenic Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 215-216:92-99. [PMID: 24388519 DOI: 10.1016/j.plantsci.2013.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 06/03/2023]
Abstract
Zinc finger proteins comprise a large family and function in various developmental processes. CCCH type zinc finger protein is one kind of zinc finger protein, which function is little known. MsZFN gene encoding a CCCH type zinc finger protein was first discovered by its elevated transcript level in a salt-induced alfalfa SSH cDNA library. The previous experiment had showed that MsZFN protein was localized to the nucleus and little is known about the function of MsZFN protein and its homologous proteins in other plants including model plant, Arabidopsis thaliana. In the current study, we found that MsZFN transcript levels increased in alfalfa under continuous dark conditions and that expression was strongest in leaves and weakest in unopened flowers under light/dark conditions. Expression of MsZFN in transgenic Arabidopsis plants resulted in late flowering phenotypes under long day conditions. Yeast two-hybrid and bimolecular fluorescence complementation assays indicated that MsZFN protein can interact with itself. Transcript analyses of floral regulatory genes in MsZFN(+) transgenic Arabidopsis showed enhanced expression of the flowering repressor FLOWERING LOCUS C and decreased expression of three key flowering time genes, FLOWERING LOCUS T, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS and GIGANTEA. These results suggest that MsZFN primarily controls flowering time by repressing flowering genes expression under long day conditions.
Collapse
Affiliation(s)
- Yuehui Chao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Tiejun Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yan Sun
- College of Animal Science and Technology, China Agriculture University, Beijing 100193, People's Republic of China
| | - Margaret Yvonne Gruber
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan S7N0X2, Canada
| | - Zhihui Qin
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China; Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
| |
Collapse
|
152
|
Ortiz-Marchena MI, Albi T, Lucas-Reina E, Said FE, Romero-Campero FJ, Cano B, Ruiz MT, Romero JM, Valverde F. Photoperiodic control of carbon distribution during the floral transition in Arabidopsis. THE PLANT CELL 2014; 26:565-84. [PMID: 24563199 PMCID: PMC3967026 DOI: 10.1105/tpc.114.122721] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 01/08/2014] [Accepted: 01/30/2014] [Indexed: 05/18/2023]
Abstract
Flowering is a crucial process that demands substantial resources. Carbon metabolism must be coordinated with development through a control mechanism that optimizes fitness for any physiological need and growth stage of the plant. However, how sugar allocation is controlled during the floral transition is unknown. Recently, the role of a CONSTANS (CO) ortholog (Cr-CO) in the control of the photoperiod response in the green alga Chlamydomonas reinhardtii and its influence on starch metabolism was demonstrated. In this work, we show that transitory starch accumulation and glycan composition during the floral transition in Arabidopsis thaliana are regulated by photoperiod. Employing a multidisciplinary approach, we demonstrate a role for CO in regulating the level and timing of expression of the GRANULE BOUND STARCH SYNTHASE (GBSS) gene. Furthermore, we provide a detailed characterization of a GBSS mutant involved in transitory starch synthesis and analyze its flowering time phenotype in relation to its altered capacity to synthesize amylose and to modify the plant free sugar content. Photoperiod modification of starch homeostasis by CO may be crucial for increasing the sugar mobilization demanded by the floral transition. This finding contributes to our understanding of the flowering process.
Collapse
Affiliation(s)
- M. Isabel Ortiz-Marchena
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain
| | - Tomás Albi
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain
| | - Eva Lucas-Reina
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain
| | - Fatima E. Said
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain
| | - Francisco J. Romero-Campero
- Departamento de Ciencias de la Computación e Inteligencia Artificial, Grupo de Investigación en Computación Natural, Universidad de Sevilla, 41012 Seville, Spain
| | - Beatriz Cano
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain
| | - M. Teresa Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain
| | - José M. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain
| | - Federico Valverde
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain
- Address correspondence to
| |
Collapse
|
153
|
Golembeski GS, Kinmonth-Schultz HA, Song YH, Imaizumi T. Photoperiodic flowering regulation in Arabidopsis thaliana.. ADVANCES IN BOTANICAL RESEARCH 2014; 72:1-28. [PMID: 25684830 PMCID: PMC4326075 DOI: 10.1016/b978-0-12-417162-6.00001-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Photoperiod, or the duration of light in a given day, is a critical cue that flowering plants utilize to effectively assess seasonal information and coordinate their reproductive development in synchrony with the external environment. The use of the model plant, Arabidopsis thaliana, has greatly improved our understanding of the molecular mechanisms that determine how plants process and utilize photoperiodic information to coordinate a flowering response. This mechanism is typified by the transcriptional activation of FLOWERING LOCUS T (FT) gene by the transcription factor CONSTANS (CO) under inductive long-day conditions in Arabidopsis. FT protein then moves from the leaves to the shoot apex, where floral meristem development can be initiated. As a point of integration from a variety of environmental factors in the context of a larger system of regulatory pathways that affect flowering, the importance of photoreceptors and the circadian clock in CO regulation throughout the day has been a key feature of the photoperiodic flowering pathway. In addition to these established mechanisms, the recent discovery of a photosynthate derivative trehalose-6-phosphate as an activator of FT in leaves has interesting implications for the involvement of photosynthesis in the photoperiodic flowering response that were suggested from previous physiological experiments in flowering induction.
Collapse
Affiliation(s)
| | | | - Young Hun Song
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
154
|
Kwon CT, Yoo SC, Koo BH, Cho SH, Park JW, Zhang Z, Li J, Li Z, Paek NC. Natural variation in Early flowering1 contributes to early flowering in japonica rice under long days. PLANT, CELL & ENVIRONMENT 2014; 37:101-12. [PMID: 23668360 DOI: 10.1111/pce.12134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 03/26/2013] [Accepted: 05/06/2013] [Indexed: 05/04/2023]
Abstract
Natural variation in heading-date genes enables rice, a short-day (SD) plant, to flower early under long-day (LD) conditions at high latitudes. Through analysis of heading-date quantitative trait loci (QTL) with F7 recombinant inbred lines from the cross of early heading 'H143' and late heading 'Milyang23 (M23)', we found a minor-effect Early Heading3 (EH3) QTL in the Hd16 region on chromosome 3. We found that Early flowering1 (EL1), encoding casein kinase I (CKI), is likely to be responsible for the EH3/Hd16 QTL, because a missense mutation occurred in the highly conserved serine/threonine kinase domain of EL1 in H143. A different missense mutation was found in the EL1 kinase domain in Koshihikari. In vitro kinase assays revealed that EL1/CKI in H143 and Koshihikari are non-functional. In F7:9 heterogeneous inbred family-near isogenic lines (HNILs), HNIL(H143) flowered 13 days earlier than HNIL(M23) in LD, but not in SD, in which EL1 mainly acts as a LD-dependent flowering repressor, down-regulating Ehd1 expression. In the world rice collection, two types of non-functional EL1 variants were found in japonica rice generally cultivated at high latitudes. These results indicate that natural variation in EL1 contributes to early heading for rice adaptation to LD in temperate and cooler regions.
Collapse
Affiliation(s)
- Choon-Tak Kwon
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Matsubara K, Hori K, Ogiso-Tanaka E, Yano M. Cloning of quantitative trait genes from rice reveals conservation and divergence of photoperiod flowering pathways in Arabidopsis and rice. FRONTIERS IN PLANT SCIENCE 2014; 5:193. [PMID: 24860584 PMCID: PMC4026727 DOI: 10.3389/fpls.2014.00193] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 04/23/2014] [Indexed: 05/20/2023]
Abstract
Flowering time in rice (Oryza sativa L.) is determined primarily by daylength (photoperiod), and natural variation in flowering time is due to quantitative trait loci involved in photoperiodic flowering. To date, genetic analysis of natural variants in rice flowering time has resulted in the positional cloning of at least 12 quantitative trait genes (QTGs), including our recently cloned QTGs, Hd17, and Hd16. The QTGs have been assigned to specific photoperiodic flowering pathways. Among them, 9 have homologs in the Arabidopsis genome, whereas it was evident that there are differences in the pathways between rice and Arabidopsis, such that the rice Ghd7-Ehd1-Hd3a/RFT1 pathway modulated by Hd16 is not present in Arabidopsis. In this review, we describe QTGs underlying natural variation in rice flowering time. Additionally, we discuss the implications of the variation in adaptive divergence and its importance in rice breeding.
Collapse
Affiliation(s)
| | - Kiyosumi Hori
- Agrogenomics Research Center, National Institute of Agrobiological SciencesTsukuba, Japan
| | - Eri Ogiso-Tanaka
- Agrogenomics Research Center, National Institute of Agrobiological SciencesTsukuba, Japan
| | - Masahiro Yano
- NARO Institute of Crop ScienceTsukuba, Japan
- Agrogenomics Research Center, National Institute of Agrobiological SciencesTsukuba, Japan
- *Correspondence: Masahiro Yano, Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan e-mail:
| |
Collapse
|
156
|
Li F, Zhang X, Hu R, Wu F, Ma J, Meng Y, Fu Y. Identification and molecular characterization of FKF1 and GI homologous genes in soybean. PLoS One 2013; 8:e79036. [PMID: 24236086 PMCID: PMC3827303 DOI: 10.1371/journal.pone.0079036] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/26/2013] [Indexed: 11/21/2022] Open
Abstract
In Arabidopsis, FKF1 (FLAVIN BINDING, KELCH REPEAT, F-BOX1) and GI (GIGANTEA) play important roles in flowering pathway through regulating daytime CO (CONSTANS) expression, and such a function is conserved across plants studied. But related reports are limited for soybean. In this study, we cloned FKF1 and GI homologs in soybean, and named as GmFKF1, GmFKF2, GmGI1, GmGI2, and GmGI3, respectively. GmGI1 had two alternative splicing forms, GmGI1α and GmGI1β. GmFKF1/2 transcripts were diurnally regulated, with a peak at zeitgeber time 12 (ZT12) in long days and at ZT10 in short days. The diurnal phases between GmGIs transcript levels greatly differed. GmGI2 expression was regulated by both the circadian clock and photoperiod. But the rhythmic phases of GmGI1 and GmGI3 expression levels were mainly conferred by long days. GmFKFs shared similar spatio-temporal expression profiles with GmGIs in all of the tissue/organs in different developmental stages in both LD and SD. Both GmFKF and GmGI proteins were targeted to the nucleus. Yeast two hybrid assays showed GmFKF1/GmFKF2 interacted with GmGI1/GmGI2/GmCDF1 (CYCLING DOF FACTOR CDF1 homolog in soybean); and the LOV (Light, Oxygen, or Voltage) domain in GmFKF1/GmFKF2 played an important role in these interactions. N-terminus of GmGI2 was sufficient to mediate its interaction with GmCDF1. Interestingly, N-terminus not full of GmGI3 interacted with GmFKF1/GmFKF2/GmCDF1. Ectopic over-expression of the GmFKF1 or GmFKF2 in Arabidopsis enhanced flowering in SD. Collectively, GmFKF and GmGI in soybean had conserved functional domains at DNA sequence level, but specific characters at function level with their homologs in other plants.
