151
|
Fay MM, Anderson PJ. The Role of RNA in Biological Phase Separations. J Mol Biol 2018; 430:4685-4701. [PMID: 29753780 DOI: 10.1016/j.jmb.2018.05.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022]
Abstract
Phase transitions that alter the physical state of ribonucleoprotein particles contribute to the spacial and temporal organization of the densely packed intracellular environment. This allows cells to organize biologically coupled processes as well as respond to environmental stimuli. RNA plays a key role in phase separation events that modulate various aspects of RNA metabolism. Here, we review the role that RNA plays in ribonucleoprotein phase separations.
Collapse
Affiliation(s)
- Marta M Fay
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Paul J Anderson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
152
|
Dowling JJ, D. Gonorazky H, Cohn RD, Campbell C. Treating pediatric neuromuscular disorders: The future is now. Am J Med Genet A 2018; 176:804-841. [PMID: 28889642 PMCID: PMC5900978 DOI: 10.1002/ajmg.a.38418] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
Pediatric neuromuscular diseases encompass all disorders with onset in childhood and where the primary area of pathology is in the peripheral nervous system. These conditions are largely genetic in etiology, and only those with a genetic underpinning will be presented in this review. This includes disorders of the anterior horn cell (e.g., spinal muscular atrophy), peripheral nerve (e.g., Charcot-Marie-Tooth disease), the neuromuscular junction (e.g., congenital myasthenic syndrome), and the muscle (myopathies and muscular dystrophies). Historically, pediatric neuromuscular disorders have uniformly been considered to be without treatment possibilities and to have dire prognoses. This perception has gradually changed, starting in part with the discovery and widespread application of corticosteroids for Duchenne muscular dystrophy. At present, several exciting therapeutic avenues are under investigation for a range of conditions, offering the potential for significant improvements in patient morbidities and mortality and, in some cases, curative intervention. In this review, we will present the current state of treatment for the most common pediatric neuromuscular conditions, and detail the treatment strategies with the greatest potential for helping with these devastating diseases.
Collapse
Affiliation(s)
- James J. Dowling
- Division of NeurologyHospital for Sick ChildrenTorontoOntarioCanada
- Program for Genetics and Genome BiologyHospital for Sick ChildrenTorontoOntarioCanada
- Departments of Paediatrics and Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | | | - Ronald D. Cohn
- Program for Genetics and Genome BiologyHospital for Sick ChildrenTorontoOntarioCanada
- Departments of Paediatrics and Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | - Craig Campbell
- Department of PediatricsClinical Neurological SciencesEpidemiologyWestern UniversityLondonOntarioCanada
| |
Collapse
|
153
|
Thomas JD, Oliveira R, Sznajder ŁJ, Swanson MS. Myotonic Dystrophy and Developmental Regulation of RNA Processing. Compr Physiol 2018; 8:509-553. [PMID: 29687899 PMCID: PMC11323716 DOI: 10.1002/cphy.c170002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myotonic dystrophy (DM) is a multisystemic disorder caused by microsatellite expansion mutations in two unrelated genes leading to similar, yet distinct, diseases. DM disease presentation is highly variable and distinguished by differences in age-of-onset and symptom severity. In the most severe form, DM presents with congenital onset and profound developmental defects. At the molecular level, DM pathogenesis is characterized by a toxic RNA gain-of-function mechanism that involves the transcription of noncoding microsatellite expansions. These mutant RNAs disrupt key cellular pathways, including RNA processing, localization, and translation. In DM, these toxic RNA effects are predominantly mediated through the modulation of the muscleblind-like and CUGBP and ETR-3-like factor families of RNA binding proteins (RBPs). Dysfunction of these RBPs results in widespread RNA processing defects culminating in the expression of developmentally inappropriate protein isoforms in adult tissues. The tissue that is the focus of this review, skeletal muscle, is particularly sensitive to mutant RNA-responsive perturbations, as patients display a variety of developmental, structural, and functional defects in muscle. Here, we provide a comprehensive overview of DM1 and DM2 clinical presentation and pathology as well as the underlying cellular and molecular defects associated with DM disease onset and progression. Additionally, fundamental aspects of skeletal muscle development altered in DM are highlighted together with ongoing and potential therapeutic avenues to treat this muscular dystrophy. © 2018 American Physiological Society. Compr Physiol 8:509-553, 2018.
Collapse
Affiliation(s)
- James D. Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Ruan Oliveira
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Łukasz J. Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
154
|
Nakka K, Ghigna C, Gabellini D, Dilworth FJ. Diversification of the muscle proteome through alternative splicing. Skelet Muscle 2018; 8:8. [PMID: 29510724 PMCID: PMC5840707 DOI: 10.1186/s13395-018-0152-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/15/2018] [Indexed: 12/16/2022] Open
Abstract
Background Skeletal muscles express a highly specialized proteome that allows the metabolism of energy sources to mediate myofiber contraction. This muscle-specific proteome is partially derived through the muscle-specific transcription of a subset of genes. Surprisingly, RNA sequencing technologies have also revealed a significant role for muscle-specific alternative splicing in generating protein isoforms that give specialized function to the muscle proteome. Main body In this review, we discuss the current knowledge with respect to the mechanisms that allow pre-mRNA transcripts to undergo muscle-specific alternative splicing while identifying some of the key trans-acting splicing factors essential to the process. The importance of specific splicing events to specialized muscle function is presented along with examples in which dysregulated splicing contributes to myopathies. Though there is now an appreciation that alternative splicing is a major contributor to proteome diversification, the emergence of improved “targeted” proteomic methodologies for detection of specific protein isoforms will soon allow us to better appreciate the extent to which alternative splicing modifies the activity of proteins (and their ability to interact with other proteins) in the skeletal muscle. In addition, we highlight a continued need to better explore the signaling pathways that contribute to the temporal control of trans-acting splicing factor activity to ensure specific protein isoforms are expressed in the proper cellular context. Conclusions An understanding of the signal-dependent and signal-independent events driving muscle-specific alternative splicing has the potential to provide us with novel therapeutic strategies to treat different myopathies. Electronic supplementary material The online version of this article (10.1186/s13395-018-0152-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kiran Nakka
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Claudia Ghigna
- Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia, Italy
| | - Davide Gabellini
- Unit of Gene Expression and Muscular Dystrophy, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, DIBIT2, 5A3-44, via Olgettina 58, 20132, Milan, Italy.
| | - F Jeffrey Dilworth
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada. .,Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
155
|
Imbriano C, Molinari S. Alternative Splicing of Transcription Factors Genes in Muscle Physiology and Pathology. Genes (Basel) 2018; 9:genes9020107. [PMID: 29463057 PMCID: PMC5852603 DOI: 10.3390/genes9020107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle formation is a multi-step process that is governed by complex networks of transcription factors. The regulation of their functions is in turn multifaceted, including several mechanisms, among them alternative splicing (AS) plays a primary role. On the other hand, altered AS has a role in the pathogenesis of numerous muscular pathologies. Despite these premises, the causal role played by the altered splicing pattern of transcripts encoding myogenic transcription factors in neuromuscular diseases has been neglected so far. In this review, we systematically investigate what has been described about the AS patterns of transcription factors both in the physiology of the skeletal muscle formation process and in neuromuscular diseases, in the hope that this may be useful in re-evaluating the potential role of altered splicing of transcription factors in such diseases.
Collapse
Affiliation(s)
- Carol Imbriano
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| | - Susanna Molinari
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| |
Collapse
|
156
|
Chen X, Sun YZ, Zhang DH, Li JQ, Yan GY, An JY, You ZH. NRDTD: a database for clinically or experimentally supported non-coding RNAs and drug targets associations. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2017:4027556. [PMID: 29220444 PMCID: PMC5527270 DOI: 10.1093/database/bax057] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/30/2017] [Indexed: 11/14/2022]
Abstract
In recent years, more and more non-coding RNAs (ncRNAs) have been identified and increasing evidences have shown that ncRNAs may affect gene expression and disease progression, making them a new class of targets for drug discovery. It thus becomes important to understand the relationship between ncRNAs and drug targets. For this purpose, an ncRNAs and drug targets association database would be extremely beneficial. Here, we developed ncRNA Drug Targets Database (NRDTD) that collected 165 entries of clinically or experimentally supported ncRNAs as drug targets, including 97 ncRNAs and 96 drugs. Moreover, we annotated ncRNA-drug target associations with drug information from KEGG, PubChem, DrugBank, CTD or Wikipedia, GenBank sequence links, OMIM disease ID, pathway and function annotation for ncRNAs, detailed description of associations between ncRNAs and diseases from HMDD or LncRNADisease and the publication PubMed ID. Additionally, we provided users a link to submit novel disease-ncRNA-drug associations and corresponding supporting evidences into the database. We hope NRDTD will be a useful resource for investigating the roles of ncRNAs in drug target identification, drug discovery and disease treatment. Database URL:http://chengroup.cumt.edu.cn/NRDTD
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Ya-Zhou Sun
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
| | - De-Hong Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Jian-Qiang Li
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gui-Ying Yan
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Ji-Yong An
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 21116, China
| | - Zhu-Hong You
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, China
| |
Collapse
|
157
|
Zhang F, Bodycombe NE, Haskell KM, Sun YL, Wang ET, Morris CA, Jones LH, Wood LD, Pletcher MT. A flow cytometry-based screen identifies MBNL1 modulators that rescue splicing defects in myotonic dystrophy type I. Hum Mol Genet 2018; 26:3056-3068. [PMID: 28535287 PMCID: PMC5886090 DOI: 10.1093/hmg/ddx190] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 05/08/2017] [Indexed: 11/17/2022] Open
Abstract
Myotonic dystrophy Type 1 (DM1) is a rare genetic disease caused by the expansion of CTG trinucleotide repeats ((CTG)exp) in the 3' untranslated region of the DMPK gene. The repeat transcripts sequester the RNA binding protein Muscleblind-like protein 1 (MBNL1) and hamper its normal function in pre-mRNA splicing. Overexpressing exogenous MBNL1 in the DM1 mouse model has been shown to rescue the splicing defects and reverse myotonia. Although a viable therapeutic strategy, pharmacological modulators of MBNL1 expression have not been identified. Here, we engineered a ZsGreen tag into the endogenous MBNL1 locus in HeLa cells and established a flow cytometry-based screening system to identify compounds that increase MBNL1 level. The initial screen of small molecule compound libraries identified more than thirty hits that increased MBNL1 expression greater than double the baseline levels. Further characterization of two hits revealed that the small molecule HDAC inhibitors, ISOX and vorinostat, increased MBNL1 expression in DM1 patient-derived fibroblasts and partially rescued the splicing defect caused by (CUG)exp repeats in these cells. These findings demonstrate the feasibility of this flow-based cytometry screen to identify both small molecule compounds and druggable targets for MBNL1 upregulation.
Collapse
Affiliation(s)
| | - Nicole E Bodycombe
- Medicine Design, Worldwide Research and Development, Pfizer, Cambridge, MA 02139, USA
| | - Keith M Haskell
- Pharmacokinetics, Dynamics and Metabolism - New Chemical Entities, Worldwide Research and Development, Pfizer, CT 06340, USA
| | | | - Eric T Wang
- Center for Neurogenetics, University of Florida, Gainesville, FL 32610, USA
| | | | - Lyn H Jones
- Medicine Design, Worldwide Research and Development, Pfizer, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
158
|
Angelbello AJ, Chen JL, Childs-Disney JL, Zhang P, Wang ZF, Disney MD. Using Genome Sequence to Enable the Design of Medicines and Chemical Probes. Chem Rev 2018; 118:1599-1663. [PMID: 29322778 DOI: 10.1021/acs.chemrev.7b00504] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid progress in genome sequencing technology has put us firmly into a postgenomic era. A key challenge in biomedical research is harnessing genome sequence to fulfill the promise of personalized medicine. This Review describes how genome sequencing has enabled the identification of disease-causing biomolecules and how these data have been converted into chemical probes of function, preclinical lead modalities, and ultimately U.S. Food and Drug Administration (FDA)-approved drugs. In particular, we focus on the use of oligonucleotide-based modalities to target disease-causing RNAs; small molecules that target DNA, RNA, or protein; the rational repurposing of known therapeutic modalities; and the advantages of pharmacogenetics. Lastly, we discuss the remaining challenges and opportunities in the direct utilization of genome sequence to enable design of medicines.
