151
|
Bossert S, Murray EA, Almeida EAB, Brady SG, Blaimer BB, Danforth BN. Combining transcriptomes and ultraconserved elements to illuminate the phylogeny of Apidae. Mol Phylogenet Evol 2018; 130:121-131. [PMID: 30326287 DOI: 10.1016/j.ympev.2018.10.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
Abstract
Two increasingly popular approaches to reconstruct the Tree of Life involve whole transcriptome sequencing and the target capture of ultraconserved elements (UCEs). Both methods can be used to generate large, multigene datasets for analysis of phylogenetic relationships in non-model organisms. While targeted exon sequencing across divergent lineages is now a standard method, it is still not clear if UCE data can be readily combined with published transcriptomes. In this study, we evaluate the combination of UCEs and transcriptomes in a single analysis using genome-, transcriptome-, and UCE data for 79 bees in the largest and most biologically diverse bee family, Apidae. Using existing tools, we first developed a workflow to assemble phylogenomic data from different sources and produced two large nucleotide matrices of combined data. We then reconstructed the phylogeny of the Apidae using concatenation- and coalescent-based methods, and critically evaluated the resulting phylogenies in the context of previously published genetic, genomic, and morphological data sets. Our estimated phylogenetic trees are robustly supported and largely congruent with previous molecular hypotheses, from deep nodes to shallow species-level phylogenies. Moreover, the combined approach allows us to resolve controversial nodes of the apid Tree of Life, by clarifying the relationships among the genera of orchid bees (Euglossini) and the monophyly of the Centridini. Additionally, we present novel phylogenetic evidence supporting the monophyly of the diverse clade of cleptoparasitic Apidae and the placement of two enigmatic, oil-collecting genera (Ctenoplectra and Tetrapedia). Lastly, we propose a revised classification of the family Apidae that reflects our improved understanding of apid higher-level relationships.
Collapse
Affiliation(s)
- Silas Bossert
- Department of Entomology, Cornell University, Ithaca, NY, USA.
| | | | - Eduardo A B Almeida
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Seán G Brady
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Bonnie B Blaimer
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA; Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
152
|
Provataris P, Meusemann K, Niehuis O, Grath S, Misof B. Signatures of DNA Methylation across Insects Suggest Reduced DNA Methylation Levels in Holometabola. Genome Biol Evol 2018; 10:1185-1197. [PMID: 29697817 PMCID: PMC5915941 DOI: 10.1093/gbe/evy066] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2018] [Indexed: 12/20/2022] Open
Abstract
It has been experimentally shown that DNA methylation is involved in the regulation of gene expression and the silencing of transposable element activity in eukaryotes. The variable levels of DNA methylation among different insect species indicate an evolutionarily flexible role of DNA methylation in insects, which due to a lack of comparative data is not yet well-substantiated. Here, we use computational methods to trace signatures of DNA methylation across insects by analyzing transcriptomic and genomic sequence data from all currently recognized insect orders. We conclude that: 1) a functional methylation system relying exclusively on DNA methyltransferase 1 is widespread across insects. 2) DNA methylation has potentially been lost or extremely reduced in species belonging to springtails (Collembola), flies and relatives (Diptera), and twisted-winged parasites (Strepsiptera). 3) Holometabolous insects display signs of reduced DNA methylation levels in protein-coding sequences compared with hemimetabolous insects. 4) Evolutionarily conserved insect genes associated with housekeeping functions tend to display signs of heavier DNA methylation in comparison to the genomic/transcriptomic background. With this comparative study, we provide the much needed basis for experimental and detailed comparative analyses required to gain a deeper understanding on the evolution and function of DNA methylation in insects.
Collapse
Affiliation(s)
- Panagiotis Provataris
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Karen Meusemann
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
- Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Freiburg (Brsg.), Germany
- Australian National Insect Collection, CSIRO National Research Collections Australia, Acton, Australian Capital Territory, Australia
| | - Oliver Niehuis
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
- Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Freiburg (Brsg.), Germany
| | - Sonja Grath
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
- Corresponding authors: E-mails: ;
| | - Bernhard Misof
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
- Corresponding authors: E-mails: ;
| |
Collapse
|
153
|
The Evolution of Science in a Latin-American Country: Genetics and Genomics in Brazil. Genetics 2018; 208:823-832. [PMID: 29487143 DOI: 10.1534/genetics.118.300690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/16/2018] [Indexed: 11/18/2022] Open
Abstract
This article begins with a brief overview of the history of Brazil and that of Brazilian science, from the European discovery of the country in 1500 up to the early 21st century. The history of the fields of genetics and genomics, from the 1930s, is then first examined from the focal point of the lives and publications of the three persons who are generally considered to be the founders of genetics in Brazil (C. A. Krug, F. G. Brieger, and A. Dreyfus), and then by 12 other researchers up to 1999. The area of molecular genetics and genomics from 2000 to present is then described. Despite the problems of underdevelopment and the periodical political and economic crises that have affected life in Brazil, the fields of genetics and genomics in Brazil can be regarded as having developed at an appropriate pace, and have contributed in several major ways to world science.