Collapse
Affiliation(s)
- Fang Li
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, China
| | - Xiaomei Zhang
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, China
| | - Ruibo Hu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and BioProcess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Faqiang Wu
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, China
| | - Jinhua Ma
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, China
| | - Ying Meng
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, China
| | - YongFu Fu
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, China
| |
Collapse
|
157
|
Photosynthetic entrainment of the Arabidopsis thaliana circadian clock. Nature 2013; 502:689-92. [PMID: 24153186 PMCID: PMC3827739 DOI: 10.1038/nature12603] [Citation(s) in RCA: 293] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 08/23/2013] [Indexed: 12/20/2022]
|
158
|
Kim J, Geng R, Gallenstein RA, Somers DE. The F-box protein ZEITLUPE controls stability and nucleocytoplasmic partitioning of GIGANTEA. Development 2013; 140:4060-9. [PMID: 24004949 DOI: 10.1242/dev.096651] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nucleocytoplasmic partitioning of core clock components is essential for the proper operation of the circadian system. Previous work has shown that the F-box protein ZEITLUPE (ZTL) and clock element GIGANTEA (GI) heterodimerize in the cytosol, thereby stabilizing ZTL. Here, we report that ZTL post-translationally and reciprocally regulates protein levels and nucleocytoplasmic distribution of GI in Arabidopsis. We use ectopic expression of the N-terminus of ZTL, which contains the novel, light-absorbing region of ZTL (the LOV domain), transient expression assays and ztl mutants to establish that the levels of ZTL, a cytosolic protein, help govern the abundance and distribution of GI in the cytosol and nucleus. Ectopic expression of the ZTL N-terminus lengthens period, delays flowering time and alters hypocotyl length. We demonstrate that these phenotypes can be explained by the competitive interference of the LOV domain with endogenous GI-ZTL interactions. A complex of the ZTL N-terminus polypeptide with endogenous GI (LOV-GI) blocks normal GI function, causing degradation of endogenous ZTL and inhibition of other GI-related phenotypes. Increased cytosolic retention of GI by the LOV-GI complex additionally inhibits nuclear roles of GI, thereby lengthening flowering time. Hence, we conclude that under endogenous conditions, GI stabilization and cytoplasmic retention occurs naturally through a LOV domain-mediated GI-ZTL interaction, and that ZTL indirectly regulates GI nuclear pools by sequestering GI to the cytosol. As the absence of either GI or ZTL compromises clock function and diminishes the protein abundance of the other, our results highlight how their reciprocal co-stabilization is essential for robust circadian oscillations.
Collapse
Affiliation(s)
- Jeongsik Kim
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
159
|
Balanced nucleocytosolic partitioning defines a spatial network to coordinate circadian physiology in plants. Dev Cell 2013; 26:73-85. [PMID: 23830866 DOI: 10.1016/j.devcel.2013.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 03/14/2013] [Accepted: 06/06/2013] [Indexed: 01/13/2023]
Abstract
Biological networks consist of a defined set of regulatory motifs. Subcellular compartmentalization of regulatory molecules can provide a further dimension in implementing regulatory motifs. However, spatial regulatory motifs and their roles in biological networks have rarely been explored. Here we show, using experimentation and mathematical modeling, that spatial segregation of GIGANTEA (GI), a critical component of plant circadian systems, into nuclear and cytosolic compartments leads to differential functions as positive and negative regulators of the circadian core gene, LHY, forming an incoherent feedforward loop to regulate LHY. This regulatory motif formed by nucleocytoplasmic partitioning of GI confers, through the balanced operation of the nuclear and cytosolic GI, strong rhythmicity and robustness to external and internal noises to the circadian system. Our results show that spatial and functional segregation of a single molecule species into different cellular compartments provides a means for extending the regulatory capabilities of biological networks.
Collapse
|
160
|
Park HJ, Kim WY, Yun DJ. A role for GIGANTEA: keeping the balance between flowering and salinity stress tolerance. PLANT SIGNALING & BEHAVIOR 2013; 8:e24820. [PMID: 23656866 PMCID: PMC3908941 DOI: 10.4161/psb.24820] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The initiation of flowering in Arabidopsis is retarded or abolished by environmental stresses. Focusing on salt stress, we provide a molecular explanation for this well-known fact. A protein complex consisting of GI, a clock component important for flowering and SOS2, a kinase activating the [Na(+)] antiporter SOS1, exists under no stress conditions. GI prevents SOS2 from activating SOS1. In the presence of NaCl, the SOS2/GI complex disintegrates and GI is degraded. SO2, together with the Ca (2+)-activated sensor of sodium ions, SOS3, activates SOS1. In gi mutants, SOS1 is constitutively activated and gi plants are more highly salt tolerant than wild type Arabidopsis. The model shows GI as a transitory regulator of SOS pathway activity whose presence or amount connects flowering to environmental conditions.
Collapse
|
161
|
Lee S, Shin K, Lee I, Song HR, Noh YS, Lee RA, Lee S, Kim SY, Park SK, Lee S, Soh MS. Genetic identification of a novel locus, ACCELERATED FLOWERING 1 that controls chromatin modification associated with histone H3 lysine 27 trimethylation in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 208:20-27. [PMID: 23683925 DOI: 10.1016/j.plantsci.2013.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 06/02/2023]
Abstract
Flowering on time is a critically important for successful reproduction of plants. Here we report an early-flowering mutant in Arabidopsis thaliana, accelerated flowering 1-1D (afl1-1D) that exhibited pleiotropic developmental defects including semi-dwarfism, curly leaf, and increased branching. Genetic analysis showed that afl1-1D mutant is a single, dominant mutant. Chromosomal mapping indicates that AFL1 resides at the middle of chromosome 4, around which no known flowering-related genes have been characterized. Expression analysis and double mutant studies with late flowering mutants in various floral pathways indicated that elevated FT is responsible for the early-flowering of afl1-1D mutant. Interestingly, not only flowering-related genes, but also several floral homeotic genes were ectopically overexpressed in the afl1-1D mutants in both FT-dependent and -independent manner. The degree of histone H3 Lys27-trimethylation (H3K27me3) was reduced in several chromatin including FT, FLC, AG and SEP3 in the afl1-1D, suggesting that afl1-1D might be involved in chromatin modification. In support, double mutant analysis of afl1-1D and lhp1-4 revealed epistatic interaction between afl1-1D and lhp1-4 in regard to flowering control. Taken together, we propose that AFL1 regulate various aspect of development through chromatin modification, particularly associated with H3K27me3 in A. thaliana.
Collapse
Affiliation(s)
- Sumin Lee
- Department of Molecular Biology, College of Life Science, Sejong University, Seoul 143-747, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Ando E, Ohnishi M, Wang Y, Matsushita T, Watanabe A, Hayashi Y, Fujii M, Ma JF, Inoue SI, Kinoshita T. TWIN SISTER OF FT, GIGANTEA, and CONSTANS have a positive but indirect effect on blue light-induced stomatal opening in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:1529-38. [PMID: 23669744 PMCID: PMC3707529 DOI: 10.1104/pp.113.217984] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/08/2013] [Indexed: 05/18/2023]
Abstract
FLOWERING LOCUS T (FT) is the major regulatory component controlling photoperiodic floral transition. It is expressed in guard cells and affects blue light-induced stomatal opening induced by the blue-light receptor phototropins phot1 and phot2. Roles for other flowering regulators in stomatal opening have yet to be determined. We show in Arabidopsis (Arabidopsis thaliana) that TWIN SISTER OF FT (TSF), CONSTANS (CO), and GIGANTEA (GI) provide a positive effect on stomatal opening. TSF, which is the closest homolog of FT, was transcribed in guard cells, and light-induced stomatal opening was repressed in tsf-1, a T-DNA insertion mutant of TSF. Overexpression of TSF in a phot1 phot2 mutant background gave a constitutive open-stomata phenotype. Then, we examined whether CO and GI, which are upstream regulators of FT and TSF in photoperiodic flowering, are involved in stomatal opening. Similar to TSF, light-induced stomatal opening was suppressed in the GI and CO mutants gi-1 and co-1. A constitutive open-stomata phenotype was observed in GI and CO overexpressors with accompanying changes in the transcription of both FT and TSF. In photoperiodic flowering, photoperiod is sensed by photoreceptors such as the cryptochromes cry1 and cry2. We examined stomatal phenotypes in a cry1 cry2 mutant and in CRY2 overexpressors. Light-induced stomatal opening was suppressed in cry1 cry2, and the transcription of FT and TSF was down-regulated. In contrast, the stomata in CRY2 overexpressors opened even in the dark, and FT and TSF transcription was up-regulated. We conclude that the photoperiodic flowering components TSF, GI, and CO positively affect stomatal opening.