Collapse
Affiliation(s)
- Alicia J Angelbello
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jonathan L Chen
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Peiyuan Zhang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Zi-Fu Wang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
159
|
Wei C, Stock L, Valanejad L, Zalewski ZA, Karns R, Puymirat J, Nelson D, Witte D, Woodgett J, Timchenko NA, Timchenko L. Correction of GSK3β at young age prevents muscle pathology in mice with myotonic dystrophy type 1. FASEB J 2018; 32:2073-2085. [PMID: 29203592 DOI: 10.1096/fj.201700700r] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a progressive neuromuscular disease caused by expanded CUG repeats, which misregulate RNA metabolism through several RNA-binding proteins, including CUG-binding protein/CUGBP1 elav-like factor 1 (CUGBP1/CELF1) and muscleblind 1 protein. Mutant CUG repeats elevate CUGBP1 and alter CUGBP1 activity via a glycogen synthase kinase 3β (GSK3β)-cyclin D3-cyclin D-dependent kinase 4 (CDK4) signaling pathway. Inhibition of GSK3β corrects abnormal activity of CUGBP1 in DM1 mice [human skeletal actin mRNA, containing long repeats ( HSALR) model]. Here, we show that the inhibition of GSK3β in young HSALR mice prevents development of DM1 muscle pathology. Skeletal muscle in 1-yr-old HSALR mice, treated at 1.5 mo for 6 wk with the inhibitors of GSK3, exhibits high fiber density, corrected atrophy, normal fiber size, with reduced central nuclei and normalized grip strength. Because CUG-GSK3β-cyclin D3-CDK4 converts the active form of CUGBP1 into a form of translational repressor, we examined the contribution of CUGBP1 in myogenesis using Celf1 knockout mice. We found that a loss of CUGBP1 disrupts myogenesis, affecting genes that regulate differentiation and the extracellular matrix. Proteins of those pathways are also misregulated in young HSALR mice and in muscle biopsies of patients with congenital DM1. These findings suggest that the correction of GSK3β-CUGBP1 pathway in young HSALR mice might have a positive effect on the myogenesis over time.-Wei, C., Stock, L., Valanejad, L., Zalewski, Z. A., Karns, R., Puymirat, J., Nelson, D., Witte, D., Woodgett, J., Timchenko, N. A., Timchenko, L. Correction of GSK3β at young age prevents muscle pathology in mice with myotonic dystrophy type 1.
Collapse
Affiliation(s)
- Christina Wei
- Division of Neurology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Lauren Stock
- Division of Neurology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Leila Valanejad
- Department of Surgery, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Zachary A Zalewski
- Department of Molecular Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Rebekah Karns
- Department of Bioinformatics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Jack Puymirat
- Centre Hospitalier-Université Laval Research Center, Québec City, Quebéc, Canada
| | - David Nelson
- Department of Molecular Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - David Witte
- Department of Pathology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA; and
| | - Jim Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Nikolai A Timchenko
- Department of Surgery, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Lubov Timchenko
- Division of Neurology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| |
Collapse
|
160
|
Deregulation of RNA Metabolism in Microsatellite Expansion Diseases. ADVANCES IN NEUROBIOLOGY 2018; 20:213-238. [PMID: 29916021 DOI: 10.1007/978-3-319-89689-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA metabolism impacts different steps of mRNA life cycle including splicing, polyadenylation, nucleo-cytoplasmic export, translation, and decay. Growing evidence indicates that defects in any of these steps lead to devastating diseases in humans. This chapter reviews the various RNA metabolic mechanisms that are disrupted in Myotonic Dystrophy-a trinucleotide repeat expansion disease-due to dysregulation of RNA-Binding Proteins. We also compare Myotonic Dystrophy to other microsatellite expansion disorders and describe how some of these mechanisms commonly exert direct versus indirect effects toward disease pathologies.
Collapse
|
161
|
Aupy P, Echevarría L, Relizani K, Goyenvalle A. The Use of Tricyclo-DNA Oligomers for the Treatment of Genetic Disorders. Biomedicines 2017; 6:E2. [PMID: 29271929 PMCID: PMC5874659 DOI: 10.3390/biomedicines6010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 01/16/2023] Open
Abstract
Antisense Oligonucleotides (ASOs) represent very attractive therapeutic compounds for the treatment of numerous diseases. The antisense field has remarkably progressed over the last few years with the approval of the first antisense drugs and with promising developments of more potent and nuclease resistant chemistries. Despite these recent clinical successes and advances in chemistry and design, effective delivery of ASOs to their target tissues remains a major issue. This review will describe the latest advances obtained with the tricyclo-DNA (tcDNA) chemistry which displays unique pharmacological properties and unprecedented uptake in many tissues after systemic administration. We will examine the variety of therapeutic approaches using both fully modified tcDNA-ASOs and gapmers, including splice switching applications, correction of aberrant splicing, steric blocking strategies and targeted gene knock-down mediated by RNase H recruitment. We will then discuss the merits and potential liabilities of the tcDNA chemistry in the context of ASO drug development.
Collapse
Affiliation(s)
- Philippine Aupy
- INSERM U1179, UFR des Sciences de la Santé, University of Versailles St-Quentin, 78180 Montigny le Bretonneux, France.
| | - Lucía Echevarría
- INSERM U1179, UFR des Sciences de la Santé, University of Versailles St-Quentin, 78180 Montigny le Bretonneux, France.
- SQY Therapeutics, University of Versailles St-Quentin, 78180 Montigny le Bretonneux, France.
| | - Karima Relizani
- INSERM U1179, UFR des Sciences de la Santé, University of Versailles St-Quentin, 78180 Montigny le Bretonneux, France.
- SQY Therapeutics, University of Versailles St-Quentin, 78180 Montigny le Bretonneux, France.
| | - Aurélie Goyenvalle
- INSERM U1179, UFR des Sciences de la Santé, University of Versailles St-Quentin, 78180 Montigny le Bretonneux, France.
| |
Collapse
|
162
|
Abstract
Muscleblind-like (MBNL) proteins bind to hundreds of pre- and mature mRNAs to regulate their alternative splicing, alternative polyadenylation, stability and subcellular localization. Once MBNLs are withheld from transcript regulation, cellular machineries generate products inapt for precise embryonal/adult developmental tasks and myotonic dystrophy, a devastating multi-systemic genetic disorder, develops. We have recently demonstrated that all three MBNL paralogs are capable of fine-tuning cellular content of one of the three MBNL paralogs, MBNL1, by binding to the first coding exon (e1) of its pre-mRNA. Intriguingly, this autoregulatory feedback loop grounded on alternative splicing of e1 appears to play a crucial role in delaying the onset of myotonic dystrophy. Here, we describe this process in the context of other autoregulatory and regulatory loops that maintain the content and diverse functions of MBNL proteins at optimal level in health and disease, thus supporting the overall cellular homeostasis.
Collapse
Affiliation(s)
- Patryk Konieczny
- a Department of Gene Expression , Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University , Poland
| | - Ewa Stepniak-Konieczna
- a Department of Gene Expression , Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University , Poland
| | - Krzysztof Sobczak
- a Department of Gene Expression , Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University , Poland
| |
Collapse
|
163
|
Pinto BS, Saxena T, Oliveira R, Méndez-Gómez HR, Cleary JD, Denes LT, McConnell O, Arboleda J, Xia G, Swanson MS, Wang ET. Impeding Transcription of Expanded Microsatellite Repeats by Deactivated Cas9. Mol Cell 2017; 68:479-490.e5. [PMID: 29056323 PMCID: PMC6013302 DOI: 10.1016/j.molcel.2017.09.033] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/05/2017] [Accepted: 09/22/2017] [Indexed: 12/14/2022]
Abstract
Transcription of expanded microsatellite repeats is associated with multiple human diseases, including myotonic dystrophy, Fuchs endothelial corneal dystrophy, and C9orf72-ALS/FTD. Reducing production of RNA and proteins arising from these expanded loci holds therapeutic benefit. Here, we tested the hypothesis that deactivated Cas9 enzyme impedes transcription across expanded microsatellites. We observed a repeat length-, PAM-, and strand-dependent reduction of repeat-containing RNAs upon targeting dCas9 directly to repeat sequences; targeting the non-template strand was more effective. Aberrant splicing patterns were rescued in DM1 cells, and production of RAN peptides characteristic of DM1, DM2, and C9orf72-ALS/FTD cells was drastically decreased. Systemic delivery of dCas9/gRNA by adeno-associated virus led to reductions in pathological RNA foci, rescue of chloride channel 1 protein expression, and decreased myotonia. These observations suggest that transcription of microsatellite repeat-containing RNAs is more sensitive to perturbation than transcription of other RNAs, indicating potentially viable strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Belinda S Pinto
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA; Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Tanvi Saxena
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA; Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Ruan Oliveira
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA; Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Héctor R Méndez-Gómez
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - John D Cleary
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA; Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Lance T Denes
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA; Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Ona McConnell
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA; Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Juan Arboleda
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA; Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Guangbin Xia
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA; Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA; Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA; Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
164
|
Guan L, Luo Y, Ja WW, Disney MD. Small molecule alteration of RNA sequence in cells and animals. Bioorg Med Chem Lett 2017; 28:2794-2796. [PMID: 29079470 DOI: 10.1016/j.bmcl.2017.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 11/28/2022]
Abstract
RNA regulation and maintenance are critical for proper cell function. Small molecules that specifically alter RNA sequence would be exceptionally useful as probes of RNA structure and function or as potential therapeutics. Here, we demonstrate a photochemical approach for altering the trinucleotide expanded repeat causative of myotonic muscular dystrophy type 1 (DM1), r(CUG)exp. The small molecule, 2H-4-Ru, binds to r(CUG)exp and converts guanosine residues to 8-oxo-7,8-dihydroguanosine upon photochemical irradiation. We demonstrate targeted modification upon irradiation in cell culture and in Drosophila larvae provided a diet containing 2H-4-Ru. Our results highlight a general chemical biology approach for altering RNA sequence in vivo by using small molecules and photochemistry. Furthermore, these studies show that addition of 8-oxo-G lesions into RNA 3' untranslated regions does not affect its steady state levels.
Collapse
Affiliation(s)
- Lirui Guan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Yiling Luo
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - William W Ja
- Department of Neuroscience, Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States.
| |
Collapse
|
165
|
Provenzano C, Cappella M, Valaperta R, Cardani R, Meola G, Martelli F, Cardinali B, Falcone G. CRISPR/Cas9-Mediated Deletion of CTG Expansions Recovers Normal Phenotype in Myogenic Cells Derived from Myotonic Dystrophy 1 Patients. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 9:337-348. [PMID: 29246312 PMCID: PMC5684470 DOI: 10.1016/j.omtn.2017.10.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 02/05/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is the most common adult-onset muscular dystrophy, characterized by progressive myopathy, myotonia, and multi-organ involvement. This dystrophy is an inherited autosomal dominant disease caused by a (CTG)n expansion within the 3′ untranslated region of the DMPK gene. Expression of the mutated gene results in production of toxic transcripts that aggregate as nuclear foci and sequester RNA-binding proteins, resulting in mis-splicing of several transcripts, defective translation, and microRNA dysregulation. No effective therapy is yet available for treatment of the disease. In this study, myogenic cell models were generated from myotonic dystrophy patient-derived fibroblasts. These cells exhibit typical disease-associated ribonuclear aggregates, containing CUG repeats and muscleblind-like 1 protein, and alternative splicing alterations. We exploited these cell models to develop new gene therapy strategies aimed at eliminating the toxic mutant repeats. Using the CRISPR/Cas9 gene-editing system, the repeat expansions were removed, therefore preventing nuclear foci formation and splicing alterations. Compared with the previously reported strategies of inhibition/degradation of CUG expanded transcripts by various techniques, the advantage of this approach is that affected cells can be permanently reverted to a normal phenotype.