Collapse
|
154
|
Lourenço AP, Florecki MM, Simões ZLP, Evans JD. Silencing of Apis mellifera dorsal genes reveals their role in expression of the antimicrobial peptide defensin-1. INSECT MOLECULAR BIOLOGY 2018; 27:577-589. [PMID: 29663584 DOI: 10.1111/imb.12498] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Like all other insects, two key signalling pathways [Toll and immune deficiency (Imd)] regulate the induction of honey bee immune effectors that target microbial pathogens. Amongst these effectors are antimicrobial peptides (AMPs) that are presumed to be produced by the nuclear factors kappa B (NF-κB) Dorsal and Relish from the Toll and Imd pathways, respectively. Using in silico analysis, we previously proposed that the honey bee AMP defensin-1 was regulated by the Toll pathway, whereas hymenoptaecin was regulated by Imd and abaecin by both the Toll and Imd pathways. Here we use an RNA interference (RNAi) assay to determine the role of Dorsal in regulating abaecin and defensin-1. Honey bees have two dorsal genes (dorsal-1 and dorsal-2) and two splicing isoforms of dorsal-1 (dorsal-1A and dorsal-1B). Accordingly, we used both single and multiple (double or triple) isoform knockdown strategies to clarify the roles of dorsal proteins and their isoforms. Down-regulation of defensin-1 was observed for dorsal-1A and dorsal-2 knockdowns, but abaecin expression was not affected by dorsal RNAi. We conclude that defensin-1 is regulated by Dorsal (Toll pathway).
Collapse
Affiliation(s)
- A P Lourenço
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Departamento de Ciências Biológicas, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - M M Florecki
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Z L P Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - J D Evans
- Bee Research Lab, USDA-ARS, Beltsville, MD, USA
| |
Collapse
|
155
|
Calla B, MacLean M, Liao LH, Dhanjal I, Tittiger C, Blomquist GJ, Berenbaum MR. Functional characterization of CYP4G11-a highly conserved enzyme in the western honey bee Apis mellifera. INSECT MOLECULAR BIOLOGY 2018; 27:661-674. [PMID: 29896786 DOI: 10.1111/imb.12516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Determining the functionality of CYP4G11, the only CYP4G in the genome of the western honey bee Apis mellifera, can provide insight into its reduced CYP4 inventory. Toward this objective, CYP4G11 transcripts were quantified, and CYP4G11 was expressed as a fusion protein with housefly CPR in Sf9 cells. Transcript levels varied with age, task, and tissue type in a manner consistent with the need for cuticular hydrocarbon production to prevent desiccation or with comb wax production. Young larvae, with minimal need for desiccation protection, expressed CYP4G11 at very low levels. Higher levels were observed in nurses, and even higher levels in wax producers and foragers, the latter of which risk desiccation upon leaving the hive. Recombinant CYP4G11 readily converted octadecanal to n-heptadecane in a time-dependent manner, demonstrating its functions as an oxidative decarbonylase. CYP4G11 expression levels are high in antennae; heterologously expressed CYP4G11 converted tetradecanal to n-tridecane, demonstrating that it metabolizes shorter-chain aldehydes. Together, these findings confirm the involvement of CYP4G11 in cuticular hydrocarbon production and suggest a possible role in clearing pheromonal and phytochemical compounds from antennae. This possible dual functionality of CYP4G11, i.e., cuticular hydrocarbon and comb wax production and antennal odorant clearance, may explain how honey bees function with a reduced CYP4G inventory.
Collapse
Affiliation(s)
- B Calla
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M MacLean
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - L-H Liao
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - I Dhanjal
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - C Tittiger
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - G J Blomquist
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - M R Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
156
|
Rehan SM, Glastad KM, Steffen MA, Fay CR, Hunt BG, Toth AL. Conserved Genes Underlie Phenotypic Plasticity in an Incipiently Social Bee. Genome Biol Evol 2018; 10:2749-2758. [PMID: 30247544 PMCID: PMC6190964 DOI: 10.1093/gbe/evy212] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2018] [Indexed: 11/13/2022] Open
Abstract
Despite a strong history of theoretical work on the mechanisms of social evolution, relatively little is known of the molecular genetic changes that accompany transitions from solitary to eusocial forms. Here, we provide the first genome of an incipiently social bee that shows both solitary and social colony organization in sympatry, the Australian carpenter bee Ceratina australensis. Through comparative analysis, we provide support for the role of conserved genes and cis-regulation of gene expression in the phenotypic plasticity observed in nest-sharing, a rudimentary form of sociality. Additionally, we find that these conserved genes are associated with caste differences in advanced eusocial species, suggesting these types of mechanisms could pave the molecular pathway from solitary to eusocial living. Genes associated with social nesting in this species show signatures of being deeply conserved, in contrast to previous studies in other bees showing novel and faster-evolving genes are associated with derived sociality. Our data provide support for the idea that the earliest social transitions are driven by changes in gene regulation of deeply conserved genes.