Collapse
|
163
|
LNK genes integrate light and clock signaling networks at the core of the Arabidopsis oscillator. Proc Natl Acad Sci U S A 2013; 110:12120-5. [PMID: 23818596 DOI: 10.1073/pnas.1302170110] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Light signaling pathways and the circadian clock interact to help organisms synchronize physiological and developmental processes with periodic environmental cycles. The plant photoreceptors responsible for clock resetting have been characterized, but signaling components that link the photoreceptors to the clock remain to be identified. Here we describe a family of night light-inducible and clock-regulated genes (LNK) that play a key role linking light regulation of gene expression to the control of daily and seasonal rhythms in Arabidopsis thaliana. A genomewide transcriptome analysis revealed that most light-induced genes respond more strongly to light during the subjective day, which is consistent with the diurnal nature of most physiological processes in plants. However, a handful of genes, including the homologous genes LNK1 and LNK2, are more strongly induced by light in the middle of the night, when the clock is most responsive to this signal. Further analysis revealed that the morning phased LNK1 and LNK2 genes control circadian rhythms, photomorphogenic responses, and photoperiodic dependent flowering, most likely by regulating a subset of clock and flowering time genes in the afternoon. LNK1 and LNK2 themselves are directly repressed by members of the TIMING OF CAB1 EXPRESSION/PSEUDO RESPONSE REGULATOR family of core-clock genes in the afternoon and early night. Thus, LNK1 and LNK2 integrate early light signals with temporal information provided by core oscillator components to control the expression of afternoon genes, allowing plants to keep track of seasonal changes in day length.
Collapse
|
164
|
Bendix C, Mendoza JM, Stanley DN, Meeley R, Harmon FG. The circadian clock-associated gene gigantea1 affects maize developmental transitions. PLANT, CELL & ENVIRONMENT 2013; 36:1379-90. [PMID: 23336247 DOI: 10.1111/pce.12067] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/22/2012] [Accepted: 01/08/2013] [Indexed: 05/08/2023]
Abstract
The circadian clock is an internal timing mechanism that allows plants to make developmental decisions in accordance with environmental conditions. In model plants, circadian clock-associated gigantea (gi) genes are directly involved in control of growth and developmental transitions. The maize gigantea1 (gi1) gene is the more highly expressed of the two gi homeologs, and its function is uncharacterized. To understand the role of gi1 in the regulatory networks of the maize circadian clock system, gi1 mutants were evaluated for changes in flowering time, phase change and growth control. When grown in long-day (LD) photoperiods, gi1 mutants flowered earlier than non-mutant plants, but this difference was not apparent in short-day (SD) photoperiods. Therefore, gi1 participates in a pathway that suppresses flowering in LD photoperiods, but not in SD. Part of the underlying cause of early flowering was up-regulated expression of the FT-like floral activator gene zea mays centroradialis8 (zcn8) and the CONSTANS-like flowering regulatory gene constans of zea mays1 (conz1). gi1 mutants also underwent vegetative phase change earlier and grew taller than non-mutant plants. These findings indicate gi1 has a repressive function in multiple regulatory pathways that govern maize growth and development.
Collapse
Affiliation(s)
- Claire Bendix
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Juan M Mendoza
- Plant Gene Expression Center, USDA-ARS, Albany, CA, 94710, USA
| | - Desiree N Stanley
- Department of Plant & Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Robert Meeley
- Crop Genetics Research, Pioneer Hi Bred-A DuPont Business, Johnston, IA, 50130, USA
| | - Frank G Harmon
- Department of Plant & Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Plant Gene Expression Center, USDA-ARS, Albany, CA, 94710, USA
| |
Collapse
|
165
|
Kim WY, Ali Z, Park HJ, Park SJ, Cha JY, Perez-Hormaeche J, Quintero FJ, Shin G, Kim MR, Qiang Z, Ning L, Park HC, Lee SY, Bressan RA, Pardo JM, Bohnert HJ, Yun DJ. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat Commun 2013; 4:1352. [PMID: 23322040 DOI: 10.1038/ncomms2357] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/04/2012] [Indexed: 12/11/2022] Open
Abstract
Environmental challenges to plants typically entail retardation of vegetative growth and delay or cessation of flowering. Here we report a link between the flowering time regulator, GIGANTEA (GI), and adaptation to salt stress that is mechanistically based on GI degradation under saline conditions, thus retarding flowering. GI, a switch in photoperiodicity and circadian clock control, and the SNF1-related protein kinase SOS2 functionally interact. In the absence of stress, the GI:SOS2 complex prevents SOS2-based activation of SOS1, the major plant Na(+)/H(+)-antiporter mediating adaptation to salinity. GI overexpressing, rapidly flowering, plants show enhanced salt sensitivity, whereas gi mutants exhibit enhanced salt tolerance and delayed flowering. Salt-induced degradation of GI confers salt tolerance by the release of the SOS2 kinase. The GI-SOS2 interaction introduces a higher order regulatory circuit that can explain in molecular terms, the long observed connection between floral transition and adaptive environmental stress tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Woe-Yeon Kim
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 660-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Hsu PY, Devisetty UK, Harmer SL. Accurate timekeeping is controlled by a cycling activator in Arabidopsis. eLife 2013. [PMID: 23638299 DOI: 10.7554/elife.00473.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Transcriptional feedback loops are key to circadian clock function in many organisms. Current models of the Arabidopsis circadian network consist of several coupled feedback loops composed almost exclusively of transcriptional repressors. Indeed, a central regulatory mechanism is the repression of evening-phased clock genes via the binding of morning-phased Myb-like repressors to evening element (EE) promoter motifs. We now demonstrate that a related Myb-like protein, REVEILLE8 (RVE8), is a direct transcriptional activator of EE-containing clock and output genes. Loss of RVE8 and its close homologs causes a delay and reduction in levels of evening-phased clock gene transcripts and significant lengthening of clock pace. Our data suggest a substantially revised model of the circadian oscillator, with a clock-regulated activator essential both for clock progression and control of clock outputs. Further, our work suggests that the plant clock consists of a highly interconnected, complex regulatory network rather than of coupled morning and evening feedback loops. DOI:http://dx.doi.org/10.7554/eLife.00473.001.
Collapse
Affiliation(s)
- Polly Yingshan Hsu
- Department of Plant Biology , University of California, Davis , Davis , United States
| | | | | |
Collapse
|
167
|
Hsu PY, Devisetty UK, Harmer SL. Accurate timekeeping is controlled by a cycling activator in Arabidopsis. eLife 2013; 2:e00473. [PMID: 23638299 PMCID: PMC3639509 DOI: 10.7554/elife.00473] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/24/2013] [Indexed: 12/19/2022] Open
Abstract
Transcriptional feedback loops are key to circadian clock function in many organisms. Current models of the Arabidopsis circadian network consist of several coupled feedback loops composed almost exclusively of transcriptional repressors. Indeed, a central regulatory mechanism is the repression of evening-phased clock genes via the binding of morning-phased Myb-like repressors to evening element (EE) promoter motifs. We now demonstrate that a related Myb-like protein, REVEILLE8 (RVE8), is a direct transcriptional activator of EE-containing clock and output genes. Loss of RVE8 and its close homologs causes a delay and reduction in levels of evening-phased clock gene transcripts and significant lengthening of clock pace. Our data suggest a substantially revised model of the circadian oscillator, with a clock-regulated activator essential both for clock progression and control of clock outputs. Further, our work suggests that the plant clock consists of a highly interconnected, complex regulatory network rather than of coupled morning and evening feedback loops. DOI:http://dx.doi.org/10.7554/eLife.00473.001 We live in a world with a 24-hr cycle in which day follows night follows day with complete predictability. Life on earth has evolved to take advantage of this predictability by using circadian clocks to prepare for the coming of night (or day), and plants are no exception. Even in constant darkness, characteristics such as leaf movements show a constant cycle of around 24 hr. Most circadian clocks rely on negative feedback loops involving various genes and proteins to keep track of time. In one of these feedback loops, certain genes—called morning-phased genes—are expressed as proteins during the day, and these proteins prevent other genes—called evening-phased genes—from producing proteins. As night approaches, however, a second feedback loop acts to stop the morning-phased genes being expressed, thus allowing the evening-phased genes to produce proteins. And as day approaches, expression of these genes is stopped and the whole cycle starts again. Many of the genes and proteins involved in the circadian system of Arabidopsis thaliana, a small flowering plant that is widely used as a model organism, have been identified, and its circadian clock was thought to rely almost entirely on proteins called repressors that block the transcription of genes. Now, Hsu et al. have shown that the Arabidopsis clock also involves proteins that increase the expression of certain genes at specific times of the day. Hsu et al. focused on the promoter regions of evening-phased genes: these regions are stretches of DNA that proteins called transcription factors bind to and either encourage the expression of a gene (if the protein is a transcriptional activator) or block its expression (as a transcriptional repressor). In particular, they focused on a protein called RVE8 that is most strongly expressed in the afternoon and, based on previous research, is thought to activate the transcription of genes. Using genetically modified plants in which the gene for RVE8 can be turned on and off, they found that this protein led to increases in the expression of some genes, and reductions in the expression of others. Further analysis showed that RVE8 was able to activate the expression of evening-phased genes directly, without requiring that new proteins be made first. By contrast, morning-expressed genes were likely to be suppressed by RVE8 via an indirect mechanism that involved other proteins that had previously been activated by RVE8. The expression of RVE8 itself is regulated by other clock genes and also by an undefined post-transcriptional process. Therefore rather than consisting of a morning feedback loop coupled to an evening feedback loop, with both loops being based on repressors, the plant clock is instead better viewed as a highly connected network of activators and repressors. Further research is clearly necessary to understand this unexpected complexity in the circadian clock of Arabidopsis. DOI:http://dx.doi.org/10.7554/eLife.00473.002
Collapse
Affiliation(s)
- Polly Yingshan Hsu
- Department of Plant Biology , University of California, Davis , Davis , United States
| | | | | |
Collapse
|
168
|
Karlgren A, Gyllenstrand N, Källman T, Lagercrantz U. Conserved function of core clock proteins in the gymnosperm Norway spruce (Picea abies L. Karst). PLoS One 2013; 8:e60110. [PMID: 23555899 PMCID: PMC3610754 DOI: 10.1371/journal.pone.0060110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
From studies of the circadian clock in the plant model species Arabidopsis (Arabidopsis thaliana), a number of important properties and components have emerged. These include the genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), GIGANTEA (GI), ZEITLUPE (ZTL) and TIMING OF CAB EXPRESSION 1 (TOC1 also known as PSEUDO-RESPONSE REGULATOR 1 (PRR1)) that via gene expression feedback loops participate in the circadian clock. Here, we present results from ectopic expression of four Norway spruce (Picea abies) putative homologs (PaCCA1, PaGI, PaZTL and PaPRR1) in Arabidopsis, their flowering time, circadian period length, red light response phenotypes and their effect on endogenous clock genes were assessed. For PaCCA1-ox and PaZTL-ox the results were consistent with Arabidopsis lines overexpressing the corresponding Arabidopsis genes. For PaGI consistent results were obtained when expressed in the gi2 mutant, while PaGI and PaPRR1 expressed in wild type did not display the expected phenotypes. These results suggest that protein function of PaCCA1, PaGI and PaZTL are at least partly conserved compared to Arabidopsis homologs, however further studies are needed to reveal the protein function of PaPRR1. Our data suggest that components of the three-loop network typical of the circadian clock in angiosperms were present before the split of gymnosperms and angiosperms.