Collapse
Affiliation(s)
- Claudia Provenzano
- Institute of Cell Biology and Neurobiology, National Research Council, Monterotondo, Rome, Italy
| | - Marisa Cappella
- Institute of Cell Biology and Neurobiology, National Research Council, Monterotondo, Rome, Italy; DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Rea Valaperta
- Molecular Biology Laboratory, Policlinico San Donato-IRCCS, San Donato Milanese, Milan, Italy
| | - Rosanna Cardani
- Muscle Histopathology and Molecular Biology Laboratory, Policlinico San Donato-IRCCS, San Donato Milanese, Milan, Italy
| | - Giovanni Meola
- Department of Neurology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Fabio Martelli
- Molecular Cardiology Laboratory, Policlinico San Donato-IRCCS, San Donato Milanese, Milan, Italy
| | - Beatrice Cardinali
- Institute of Cell Biology and Neurobiology, National Research Council, Monterotondo, Rome, Italy.
| | - Germana Falcone
- Institute of Cell Biology and Neurobiology, National Research Council, Monterotondo, Rome, Italy.
| |
Collapse
|
166
|
Ravel-Chapuis A, Bélanger G, Côté J, Michel RN, Jasmin BJ. Misregulation of calcium-handling proteins promotes hyperactivation of calcineurin-NFAT signaling in skeletal muscle of DM1 mice. Hum Mol Genet 2017; 26:2192-2206. [PMID: 28369518 DOI: 10.1093/hmg/ddx109] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/16/2017] [Indexed: 12/26/2022] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is caused by an expansion of CUG repeats in DMPK mRNAs. This mutation affects alternative splicing through misregulation of RNA-binding proteins. Amongst pre-mRNAs that are mis-spliced, several code for proteins involved in calcium homeostasis suggesting that calcium-handling and signaling are perturbed in DM1. Here, we analyzed expression of such proteins in DM1 mouse muscle. We found that the levels of several sarcoplasmic reticulum proteins (SERCA1, sarcolipin and calsequestrin) are altered, likely contributing to an imbalance in calcium homeostasis. We also observed that calcineurin (CnA) signaling is hyperactivated in DM1 muscle. Indeed, CnA expression and phosphatase activity are both markedly increased in DM1 muscle. Coherent with this, we found that activators of the CnA pathway (MLP, FHL1) are also elevated. Consequently, NFATc1 expression is increased in DM1 muscle and becomes relocalized to myonuclei, together with an up-regulation of its transcriptional targets (RCAN1.4 and myoglobin). Accordingly, DM1 mouse muscles display an increase in oxidative metabolism and fiber hypertrophy. To determine the functional consequences of this CnA hyperactivation, we administered cyclosporine A, an inhibitor of CnA, to DM1 mice. Muscles of treated DM1 mice showed an increase in CUGBP1 levels, and an exacerbation of key alternative splicing events associated with DM1. Finally, inhibition of CnA in cultured human DM1 myoblasts also resulted in a splicing exacerbation of the insulin receptor. Together, these findings show for the first time that calcium-CnA signaling is hyperactivated in DM1 muscle and that such hyperactivation represents a beneficial compensatory adaptation to the disease.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine and Center for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Guy Bélanger
- Department of Cellular and Molecular Medicine and Center for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine and Center for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Robin N Michel
- Department of Exercise Science, Faculty of Arts and Science, Concordia University, Montreal, QC, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine and Center for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
167
|
Wang PY, Lin YM, Wang LH, Kuo TY, Cheng SJ, Wang GS. Reduced cytoplasmic MBNL1 is an early event in a brain-specific mouse model of myotonic dystrophy. Hum Mol Genet 2017; 26:2247-2257. [PMID: 28369378 DOI: 10.1093/hmg/ddx115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/22/2017] [Indexed: 11/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by an expansion of CTG repeats in the 3' untranslated region (UTR) of the dystrophia myotonia protein kinase (DMPK) gene. Cognitive impairment associated with structural change in the brain is prevalent in DM1. How this histopathological abnormality during disease progression develops remains elusive. Nuclear accumulation of mutant DMPK mRNA containing expanded CUG RNA disrupting the cytoplasmic and nuclear activities of muscleblind-like (MBNL) protein has been implicated in DM1 neural pathogenesis. The association between MBNL dysfunction and morphological changes has not been investigated. We generated a mouse model for postnatal expression of expanded CUG RNA in the brain that recapitulates the features of the DM1 brain, including the formation of nuclear RNA and MBNL foci, learning disability, brain atrophy and misregulated alternative splicing. Characterization of the pathological abnormalities by a time-course study revealed that hippocampus-related learning and synaptic potentiation were impaired before structural changes in the brain, followed by brain atrophy associated with progressive reduction of axon and dendrite integrity. Moreover, cytoplasmic MBNL1 distribution on dendrites decreased before dendrite degeneration, whereas reduced MBNL2 expression and altered MBNL-regulated alternative splicing was evident after degeneration. These results suggest that the expression of expanded CUG RNA in the DM1 brain results in neurodegenerative processes, with reduced cytoplasmic MBNL1 as an early event response to expanded CUG RNA.
Collapse
Affiliation(s)
- Pei-Ying Wang
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Mei Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Lee-Hsin Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Ting-Yu Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Sin-Jhong Cheng
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Guey-Shin Wang
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
168
|
Konieczny P, Stepniak-Konieczna E, Taylor K, Sznajder LJ, Sobczak K. Autoregulation of MBNL1 function by exon 1 exclusion from MBNL1 transcript. Nucleic Acids Res 2017; 45:1760-1775. [PMID: 27903900 PMCID: PMC5389549 DOI: 10.1093/nar/gkw1158] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/07/2016] [Indexed: 01/14/2023] Open
Abstract
Muscleblind-like proteins (MBNLs) are regulators of RNA metabolism. During tissue differentiation the level of MBNLs increases, while their functional insufficiency plays a crucial role in myotonic dystrophy (DM). Deep sequencing of RNA molecules cross-linked to immunoprecipitated protein particles (CLIP-seq) revealed that MBNL1 binds to MBNL1 exon 1 (e1) encoding both the major part of 5΄UTR and an amino-terminal region of MBNL1 protein. We tested several hypotheses regarding the possible autoregulatory function of MBNL1 binding to its own transcript. Our data indicate that MBNLs induce skipping of e1 from precursor MBNL1 mRNA and that e1 exclusion may impact transcript association with polysomes and translation. Furthermore, e1-deficient protein isoform lacking the first two zinc fingers is highly unstable and its EGFP fusion protein has severely compromised splicing activity. We also show that MBNL1 can be transcribed from three different promoters and that the transcription initiation site determines the mode of e1 regulation. Taken together, we demonstrate that MBNL proteins control steady-state levels of MBNL1 through an interaction with e1 in its precursor mRNA. Insights from our study open a new avenue in therapies against DM based on manipulation of the transcription initiation site and e1 splicing of MBNL1 mRNA.
Collapse
Affiliation(s)
- Patryk Konieczny
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Ewa Stepniak-Konieczna
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Katarzyna Taylor
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Lukasz J Sznajder
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| |
Collapse
|
169
|
Rohilla KJ, Gagnon KT. RNA biology of disease-associated microsatellite repeat expansions. Acta Neuropathol Commun 2017; 5:63. [PMID: 28851463 PMCID: PMC5574247 DOI: 10.1186/s40478-017-0468-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Microsatellites, or simple tandem repeat sequences, occur naturally in the human genome and have important roles in genome evolution and function. However, the expansion of microsatellites is associated with over two dozen neurological diseases. A common denominator among the majority of these disorders is the expression of expanded tandem repeat-containing RNA, referred to as xtrRNA in this review, which can mediate molecular disease pathology in multiple ways. This review focuses on the potential impact that simple tandem repeat expansions can have on the biology and metabolism of RNA that contain them and underscores important gaps in understanding. Merging the molecular biology of repeat expansion disorders with the current understanding of RNA biology, including splicing, transcription, transport, turnover and translation, will help clarify mechanisms of disease and improve therapeutic development.
Collapse
|
170
|
Seixas AI, Loureiro JR, Costa C, Ordóñez-Ugalde A, Marcelino H, Oliveira CL, Loureiro JL, Dhingra A, Brandão E, Cruz VT, Timóteo A, Quintáns B, Rouleau GA, Rizzu P, Carracedo Á, Bessa J, Heutink P, Sequeiros J, Sobrido MJ, Coutinho P, Silveira I. A Pentanucleotide ATTTC Repeat Insertion in the Non-coding Region of DAB1, Mapping to SCA37, Causes Spinocerebellar Ataxia. Am J Hum Genet 2017; 101:87-103. [PMID: 28686858 DOI: 10.1016/j.ajhg.2017.06.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/13/2017] [Indexed: 01/01/2023] Open
Abstract
Advances in human genetics in recent years have largely been driven by next-generation sequencing (NGS); however, the discovery of disease-related gene mutations has been biased toward the exome because the large and very repetitive regions that characterize the non-coding genome remain difficult to reach by that technology. For autosomal-dominant spinocerebellar ataxias (SCAs), 28 genes have been identified, but only five SCAs originate from non-coding mutations. Over half of SCA-affected families, however, remain without a genetic diagnosis. We used genome-wide linkage analysis, NGS, and repeat analysis to identify an (ATTTC)n insertion in a polymorphic ATTTT repeat in DAB1 in chromosomal region 1p32.2 as the cause of autosomal-dominant SCA; this region has been previously linked to SCA37. The non-pathogenic and pathogenic alleles have the configurations [(ATTTT)7-400] and [(ATTTT)60-79(ATTTC)31-75(ATTTT)58-90], respectively. (ATTTC)n insertions are present on a distinct haplotype and show an inverse correlation between size and age of onset. In the DAB1-oriented strand, (ATTTC)n is located in 5' UTR introns of cerebellar-specific transcripts arising mostly during human fetal brain development from the usage of alternative promoters, but it is maintained in the adult cerebellum. Overexpression of the transfected (ATTTC)58 insertion, but not (ATTTT)n, leads to abnormal nuclear RNA accumulation. Zebrafish embryos injected with RNA of the (AUUUC)58 insertion, but not (AUUUU)n, showed lethal developmental malformations. Together, these results establish an unstable repeat insertion in DAB1 as a cause of cerebellar degeneration; on the basis of the genetic and phenotypic evidence, we propose this mutation as the molecular basis for SCA37.
Collapse
|
171
|
Abstract
The instability of microsatellite DNA repeats is responsible for at least 40 neurodegenerative diseases. Recently, Mirkin and co-workers presented a novel mechanism for microsatellite expansions based on break-induced replication (BIR) at sites of microsatellite-induced replication stalling and fork collapse. The BIR model aims to explain single-step, large expansions of CAG/CTG trinucleotide repeats in dividing cells. BIR has been characterized extensively in Saccharomyces cerevisiae as a mechanism to repair broken DNA replication forks (single-ended DSBs) and degraded telomeric DNA. However, the structural footprints of BIR-like DSB repair have been recognized in human genomic instability and tied to the etiology of diverse developmental diseases; thus, the implications of the paper by Kim et al. (Kim JC, Harris ST, Dinter T, Shah KA, et al., Nat Struct Mol Biol 24: 55-60) extend beyond trinucleotide repeat expansion in yeast and microsatellite instability in human neurological disorders. Significantly, insight into BIR-like repair can explain certain pathways of complex genome rearrangements (CGRs) initiated at non-B form microsatellite DNA in human cancers.
Collapse
Affiliation(s)
- Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
172
|
RNA phase transitions in repeat expansion disorders. Nature 2017; 546:243-247. [PMID: 28562589 PMCID: PMC5555642 DOI: 10.1038/nature22386] [Citation(s) in RCA: 613] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/24/2017] [Indexed: 12/19/2022]
Abstract
Expansions of short nucleotide repeats produce several neurological and neuromuscular disorders including Huntington’s disease, muscular dystrophy and amyotrophic lateral sclerosis. A common pathological feature of these diseases is the accumulation of the repeat containing transcripts into aberrant foci in the nucleus. RNA foci, as well as the disease symptoms, only manifest above a critical number of nucleotide repeats, but the molecular mechanism governing foci formation above this characteristic threshold remains unresolved. Here, we show that repeat expansions create templates for multivalent base-pairing, which causes purified RNA to undergo a sol-gel transition at a similar critical repeat number as observed in the diseases. In cells, RNA foci form by phase separation of the repeat-containing RNA and can be dissolved by agents that disrupt RNA gelation in vitro. Analogous to protein aggregation disorders, our results suggest that the sequence-specific gelation of RNAs could be a contributing factor to neurological disease.