Collapse
Affiliation(s)
- Sandra M Rehan
- Department of Biological Sciences, University of New Hampshire
| | - Karl M Glastad
- Department of Cell & Developmental Biology, University of Pennsylvania
| | | | - Cameron R Fay
- Department of Ecology, Evolution and Organismal Biology, Iowa State University
| | | | - Amy L Toth
- Department of Ecology, Evolution and Organismal Biology, Iowa State University
| |
Collapse
|
157
|
Piekarski PK, Carpenter JM, Lemmon AR, Moriarty Lemmon E, Sharanowski BJ. Phylogenomic Evidence Overturns Current Conceptions of Social Evolution in Wasps (Vespidae). Mol Biol Evol 2018; 35:2097-2109. [PMID: 29924339 PMCID: PMC6107056 DOI: 10.1093/molbev/msy124] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The hypothesis that eusociality originated once in Vespidae has shaped interpretation of social evolution for decades and has driven the supposition that preimaginal morphophysiological differences between castes were absent at the outset of eusociality. Many researchers also consider casteless nest-sharing an antecedent to eusociality. Together, these ideas endorse a stepwise progression of social evolution in wasps (solitary → casteless nest-sharing → eusociality with rudimentary behavioral castes → eusociality with preimaginal caste-biasing (PCB) → morphologically differentiated castes). Here, we infer the phylogeny of Vespidae using sequence data generated via anchored hybrid enrichment from 378 loci across 136 vespid species and perform ancestral state reconstructions to test whether rudimentary and monomorphic castes characterized the initial stages of eusocial evolution. Our results reject the single origin of eusociality hypothesis, contest the supposition that eusociality emerged from a casteless nest-sharing ancestor, and suggest that eusociality in Polistinae + Vespinae began with castes having morphological differences. An abrupt appearance of castes with ontogenetically established morphophysiological differences conflicts with the current conception of stepwise social evolution and suggests that the climb up the ladder of sociality does not occur through sequential mutation. Phenotypic plasticity and standing genetic variation could explain how cooperative brood care evolved in concert with nest-sharing and how morphologically dissimilar castes arose without a rudimentary intermediate. Furthermore, PCB at the outset of eusociality implicates a subsocial route to eusociality in Polistinae + Vespinae, emphasizing the role of mother-daughter interactions and subfertility (i.e. the cost component of kin selection) in the origin of workers.
Collapse
Affiliation(s)
| | - James M Carpenter
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL
| | | | | |
Collapse
|
158
|
Libbrecht R, Oxley PR, Kronauer DJC. Clonal raider ant brain transcriptomics identifies candidate molecular mechanisms for reproductive division of labor. BMC Biol 2018; 16:89. [PMID: 30103762 PMCID: PMC6090591 DOI: 10.1186/s12915-018-0558-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/31/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Division of labor between reproductive queens and workers that perform brood care is a hallmark of insect societies. However, studies of the molecular basis of this fundamental dichotomy are limited by the fact that the caste of an individual cannot typically be experimentally manipulated at the adult stage. Here we take advantage of the unique biology of the clonal raider ant, Ooceraea biroi, to study brain gene expression dynamics during experimentally induced transitions between reproductive and brood care behavior. RESULTS Introducing larvae that inhibit reproduction and induce brood care behavior causes much faster changes in adult gene expression than removing larvae. In addition, the general patterns of gene expression differ depending on whether ants transition from reproduction to brood care or vice versa, indicating that gene expression changes between phases are cyclic rather than pendular. Finally, we identify genes that could play upstream roles in regulating reproduction and behavior because they show large and early expression changes in one or both transitions. CONCLUSIONS Our analyses reveal that the nature and timing of gene expression changes differ substantially depending on the direction of the transition, and identify a suite of promising candidate molecular regulators of reproductive division of labor that can now be characterized further in both social and solitary animal models. This study contributes to understanding the molecular regulation of reproduction and behavior, as well as the organization and evolution of insect societies.
Collapse
Affiliation(s)
- Romain Libbrecht
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany.
| | - Peter R Oxley
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
- Samuel J. Wood Library, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
159
|
Kronauer DJ, Libbrecht R. Back to the roots: the importance of using simple insect societies to understand the molecular basis of complex social life. CURRENT OPINION IN INSECT SCIENCE 2018; 28:33-39. [PMID: 30551765 DOI: 10.1016/j.cois.2018.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 06/09/2023]
Abstract
The evolutionary trajectories toward insect eusociality come in two broad forms. In species like wasps, bees, and ants, the first helpers remained at the nest primarily to help with brood care. In species like aphids and termites, on the other hand, nest defense was initially the primary ecological driving force. To better understand the molecular basis of these two alternative evolutionary trajectories, it is therefore important to study the mechanistic basis of brood care and nest defense behavior. So far, most studies have compared morphologically distinct castes in advanced eusocial species of ants, bees, wasps, and termites. However, the interpretation of such comparisons is limited by multiple confounding factors and the fact that castes are typically fixed and cannot be manipulated at the adult stage. In this review, we argue that conducting molecular studies of brood care and nest defense in simpler, more flexible insect societies may complement studies of advanced eusocial insects and provide avenues toward more functional analyses. We review the available literature and propose candidate study systems for future molecular investigations of brood care and nest defense in social insects.