Collapse
Affiliation(s)
- Anna Karlgren
- Dept. of Plant Ecology and Evolution, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Niclas Gyllenstrand
- Dept. of Plant Biology and Forest Genetics, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Thomas Källman
- Dept. of Plant Ecology and Evolution, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Ulf Lagercrantz
- Dept. of Plant Ecology and Evolution, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
169
|
Kim Y, Lim J, Yeom M, Kim H, Kim J, Wang L, Kim WY, Somers DE, Nam HG. ELF4 regulates GIGANTEA chromatin access through subnuclear sequestration. Cell Rep 2013; 3:671-7. [PMID: 23523352 DOI: 10.1016/j.celrep.2013.02.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/16/2013] [Accepted: 02/19/2013] [Indexed: 11/18/2022] Open
Abstract
Many organisms, including plants, use the circadian clock to measure the duration of day and night. Daily rhythms in the plant circadian system are generated by multiple interlocked transcriptional/translational loops and also by spatial regulations such as nuclear translocation. GIGANTEA (GI), one of the key clock components in Arabidopsis, makes distinctive nuclear bodies like other nuclear-localized circadian regulators. However, little is known about the dynamics or roles of GI subnuclear localization. Here, we characterize GI subnuclear compartmentalization and identify unexpected dynamic changes under diurnal conditions. We further identify EARLY FLOWERING 4 (ELF4) as a regulator of GI nuclear distribution through a physical interaction. ELF4 sequesters GI from the nucleoplasm, where GI binds the promoter of CONSTANS (CO), to discrete nuclear bodies. We suggest that the subnuclear compartmentalization of GI by ELF4 contributes to the regulation of photoperiodic flowering.
Collapse
Affiliation(s)
- Yumi Kim
- Department of New Biology, DGIST, Daegu 711-873, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Chromatin remodeling and alternative splicing: pre- and post-transcriptional regulation of the Arabidopsis circadian clock. Semin Cell Dev Biol 2013; 24:399-406. [PMID: 23499867 DOI: 10.1016/j.semcdb.2013.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/27/2013] [Indexed: 12/22/2022]
Abstract
Circadian clocks are endogenous mechanisms that translate environmental cues into temporal information to generate the 24-h rhythms in metabolism and physiology. The circadian function relies on the precise regulation of rhythmic gene expression at the core of the oscillator, which temporally modulates the genome transcriptional activity in virtually all multicellular organisms examined to date. Emerging evidence in plants suggests a highly sophisticated interplay between the circadian patterns of gene expression and the rhythmic changes in chromatin remodeling and histone modifications. Alternative precursor messenger RNA (pre-mRNA) splicing has also been recently defined as a fundamental pillar within the circadian system, providing the required plasticity and specificity for fine-tuning the circadian clock. This review highlights the relationship between the plant circadian clock with both chromatin remodeling and alternative splicing and compares the similarities and divergences with analogous studies in animal circadian systems.
Collapse
|
171
|
Kloosterman B, Abelenda JA, Gomez MDMC, Oortwijn M, de Boer JM, Kowitwanich K, Horvath BM, van Eck HJ, Smaczniak C, Prat S, Visser RGF, Bachem CWB. Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature 2013; 495:246-50. [PMID: 23467094 DOI: 10.1038/nature11912] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 01/15/2013] [Indexed: 01/10/2023]
Abstract
Potato (Solanum tuberosum L.) originates from the Andes and evolved short-day-dependent tuber formation as a vegetative propagation strategy. Here we describe the identification of a central regulator underlying a major-effect quantitative trait locus for plant maturity and initiation of tuber development. We show that this gene belongs to the family of DOF (DNA-binding with one finger) transcription factors and regulates tuberization and plant life cycle length, by acting as a mediator between the circadian clock and the StSP6A mobile tuberization signal. We also show that natural allelic variants evade post-translational light regulation, allowing cultivation outside the geographical centre of origin of potato. Potato is a member of the Solanaceae family and is one of the world's most important food crops. This annual plant originates from the Andean regions of South America. Potato develops tubers from underground stems called stolons. Its equatorial origin makes potato essentially short-day dependent for tuberization and potato will not make tubers in the long-day conditions of spring and summer in the northern latitudes. When introduced in temperate zones, wild material will form tubers in the course of the autumnal shortening of day-length. Thus, one of the first selected traits in potato leading to a European potato type is likely to have been long-day acclimation for tuberization. Potato breeders can exploit the naturally occurring variation in tuberization onset and life cycle length, allowing varietal breeding for different latitudes, harvest times and markets.
Collapse
Affiliation(s)
- Bjorn Kloosterman
- Laboratory of Plant Breeding, Department of Plant Sciences, Wageningen-UR, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Iyer NJ, Tang Y, Mahalingam R. Physiological, biochemical and molecular responses to a combination of drought and ozone in Medicago truncatula. PLANT, CELL & ENVIRONMENT 2013; 36:706-20. [PMID: 22946485 DOI: 10.1111/pce.12008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Drought and tropospheric ozone are escalating climate change problems that can co-occur. In this study, we observed Medicago truncatula cultivar Jemalong that is sensitive to ozone and drought stress when applied singly, showed tolerance when subjected to a combined application of these stresses. Lowered stomatal conductance may be a vital tolerance mechanism to overcome combined ozone and drought. Sustained increases in both reduced ascorbate and glutathione in response to combined stress may play a role in lowering reactive oxygen species and nitric oxide toxicity. Transcriptome analysis indicated that genes associated with glucan metabolism, responses to temperature and light signalling may play a role in dampening ozone responses due to drought-induced stomatal closure during combined occurrence of these two stresses. Gene ontologies for jasmonic acid signalling and innate immunity were enriched among the 300 differentially expressed genes unique to combined stress. Differential expression of transcription factors associated with redox, defence signalling, jasmonate responses and chromatin modifications may be important for evoking novel gene networks during combined occurrence of drought and ozone. The alterations in redox milieu and distinct transcriptome changes in response to combined stress could aid in tweaking the metabolome and proteome to annul the detrimental effects of ozone and drought in Jemalong.
Collapse
Affiliation(s)
- Niranjani J Iyer
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | | | | |
Collapse
|
173
|
Chen YY, Wang Y, Shin LJ, Wu JF, Shanmugam V, Tsednee M, Lo JC, Chen CC, Wu SH, Yeh KC. Iron is involved in the maintenance of circadian period length in Arabidopsis. PLANT PHYSIOLOGY 2013; 161:1409-20. [PMID: 23307650 PMCID: PMC3585605 DOI: 10.1104/pp.112.212068] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/08/2013] [Indexed: 05/18/2023]
Abstract
The homeostasis of iron (Fe) in plants is strictly regulated to maintain an optimal level for plant growth and development but not cause oxidative stress. About 30% of arable land is considered Fe deficient because of calcareous soil that renders Fe unavailable to plants. Under Fe-deficient conditions, Arabidopsis (Arabidopsis thaliana) shows retarded growth, disordered chloroplast development, and delayed flowering time. In this study, we explored the possible connection between Fe availability and the circadian clock in growth and development. Circadian period length in Arabidopsis was longer under Fe-deficient conditions, but the lengthened period was not regulated by the canonical Fe-deficiency signaling pathway involving nitric oxide. However, plants with impaired chloroplast function showed long circadian periods. Fe deficiency and impaired chloroplast function combined did not show additive effects on the circadian period, which suggests that plastid-to-nucleus retrograde signaling is involved in the lengthening of circadian period under Fe deficiency. Expression pattern analyses of the central oscillator genes in mutants defective in CIRCADIAN CLOCK ASSOCIATED1/LATE ELONGATED HYPOCOTYL or GIGANTEA demonstrated their requirement for Fe deficiency-induced long circadian period. In conclusion, Fe is involved in maintaining the period length of circadian rhythm, possibly by acting on specific central oscillators through a retrograde signaling pathway.