Collapse
|
173
|
Gomes-Pereira M, Monckton DG. Ethidium Bromide Modifies The Agarose Electrophoretic Mobility of CAG•CTG Alternative DNA Structures Generated by PCR. Front Cell Neurosci 2017; 11:153. [PMID: 28611596 PMCID: PMC5447772 DOI: 10.3389/fncel.2017.00153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022] Open
Abstract
The abnormal expansion of unstable simple sequence DNA repeats can cause human disease through a variety of mechanisms, including gene loss-of-function, toxic gain-of-function of the encoded protein and toxicity of the repeat-containing RNA transcript. Disease-associated unstable DNA repeats display unusual biophysical properties, including the ability to adopt non-B-DNA structures. CAG•CTG trinucleotide sequences, in particular, have been most extensively studied and they can fold into slipped-stranded DNA structures, which have been proposed as mutation intermediates in repeat size expansion. Here, we describe a simple assay to detect unusual DNA structures generated by PCR amplification, based on their slow electrophoretic migration in agarose and on the effects of ethidium bromide on the mobility of structural isoforms through agarose gels. Notably, the inclusion of ethidium bromide in agarose gels and running buffer eliminates the detection of additional slow-migrating DNA species, which are detected in the absence of the intercalating dye and may be incorrectly classified as mutant alleles with larger than actual expansion sizes. Denaturing and re-annealing experiments confirmed the slipped-stranded nature of the additional DNA species observed in agarose gels. Thus, we have shown that genuine non-B-DNA conformations are generated during standard PCR amplification of CAG•CTG sequences and detected by agarose gel electrophoresis. In contrast, ethidium bromide does not change the multi-band electrophoretic profiles of repeat-containing PCR products through native polyacrylamide gels. These data have implications for the analysis of trinucleotide repeat DNA and possibly other types of unstable repetitive DNA sequences by standard agarose gel electrophoresis in diagnostic and research protocols. We suggest that proper sizing of CAG•CTG PCR products in agarose gels should be performed in the presence of ethidium bromide.
Collapse
Affiliation(s)
- Mário Gomes-Pereira
- Laboratory CTGDM, INSERM UMR1163Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris CitéParis, France
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, United Kingdom
| |
Collapse
|
174
|
Jauvin D, Chrétien J, Pandey SK, Martineau L, Revillod L, Bassez G, Lachon A, MacLeod AR, Gourdon G, Wheeler TM, Thornton CA, Bennett CF, Puymirat J. Targeting DMPK with Antisense Oligonucleotide Improves Muscle Strength in Myotonic Dystrophy Type 1 Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624222 PMCID: PMC5453865 DOI: 10.1016/j.omtn.2017.05.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Myotonic dystrophy type 1 (DM1), a dominant hereditary muscular dystrophy, is caused by an abnormal expansion of a (CTG)n trinucleotide repeat in the 3′ UTR of the human dystrophia myotonica protein kinase (DMPK) gene. As a consequence, mutant transcripts containing expanded CUG repeats are retained in nuclear foci and alter the function of splicing regulatory factors members of the MBNL and CELF families, resulting in alternative splicing misregulation of specific transcripts in affected DM1 tissues. In the present study, we treated DMSXL mice systemically with a 2′-4′-constrained, ethyl-modified (ISIS 486178) antisense oligonucleotide (ASO) targeted to the 3′ UTR of the DMPK gene, which led to a 70% reduction in CUGexp RNA abundance and foci in different skeletal muscles and a 30% reduction in the heart. Furthermore, treatment with ISIS 486178 ASO improved body weight, muscle strength, and muscle histology, whereas no overt toxicity was detected. This is evidence that the reduction of CUGexp RNA improves muscle strength in DM1, suggesting that muscle weakness in DM1 patients may be improved following elimination of toxic RNAs.
Collapse
Affiliation(s)
- Dominic Jauvin
- Laval University Experimental Organogenesis Center/LOEX, Enfant-Jésus Hospital, Québec, QC G1J 1Z4, Canada
| | - Jessina Chrétien
- Laval University Experimental Organogenesis Center/LOEX, Enfant-Jésus Hospital, Québec, QC G1J 1Z4, Canada
| | - Sanjay K Pandey
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA; Triangulum Biopharma, San Diego, CA 92121, USA
| | - Laurie Martineau
- Laval University Experimental Organogenesis Center/LOEX, Enfant-Jésus Hospital, Québec, QC G1J 1Z4, Canada
| | - Lucille Revillod
- INSERM U955, Neuromuscular Reference Center, Henri-Mondor Hospital, Créteil 94000, France
| | - Guillaume Bassez
- INSERM U955, Neuromuscular Reference Center, Henri-Mondor Hospital, Créteil 94000, France
| | - Aline Lachon
- INSERM U781, Imagine Institute, Paris 75015, France
| | | | | | | | | | | | - Jack Puymirat
- Laval University Experimental Organogenesis Center/LOEX, Enfant-Jésus Hospital, Québec, QC G1J 1Z4, Canada; Department of Neurological Sciences CHU de Québec-Laval University, Enfant-Jésus Hospital, Québec, QC G1J 1Z4, Canada.
| |
Collapse
|
175
|
Chou CC, Chang PC, Wei YC, Lee KY. Optical Mapping Approaches on Muscleblind-Like Compound Knockout Mice for Understanding Mechanistic Insights Into Ventricular Arrhythmias in Myotonic Dystrophy. J Am Heart Assoc 2017; 6:JAHA.116.005191. [PMID: 28416514 PMCID: PMC5533016 DOI: 10.1161/jaha.116.005191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Cardiac arrhythmias are common causes of death in patients with myotonic dystrophy (dystrophia myotonica [DM]). Evidence shows that atrial tachyarrhythmia is an independent risk factor for sudden death; however, the relationship is unclear. Methods and Results Control wild‐type (Mbnl1+/+; Mbnl2+/+) and DM mutant (Mbnl1−/−; Mbnl2+/−) mice were generated by crossing double heterozygous knockout (Mbnl1+/−; Mbnl2+/−) mice. In vivo electrophysiological study and optical mapping technique were performed to investigate mechanisms of ventricular tachyarrhythmias. Transmission electron microscopy scanning was performed for myocardium ultrastructural analysis. DM mutant mice were more vulnerable to anesthesia medications and program electrical pacing: 2 of 12 mice had sudden apnea and cardiac arrest during premedication of general anesthesia; 9 of the remaining 10 had atrial tachycardia and/or atrioventricular block, but none of the wild‐type mice had spontaneous arrhythmias; and 9 of 10 mice had pacing‐induced ventricular tachyarrhythmias, but only 1 of 14 of the wild‐type mice. Optical mapping studies revealed prolonged action potential duration, slower conduction velocity, and steeper conduction velocity restitution curves in the DM mutant mice than in the wild‐type group. Spatially discordant alternans was more easily inducible in DM mutant than wild‐type mice. Transmission electron microscopy showed disarranged myofibrils with enlarged vacuole‐occupying mitochondria in the DM mutant group. Conclusions This DM mutant mouse model presented with clinical myofibril ultrastructural abnormality and cardiac arrhythmias, including atrial tachyarrhythmias, atrioventricular block, and ventricular tachyarrhythmias. Optical mapping studies revealed prolonged action potential duration and slow conduction velocity in the DM mice, leading to vulnerability of spatially discordant alternans and ventricular arrhythmia induction to pacing.
Collapse
Affiliation(s)
- Chung-Chuan Chou
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Cheng Chang
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chia Wei
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kuang-Yung Lee
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
176
|
Koon AC, Chan HYE. Drosophila melanogaster As a Model Organism to Study RNA Toxicity of Repeat Expansion-Associated Neurodegenerative and Neuromuscular Diseases. Front Cell Neurosci 2017; 11:70. [PMID: 28377694 PMCID: PMC5359753 DOI: 10.3389/fncel.2017.00070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022] Open
Abstract
For nearly a century, the fruit fly, Drosophila melanogaster, has proven to be a valuable tool in our understanding of fundamental biological processes, and has empowered our discoveries, particularly in the field of neuroscience. In recent years, Drosophila has emerged as a model organism for human neurodegenerative and neuromuscular disorders. In this review, we highlight a number of recent studies that utilized the Drosophila model to study repeat-expansion associated diseases (READs), such as polyglutamine diseases, fragile X-associated tremor/ataxia syndrome (FXTAS), myotonic dystrophy type 1 (DM1) and type 2 (DM2), and C9ORF72-associated amyotrophic lateral sclerosis/frontotemporal dementia (C9-ALS/FTD). Discoveries regarding the possible mechanisms of RNA toxicity will be focused here. These studies demonstrate Drosophila as an excellent in vivo model system that can reveal novel mechanistic insights into human disorders, providing the foundation for translational research and therapeutic development.
Collapse
Affiliation(s)
- Alex C Koon
- Laboratory of Drosophila ResearchHong Kong, Hong Kong; Biochemistry ProgramHong Kong, Hong Kong
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila ResearchHong Kong, Hong Kong; Biochemistry ProgramHong Kong, Hong Kong; Cell and Molecular Biology ProgramHong Kong, Hong Kong; Molecular Biotechnology Program, Faculty of Science, School of Life SciencesHong Kong, Hong Kong; School of Life Sciences, Gerald Choa Neuroscience Centre, The Chinese University of Hong KongHong Kong, Hong Kong
| |
Collapse
|
177
|
Abstract
Most of the human genome encodes RNAs that do not code for proteins. These non-coding RNAs (ncRNAs) may affect normal gene expression and disease progression, making them a new class of targets for drug discovery. Because their mechanisms of action are often novel, developing drugs to target ncRNAs will involve equally novel challenges. However, many potential problems may already have been solved during the development of technologies to target mRNA. Here, we discuss the growing field of ncRNA - including microRNA, intronic RNA, repetitive RNA and long non-coding RNA - and assess the potential and challenges in their therapeutic exploitation.
Collapse
Affiliation(s)
- Masayuki Matsui
- Departments of Pharmacology and Biochemistry, UT Southwestern, Dallas, Texas 75390-9041, USA
| | - David R Corey
- Departments of Pharmacology and Biochemistry, UT Southwestern, Dallas, Texas 75390-9041, USA
| |
Collapse
|
178
|
Yum K, Wang ET, Kalsotra A. Myotonic dystrophy: disease repeat range, penetrance, age of onset, and relationship between repeat size and phenotypes. Curr Opin Genet Dev 2017; 44:30-37. [PMID: 28213156 DOI: 10.1016/j.gde.2017.01.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/11/2016] [Accepted: 01/13/2017] [Indexed: 01/29/2023]
Abstract
Myotonic dystrophy (DM) is an autosomal dominant neuromuscular disease primarily characterized by myotonia and progressive muscle weakness. The pathogenesis of DM involves microsatellite expansions in noncoding regions of transcripts that result in toxic RNA gain-of-function. Each successive generation of DM families carries larger repeat expansions, leading to an earlier age of onset with increasing disease severity. At present, diagnosis of DM is challenging and requires special genetic testing to account for somatic mosaicism and meiotic instability. While progress in genetic testing has been made, more rapid, accurate, and cost-effective approaches for measuring repeat lengths are needed to establish clear correlations between repeat size and disease phenotypes.
Collapse
Affiliation(s)
- Kevin Yum
- Department of Biochemistry, University of Illinois, Urbana-Champaign, USA
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, University of Florida, Gainesville, FL 32610, USA.