Collapse
Affiliation(s)
- Daniel Jc Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, USA
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
160
|
Brand P, Robertson HM, Lin W, Pothula R, Klingeman WE, Jurat-Fuentes JL, Johnson BR. The origin of the odorant receptor gene family in insects. eLife 2018; 7:e38340. [PMID: 30063003 PMCID: PMC6080948 DOI: 10.7554/elife.38340] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/24/2018] [Indexed: 02/04/2023] Open
Abstract
The origin of the insect odorant receptor (OR) gene family has been hypothesized to have coincided with the evolution of terrestriality in insects. Missbach et al. (2014) suggested that ORs instead evolved with an ancestral OR co-receptor (Orco) after the origin of terrestriality and the OR/Orco system is an adaptation to winged flight in insects. We investigated genomes of the Collembola, Diplura, Archaeognatha, Zygentoma, Odonata, and Ephemeroptera, and find ORs present in all insect genomes but absent from lineages predating the evolution of insects. Orco is absent only in the ancestrally wingless insect lineage Archaeognatha. Our new genome sequence of the zygentoman firebrat Thermobia domestica reveals a full OR/Orco system. We conclude that ORs evolved before winged flight, perhaps as an adaptation to terrestriality, representing a key evolutionary novelty in the ancestor of all insects, and hence a molecular synapomorphy for the Class Insecta.
Collapse
Affiliation(s)
- Philipp Brand
- Department of Evolution and EcologyCenter for Population Biology, University of California, DavisDavisUnited States
| | - Hugh M Robertson
- Department of EntomologyUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Wei Lin
- Department of Entomology and NematologyUniversity of California, DavisDavisUnited States
| | - Ratnasri Pothula
- Department of Entomology and Plant PathologyUniversity of TennesseeKnoxvilleUnited States
| | | | | | - Brian R Johnson
- Department of Entomology and NematologyUniversity of California, DavisDavisUnited States
| |
Collapse
|
161
|
Privman E, Cohen P, Cohanim AB, Riba-Grognuz O, Shoemaker D, Keller L. Positive selection on sociobiological traits in invasive fire ants. Mol Ecol 2018; 27:3116-3130. [PMID: 29920818 DOI: 10.1111/mec.14767] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 01/05/2023]
Abstract
The fire ant Solenopsis invicta and its close relatives are highly invasive. Enhanced social cooperation may facilitate invasiveness in these and other invasive ant species. We investigated whether invasiveness in Solenopsis fire ants was accompanied by positive selection on sociobiological traits by applying a phylogenomics approach to infer ancient selection, and a population genomics approach to infer recent and ongoing selection in both native and introduced S. invicta populations. A combination of whole-genome sequencing of 40 haploid males and reduced-representation genomic sequencing of 112 diploid workers identified 1,758,116 and 169,682 polymorphic markers, respectively. The resulting high-resolution maps of genomic polymorphism provide high inference power to test for positive selection. Our analyses provide evidence of positive selection on putative ion channel genes, which are implicated in neurological functions, and on vitellogenin, which is a key regulator of development and caste determination. Furthermore, molecular functions implicated in pheromonal signalling have experienced recent positive selection. Genes with signatures of positive selection were significantly more often those overexpressed in workers compared with queens and males, suggesting that worker traits are under stronger selection than queen and male traits. These results provide insights into selection pressures and ongoing adaptation in an invasive social insect and support the hypothesis that sociobiological traits are under more positive selection than nonsocial traits in such invasive species.
Collapse
Affiliation(s)
- Eyal Privman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Pnina Cohen
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Amir B Cohanim
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Oksana Riba-Grognuz
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - DeWayne Shoemaker
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
162
|
Legendre F, Grandcolas P. The evolution of sociality in termites from cockroaches: A taxonomic and phylogenetic perspective. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:279-287. [PMID: 29989317 DOI: 10.1002/jez.b.22812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/14/2018] [Accepted: 06/08/2018] [Indexed: 11/05/2022]
Abstract
Despite multiple studies and advances, sociality still puzzles evolutionary biologists in numerous ways, which might be partly addressed with the advent of sociogenomics. In insects, the majority of sociogenomic studies deal with Hymenoptera, one of the two groups that evolved eusociality with termites. But, to fully grasp the evolution of sociality, studies must obviously not restrict to eusocial lineages. Multiple kinds of social system transitions have been recorded and they all bring complementary insights. For instance, cockroaches, the closest relatives to termites, display a wide range of social interactions and evolved convergently subsocial behaviors (i.e., brood care). In this context, we emphasize the need for natural history, taxonomic, and phylogenetic studies. Natural history studies provide the foundations on which building hypotheses, whereas taxonomy provides the taxa to sample to test these hypotheses, and phylogenetics brings the historical framework necessary to test evolutionary scenarios of sociality evolution.
Collapse
Affiliation(s)
- Frédéric Legendre
- Institut Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| | - Philippe Grandcolas
- Institut Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| |
Collapse
|
163
|
Insects with similar social complexity show convergent patterns of adaptive molecular evolution. Sci Rep 2018; 8:10388. [PMID: 29991733 PMCID: PMC6039441 DOI: 10.1038/s41598-018-28489-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/22/2018] [Indexed: 12/30/2022] Open
Abstract
Eusociality has independently evolved multiple times in the hymenoptera, but the patterns of adaptive molecular evolution underlying the evolution and elaboration of eusociality remain uncertain. Here, we performed a population genomics study of primitively eusocial Polistes (paper wasps), and compared their patterns of molecular evolution to two social bees; Bombus (bumblebees), and Apis (honey bees). This species triad allowed us to study molecular evolution across a gradient of social complexity (Polistes < Bombus < Apis) and compare species pairs that have similar (i.e. Polistes and Bombus) or different (i.e. Polistes and Apis) life histories, while controlling for phylogenetic distance. We found that regulatory genes have high levels of positive selection in Polistes; consistent with the prediction that adaptive changes in gene regulation are important during early stages of social evolution. Polistes and Bombus exhibit greater similarity in patterns of adaptive evolution including greater overlap of genes experiencing positive selection, and greater positive selection on queen-biased genes. Our findings suggest that either adaptive evolution of a few key genes underlie the evolution of simpler forms of eusociality, or that the initial stages of social evolution lead to selection on a few key traits orchestrated by orthologous genes and networks.