Collapse
|
174
|
Raman H, Raman R, Eckermann P, Coombes N, Manoli S, Zou X, Edwards D, Meng J, Prangnell R, Stiller J, Batley J, Luckett D, Wratten N, Dennis E. Genetic and physical mapping of flowering time loci in canola (Brassica napus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:119-32. [PMID: 22955939 DOI: 10.1007/s00122-012-1966-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 08/10/2012] [Indexed: 05/18/2023]
Abstract
We identified quantitative trait loci (QTL) underlying variation for flowering time in a doubled haploid (DH) population of vernalisation-responsive canola (Brassica napus L.) cultivars Skipton and Ag-Spectrum and aligned them with physical map positions of predicted flowering genes from the Brassica rapa genome. Significant genetic variation in flowering time and response to vernalisation were observed among the DH lines from Skipton/Ag-Spectrum. A molecular linkage map was generated comprising 674 simple sequence repeat, sequence-related amplified polymorphism, sequence characterised amplified region, Diversity Array Technology, and candidate gene based markers loci. QTL analysis indicated that flowering time is a complex trait and is controlled by at least 20 loci, localised on ten different chromosomes. These loci each accounted for between 2.4 and 28.6% of the total genotypic variation for first flowering and response to vernalisation. However, identification of consistent QTL was found to be dependant upon growing environments. We compared the locations of QTL with the physical positions of predicted flowering time genes located on the sequenced genome of B. rapa. Some QTL associated with flowering time on A02, A03, A07, and C06 may represent homologues of known flowering time genes in Arabidopsis; VERNALISATION INSENSITIVE 3, APETALA1, CAULIFLOWER, FLOWERING LOCUS C, FLOWERING LOCUS T, CURLY LEAF, SHORT VEGETATIVE PHASE, GA3 OXIDASE, and LEAFY. Identification of the chromosomal location and effect of the genes influencing flowering time may hasten the development of canola varieties having an optimal time for flowering in target environments such as for low rainfall areas, via marker-assisted selection.
Collapse
Affiliation(s)
- Harsh Raman
- EH Graham Centre for Agricultural Innovation (an alliance between NSWDPI and Charles Sturt University), Wagga Wagga, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Regulation of flowering time by microRNAs. J Genet Genomics 2012; 40:211-5. [PMID: 23706296 DOI: 10.1016/j.jgg.2012.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 12/14/2012] [Accepted: 12/14/2012] [Indexed: 11/21/2022]
|
176
|
Ordered changes in histone modifications at the core of the Arabidopsis circadian clock. Proc Natl Acad Sci U S A 2012; 109:21540-5. [PMID: 23236129 DOI: 10.1073/pnas.1217022110] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Circadian clock function in Arabidopsis thaliana relies on a complex network of reciprocal regulations among oscillator components. Here, we demonstrate that chromatin remodeling is a prevalent regulatory mechanism at the core of the clock. The peak-to-trough circadian oscillation is paralleled by the sequential accumulation of H3 acetylation (H3K56ac, K9ac), H3K4 trimethylation (H3K4me3), and H3K4me2. Inhibition of acetylation and H3K4me3 abolishes oscillator gene expression, indicating that both marks are essential for gene activation. Mechanistically, blocking H3K4me3 leads to increased clock-repressor binding, suggesting that H3K4me3 functions as a transition mark modulating the progression from activation to repression. The histone methyltransferase SET DOMAIN GROUP 2/ARABIDOPSIS TRITHORAX RELATED 3 (SDG2/ATXR3) might contribute directly or indirectly to this regulation because oscillator gene expression, H3K4me3 accumulation, and repressor binding are altered in plants misexpressing SDG2/ATXR3. Despite divergences in oscillator components, a chromatin-dependent mechanism of clock gene activation appears to be common to both plant and mammal circadian systems.
Collapse
|
177
|
Expression of the alfalfa FRIGIDA-Like Gene, MsFRI-L delays flowering time in transgenic Arabidopsis thaliana. Mol Biol Rep 2012; 40:2083-90. [DOI: 10.1007/s11033-012-2266-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/19/2012] [Indexed: 01/15/2023]
|
178
|
Izawa T. Physiological significance of the plant circadian clock in natural field conditions. PLANT, CELL & ENVIRONMENT 2012; 35:1729-1741. [PMID: 22681566 DOI: 10.1111/j.1365-3040.2012.02555.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
For many decades, researchers have focused on the self-sustainable oscillations of plant circadian clocks, which can only be observed under artificial constant environmental conditions. However, plants have evolved under natural diurnal conditions where several major environmental cues such as light, temperature and humidity are dramatically changing and interacting with each other. Therefore, little is known about the roles of the plant circadian clock in natural field conditions. Molecular genetic analyses in Arabidopsis thaliana have revealed that some core circadian clock genes are required for the establishment of robust circadian rhythms under artificial diurnal conditions, and that others function only as self-oscillators. However, it is largely unknown yet how those robust rhythms can be obtained under natural diurnal conditions. Recently, an extensive time-course transcriptome analysis of rice (Oryza sativa) leaves in natural field conditions revealed that OsGIGANTEA, the sole rice ortholog of the Arabidopsis GIGANTEA gene, governs the robust diurnal rhythm of rice leaf transcriptomes even under natural diurnal conditions; rice Osgi mutants exhibited severely defective transcriptome rhythms under strong diurnal changes in environmental cues. This review focuses on the physiological significance of the plant circadian clock in natural field conditions.
Collapse
Affiliation(s)
- Takeshi Izawa
- Functional Plant Research Unit, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Japan.
| |
Collapse
|
179
|
Zhao J, Huang X, Ouyang X, Chen W, Du A, Zhu L, Wang S, Deng XW, Li S. OsELF3-1, an ortholog of Arabidopsis early flowering 3, regulates rice circadian rhythm and photoperiodic flowering. PLoS One 2012; 7:e43705. [PMID: 22912900 PMCID: PMC3422346 DOI: 10.1371/journal.pone.0043705] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 07/24/2012] [Indexed: 01/04/2023] Open
Abstract
Arabidopsis thaliana early flowering 3 (ELF3) as a zeitnehmer (time taker) is responsible for generation of circadian rhythm and regulation of photoperiodic flowering. There are two orthologs (OsELF3-1 and OsELF3-2) of ELF3 in rice (Oryza sativa), but their roles have not yet been fully identified. Here, we performed a functional characterization of OsELF3-1 and revealed it plays a more predominant role than OsELF3-2 in rice heading. Our results suggest OsELF3-1 can affect rice circadian systems via positive regulation of OsLHY expression and negative regulation of OsPRR1, OsPRR37, OsPRR73 and OsPRR95 expression. In addition, OsELF3-1 is involved in blue light signaling by activating early heading date 1 (Ehd1) expression to promote rice flowering under short-day (SD) conditions. Moreover, OsELF3-1 suppresses a flowering repressor grain number, plant height and heading date 7 (Ghd7) to indirectly accelerate flowering under long-day (LD) conditions. Taken together, our results indicate OsELF3-1 is essential for circadian regulation and photoperiodic flowering in rice.
Collapse
Affiliation(s)
- Junming Zhao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Chew YH, Wilczek AM, Williams M, Welch SM, Schmitt J, Halliday KJ. An augmented Arabidopsis phenology model reveals seasonal temperature control of flowering time. THE NEW PHYTOLOGIST 2012; 194:654-665. [PMID: 22352314 DOI: 10.1111/j.1469-8137.2012.04069.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
• In this study, we used a combination of theoretical (models) and experimental (field data) approaches to investigate the interaction between light and temperature signalling in the control of Arabidopsis flowering. • We utilised our recently published phenology model that describes the flowering time of Arabidopsis grown under a range of field conditions. We first examined the ability of the model to predict the flowering time of field plantings at different sites and seasons in light of the specific meteorological conditions that pertained. • Our analysis suggested that the synchrony of temperature and light cycles is important in promoting floral initiation. New features were incorporated into the model that improved its predictive accuracy across seasons. Using both laboratory and field data, our study has revealed an important seasonal effect of night temperatures on flowering time. Further model adjustments to describe phytochrome (phy) mutants supported our findings and implicated phyB in the temporal gating of temperature-induced flowering. • Our study suggests that different molecular pathways interact and predominate in natural environments that change seasonally. Temperature effects are mediated largely during the photoperiod during spring/summer (long days) but, as days shorten in the autumn, night temperatures become increasingly important.
Collapse
Affiliation(s)
- Yin Hoon Chew
- School of Biological Sciences, Edinburgh University, Mayfield Road, Edinburgh EH9 3JH, UK
- Synthetic & Systems Biology Centre, C. H. Waddington Building, King's Buildings, Edinburgh EH9 3JD, UK
| | | | - Mathew Williams
- School of GeoSciences, Crew Building, King's Buildings, West Mains Road, Edinburgh EH9 3JN, UK
| | - Stephen M Welch
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| | - Johanna Schmitt
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Karen J Halliday
- School of Biological Sciences, Edinburgh University, Mayfield Road, Edinburgh EH9 3JH, UK
- Synthetic & Systems Biology Centre, C. H. Waddington Building, King's Buildings, Edinburgh EH9 3JD, UK
| |
Collapse
|
181
|
Troncoso-Ponce MA, Mas P. Newly described components and regulatory mechanisms of circadian clock function in Arabidopsis thaliana. MOLECULAR PLANT 2012; 5:545-553. [PMID: 22230762 DOI: 10.1093/mp/ssr117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The circadian clock temporally coordinates plant growth and metabolism in close synchronization with the diurnal and seasonal environmental changes. Research over the last decade has identified a number of clock components and a variety of regulatory mechanisms responsible for the rhythmic oscillations in metabolic and physiological activities. At the core of the clock, transcriptional/translational feedback loops modulate the expression of a significant proportion of the genome. In this article, we briefly describe some of the very recent advances that have improved our understanding of clock organization and function in Arabidopsis thaliana. The new studies illustrate the role of clock protein complex formation on circadian gating of plant growth and identify alternative splicing as a new regulatory mechanism for clock function. Examination of key clock properties such as temperature compensation has also opened new avenues for functional research within the plant clockwork. The emerging connections between the circadian clock and metabolism, hormone signaling and response to biotic and abiotic stress also add new layers of complexity to the clock network and underscore the significance of the circadian clock regulating the daily life of plants.