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, USA; Institute of Genomic Biology, University of Illinois, Urbana-Champaign, USA.
| |
Collapse
|
179
|
Brockhoff M, Rion N, Chojnowska K, Wiktorowicz T, Eickhorst C, Erne B, Frank S, Angelini C, Furling D, Rüegg MA, Sinnreich M, Castets P. Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I. J Clin Invest 2017; 127:549-563. [PMID: 28067669 DOI: 10.1172/jci89616] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/17/2016] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type I (DM1) is a disabling multisystemic disease that predominantly affects skeletal muscle. It is caused by expanded CTG repeats in the 3'-UTR of the dystrophia myotonica protein kinase (DMPK) gene. RNA hairpins formed by elongated DMPK transcripts sequester RNA-binding proteins, leading to mis-splicing of numerous pre-mRNAs. Here, we have investigated whether DM1-associated muscle pathology is related to deregulation of central metabolic pathways, which may identify potential therapeutic targets for the disease. In a well-characterized mouse model for DM1 (HSALR mice), activation of AMPK signaling in muscle was impaired under starved conditions, while mTORC1 signaling remained active. In parallel, autophagic flux was perturbed in HSALR muscle and in cultured human DM1 myotubes. Pharmacological approaches targeting AMPK/mTORC1 signaling greatly ameliorated muscle function in HSALR mice. AICAR, an AMPK activator, led to a strong reduction of myotonia, which was accompanied by partial correction of misregulated alternative splicing. Rapamycin, an mTORC1 inhibitor, improved muscle relaxation and increased muscle force in HSALR mice without affecting splicing. These findings highlight the involvement of AMPK/mTORC1 deregulation in DM1 muscle pathophysiology and may open potential avenues for the treatment of this disease.
Collapse
|
180
|
Sznajder ŁJ, Michalak M, Taylor K, Cywoniuk P, Kabza M, Wojtkowiak-Szlachcic A, Matłoka M, Konieczny P, Sobczak K. Mechanistic determinants of MBNL activity. Nucleic Acids Res 2016; 44:10326-10342. [PMID: 27733504 PMCID: PMC5137450 DOI: 10.1093/nar/gkw915] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/05/2016] [Indexed: 11/13/2022] Open
Abstract
Muscleblind-like (MBNL) proteins are critical RNA processing factors in development. MBNL activity is disrupted in the neuromuscular disease myotonic dystrophy type 1 (DM1), due to the instability of a non-coding microsatellite in the DMPK gene and the expression of CUG expansion (CUGexp) RNAs. Pathogenic interactions between MBNL and CUGexp RNA lead to the formation of nuclear complexes termed foci and prevent MBNL function in pre-mRNA processing. The existence of multiple MBNL genes, as well as multiple protein isoforms, raises the question of whether different MBNL proteins possess unique or redundant functions. To address this question, we coexpressed three MBNL paralogs in cells at equivalent levels and characterized both specific and redundant roles of these proteins in alternative splicing and RNA foci dynamics. When coexpressed in the same cells, MBNL1, MBNL2 and MBNL3 bind the same RNA motifs with different affinities. While MBNL1 demonstrated the highest splicing activity, MBNL3 showed the lowest. When forming RNA foci, MBNL1 is the most mobile paralog, while MBNL3 is rather static and the most densely packed on CUGexp RNA. Therefore, our results demonstrate that MBNL paralogs and gene-specific isoforms possess inherent functional differences, an outcome that could be enlisted to improve therapeutic strategies for DM1.
Collapse
Affiliation(s)
- Łukasz J Sznajder
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Michał Michalak
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Katarzyna Taylor
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Piotr Cywoniuk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Michał Kabza
- Department of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Agnieszka Wojtkowiak-Szlachcic
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Magdalena Matłoka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Patryk Konieczny
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
181
|
Choi J, Dixon DM, Dansithong W, Abdallah WF, Roos KP, Jordan MC, Trac B, Lee HS, Comai L, Reddy S. Muscleblind-like 3 deficit results in a spectrum of age-associated pathologies observed in myotonic dystrophy. Sci Rep 2016; 6:30999. [PMID: 27484195 PMCID: PMC4971533 DOI: 10.1038/srep30999] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/11/2016] [Indexed: 01/20/2023] Open
Abstract
Myotonic dystrophy type I (DM1) exhibits distinctive disease specific phenotypes and the accelerated onset of a spectrum of age-associated pathologies. In DM1, dominant effects of expanded CUG repeats result in part from the inactivation of the muscleblind-like (MBNL) proteins. To test the role of MBNL3, we deleted Mbnl3 exon 2 (Mbnl3(ΔE2)) in mice and examined the onset of age-associated diseases over 4 to 13 months of age. Accelerated onset of glucose intolerance with elevated insulin levels, cardiac systole deficits, left ventricle hypertrophy, a predictor of a later onset of heart failure and the development of subcapsular and cortical cataracts is observed in Mbnl3(ΔE2) mice. Retention of embryonic splice isoforms in adult organs, a prominent defect in DM1, is not observed in multiple RNAs including the Insulin Receptor (Insr), Cardiac Troponin T (Tnnt2), Lim Domain Binding 3 (Ldb3) RNAs in Mbnl3(ΔE2) mice. Although rare DM1-like splice errors underlying the observed phenotypes cannot be excluded, our data in conjunction with the reported absence of alternative splice errors in embryonic muscles of a similar Mbnl3(ΔE2) mouse by RNA-seq studies, suggest that mechanisms distinct from the adult retention of embryonic splice patterns may make important contributions to the onset of age-associated pathologies in DM1.
Collapse
Affiliation(s)
- Jongkyu Choi
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Donald M Dixon
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Warunee Dansithong
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Walid F Abdallah
- USC Eye Institute, Los Angeles, CA 90033, USA.,Department of Ophthalmology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Kenneth P Roos
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1751, USA
| | - Maria C Jordan
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1751, USA
| | - Brandon Trac
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Han Shin Lee
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Lucio Comai
- Department of Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Sita Reddy
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
182
|
Modified Antisense Oligonucleotides and Their Analogs in Therapy of Neuromuscular Diseases. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-34175-0_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
183
|
Mis MSC, Brajkovic S, Tafuri F, Bresolin N, Comi GP, Corti S. Development of Therapeutics for C9ORF72 ALS/FTD-Related Disorders. Mol Neurobiol 2016; 54:4466-4476. [PMID: 27349438 DOI: 10.1007/s12035-016-9993-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022]
Abstract
The identification of the hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in the non-coding region of the C9ORF72 gene as the most frequent genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) has opened the path for advances in the knowledge and treatment of these disorders, which remain incurable. Recent evidence suggests that HRE RNA can cause gain-of-function neurotoxicity, but haploinsufficiency has also been hypothesized. In this review, we describe the recent developments in therapeutic targeting of the pathological expansion of C9ORF72 for ALS, FTD, and other neurodegenerative disorders. Three approaches are prominent: (1) an antisense oligonucleotides/RNA interference strategy; (2) using small compounds to counteract the toxic effects directly exerted by RNA derived from the repeat transcription (foci), by the translation of dipeptide repeat proteins (DPRs) from the repeated sequence, or by the sequestration of RNA-binding proteins from the C9ORF72 expansion; and (3) gene therapy, not only for silencing the toxic RNA/protein, but also for rescuing haploinsufficiency caused by the reduced transcription of the C9ORF72 coding sequence or by the diminished availability of RNA-binding proteins that are sequestered by RNA foci. Finally, with the perspective of clinical therapy, we discuss the most promising progress that has been achieved to date in the field.
Collapse
Affiliation(s)
- Maria Sara Cipolat Mis
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Simona Brajkovic
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Francesco Tafuri
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo P Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
184
|
Herrendorff R, Faleschini MT, Stiefvater A, Erne B, Wiktorowicz T, Kern F, Hamburger M, Potterat O, Kinter J, Sinnreich M. Identification of Plant-derived Alkaloids with Therapeutic Potential for Myotonic Dystrophy Type I. J Biol Chem 2016; 291:17165-77. [PMID: 27298317 DOI: 10.1074/jbc.m115.710616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 11/06/2022] Open
Abstract
Myotonic dystrophy type I (DM1) is a disabling neuromuscular disease with no causal treatment available. This disease is caused by expanded CTG trinucleotide repeats in the 3' UTR of the dystrophia myotonica protein kinase gene. On the RNA level, expanded (CUG)n repeats form hairpin structures that sequester splicing factors such as muscleblind-like 1 (MBNL1). Lack of available MBNL1 leads to misregulated alternative splicing of many target pre-mRNAs, leading to the multisystemic symptoms in DM1. Many studies aiming to identify small molecules that target the (CUG)n-MBNL1 complex focused on synthetic molecules. In an effort to identify new small molecules that liberate sequestered MBNL1 from (CUG)n RNA, we focused specifically on small molecules of natural origin. Natural products remain an important source for drugs and play a significant role in providing novel leads and pharmacophores for medicinal chemistry. In a new DM1 mechanism-based biochemical assay, we screened a collection of isolated natural compounds and a library of over 2100 extracts from plants and fungal strains. HPLC-based activity profiling in combination with spectroscopic methods were used to identify the active principles in the extracts. The bioactivity of the identified compounds was investigated in a human cell model and in a mouse model of DM1. We identified several alkaloids, including the β-carboline harmine and the isoquinoline berberine, that ameliorated certain aspects of the DM1 pathology in these models. Alkaloids as a compound class may have potential for drug discovery in other RNA-mediated diseases.
Collapse
Affiliation(s)
- Ruben Herrendorff
- From the Neuromuscular Research Group, Departments of Neurology and Biomedicine, University Hospital Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland and
| | - Maria Teresa Faleschini
- the Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Adeline Stiefvater
- From the Neuromuscular Research Group, Departments of Neurology and Biomedicine, University Hospital Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland and
| | - Beat Erne
- From the Neuromuscular Research Group, Departments of Neurology and Biomedicine, University Hospital Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland and
| | - Tatiana Wiktorowicz
- From the Neuromuscular Research Group, Departments of Neurology and Biomedicine, University Hospital Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland and
| | - Frances Kern
- From the Neuromuscular Research Group, Departments of Neurology and Biomedicine, University Hospital Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland and
| | - Matthias Hamburger
- the Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Olivier Potterat
- the Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Jochen Kinter
- From the Neuromuscular Research Group, Departments of Neurology and Biomedicine, University Hospital Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland and
| | - Michael Sinnreich
- From the Neuromuscular Research Group, Departments of Neurology and Biomedicine, University Hospital Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland and
| |
Collapse
|
185
|
Richards RI, Robertson SA, O'Keefe LV, Fornarino D, Scott A, Lardelli M, Baune BT. The Enemy within: Innate Surveillance-Mediated Cell Death, the Common Mechanism of Neurodegenerative Disease. Front Neurosci 2016; 10:193. [PMID: 27242399 PMCID: PMC4862319 DOI: 10.3389/fnins.2016.00193] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative diseases comprise an array of progressive neurological disorders all characterized by the selective death of neurons in the central nervous system. Although, rare (familial) and common (sporadic) forms can occur for the same disease, it is unclear whether this reflects several distinct pathogenic pathways or the convergence of different causes into a common form of nerve cell death. Remarkably, neurodegenerative diseases are increasingly found to be accompanied by activation of the innate immune surveillance system normally associated with pathogen recognition and response. Innate surveillance is the cell's quality control system for the purpose of detecting such danger signals and responding in an appropriate manner. Innate surveillance is an "intelligent system," in that the manner of response is relevant to the magnitude and duration of the threat. If possible, the threat is dealt with within the cell in which it is detected, by degrading the danger signal(s) and restoring homeostasis. If this is not successful then an inflammatory response is instigated that is aimed at restricting the spread of the threat by elevating degradative pathways, sensitizing neighboring cells, and recruiting specialized cell types to the site. If the danger signal persists, then the ultimate response can include not only the programmed cell death of the original cell, but the contents of this dead cell can also bring about the death of adjacent sensitized cells. These responses are clearly aimed at destroying the ability of the detected pathogen to propagate and spread. Innate surveillance comprises intracellular, extracellular, non-cell autonomous and systemic processes. Recent studies have revealed how multiple steps in these processes involve proteins that, through their mutation, have been linked to many familial forms of neurodegenerative disease. This suggests that individuals harboring these mutations may have an amplified response to innate-mediated damage in neural tissues, and renders innate surveillance mediated cell death a plausible common pathogenic pathway responsible for neurodegenerative diseases, in both familial and sporadic forms. Here we have assembled evidence in favor of the hypothesis that neurodegenerative disease is the cumulative result of chronic activation of the innate surveillance pathway, triggered by endogenous or environmental danger or damage associated molecular patterns in a progressively expanding cascade of inflammation, tissue damage and cell death.