Collapse
|
164
|
Rubin BER, Sanders JG, Turner KM, Pierce NE, Kocher SD. Social behaviour in bees influences the abundance of Sodalis (Enterobacteriaceae) symbionts. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180369. [PMID: 30109092 PMCID: PMC6083661 DOI: 10.1098/rsos.180369] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Social interactions can facilitate transmission of microbes between individuals, reducing variation in gut communities within social groups. Thus, the evolution of social behaviours and symbiont community composition have the potential to be tightly linked. We explored this connection by characterizing the diversity of bacteria associated with both eusocial and solitary bee species within the behaviourally variable family Halictidae using 16S amplicon sequencing. Contrary to expectations, we found few differences in bacterial abundance or variation between social forms; most halictid species appear to share similar gut bacterial communities. However, several strains of Sodalis, a genus described as a symbiont in a variety of insects but yet to be characterized in bees, differ in abundance between eusocial and solitary bees. Phylogenetic reconstructions based on whole-genome alignments indicate that Sodalis has independently colonized halictids at least three times. These strains appear to be mutually exclusive within individual bees, although they are not host-species-specific and no signatures of vertical transmission were observed, suggesting that Sodalis strains compete for access to hosts. The symbiosis between halictids and Sodalis therefore appears to be in its early stages.
Collapse
Affiliation(s)
- Benjamin E. R. Rubin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Jon G. Sanders
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kyle M. Turner
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Sarah D. Kocher
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
165
|
Bornberg-Bauer E, Harrison MC, Jongepier E. The first cockroach genome and its significance for understanding development and the evolution of insect eusociality. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:251-253. [PMID: 30168666 DOI: 10.1002/jez.b.22826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Mark C Harrison
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Evelien Jongepier
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
166
|
Mayhew PJ. Comparative analysis of behavioural traits in insects. CURRENT OPINION IN INSECT SCIENCE 2018; 27:52-60. [PMID: 30025635 DOI: 10.1016/j.cois.2018.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Comparative studies of insect behaviour based on evolutionary trees are currently blossoming, because of the increasing ease of phylogeny estimation, the availability of new trait data to analyze, and a vast and growing array of statistical techniques for exploring data and testing hypotheses. These studies address not only the selective forces and constraints on insect behaviour, which are the realm of traditional behavioural ecology, but also their ecological and evolutionary consequences. Recent studies have significantly increased our understanding of foraging behaviour, interspecific interactions, locomotion and dispersal, communication and signalling, mate choice and sexual selection, parental care and the evolution of sociality. The curating of trait data remains a significant challenge to maximize the future potential of insect comparative studies.
Collapse
Affiliation(s)
- Peter J Mayhew
- Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
167
|
Schaefke B, Sun W, Li YS, Fang L, Chen W. The evolution of posttranscriptional regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1485. [PMID: 29851258 DOI: 10.1002/wrna.1485] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Abstract
"DNA makes RNA makes protein." After transcription, mRNAs undergo a series of intertwining processes to be finally translated into functional proteins. The "posttranscriptional" regulation (PTR) provides cells an extended option to fine-tune their proteomes. To meet the demands of complex organism development and the appropriate response to environmental stimuli, every step in these processes needs to be finely regulated. Moreover, changes in these regulatory processes are important driving forces underlying the evolution of phenotypic differences across different species. The major PTR mechanisms discussed in this review include the regulation of splicing, polyadenylation, decay, and translation. For alternative splicing and polyadenylation, we mainly discuss their evolutionary dynamics and the genetic changes underlying the regulatory differences in cis-elements versus trans-factors. For mRNA decay and translation, which, together with transcription, determine the cellular RNA or protein abundance, we focus our discussion on how their divergence coordinates with transcriptional changes to shape the evolution of gene expression. Then to highlight the importance of PTR in the evolution of higher complexity, we focus on their roles in two major phenomena during eukaryotic evolution: the evolution of multicellularity and the division of labor between different cell types and tissues; and the emergence of diverse, often highly specialized individual phenotypes, especially those concerning behavior in eusocial insects. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution Translation > Translation Regulation RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Bernhard Schaefke
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Wei Sun
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California San Francisco, San Francisco
| | - Yi-Sheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Liang Fang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Wei Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
168
|
Brand P, Ramírez SR. The Evolutionary Dynamics of the Odorant Receptor Gene Family in Corbiculate Bees. Genome Biol Evol 2018; 9:2023-2036. [PMID: 28854688 PMCID: PMC5597890 DOI: 10.1093/gbe/evx149] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2017] [Indexed: 12/24/2022] Open
Abstract
Insects rely on chemical information to locate food, choose mates, and detect potential predators. It has been hypothesized that adaptive changes in the olfactory system facilitated the diversification of numerous insect lineages. For instance, evolutionary changes of Odorant Receptor (OR) genes often occur in parallel with modifications in life history strategies. Corbiculate bees display a diverse array of behaviors that are controlled through olfaction, including varying degrees of social organization, and manifold associations with floral resources. Here we investigated the molecular mechanisms driving the evolution of the OR gene family in corbiculate bees in comparison to other chemosensory gene families. Our results indicate that the genomic organization of the OR gene family has remained highly conserved for ∼80 Myr, despite exhibiting major changes in repertoire size among bee lineages. Moreover, the evolution of OR genes appears to be driven mostly by lineage-specific gene duplications in few genomic regions that harbor large numbers of OR genes. A selection analysis revealed that OR genes evolve under positive selection, with the strongest signals detected in recently duplicated copies. Our results indicate that chromosomal translocations had a minimal impact on OR evolution, and instead local molecular mechanisms appear to be main drivers of OR repertoire size. Our results provide empirical support to the longstanding hypothesis that positive selection shaped the diversification of the OR gene family. Together, our results shed new light on the molecular mechanisms underlying the evolution of olfaction in insects.