Collapse
|
182
|
Kim Y, Yeom M, Kim H, Lim J, Koo HJ, Hwang D, Somers D, Nam HG. GIGANTEA and EARLY FLOWERING 4 in Arabidopsis exhibit differential phase-specific genetic influences over a diurnal cycle. MOLECULAR PLANT 2012; 5:678-87. [PMID: 22328721 PMCID: PMC3355345 DOI: 10.1093/mp/sss005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The endogenous circadian clock regulates many physiological processes related to plant survival and adaptability. GIGANTEA (GI), a clock-associated protein, contributes to the maintenance of circadian period length and amplitude, and also regulates flowering time and hypocotyl growth in response to day length. Similarly, EARLY FLOWERING 4 (ELF4), another clock regulator, also contributes to these processes. However, little is known about either the genetic or molecular interactions between GI and ELF4 in Arabidopsis. In this study, we investigated the genetic interactions between GI and ELF4 in the regulation of circadian clock-controlled outputs. Our mutant analysis shows that GI is epistatic to ELF4 in flowering time determination, while ELF4 is epistatic to GI in hypocotyl growth regulation. Moreover, GI and ELF4 have a synergistic or additive effect on endogenous clock regulation. Gene expression profiling of gi, elf4, and gi elf4 mutants further established that GI and ELF4 have differentially dominant influences on circadian physiological outputs at dusk and dawn, respectively. This phasing of GI and ELF4 influences provides a potential means to achieve diversity in the regulation of circadian physiological outputs, including flowering time and hypocotyl growth.
Collapse
Affiliation(s)
- Yumi Kim
- Division of Molecular and Life Sciences, POSTECH, Hyojadong, Pohang, Kyungbuk, 790–784, Republic of Korea
| | - Miji Yeom
- Division of Molecular and Life Sciences, POSTECH, Hyojadong, Pohang, Kyungbuk, 790–784, Republic of Korea
| | - Hyunmin Kim
- Division of Molecular and Life Sciences, POSTECH, Hyojadong, Pohang, Kyungbuk, 790–784, Republic of Korea
| | - Junhyun Lim
- Division of Molecular and Life Sciences, POSTECH, Hyojadong, Pohang, Kyungbuk, 790–784, Republic of Korea
| | - Hee Jung Koo
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Hyojadong, Pohang, Kyungbuk, 790–784, Republic of Korea
| | - Daehee Hwang
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Hyojadong, Pohang, Kyungbuk, 790–784, Republic of Korea
- Department of Chemical Engineering, POSTECH, Hyojadong, Pohang, Kyungbuk, 790–784, Republic of Korea
- To whom correspondence should be addressed. E-mail , tel. 82-54-279-2111, fax 82-54-279-5972
| | - David Somers
- Integrative Biosciences and Biotechnology, POSTECH, Hyojadong, Pohang, Kyungbuk, 790–784, Republic of Korea
- Department of Molecular Genetics, The Ohio State University, 244B Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA
- To whom correspondence should be addressed. E-mail , tel. 82-54-279-2111, fax 82-54-279-5972
| | - Hong Gil Nam
- Division of Molecular and Life Sciences, POSTECH, Hyojadong, Pohang, Kyungbuk, 790–784, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Hyojadong, Pohang, Kyungbuk, 790–784, Republic of Korea
- Integrative Biosciences and Biotechnology, POSTECH, Hyojadong, Pohang, Kyungbuk, 790–784, Republic of Korea
- National Core Research Center for Systems Bio-Dynamics, POSTECH, Hyojadong, Pohang, Kyungbuk, 790–784, Republic of Korea
- To whom correspondence should be addressed. E-mail , tel. 82-54-279-2111, fax 82-54-279-5972
| |
Collapse
|
183
|
Huang W, Pérez-García P, Pokhilko A, Millar AJ, Antoshechkin I, Riechmann JL, Mas P. Mapping the Core of the Arabidopsis Circadian Clock Defines the Network Structure of the Oscillator. Science 2012; 336:75-9. [DOI: 10.1126/science.1219075] [Citation(s) in RCA: 368] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In many organisms, the circadian clock is composed of functionally coupled morning and evening oscillators. In Arabidopsis, oscillator coupling relies on a core loop in which the evening oscillator component TIMING OF CAB EXPRESSION 1 (TOC1) was proposed to activate a subset of morning-expressed oscillator genes. Here, we show that TOC1 does not function as an activator but rather as a general repressor of oscillator gene expression. Repression occurs through TOC1 rhythmic association to the promoters of the oscillator genes. Hormone-dependent induction of TOC1 and analysis of RNA interference plants show that TOC1 prevents the activation of morning-expressed genes at night. Our study overturns the prevailing model of the Arabidopsis circadian clock, showing that the morning and evening oscillator loops are connected through the repressing activity of TOC1.
Collapse
|
184
|
Pokhilko A, Fernández AP, Edwards KD, Southern MM, Halliday KJ, Millar AJ. The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Mol Syst Biol 2012; 8:574. [PMID: 22395476 PMCID: PMC3321525 DOI: 10.1038/msb.2012.6] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 02/13/2012] [Indexed: 12/17/2022] Open
Abstract
Circadian clocks synchronise biological processes with the day/night cycle, using molecular mechanisms that include interlocked, transcriptional feedback loops. Recent experiments identified the evening complex (EC) as a repressor that can be essential for gene expression rhythms in plants. Integrating the EC components in this role significantly alters our mechanistic, mathematical model of the clock gene circuit. Negative autoregulation of the EC genes constitutes the clock's evening loop, replacing the hypothetical component Y. The EC explains our earlier conjecture that the morning gene Pseudo-Response Regulator 9 was repressed by an evening gene, previously identified with Timing Of CAB Expression1 (TOC1). Our computational analysis suggests that TOC1 is a repressor of the morning genes Late Elongated Hypocotyl and Circadian Clock Associated1 rather than an activator as first conceived. This removes the necessity for the unknown component X (or TOC1mod) from previous clock models. As well as matching timeseries and phase-response data, the model provides a new conceptual framework for the plant clock that includes a three-component repressilator circuit in its complex structure.
Collapse
|
185
|
Andrulis ED. Theory of the origin, evolution, and nature of life. Life (Basel) 2011; 2:1-105. [PMID: 25382118 PMCID: PMC4187144 DOI: 10.3390/life2010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/10/2011] [Accepted: 12/13/2011] [Indexed: 12/22/2022] Open
Abstract
Life is an inordinately complex unsolved puzzle. Despite significant theoretical progress, experimental anomalies, paradoxes, and enigmas have revealed paradigmatic limitations. Thus, the advancement of scientific understanding requires new models that resolve fundamental problems. Here, I present a theoretical framework that economically fits evidence accumulated from examinations of life. This theory is based upon a straightforward and non-mathematical core model and proposes unique yet empirically consistent explanations for major phenomena including, but not limited to, quantum gravity, phase transitions of water, why living systems are predominantly CHNOPS (carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur), homochirality of sugars and amino acids, homeoviscous adaptation, triplet code, and DNA mutations. The theoretical framework unifies the macrocosmic and microcosmic realms, validates predicted laws of nature, and solves the puzzle of the origin and evolution of cellular life in the universe.
Collapse
Affiliation(s)
- Erik D Andrulis
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Wood Building, W212, Cleveland, OH 44106, USA.
| |
Collapse
|
186
|
Interaction of Arabidopsis DET1 with CCA1 and LHY in mediating transcriptional repression in the plant circadian clock. Mol Cell 2011; 43:703-12. [PMID: 21884973 DOI: 10.1016/j.molcel.2011.07.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 06/30/2011] [Accepted: 07/06/2011] [Indexed: 11/27/2022]
Abstract
The COP10-DET1-DDB1 (CDD) complex is an evolutionarily conserved protein complex discovered for its role in the repression of photomorphogenesis in Arabidopsis. It is important in many cellular and developmental processes in both plants and animals, but its molecular mode of action remains poorly understood. Here, we show that the CDD component DET1 possesses transcriptional repression activity and physically interacts with two closely related MYB transcription factors, CCA1 and LHY, which are core components of the plant circadian clock. DET1 associates with the promoter of CCA1/LHY target genes, such as TOC1, in a CCA1/LHY-dependent manner and is required for their repression, suggesting a recruitment of DET1 by the central oscillator components to regulate the clock. Our results reveal DET1 as a core transcriptional repression factor important for clock progression. Overall, the CDD complex may function as a transcriptional corepressor in diverse processes through direct interaction with distinct transcription factors.
Collapse
|
187
|
Itoh H, Izawa T. A study of phytohormone biosynthetic gene expression using a circadian clock-related mutant in rice. PLANT SIGNALING & BEHAVIOR 2011; 6:1932-6. [PMID: 22101345 PMCID: PMC3337181 DOI: 10.4161/psb.6.12.18207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have recently isolated a rice circadian clock-related mutant carrying a null mutation in Os-GIGANTEA(GI) gene, the solo ortholog of Arabidopsis GI. Time-course global transcriptome analyses of leaves from wild-type and osgi mutant grown in the field have revealed that Os-GI affects gene expression of more than half of genes on rice 44k microarray. To better understand the biological significance of circadian clock function in growth and development of rice, we here investigated the gene expression involved in phytohormone biosynthesis. Here we found that mRNA levels of a few major genes encoding GA2-oxidase which can inactivate bioactive gibberellins (GAs) were remarkably increased in osgi-1 plants. This suggests that Os-GI functions to maintain bioactive GA level through the regulation of the GA-deactivating enzyme genes in rice. Consistently, osgi-1 plants showed semi-dwarf phenotype with reduced internode and leaf sheath elongation.
Collapse
|
188
|
Bian XF, Liu X, Zhao ZG, Jiang L, Gao H, Zhang YH, Zheng M, Chen LM, Liu SJ, Zhai HQ, Wan JM. Heading date gene, dth3 controlled late flowering in O. Glaberrima Steud. by down-regulating Ehd1. PLANT CELL REPORTS 2011; 30:2243-54. [PMID: 21830130 DOI: 10.1007/s00299-011-1129-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/10/2011] [Accepted: 07/19/2011] [Indexed: 05/20/2023]
Abstract
Heading date in rice is an important agronomic trait controlled by several genes. In this study, flowering time of variety Dianjingyou 1 (DJY1) was earlier than a near-isogenic line (named NIL) carried chromosome segment from African rice on chromosome 3S, when grown in both long-day (LD) and short-day (SD) conditions. By analyzing a large F2 population from NIL × DJY1, the locus DTH3 (QTL for days to heading on chromosome 3) controlling early heading date in DJY1 was fine mapped to a 64-kb segment which contained only one annotated gene, a MIKC-type MADS-box protein. We detected a 6-bp deletion and a single base substitution in the C-domain by sequencing DTH3 in DJY1 compared with dth3 in NIL, and overexpression of DTH3 caused early flowering in callus. Quantitative real-time PCR revealed that the transcript level of dth3 in NIL was lower than that DTH3 in DJY1 in both LD and SD conditions. The Early heading date 1 (Ehd1) which promotes the RFT1, was up-regulated by DTH3 in both LD and SD conditions. Based on Indel and dCAPs marker analysis, the dth3 allele was only present in African rice accessions. A phylogenetic analysis based on microsatellite genotyping suggested that African rice had a close genetic relationship to O. rufipogon and O. latifolia, and was similar to japonica cultivars. DTH3 affected flowering time and had no significant effect on the main agronomic traits.