Collapse
Affiliation(s)
- Robert I Richards
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide Adelaide, SA, Australia
| | - Sarah A Robertson
- School of Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide Adelaide, SA, Australia
| | - Louise V O'Keefe
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide Adelaide, SA, Australia
| | - Dani Fornarino
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide Adelaide, SA, Australia
| | - Andrew Scott
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide Adelaide, SA, Australia
| | - Michael Lardelli
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide Adelaide, SA, Australia
| | - Bernhard T Baune
- School of Medicine, Discipline of Psychiatry, The University of Adelaide Adelaide, SA, Australia
| |
Collapse
|
186
|
Chen G, Masuda A, Konishi H, Ohkawara B, Ito M, Kinoshita M, Kiyama H, Matsuura T, Ohno K. Phenylbutazone induces expression of MBNL1 and suppresses formation of MBNL1-CUG RNA foci in a mouse model of myotonic dystrophy. Sci Rep 2016; 6:25317. [PMID: 27126921 PMCID: PMC4850456 DOI: 10.1038/srep25317] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/15/2016] [Indexed: 12/11/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by abnormal expansion of CTG repeats in the 3′ untranslated region of the DMPK gene. Expanded CTG repeats are transcribed into RNA and make an aggregate with a splicing regulator, MBNL1, in the nucleus, which is called the nuclear foci. The nuclear foci sequestrates and downregulates availability of MBNL1. Symptomatic treatments are available for DM1, but no rational therapy is available. In this study, we found that a nonsteroidal anti-inflammatory drug (NSAID), phenylbutazone (PBZ), upregulated the expression of MBNL1 in C2C12 myoblasts as well as in the HSALR mouse model for DM1. In the DM1 mice model, PBZ ameliorated aberrant splicing of Clcn1, Nfix, and Rpn2. PBZ increased expression of skeletal muscle chloride channel, decreased abnormal central nuclei of muscle fibers, and improved wheel-running activity in HSALR mice. We found that the effect of PBZ was conferred by two distinct mechanisms. First, PBZ suppressed methylation of an enhancer region in Mbnl1 intron 1, and enhanced transcription of Mbnl1 mRNA. Second, PBZ attenuated binding of MBNL1 to abnormally expanded CUG repeats in cellulo and in vitro. Our studies suggest that PBZ is a potent therapeutic agent for DM1 that upregulates availability of MBNL1.
Collapse
Affiliation(s)
- Guiying Chen
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Konishi
- Division of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masanobu Kinoshita
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Hiroshi Kiyama
- Division of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tohru Matsuura
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Neurology, Department of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
187
|
Mutchnick IS, Thatikunta MA, Gump WC, Stewart DL, Moriarty TM. Congenital myotonic dystrophy: ventriculomegaly and shunt considerations for the pediatric neurosurgeon. Childs Nerv Syst 2016; 32:609-16. [PMID: 26747623 DOI: 10.1007/s00381-015-2993-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022]
Abstract
PURPOSE Ventriculomegaly in infants with congenital myotonic dystrophy (CDM) is common, and the neurosurgical determination of shunting is complex. The natural history of CDM-associated ventriculomegaly from prenatal to natal to postnatal stages is poorly known. The relationship between macrocephaly and ventriculomegaly, incidence of shunt necessity, and early mortality outcomes lack pooled data analysis. This study aims to review clinical features and pathophysiology of CDM, with emphasis on ventriculomegaly progression, ventriculomegaly association with macrocephaly, and incidence of shunting. METHODS This is a literature review with pooled data analysis and case report. RESULTS One hundred four CDM patients were reviewed in 13 articles that mentioned CDM with ventriculomegaly and/or head circumference. Data was very limited: only 7 patients had data on the presence or absence of prenatal ventriculomegaly, 97 on ventriculomegaly at birth, and 32 on whether or not the ventricles enlarged post-natally. Three patients of 7 (43 %) had pre-natally diagnosed ventriculomegaly, 43 of 97 (44 %) had ventriculomegaly at birth, and only 5 of 32 (16 %) had progressive enlargement of ventricles post-natally. Only 5 of 104 patients had a documented shunt placement: 1 for obstructive, 1 for a post-hemorrhagic communicating, 2 for a communicating hydrocephalus without hemorrhage, and 1 with unknown indication. Of 13 macrocephalic patients with data about ventricular size, 12 had ventriculomegaly. CONCLUSIONS Ventriculomegaly occurs regularly with CDM but most often does not require CSF diversion. Decisions regarding neurosurgical intervention will necessarily be based on limited information, but shunting should only occur once dynamic data confirms hydrocephalus.
Collapse
Affiliation(s)
- Ian S Mutchnick
- Division of Pediatric Neurosurgery, Norton Neuroscience Institute and Kosair Children's Hospital, 210 East Gray St., Suite 1102, Louisville, KY, 40202, USA.
| | - Meena A Thatikunta
- Department of Neurosurgery, University of Louisville Hospital, Louisville, KY, USA
| | - William C Gump
- Division of Pediatric Neurosurgery, Norton Neuroscience Institute and Kosair Children's Hospital, 210 East Gray St., Suite 1102, Louisville, KY, 40202, USA
| | - Dan L Stewart
- Department of Pediatrics, Neonatology, University of Louisville School of Medicine, Kosair Children's Hospital, Louisville, KY, USA
| | - Thomas M Moriarty
- Division of Pediatric Neurosurgery, Norton Neuroscience Institute and Kosair Children's Hospital, 210 East Gray St., Suite 1102, Louisville, KY, 40202, USA
| |
Collapse
|
188
|
González ÀL, Teixidó J, Borrell JI, Estrada-Tejedor R. On the Applicability of Elastic Network Models for the Study of RNA CUG Trinucleotide Repeat Overexpansion. PLoS One 2016; 11:e0152049. [PMID: 27010216 PMCID: PMC4806922 DOI: 10.1371/journal.pone.0152049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 03/08/2016] [Indexed: 11/18/2022] Open
Abstract
Non-coding RNAs play a pivotal role in a number of diseases promoting an aberrant sequestration of nuclear RNA-binding proteins. In the particular case of myotonic dystrophy type 1 (DM1), a multisystemic autosomal dominant disease, the formation of large non-coding CUG repeats set up long-tract hairpins able to bind muscleblind-like proteins (MBNL), which trigger the deregulation of several splicing events such as cardiac troponin T (cTNT) and insulin receptor’s, among others. Evidence suggests that conformational changes in RNA are determinant for the recognition and binding of splicing proteins, molecular modeling simulations can attempt to shed light on the structural diversity of CUG repeats and to understand their pathogenic mechanisms. Molecular dynamics (MD) are widely used to obtain accurate results at atomistic level, despite being very time consuming, and they contrast with fast but simplified coarse-grained methods such as Elastic Network Model (ENM). In this paper, we assess the application of ENM (traditionally applied on proteins) for studying the conformational space of CUG repeats and compare it to conventional and accelerated MD conformational sampling. Overall, the results provided here reveal that ANM can provide useful insights into dynamic rCUG structures at a global level, and that their dynamics depend on both backbone and nucleobase fluctuations. On the other hand, ANM fail to describe local U-U dynamics of the rCUG system, which require more computationally expensive methods such as MD. Given that several limitations are inherent to both methods, we discuss here the usefulness of the current theoretical approaches for studying highly dynamic RNA systems such as CUG trinucleotide repeat overexpansions.
Collapse
Affiliation(s)
- Àlex L. González
- Grup d’Enginyeria Molecular (GEM), Institut Químic de Sarrià (IQS) – Universitat Ramon Llull (URL), Barcelona, Catalonia, 08017, Spain
| | - Jordi Teixidó
- Grup d’Enginyeria Molecular (GEM), Institut Químic de Sarrià (IQS) – Universitat Ramon Llull (URL), Barcelona, Catalonia, 08017, Spain
| | - José I. Borrell
- Grup d’Enginyeria Molecular (GEM), Institut Químic de Sarrià (IQS) – Universitat Ramon Llull (URL), Barcelona, Catalonia, 08017, Spain
| | - Roger Estrada-Tejedor
- Grup d’Enginyeria Molecular (GEM), Institut Químic de Sarrià (IQS) – Universitat Ramon Llull (URL), Barcelona, Catalonia, 08017, Spain
- * E-mail:
| |
Collapse
|
189
|
Xia G, Gao Y, Jin S, Subramony SH, Terada N, Ranum LPW, Swanson MS, Ashizawa T. Genome modification leads to phenotype reversal in human myotonic dystrophy type 1 induced pluripotent stem cell-derived neural stem cells. Stem Cells 2016; 33:1829-38. [PMID: 25702800 DOI: 10.1002/stem.1970] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/17/2015] [Indexed: 12/15/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is caused by expanded CTG repeats in the 3'-untranslated region (3' UTR) of the DMPK gene. Correcting the mutation in DM1 stem cells would be an important step toward autologous stem cell therapy. The objective of this study is to demonstrate in vitro genome editing to prevent production of toxic mutant transcripts and reverse phenotypes in DM1 stem cells. Genome editing was performed in DM1 neural stem cells (NSCs) derived from human DM1 induced pluripotent stem (iPS) cells. An editing cassette containing SV40/bGH polyA signals was integrated upstream of the CTG repeats by TALEN-mediated homologous recombination (HR). The expression of mutant CUG repeats transcript was monitored by nuclear RNA foci, the molecular hallmarks of DM1, using RNA fluorescence in situ hybridization. Alternative splicing of microtubule-associated protein tau (MAPT) and muscleblind-like (MBNL) proteins were analyzed to further monitor the phenotype reversal after genome modification. The cassette was successfully inserted into DMPK intron 9 and this genomic modification led to complete disappearance of nuclear RNA foci. MAPT and MBNL 1, 2 aberrant splicing in DM1 NSCs were reversed to normal pattern in genome-modified NSCs. Genome modification by integration of exogenous polyA signals upstream of the DMPK CTG repeat expansion prevents the production of toxic RNA and leads to phenotype reversal in human DM1 iPS-cells derived stem cells. Our data provide proof-of-principle evidence that genome modification may be used to generate genetically modified progenitor cells as a first step toward autologous cell transfer therapy for DM1.
Collapse
Affiliation(s)
- Guangbin Xia
- Department of Neurology, University of Florida, College of Medicine, Gainesville, Florida, USA.,Center for Cellular Reprogramming, University of Florida, College of Medicine, Gainesville, Florida, USA.,Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, Florida, USA.,The Evelyn L & William F. McKnight Brain Institute, University of Florida, Gainesville, Florida, USA.,Department of Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Yuanzheng Gao
- Department of Neurology, University of Florida, College of Medicine, Gainesville, Florida, USA.,The Evelyn L & William F. McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, College of Medicine, Gainesville, Florida, USA
| | - S H Subramony
- Department of Neurology, University of Florida, College of Medicine, Gainesville, Florida, USA.,Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, Florida, USA.,The Evelyn L & William F. McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Naohiro Terada
- Center for Cellular Reprogramming, University of Florida, College of Medicine, Gainesville, Florida, USA.,Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Laura P W Ranum
- Department of Neurology, University of Florida, College of Medicine, Gainesville, Florida, USA.,Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, Florida, USA.,Department of Molecular Genetics and Microbiology, College of Medicine, Gainesville, Florida, USA.,Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Maurice S Swanson
- Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, Florida, USA.,Department of Molecular Genetics and Microbiology, College of Medicine, Gainesville, Florida, USA.,Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Tetsuo Ashizawa
- Department of Neurology, University of Florida, College of Medicine, Gainesville, Florida, USA.,Center for Cellular Reprogramming, University of Florida, College of Medicine, Gainesville, Florida, USA.,Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, Florida, USA.,The Evelyn L & William F. McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
190
|
Yadava RS, Foff EP, Yu Q, Gladman JT, Zheng TS, Mahadevan MS. TWEAK Regulates Muscle Functions in a Mouse Model of RNA Toxicity. PLoS One 2016; 11:e0150192. [PMID: 26901467 PMCID: PMC4762946 DOI: 10.1371/journal.pone.0150192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/09/2016] [Indexed: 12/31/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults, is caused by toxic RNAs produced from the mutant DM protein kinase (DMPK) gene. DM1 is characterized by progressive muscle wasting and weakness. Therapeutic strategies have mainly focused on targeting the toxic RNA. Previously, we found that fibroblast growth factor-inducible 14 (Fn14), the receptor for TWEAK, is induced in skeletal muscles and hearts of mouse models of RNA toxicity and that blocking TWEAK/Fn14 signaling improves muscle function and histology. Here, we studied the effect of Tweak deficiency in a RNA toxicity mouse model. The genetic deletion of Tweak in these mice significantly reduced muscle damage and improved muscle function. In contrast, administration of TWEAK in the RNA toxicity mice impaired functional outcomes and worsened muscle histopathology. These studies show that signaling via TWEAK is deleterious to muscle in RNA toxicity and support the demonstrated utility of anti-TWEAK therapeutics.