Collapse
Affiliation(s)
- Philipp Brand
- Department for Evolution and Ecology, Center for Population Biology, University of California, Davis.,Population Biology Graduate Group, Center for Population Biology, University of California, Davis
| | - Santiago R Ramírez
- Department for Evolution and Ecology, Center for Population Biology, University of California, Davis
| |
Collapse
|
169
|
Glastad KM, Arsenault SV, Vertacnik KL, Geib SM, Kay S, Danforth BN, Rehan SM, Linnen CR, Kocher SD, Hunt BG. Variation in DNA Methylation Is Not Consistently Reflected by Sociality in Hymenoptera. Genome Biol Evol 2018; 9:1687-1698. [PMID: 28854636 PMCID: PMC5522706 DOI: 10.1093/gbe/evx128] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2017] [Indexed: 12/12/2022] Open
Abstract
Changes in gene regulation that underlie phenotypic evolution can be encoded directly in the DNA sequence or mediated by chromatin modifications such as DNA methylation. It has been hypothesized that the evolution of eusocial division of labor is associated with enhanced gene regulatory potential, which may include expansions in DNA methylation in the genomes of Hymenoptera (bees, ants, wasps, and sawflies). Recently, this hypothesis garnered support from analyses of a commonly used metric to estimate DNA methylation in silico, CpG content. Here, we test this hypothesis using direct, nucleotide-level measures of DNA methylation across nine species of Hymenoptera. In doing so, we generated new DNA methylomes for three species of interest, including one solitary and one facultatively eusocial halictid bee and a sawfly. We demonstrate that the strength of correlation between CpG content and DNA methylation varies widely among hymenopteran taxa, highlighting shortcomings in the utility of CpG content as a proxy for DNA methylation in comparative studies of taxa with sparse DNA methylomes. We observed strikingly high levels of DNA methylation in the sawfly relative to other investigated hymenopterans. Analyses of molecular evolution suggest the relatively distinct sawfly DNA methylome may be associated with positive selection on functional DNMT3 domains. Sawflies are an outgroup to all ants, bees, and wasps, and no sawfly species are eusocial. We find no evidence that either global expansions or variation within individual ortholog groups in DNA methylation are consistently associated with the evolution of social behavior.
Collapse
Affiliation(s)
- Karl M Glastad
- Department of Cell and Developmental Biology, University of Pennsylvania
| | | | | | - Scott M Geib
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, Hawaii
| | - Sasha Kay
- Department of Entomology, University of Georgia
| | | | - Sandra M Rehan
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire
| | | | - Sarah D Kocher
- Lewis-Sigler Institute for Integrative Genomics, Princeton University
| | | |
Collapse
|
170
|
Schultner E, Oettler J, Helanterä H. The Role of Brood in Eusocial Hymenoptera. QUARTERLY REVIEW OF BIOLOGY 2018; 92:39-78. [PMID: 29558609 DOI: 10.1086/690840] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Study of social traits in offspring traditionally reflects on interactions in simple family groups, with famous examples including parent-offspring conflict and sibling rivalry in birds and mammals. In contrast, studies of complex social groups such as the societies of ants, bees, and wasps focus mainly on adults and, in particular, on traits and interests of queens and workers. The social role of developing individuals in complex societies remains poorly understood. We attempt to fill this gap by illustrating that development in social Hymenoptera constitutes a crucial life stage with important consequences for the individual as well as the colony. We begin by describing the complex social regulatory network that modulates development in Hymenoptera societies. By highlighting the inclusive fitness interests of developing individuals, we show that they may differ from those of other colony members. We then demonstrate that offspring have evolved specialized traits that allow them to play a functional, cooperative role within colonies and give them the potential power to act toward increasing their inclusive fitness. We conclude by providing testable predictions for investigating the role of brood in colony interactions and giving a general outlook on what can be learned from studying offspring traits in hymenopteran societies.