Collapse
Affiliation(s)
- X F Bian
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Yakir E, Hassidim M, Melamed-Book N, Hilman D, Kron I, Green RM. Cell autonomous and cell-type specific circadian rhythms in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:520-31. [PMID: 21781194 DOI: 10.1111/j.1365-313x.2011.04707.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The circadian system of plants regulates a wide range of rhythmic physiological and cellular output processes with a period of about 24 h. The rhythms are generated by an oscillator mechanism that, in Arabidopsis, consists of interlocking feedback loops of several components including CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION 1 (TOC1) and CCA1 HIKING EXPEDITION (CHE). Over recent years, researchers have gained a detailed picture of the clock mechanism at the resolution of the whole plant and several tissue types, but little information is known about the specificities of the clock mechanism at the level of individual cells. In this paper we have addressed the question of cell-type-specific differences in circadian systems. Using transgenic Arabidopsis plants with fluorescence-tagged CCA1 to measure rhythmicity in individual leaf cells in intact living plants, we showed that stomatal guard cells have a different period from surrounding epidermal and mesophyll leaf cells. By comparing transcript levels in guard cells with whole plants, we identified differences in the expression of some oscillator genes that may underlie cell-specific differences in clock properties. In addition, we demonstrated that the oscillators of individual cells in the leaf are robust, but become partially desynchronized in constant conditions. Taken together our results suggest that, at the level of individual cells, there are differences in the canonical oscillator mechanism that has been described for plants.
Collapse
Affiliation(s)
- Esther Yakir
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences , The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
190
|
An atypical HLH protein OsLF in rice regulates flowering time and interacts with OsPIL13 and OsPIL15. N Biotechnol 2011; 28:788-97. [DOI: 10.1016/j.nbt.2011.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 02/22/2011] [Accepted: 04/18/2011] [Indexed: 12/16/2022]
|
191
|
Nakamichi N. Molecular mechanisms underlying the Arabidopsis circadian clock. PLANT & CELL PHYSIOLOGY 2011; 52:1709-18. [PMID: 21873329 PMCID: PMC3189347 DOI: 10.1093/pcp/pcr118] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A wide range of biological processes exhibit circadian rhythm, enabling plants to adapt to the environmental day-night cycle. This rhythm is generated by the so-called 'circadian clock'. Although a number of genetic approaches have identified >25 clock-associated genes involved in the Arabidopsis clock mechanism, the molecular functions of a large part of these genes are not known. Recent comprehensive studies have revealed the molecular functions of several key clock-associated proteins. This progress has provided mechanistic insights into how key clock-associated proteins are integrated, and may help in understanding the essence of the clock's molecular mechanisms.
Collapse
Affiliation(s)
- Norihito Nakamichi
- RIKEN Plant Science Center, Plant Productivity Systems Research Group, Tsurumi, Yokohama 230-0045 Japan.
| |
Collapse
|
192
|
Murphy RL, Klein RR, Morishige DT, Brady JA, Rooney WL, Miller FR, Dugas DV, Klein PE, Mullet JE. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci U S A 2011; 108:16469-74. [PMID: 21930910 PMCID: PMC3182727 DOI: 10.1073/pnas.1106212108] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Optimal flowering time is critical to the success of modern agriculture. Sorghum is a short-day tropical species that exhibits substantial photoperiod sensitivity and delayed flowering in long days. Genotypes with reduced photoperiod sensitivity enabled sorghum's utilization as a grain crop in temperate zones worldwide. In the present study, Ma(1), the major repressor of sorghum flowering in long days, was identified as the pseudoresponse regulator protein 37 (PRR37) through positional cloning and analysis of SbPRR37 alleles that modulate flowering time in grain and energy sorghum. Several allelic variants of SbPRR37 were identified in early flowering grain sorghum germplasm that contain unique loss-of-function mutations. We show that in long days SbPRR37 activates expression of the floral inhibitor CONSTANS and represses expression of the floral activators Early Heading Date 1, FLOWERING LOCUS T, Zea mays CENTRORADIALIS 8, and floral induction. Expression of SbPRR37 is light dependent and regulated by the circadian clock, with peaks of RNA abundance in the morning and evening in long days. In short days, the evening-phase expression of SbPRR37 does not occur due to darkness, allowing sorghum to flower in this photoperiod. This study provides insight into an external coincidence mechanism of photoperiodic regulation of flowering time mediated by PRR37 in the short-day grass sorghum and identifies important alleles of SbPRR37 that are critical for the utilization of this tropical grass in temperate zone grain and bioenergy production.
Collapse
Affiliation(s)
- Rebecca L. Murphy
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Robert R. Klein
- US Department of Agriculture-Agricultural Research Service, College Station, TX 77845
| | - Daryl T. Morishige
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Jeff A. Brady
- Texas AgriLife Research and Extension Center, Stephenville, TX 76401
| | - William L. Rooney
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843
| | | | - Diana V. Dugas
- Department of Horticultural Sciences and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843
| | - Patricia E. Klein
- Department of Horticultural Sciences and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843
| | - John E. Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| |
Collapse
|
193
|
HSP90 functions in the circadian clock through stabilization of the client F-box protein ZEITLUPE. Proc Natl Acad Sci U S A 2011; 108:16843-8. [PMID: 21949396 DOI: 10.1073/pnas.1110406108] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The autoregulatory loops of the circadian clock consist of feedback regulation of transcription/translation circuits but also require finely coordinated cytoplasmic and nuclear proteostasis. Although protein degradation is important to establish steady-state levels, maturation into their active conformation also factors into protein homeostasis. HSP90 facilitates the maturation of a wide range of client proteins, and studies in metazoan clocks implicate HSP90 as an integrator of input or output. Here we show that the Arabidopsis circadian clock-associated F-box protein ZEITLUPE (ZTL) is a unique client for cytoplasmic HSP90. The HSP90-specific inhibitor geldanamycin and RNAi-mediated depletion of cytoplasmic HSP90 reduces levels of ZTL and lengthens circadian period, consistent with ztl loss-of-function alleles. Transient transfection of artificial microRNA targeting cytoplasmic HSP90 genes similarly lengthens period. Proteolytic targets of SCF(ZTL), TOC1 and PRR5, are stabilized in geldanamycin-treated seedlings, whereas the levels of closely related clock proteins, PRR3 and PRR7, are unchanged. An in vitro holdase assay, typically used to demonstrate chaperone activity, shows that ZTL can be effectively bound, and aggregation prevented, by HSP90. GIGANTEA, a unique stabilizer of ZTL, may act in the same pathway as HSP90, possibly linking these two proteins to a similar mechanism. Our findings establish maturation of ZTL by HSP90 as essential for proper function of the Arabidopsis circadian clock. Unlike metazoan systems, HSP90 functions here within the core oscillator. Additionally, F-box proteins as clients may place HSP90 in a unique and more central role in proteostasis.
Collapse
|
194
|
Li J, Li G, Wang H, Wang Deng X. Phytochrome signaling mechanisms. THE ARABIDOPSIS BOOK 2011; 9:e0148. [PMID: 22303272 PMCID: PMC3268501 DOI: 10.1199/tab.0148] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Phytochromes are red (R)/far-red (FR) light photoreceptors that play fundamental roles in photoperception of the light environment and the subsequent adaptation of plant growth and development. There are five distinct phytochromes in Arabidopsis thaliana, designated phytochrome A (phyA) to phyE. phyA is light-labile and is the primary photoreceptor responsible for mediating photomorphogenic responses in FR light, whereas phyB-phyE are light stable, and phyB is the predominant phytochrome regulating de-etiolation responses in R light. Phytochromes are synthesized in the cytosol in their inactive Pr form. Upon light irradiation, phytochromes are converted to the biologically active Pfr form, and translocate into the nucleus. phyB can enter the nucleus by itself in response to R light, whereas phyA nuclear import depends on two small plant-specific proteins FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-LIKE (FHL). Phytochromes may function as light-regulated serine/threonine kinases, and can phosphorylate several substrates, including themselves in vitro. Phytochromes are phosphoproteins, and can be dephosphorylated by a few protein phosphatases. Photoactivated phytochromes rapidly change the expression of light-responsive genes by repressing the activity of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), an E3 ubiquitin ligase targeting several photomorphogenesis-promoting transcription factors for degradation, and by inducing rapid phosphorylation and degradation of Phytochrome-Interacting Factors (PIFs), a group of bHLH transcription factors repressing photomorphogenesis. Phytochromes are targeted by COP1 for degradation via the ubiquitin/26S proteasome pathway.