Collapse
Affiliation(s)
- Ramesh S. Yadava
- Department of Pathology, University of Virginia, Charlottesville, VA, United States of America
| | - Erin P. Foff
- Department of Neurology, University of Virginia, Charlottesville, VA, United States of America
| | - Qing Yu
- Department of Pathology, University of Virginia, Charlottesville, VA, United States of America
| | - Jordan T. Gladman
- Department of Pathology, University of Virginia, Charlottesville, VA, United States of America
| | - Timothy S. Zheng
- Department of Immunology, Biogen Idec, Cambridge, MA, United States of America
| | - Mani S. Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, VA, United States of America
- * E-mail:
| |
Collapse
|
191
|
Gudde AEEG, González-Barriga A, van den Broek WJAA, Wieringa B, Wansink DG. A low absolute number of expanded transcripts is involved in myotonic dystrophy type 1 manifestation in muscle. Hum Mol Genet 2016; 25:1648-62. [PMID: 26908607 PMCID: PMC4805313 DOI: 10.1093/hmg/ddw042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/09/2016] [Indexed: 12/15/2022] Open
Abstract
Muscular manifestation of myotonic dystrophy type 1 (DM1), a common inheritable degenerative multisystem disorder, is mainly caused by expression of RNA from a (CTG·CAG)n-expanded DM1 locus. Here, we report on comparative profiling of expression of normal and expanded endogenous or transgenic transcripts in skeletal muscle cells and biopsies from DM1 mouse models and patients in order to help us in understanding the role of this RNA-mediated toxicity. In tissue of HSALR mice, the most intensely used ‘muscle-only’ model in the DM1 field, RNA from the α-actin (CTG)250 transgene was at least 1000-fold more abundant than that from the Dmpk gene, or the DMPK gene in humans. Conversely, the DMPK transgene in another line, DM500/DMSXL mice, was expressed ∼10-fold lower than the endogenous gene. Temporal regulation of expanded RNA expression differed between models. Onset of expression occurred remarkably late in HSALR myoblasts during in vitro myogenesis whereas Dmpk or DMPK (trans)genes were expressed throughout proliferation and differentiation phases. Importantly, quantification of absolute transcript numbers revealed that normal and expanded Dmpk/DMPK transcripts in mouse models and DM1 patients are low-abundance RNA species. Northern blotting, reverse transcriptase–quantitative polymerase chain reaction, RNA-sequencing and fluorescent in situ hybridization analyses showed that they occur at an absolute number between one and a few dozen molecules per cell. Our findings refine the current RNA dominance theory for DM1 pathophysiology, as anomalous factor binding to expanded transcripts and formation of soluble or insoluble ribonucleoprotein aggregates must be nucleated by only few expanded DMPK transcripts and therefore be a small numbers game.
Collapse
Affiliation(s)
- Anke E E G Gudde
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Anchel González-Barriga
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Walther J A A van den Broek
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
192
|
Abstract
RNA splicing represents a post-transcriptional mechanism to generate multiple functional RNAs or proteins from a single transcript. The evolution of RNA splicing is a prime example of the Darwinian function follows form concept. A mutation that leads to a new mRNA (form) that encodes for a new functional protein (function) is likely to be retained, and this way, the genome has gradually evolved to encode for genes with multiple isoforms, thereby creating an enormously diverse transcriptome. Advances in technologies to characterize RNA populations have led to a better understanding of RNA processing in health and disease. In the heart, alternative splicing is increasingly being recognized as an important layer of post-transcriptional gene regulation. Moreover, the recent identification of several cardiac splice factors, such as RNA-binding motif protein 20 and SF3B1, not only provided important insight into the mechanisms underlying alternative splicing but also revealed how these splicing factors impact functional properties of the heart. Here, we review our current knowledge of alternative splicing in the heart, with a particular focus on the major and minor spliceosome, the factors controlling RNA splicing, and the role of alternative splicing in cardiac development and disease.
Collapse
Affiliation(s)
- Maarten M.G. van den Hoogenhof
- From the Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Yigal M. Pinto
- From the Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther E. Creemers
- From the Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
193
|
Buckley L, Lacey M, Ehrlich M. Epigenetics of the myotonic dystrophy-associated DMPK gene neighborhood. Epigenomics 2016; 8:13-31. [PMID: 26756355 PMCID: PMC4863877 DOI: 10.2217/epi.15.104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Identify epigenetic marks in the vicinity of DMPK (linked to myotonic dystrophy, DM1) that help explain tissue-specific differences in its expression. Materials & methods: At DMPK and its flanking genes (DMWD, SIX5, BHMG1 and RSPH6A), we analyzed many epigenetic and transcription profiles from myoblasts, myotubes, skeletal muscle, heart and 30 nonmuscle samples. Results: In the DMPK gene neighborhood, muscle-associated DNA hypermethylation and hypomethylation, enhancer chromatin, and CTCF binding were seen. Myogenic DMPK hypermethylation correlated with high expression and decreased alternative promoter usage. Testis/sperm hypomethylation of BHMG1 and RSPH6A was associated with testis-specific expression. G-quadruplex (G4) motifs and sperm-specific hypomethylation were found near the DM1-linked CTG repeats within DMPK. Conclusion: Tissue-specific epigenetic features in DMPK and neighboring genes help regulate its expression. G4 motifs in DMPK DNA and RNA might contribute to DM1 pathology.
Collapse
Affiliation(s)
- Lauren Buckley
- Human Genetics Program, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Michelle Lacey
- Tulane Cancer Center & Department of Mathematics, Tulane University, New Orleans, LA 70112, USA
| | - Melanie Ehrlich
- Human Genetics Program, Center for Bioinformatics & Genomics, Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
194
|
Abstract
Neuromuscular diseases can affect the survival of peripheral neurons, their axons extending to peripheral targets, their synaptic connections onto those targets, or the targets themselves. Examples include motor neuron diseases such as Amyotrophic Lateral Sclerosis, peripheral neuropathies such as Charcot-Marie-Tooth diseases, myasthenias, and muscular dystrophies. Characterizing these phenotypes in mouse models requires an integrated approach, examining both the nerve and muscle histologically, anatomically, and functionally by electrophysiology. Defects observed at these levels can be related back to onset, severity, and progression, as assessed by "Quality of life measures" including tests of gross motor performance such as gait or grip strength. This chapter describes methods for assessing neuromuscular disease models in mice, and how interpretation of these tests can be complicated by the inter-relatedness of the phenotypes.
Collapse
Affiliation(s)
- Robert W Burgess
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - Gregory A Cox
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Kevin L Seburn
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| |
Collapse
|
195
|
MBNL1-mediated regulation of differentiation RNAs promotes myofibroblast transformation and the fibrotic response. Nat Commun 2015; 6:10084. [PMID: 26670661 PMCID: PMC4703843 DOI: 10.1038/ncomms10084] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023] Open
Abstract
The differentiation of fibroblasts into myofibroblasts mediates tissue wound healing and fibrotic remodelling, although the molecular programme underlying this process remains poorly understood. Here we perform a genome-wide screen for genes that control myofibroblast transformation, and identify the RNA-binding protein muscleblind-like1 (MBNL1). MBNL1 overexpression promotes transformation of fibroblasts into myofibroblasts, whereas loss of Mbnl1 abrogates transformation and impairs the fibrotic phase of wound healing in mouse models of myocardial infarction and dermal injury. Mechanistically, MBNL1 directly binds to and regulates a network of differentiation-specific and cytoskeletal/matrix-assembly transcripts to promote myofibroblast differentiation. One of these transcripts is the nodal transcriptional regulator serum response factor (SRF), whereas another is calcineurin Aβ. CRISPR-Cas9-mediated gene-editing of the MBNL1-binding site within the Srf 3′UTR impairs myofibroblast differentiation, whereas in vivo deletion of Srf in fibroblasts impairs wound healing and fibrosis. These data establish a new RNA-dependent paradigm for myofibroblast formation through MBNL1. Fibroblast-to-myofibroblast differentiation is crucial for wound healing and regeneration. Davis et al. describe a new regulatory mechanism underlying myofibroblast differentiation via the RNA-binding protein MBNL1, which promotes the maturation of certain mRNA transcripts that are integral nodes in fibroblast differentiation.
Collapse
|
196
|
Nakamori M, Taylor K, Mochizuki H, Sobczak K, Takahashi MP. Oral administration of erythromycin decreases RNA toxicity in myotonic dystrophy. Ann Clin Transl Neurol 2015; 3:42-54. [PMID: 26783549 PMCID: PMC4704483 DOI: 10.1002/acn3.271] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/04/2015] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Myotonic dystrophy type 1 (DM1) is caused by the expansion of a CTG repeat in the 3' untranslated region of DMPK. The transcripts containing an expanded CUG repeat (CUG (exp)) result in a toxic gain-of-function by forming ribonuclear foci that sequester the alternative splicing factor muscleblind-like 1 (MBNL1). Although several small molecules reportedly ameliorate RNA toxicity, none are ready for clinical use because of the lack of safety data. Here, we undertook a drug-repositioning screen to identify a safe and effective small molecule for upcoming clinical trials of DM1. METHODS We examined the potency of small molecules in inhibiting the interaction between CUG (exp) and MBNL1 by in vitro sequestration and fluorescent titration assays. We studied the effect of lead compounds in DM1 model cells by evaluating foci reduction and splicing rescue. We also tested their effects on missplicing and myotonia in DM1 model mice. RESULTS Of the 20 FDA-approved small molecules tested, erythromycin showed the highest affinity to CUG (exp) and a capacity to inhibit its binding to MBNL1. Erythromycin decreased foci formation and rescued missplicing in DM1 cell models. Both systemic and oral administration of erythromycin in the DM1 model mice showed splicing reversal and improvement of myotonia with no toxicity. Long-term oral administration of erythromycin at the dose used in humans also improved the splicing abnormality in the DM1 model mice. INTERPRETATION Oral erythromycin treatment, which has been widely used in humans with excellent tolerability, may be a promising therapy for DM1.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology Osaka University Graduate School of Medicine Osaka Japan
| | - Katarzyna Taylor
- Department of Gene Expression Institute of Molecular Biology and Biotechnology Adam Mickiewicz University Posnan Poland
| | - Hideki Mochizuki
- Department of Neurology Osaka University Graduate School of Medicine Osaka Japan
| | - Krzysztof Sobczak
- Department of Gene Expression Institute of Molecular Biology and Biotechnology Adam Mickiewicz University Posnan Poland
| | - Masanori P Takahashi
- Department of Neurology Osaka University Graduate School of Medicine Osaka Japan
| |
Collapse
|
197
|
Actinomycin D Specifically Reduces Expanded CUG Repeat RNA in Myotonic Dystrophy Models. Cell Rep 2015; 13:2386-2394. [PMID: 26686629 DOI: 10.1016/j.celrep.2015.11.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 09/10/2015] [Accepted: 11/06/2015] [Indexed: 01/16/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an inherited disease characterized by the inability to relax contracted muscles. Affected individuals carry large CTG expansions that are toxic when transcribed. One possible treatment approach is to reduce or eliminate transcription of CTG repeats. Actinomycin D (ActD) is a potent transcription inhibitor and FDA-approved chemotherapeutic that binds GC-rich DNA with high affinity. Here, we report that ActD decreased CUG transcript levels in a dose-dependent manner in DM1 cell and mouse models at significantly lower concentrations (nanomolar) compared to its use as a general transcription inhibitor or chemotherapeutic. ActD also significantly reversed DM1-associated splicing defects in a DM1 mouse model, and did so within the currently approved human treatment range. RNA-seq analyses showed that low concentrations of ActD did not globally inhibit transcription in a DM1 mouse model. These results indicate that transcription inhibition of CTG expansions is a promising treatment approach for DM1.