Collapse
|
171
|
Limited social plasticity in the socially polymorphic sweat bee Lasioglossum calceatum. Behav Ecol Sociobiol 2018; 72:56. [PMID: 29568150 PMCID: PMC5845590 DOI: 10.1007/s00265-018-2475-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/02/2018] [Accepted: 03/02/2018] [Indexed: 11/12/2022]
Abstract
Abstract Eusociality is characterised by a reproductive division of labour, where some individuals forgo direct reproduction to instead help raise kin. Socially polymorphic sweat bees are ideal models for addressing the mechanisms underlying the transition from solitary living to eusociality, because different individuals in the same species can express either eusocial or solitary behaviour. A key question is whether alternative social phenotypes represent environmentally induced plasticity or predominantly genetic differentiation between populations. In this paper, we focus on the sweat bee Lasioglossum calceatum, in which northern or high-altitude populations are solitary, whereas more southern or low-altitude populations are typically eusocial. To test whether social phenotype responds to local environmental cues, we transplanted adult females from a solitary, northern population, to a southern site where native bees are typically eusocial. Nearly all native nests were eusocial, with foundresses producing small first brood (B1) females that became workers. In contrast, nine out of ten nests initiated by transplanted bees were solitary, producing female offspring that were the same size as the foundress and entered directly into hibernation. Only one of these ten nests became eusocial. Social phenotype was unlikely to be related to temperature experienced by nest foundresses when provisioning B1 offspring, or by B1 emergence time, both previously implicated in social plasticity seen in two other socially polymorphic sweat bees. Our results suggest that social polymorphism in L. calceatum predominantly reflects genetic differentiation between populations, and that plasticity is in the process of being lost by bees in northern populations. Significance statement Phenotypic plasticity is thought to play a key role in the early stages of the transition from solitary to eusocial behaviour, but may then be lost if environmental conditions become less variable. Socially polymorphic sweat bees exhibit either solitary or eusocial behaviour in different geographic populations, depending on the length of the nesting season. We tested for plasticity in the socially polymorphic sweat bee Lasioglossum calceatum by transplanting nest foundresses from a northern, non-eusocial population to a southern, eusocial population. Plasticity would be detected if transplanted bees exhibited eusocial behaviour. We found that while native bees were eusocial, 90% of transplanted bees and their offspring did not exhibit traits associated with eusociality. Environmental variables such as time of offspring emergence or temperatures experienced by foundresses during provisioning could not explain these differences. Our results suggest that the ability of transplanted bees to express eusociality is being lost, and that social polymorphism predominantly reflects genetic differences between populations. Electronic supplementary material The online version of this article (10.1007/s00265-018-2475-9) contains supplementary material, which is available to authorized users.
Collapse
|
172
|
Malé PJG, Turner KM, Doha M, Anreiter I, Allen AM, Sokolowski MB, Frederickson ME. An ant-plant mutualism through the lens of cGMP-dependent kinase genes. Proc Biol Sci 2018; 284:rspb.2017.0896. [PMID: 28904134 DOI: 10.1098/rspb.2017.0896] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022] Open
Abstract
In plant-animal mutualisms, how an animal forages often determines how much benefit its plant partner receives. In many animals, foraging behaviour changes in response to foraging gene expression or activation of the cGMP-dependent protein kinase (PKG) that foraging encodes. Here, we show that this highly conserved molecular mechanism affects the outcome of a plant-animal mutualism. We studied the two PKG genes of Allomerus octoarticulatus, an Amazonian ant that defends the ant-plant Cordia nodosa against herbivores. Some ant colonies are better 'bodyguards' than others. Working in the field in Peru, we found that colonies fed with a PKG activator recruited more workers to attack herbivores than control colonies. This resulted in less herbivore damage. PKG gene expression in ant workers correlated with whether an ant colony discovered an herbivore and how much damage herbivores inflicted on leaves in a complex way; natural variation in expression levels of the two genes had significant interaction effects on ant behaviour and herbivory. Our results suggest a molecular basis for ant protection of plants in this mutualism.
Collapse
Affiliation(s)
- Pierre-Jean G Malé
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Kyle M Turner
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Manjima Doha
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Ina Anreiter
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2.,Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), MaRS Centre, West Tower, 661 University Avenue, Suite 505, Toronto, Ontario, Canada M5G 1M1
| | - Aaron M Allen
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2.,Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), MaRS Centre, West Tower, 661 University Avenue, Suite 505, Toronto, Ontario, Canada M5G 1M1
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
| |
Collapse
|
173
|
Hemimetabolous genomes reveal molecular basis of termite eusociality. Nat Ecol Evol 2018; 2:557-566. [PMID: 29403074 PMCID: PMC6482461 DOI: 10.1038/s41559-017-0459-1] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/19/2017] [Indexed: 11/25/2022]
Abstract
Around 150 million years ago, eusocial termites evolved from within the cockroaches, 50 million years before eusocial Hymenoptera, such as bees and ants, appeared. Here, we report the 2-Gb genome of the German cockroach, Blattella germanica, and the 1.3-Gb genome of the drywood termite Cryptotermes secundus. We show evolutionary signatures of termite eusociality by comparing the genomes and transcriptomes of three termites and the cockroach against the background of 16 other eusocial and non-eusocial insects. Dramatic adaptive changes in genes underlying the production and perception of pheromones confirm the importance of chemical communication in the termites. These are accompanied by major changes in gene regulation and the molecular evolution of caste determination. Many of these results parallel molecular mechanisms of eusocial evolution in Hymenoptera. However, the specific solutions are remarkably different, thus revealing a striking case of convergence in one of the major evolutionary transitions in biological complexity.