Collapse
Affiliation(s)
- Jigang Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-biotechnology, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06520-8104
| | - Gang Li
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06520-8104
| | - Haiyang Wang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06520-8104
| | - Xing Wang Deng
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-biotechnology, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06520-8104
| |
Collapse
|
195
|
Chan EKF, Rowe HC, Corwin JA, Joseph B, Kliebenstein DJ. Combining genome-wide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in Arabidopsis thaliana. PLoS Biol 2011; 9:e1001125. [PMID: 21857804 PMCID: PMC3156686 DOI: 10.1371/journal.pbio.1001125] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 07/07/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Genome-wide association (GWA) is gaining popularity as a means to study the architecture of complex quantitative traits, partially due to the improvement of high-throughput low-cost genotyping and phenotyping technologies. Glucosinolate (GSL) secondary metabolites within Arabidopsis spp. can serve as a model system to understand the genomic architecture of adaptive quantitative traits. GSL are key anti-herbivory defenses that impart adaptive advantages within field trials. While little is known about how variation in the external or internal environment of an organism may influence the efficiency of GWA, GSL variation is known to be highly dependent upon the external stresses and developmental processes of the plant lending it to be an excellent model for studying conditional GWA. METHODOLOGY/PRINCIPAL FINDINGS To understand how development and environment can influence GWA, we conducted a study using 96 Arabidopsis thaliana accessions, >40 GSL phenotypes across three conditions (one developmental comparison and one environmental comparison) and ∼230,000 SNPs. Developmental stage had dramatic effects on the outcome of GWA, with each stage identifying different loci associated with GSL traits. Further, while the molecular bases of numerous quantitative trait loci (QTL) controlling GSL traits have been identified, there is currently no estimate of how many additional genes may control natural variation in these traits. We developed a novel co-expression network approach to prioritize the thousands of GWA candidates and successfully validated a large number of these genes as influencing GSL accumulation within A. thaliana using single gene isogenic lines. CONCLUSIONS/SIGNIFICANCE Together, these results suggest that complex traits imparting environmentally contingent adaptive advantages are likely influenced by up to thousands of loci that are sensitive to fluctuations in the environment or developmental state of the organism. Additionally, while GWA is highly conditional upon genetics, the use of additional genomic information can rapidly identify causal loci en masse.
Collapse
Affiliation(s)
- Eva K. F. Chan
- Department of Plant Sciences, University of California–Davis, Davis, California, United States of America
- Monsanto Company, Vegetable Seeds Division, Woodland, California, United States of America
| | - Heather C. Rowe
- Department of Plant Sciences, University of California–Davis, Davis, California, United States of America
| | - Jason A. Corwin
- Department of Plant Sciences, University of California–Davis, Davis, California, United States of America
| | - Bindu Joseph
- Department of Plant Sciences, University of California–Davis, Davis, California, United States of America
| | - Daniel J. Kliebenstein
- Department of Plant Sciences, University of California–Davis, Davis, California, United States of America
| |
Collapse
|
196
|
Lutz KA, Wang W, Zdepski A, Michael TP. Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing. BMC Biotechnol 2011; 11:54. [PMID: 21599914 PMCID: PMC3131251 DOI: 10.1186/1472-6750-11-54] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 05/20/2011] [Indexed: 12/22/2022] Open
Abstract
Background High throughput sequencing (HTS) technologies have revolutionized the field of genomics by drastically reducing the cost of sequencing, making it feasible for individual labs to sequence or resequence plant genomes. Obtaining high quality, high molecular weight DNA from plants poses significant challenges due to the high copy number of chloroplast and mitochondrial DNA, as well as high levels of phenolic compounds and polysaccharides. Multiple methods have been used to isolate DNA from plants; the CTAB method is commonly used to isolate total cellular DNA from plants that contain nuclear DNA, as well as chloroplast and mitochondrial DNA. Alternatively, DNA can be isolated from nuclei to minimize chloroplast and mitochondrial DNA contamination. Results We describe optimized protocols for isolation of nuclear DNA from eight different plant species encompassing both monocot and eudicot species. These protocols use nuclei isolation to minimize chloroplast and mitochondrial DNA contamination. We also developed a protocol to determine the number of chloroplast and mitochondrial DNA copies relative to the nuclear DNA using quantitative real time PCR (qPCR). We compared DNA isolated from nuclei to total cellular DNA isolated with the CTAB method. As expected, DNA isolated from nuclei consistently yielded nuclear DNA with fewer chloroplast and mitochondrial DNA copies, as compared to the total cellular DNA prepared with the CTAB method. This protocol will allow for analysis of the quality and quantity of nuclear DNA before starting a plant whole genome sequencing or resequencing experiment. Conclusions Extracting high quality, high molecular weight nuclear DNA in plants has the potential to be a bottleneck in the era of whole genome sequencing and resequencing. The methods that are described here provide a framework for researchers to extract and quantify nuclear DNA in multiple types of plants.
Collapse
Affiliation(s)
- Kerry A Lutz
- Rutgers, The State University of New Jersey, Department of Plant Biology and Pathology, The Waksman Institute of Microbiology, Piscataway, NJ 08854, USA.
| | | | | | | |
Collapse
|
197
|
Izawa T, Mihara M, Suzuki Y, Gupta M, Itoh H, Nagano AJ, Motoyama R, Sawada Y, Yano M, Hirai MY, Makino A, Nagamura Y. Os-GIGANTEA confers robust diurnal rhythms on the global transcriptome of rice in the field. THE PLANT CELL 2011; 23:1741-55. [PMID: 21571948 PMCID: PMC3123946 DOI: 10.1105/tpc.111.083238] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/22/2011] [Accepted: 05/02/2011] [Indexed: 05/18/2023]
Abstract
The circadian clock controls physiological traits such as flowering time, photosynthesis, and growth in plants under laboratory conditions. Under natural field conditions, however, little is known about the significance of the circadian clock in plants. By time-course transcriptome analyses of rice (Oryza sativa) leaves, using a newly isolated rice circadian clock-related mutant carrying a null mutation in Os-GIGANTEA (Os-GI), we show here that Os-GI controlled 75% (false discovery rate = 0.05) of genes among 27,201 genes tested and was required for strong amplitudes and fine-tuning of the diurnal rhythm phases of global gene expression in the field. However, transcripts involved in primary metabolism were not greatly affected by osgi. Time-course metabolome analyses of leaves revealed no trends of change in primary metabolites in osgi plants, and net photosynthetic rates and grain yields were not affected. By contrast, some transcripts and metabolites in the phenylpropanoid metabolite pathway were consistently affected. Thus, net primary assimilation of rice was still robust in the face of such osgi mutation-related circadian clock defects in the field, unlike the case with defects caused by Arabidopsis thaliana toc1 and ztl mutations in the laboratory.
Collapse
Affiliation(s)
- Takeshi Izawa
- Photosynthesis and Photobiology Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Curtis IS. Genetic engineering of radish: current achievements and future goals. PLANT CELL REPORTS 2011; 30:733-744. [PMID: 21191596 DOI: 10.1007/s00299-010-0978-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 05/30/2023]
Abstract
Radish is a major root crop grown in the Far East and is especially important to some low-income countries where it is consumed on a daily basis. Developments in gene technology systems have helped to accelerate the production of useful germplasms, but progress has been slow, though achieved, via in planta methods and useful traits have been introduced. In the wake of the new Millennium, future goals in terms of improving transformation efficiency and selection of new traits for generating late-flowering radish are described. Furthermore, the techniques available for incorporating pharmaceutical proteins into radish to deliver edible proteins on-site are discussed. Finally, the concerns of releasing transgenic radish to the field in terms of pollen-mediated gene transfer are also reviewed. Such a report identifies key areas of research that is required to allow the crop satisfy the need of poor impoverished countries in the Far East.
Collapse
MESH Headings
- Adaptation, Physiological
- Crops, Agricultural/genetics
- Crops, Agricultural/growth & development
- Crops, Agricultural/physiology
- Crosses, Genetic
- Asia, Eastern
- Flowers/genetics
- Flowers/growth & development
- Gene Expression Regulation, Plant
- Gene Flow/genetics
- Genes, Plant/genetics
- Genetic Engineering/trends
- Pharmaceutical Preparations
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/physiology
- Pollen/genetics
- Proteins/genetics
- Proteins/therapeutic use
- Raphanus/genetics
- Raphanus/growth & development
- Raphanus/physiology
- Tissue Culture Techniques/trends
- Transformation, Genetic
- Transgenes/genetics
Collapse
Affiliation(s)
- Ian S Curtis
- Texas AgriLife Research, 2415 E. Hwy 83, Weslaco, TX, 78596, USA.
| |
Collapse
|
199
|
Higuchi Y, Sage-Ono K, Sasaki R, Ohtsuki N, Hoshino A, Iida S, Kamada H, Ono M. Constitutive expression of the GIGANTEA Ortholog Affects Circadian Rhythms and Suppresses One-shot Induction of Flowering in Pharbitis nil, a Typical Short-day Plant. ACTA ACUST UNITED AC 2011; 52:638-50. [DOI: 10.1093/pcp/pcr023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
200
|
Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang QF. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. MOLECULAR PLANT 2011; 4:319-30. [PMID: 21148627 DOI: 10.1093/mp/ssq070] [Citation(s) in RCA: 331] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rice yield and heading date are two distinct traits controlled by quantitative trait loci (QTLs). The dissection of molecular mechanisms underlying rice yield traits is important for developing high-yielding rice varieties. Here, we report the cloning and characterization of Ghd8, a major QTL with pleiotropic effects on grain yield, heading date, and plant height. Two sets of near isogenic line populations were developed for the cloning of Ghd8. Ghd8 was narrowed down to a 20-kb region containing two putative genes, of which one encodes the OsHAP3 subunit of a CCAAT-box binding protein (HAP complex); this gene was regarded as the Ghd8 candidate. A complementary test confirmed the identity and pleiotropic effects of the gene; interestingly, the genetic effect of Ghd8 was dependent on its genetic background. By regulating Ehd1, RFT1, and Hd3a, Ghd8 delayed flowering under long-day conditions, but promoted flowering under short-day conditions. Ghd8 up-regulated MOC1, a key gene controlling tillering and branching; this increased the number of tillers, primary and secondary branches, thus producing 50% more grains per plant. The ectopic expression of Ghd8 in Arabidopsis caused early flowering by 10 d-a situation similar to the one observed by its homolog AtHAP3b, when compared to wild-type under long-day conditions; these findings indicate the conserved function of Ghd8 and AtHAP3b in flowering in Arabidopsis. Our results demonstrated the important roles of Ghd8 in rice yield formation and flowering, as well as its opposite functions in flowering between rice and Arabidopsis under long-day conditions.
Collapse
Affiliation(s)
- Wen-Hao Yan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|