Collapse
|
198
|
Nakamura T, Ohsawa-Yoshida N, Zhao Y, Koebis M, Oana K, Mitsuhashi H, Ishiura S. Splicing of human chloride channel 1. Biochem Biophys Rep 2015; 5:63-69. [PMID: 28955807 PMCID: PMC5600464 DOI: 10.1016/j.bbrep.2015.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/28/2015] [Accepted: 11/09/2015] [Indexed: 11/21/2022] Open
Abstract
Expression of chloride channel 1 (CLCN1/ClC-1) in skeletal muscle is driven by alternative splicing, a process regulated in part by RNA-binding protein families MBNL and CELF. Aberrant splicing of CLCN1 produces many mRNAs, which were translated into inactive proteins, resulting in myotonia in myotonic dystrophy (DM), a genetic disorder caused by the expansion of a CTG or CCTG repeat. This increase in abnormal splicing variants containing exons 6B, 7A or the insertion of a TAG stop codon just before exon 7 leads to a decrease in expression of the normal splice pattern. The majority of studies examining splicing in CLCN1 have been performed using mouse Clcn1, as have investigations into the activation and suppression of normal splicing variant expression by MBNL1-3 and CELF3–6, respectively. In contrast, examinations of human CLCN1 have been less common due to the greater complexity of splicing patterns. Here, we constructed a minigene containing CLCN1 exons 5–7 and established a novel assay system to quantify the expression of the normal splicing variant of CLCN1 using real-time RT-PCR. Antisense oligonucleotides could promote normal CLCN1 alternative splicing but the effective sequence was different from that of Clcn1. This result differs from previous reports using Clcn1, highlighting the effect of differences in splicing patterns between mice and humans. Splicing of of human chloride channel 1 (CLCN1) was studied. Abnormal splicing variants were observed. Antisense oligonucleotides could promote normal CLCN1 splicing.
Collapse
Affiliation(s)
- Takumi Nakamura
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Natsumi Ohsawa-Yoshida
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yimeng Zhao
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Michinori Koebis
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kosuke Oana
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hiroaki Mitsuhashi
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Shoichi Ishiura
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
199
|
Gallego-Llamas J, Timms AE, Geister KA, Lindsay A, Beier DR. Variant mapping and mutation discovery in inbred mice using next-generation sequencing. BMC Genomics 2015; 16:913. [PMID: 26552429 PMCID: PMC4640199 DOI: 10.1186/s12864-015-2173-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/31/2015] [Indexed: 12/04/2022] Open
Abstract
Background The development of powerful new methods for DNA sequencing enable the discovery of sequence variants, their utilization for the mapping of mutant loci, and the identification of causal variants in a single step. We have applied this approach for the analysis of ENU-mutagenized mice maintained on an inbred background. Results We ascertained ENU-induced variants in four different phenotypically mutant lines. These were then used as informative markers for positional cloning of the mutated genes. We tested both whole genome (WGS) and whole exome (WES) datasets. Conclusion Both approaches were successful as a means to localize a region of homozygosity, as well as identifying mutations of candidate genes, which could be individually assessed. As expected, the WGS strategy was more reliable, since many more ENU-induced variants were ascertained. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2173-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jabier Gallego-Llamas
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA. .,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Ave., Seattle, WA, 98101, USA.
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Ave., Seattle, WA, 98101, USA.
| | - Krista A Geister
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Ave., Seattle, WA, 98101, USA.
| | - Anna Lindsay
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Ave., Seattle, WA, 98101, USA.
| | - David R Beier
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA. .,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Ave., Seattle, WA, 98101, USA.
| |
Collapse
|
200
|
Pandey SK, Wheeler TM, Justice SL, Kim A, Younis HS, Gattis D, Jauvin D, Puymirat J, Swayze EE, Freier SM, Bennett CF, Thornton CA, MacLeod AR. Identification and characterization of modified antisense oligonucleotides targeting DMPK in mice and nonhuman primates for the treatment of myotonic dystrophy type 1. J Pharmacol Exp Ther 2015; 355:329-40. [PMID: 26330536 PMCID: PMC4613955 DOI: 10.1124/jpet.115.226969] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/31/2015] [Indexed: 01/07/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common form of muscular dystrophy in adults. DM1 is caused by an expanded CTG repeat in the 3'-untranslated region of DMPK, the gene encoding dystrophia myotonica protein kinase (DMPK). Antisense oligonucleotides (ASOs) containing 2',4'-constrained ethyl-modified (cEt) residues exhibit a significantly increased RNA binding affinity and in vivo potency relative to those modified with other 2'-chemistries, which we speculated could translate to enhanced activity in extrahepatic tissues, such as muscle. Here, we describe the design and characterization of a cEt gapmer DMPK ASO (ISIS 486178), with potent activity in vitro and in vivo against mouse, monkey, and human DMPK. Systemic delivery of unformulated ISIS 486718 to wild-type mice decreased DMPK mRNA levels by up to 90% in liver and skeletal muscle. Similarly, treatment of either human DMPK transgenic mice or cynomolgus monkeys with ISIS 486178 led to up to 70% inhibition of DMPK in multiple skeletal muscles and ∼50% in cardiac muscle in both species. Importantly, inhibition of DMPK was well tolerated and was not associated with any skeletal muscle or cardiac toxicity. Also interesting was the demonstration that the inhibition of DMPK mRNA levels in muscle was maintained for up to 16 and 13 weeks post-treatment in mice and monkeys, respectively. These results demonstrate that cEt-modified ASOs show potent activity in skeletal muscle, and that this attractive therapeutic approach warrants further clinical investigation to inhibit the gain-of-function toxic RNA underlying the pathogenesis of DM1.
Collapse
Affiliation(s)
- Sanjay K Pandey
- Isis Pharmaceuticals Inc., Carlsbad, CA (S.K.P., S.L.J., A.K., H.S.Y., D.G., E.E.S., S.M.F., C.F.B., A.R.M.); Department of Neurology and Center of Neural Development and Disease, University of Rochester, Rochester, New York (T.M.W., C.A.T.); Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts (T.M.W.); and Department of Human Genetics, Centre Hospitalier Universitaire de Quebec, Quebec City, Canada (D.J., J.P.)
| | - Thurman M Wheeler
- Isis Pharmaceuticals Inc., Carlsbad, CA (S.K.P., S.L.J., A.K., H.S.Y., D.G., E.E.S., S.M.F., C.F.B., A.R.M.); Department of Neurology and Center of Neural Development and Disease, University of Rochester, Rochester, New York (T.M.W., C.A.T.); Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts (T.M.W.); and Department of Human Genetics, Centre Hospitalier Universitaire de Quebec, Quebec City, Canada (D.J., J.P.)
| | - Samantha L Justice
- Isis Pharmaceuticals Inc., Carlsbad, CA (S.K.P., S.L.J., A.K., H.S.Y., D.G., E.E.S., S.M.F., C.F.B., A.R.M.); Department of Neurology and Center of Neural Development and Disease, University of Rochester, Rochester, New York (T.M.W., C.A.T.); Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts (T.M.W.); and Department of Human Genetics, Centre Hospitalier Universitaire de Quebec, Quebec City, Canada (D.J., J.P.)
| | - Aneeza Kim
- Isis Pharmaceuticals Inc., Carlsbad, CA (S.K.P., S.L.J., A.K., H.S.Y., D.G., E.E.S., S.M.F., C.F.B., A.R.M.); Department of Neurology and Center of Neural Development and Disease, University of Rochester, Rochester, New York (T.M.W., C.A.T.); Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts (T.M.W.); and Department of Human Genetics, Centre Hospitalier Universitaire de Quebec, Quebec City, Canada (D.J., J.P.)
| | - Husam S Younis
- Isis Pharmaceuticals Inc., Carlsbad, CA (S.K.P., S.L.J., A.K., H.S.Y., D.G., E.E.S., S.M.F., C.F.B., A.R.M.); Department of Neurology and Center of Neural Development and Disease, University of Rochester, Rochester, New York (T.M.W., C.A.T.); Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts (T.M.W.); and Department of Human Genetics, Centre Hospitalier Universitaire de Quebec, Quebec City, Canada (D.J., J.P.)
| | - Danielle Gattis
- Isis Pharmaceuticals Inc., Carlsbad, CA (S.K.P., S.L.J., A.K., H.S.Y., D.G., E.E.S., S.M.F., C.F.B., A.R.M.); Department of Neurology and Center of Neural Development and Disease, University of Rochester, Rochester, New York (T.M.W., C.A.T.); Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts (T.M.W.); and Department of Human Genetics, Centre Hospitalier Universitaire de Quebec, Quebec City, Canada (D.J., J.P.)
| | - Dominic Jauvin
- Isis Pharmaceuticals Inc., Carlsbad, CA (S.K.P., S.L.J., A.K., H.S.Y., D.G., E.E.S., S.M.F., C.F.B., A.R.M.); Department of Neurology and Center of Neural Development and Disease, University of Rochester, Rochester, New York (T.M.W., C.A.T.); Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts (T.M.W.); and Department of Human Genetics, Centre Hospitalier Universitaire de Quebec, Quebec City, Canada (D.J., J.P.)
| | - Jack Puymirat
- Isis Pharmaceuticals Inc., Carlsbad, CA (S.K.P., S.L.J., A.K., H.S.Y., D.G., E.E.S., S.M.F., C.F.B., A.R.M.); Department of Neurology and Center of Neural Development and Disease, University of Rochester, Rochester, New York (T.M.W., C.A.T.); Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts (T.M.W.); and Department of Human Genetics, Centre Hospitalier Universitaire de Quebec, Quebec City, Canada (D.J., J.P.)
| | - Eric E Swayze
- Isis Pharmaceuticals Inc., Carlsbad, CA (S.K.P., S.L.J., A.K., H.S.Y., D.G., E.E.S., S.M.F., C.F.B., A.R.M.); Department of Neurology and Center of Neural Development and Disease, University of Rochester, Rochester, New York (T.M.W., C.A.T.); Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts (T.M.W.); and Department of Human Genetics, Centre Hospitalier Universitaire de Quebec, Quebec City, Canada (D.J., J.P.)
| | - Susan M Freier
- Isis Pharmaceuticals Inc., Carlsbad, CA (S.K.P., S.L.J., A.K., H.S.Y., D.G., E.E.S., S.M.F., C.F.B., A.R.M.); Department of Neurology and Center of Neural Development and Disease, University of Rochester, Rochester, New York (T.M.W., C.A.T.); Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts (T.M.W.); and Department of Human Genetics, Centre Hospitalier Universitaire de Quebec, Quebec City, Canada (D.J., J.P.)
| | - C Frank Bennett
- Isis Pharmaceuticals Inc., Carlsbad, CA (S.K.P., S.L.J., A.K., H.S.Y., D.G., E.E.S., S.M.F., C.F.B., A.R.M.); Department of Neurology and Center of Neural Development and Disease, University of Rochester, Rochester, New York (T.M.W., C.A.T.); Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts (T.M.W.); and Department of Human Genetics, Centre Hospitalier Universitaire de Quebec, Quebec City, Canada (D.J., J.P.)
| | - Charles A Thornton
- Isis Pharmaceuticals Inc., Carlsbad, CA (S.K.P., S.L.J., A.K., H.S.Y., D.G., E.E.S., S.M.F., C.F.B., A.R.M.); Department of Neurology and Center of Neural Development and Disease, University of Rochester, Rochester, New York (T.M.W., C.A.T.); Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts (T.M.W.); and Department of Human Genetics, Centre Hospitalier Universitaire de Quebec, Quebec City, Canada (D.J., J.P.)
| | - A Robert MacLeod
- Isis Pharmaceuticals Inc., Carlsbad, CA (S.K.P., S.L.J., A.K., H.S.Y., D.G., E.E.S., S.M.F., C.F.B., A.R.M.); Department of Neurology and Center of Neural Development and Disease, University of Rochester, Rochester, New York (T.M.W., C.A.T.); Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts (T.M.W.); and Department of Human Genetics, Centre Hospitalier Universitaire de Quebec, Quebec City, Canada (D.J., J.P.)
| |
Collapse
|