Collapse
|
174
|
Sumner S, Bell E, Taylor D. A molecular concept of caste in insect societies. CURRENT OPINION IN INSECT SCIENCE 2018; 25:42-50. [PMID: 29602361 DOI: 10.1016/j.cois.2017.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 05/20/2023]
Abstract
The term 'caste' is used to describe the division of reproductive labour that defines eusocial insect societies. The definition of 'caste' has been debated over the last 50 years, specifically with respect to the simplest insect societies; this raises the question of whether a simple categorisation of social behaviour by reproductive state alone is helpful. Gene-level analyses of behaviours of individuals in hymenopteran social insect societies now provide a new empirical base-line for defining caste and understanding the evolution and maintenance of a reproductive division of labour. We review this literature to identify a set of potential molecular signatures that, combined with behavioural, morphological and physiological data, help define caste more precisely; these signatures vary with the type of society, and are likely to be influenced by ecology, life-history, and stage in the colony cycle. We conclude that genomic approaches provide us with additional ways to help quantify and categorise caste, and behaviour in general.
Collapse
Affiliation(s)
- Seirian Sumner
- Centre for Biodiversity and Environmental Research, Medawar Building, University College London, Gower Street, London WC1E 6BT, UK.
| | - Emily Bell
- School of Biological Sciences, Bristol Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Daisy Taylor
- School of Biological Sciences, Bristol Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
175
|
Harshaw C, Leffel JK, Alberts JR. Oxytocin and the warm outer glow: Thermoregulatory deficits cause huddling abnormalities in oxytocin-deficient mouse pups. Horm Behav 2018; 98:145-158. [PMID: 29277701 PMCID: PMC5828998 DOI: 10.1016/j.yhbeh.2017.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 11/18/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Oxytocin is a social and reproductive hormone that also plays critical roles in a range of homeostatic processes, including thermoregulation. Here, we examine the role of oxytocin (OT) as a mediator of brown adipose tissue (BAT) thermogenesis, cold-induced huddling, and thermotaxis in eight-day-old (PD8) OT 'knock out' (OTKO) mouse pups. We tested OTKO and wildtype (WT) pups in single- and mixed-genotype groups of six, exposing these to a period of ambient warmth (~35°C) followed by a period of cold (~21.5°C). Whether huddling exclusively with other OTKO or alongside WT pups, OTKO pups showed reduced BAT thermogenesis and were significantly cooler when cold-challenged. Huddles of OTKO pups were also significantly less cohesive than WT huddles during cooling, suggesting that thermoregulatory deficits contribute to contact abnormalities in OTKO pups. To further explore this issue, we examined thermotaxis in individuals and groups of four OTKO or WT pups placed on the cool end of a thermocline and permitted to freely locomote for 2h. When tested individually, male OTKO pups displayed abnormal thermotaxis, taking significantly longer to move up the thermocline and settling upon significantly lower temperatures than WT pups during the 2h test. OTKO mouse pups thus appear to have deficits in both thermogenesis and thermotaxis-the latter deficit being specific to males. Our results add to a growing body of work indicating that OT plays critical roles in thermoregulation and also highlight the entanglement of social and thermoregulatory processes in small mammals such as mice.
Collapse
Affiliation(s)
- Christopher Harshaw
- Department of Psychology, University of New Orleans, New Orleans, LA, United States; Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, United States.
| | - Joseph K Leffel
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Jeffrey R Alberts
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, United States
| |
Collapse
|
176
|
Branstetter MG, Childers AK, Cox-Foster D, Hopper KR, Kapheim KM, Toth AL, Worley KC. Genomes of the Hymenoptera. CURRENT OPINION IN INSECT SCIENCE 2018; 25:65-75. [PMID: 29602364 PMCID: PMC5993429 DOI: 10.1016/j.cois.2017.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/16/2017] [Indexed: 05/06/2023]
Abstract
Hymenoptera is the second-most sequenced arthropod order, with 52 publically archived genomes (71 with ants, reviewed elsewhere), however these genomes do not capture the breadth of this very diverse order (Figure 1, Table 1). These sequenced genomes represent only 15 of the 97 extant families. Although at least 55 other genomes are in progress in an additional 11 families (see Table 2), stinging wasps represent 35 (67%) of the available and 42 (76%) of the in progress genomes. A more comprehensive catalog of hymenopteran genomes is needed for research into the evolutionary processes underlying the expansive diversity in terms of ecology, behavior, and physiological traits within this group. Additional sequencing is needed to generate an assembly for even 0.05% of the estimated 1 million hymenopteran species, and we recommend premier level assemblies for at least 0.1% of the >150,000 named species dispersed across the order. Given the haplodiploid sex determination in Hymenoptera, haploid male sequencing will help minimize genome assembly issues to enable higher quality genome assemblies.
Collapse
Affiliation(s)
- Michael G Branstetter
- Pollinating Insect-biology, Management, Systematics Research Unit, USDA-ARS, Logan, UT 84322, United States
| | - Anna K Childers
- Bee Research Laboratory, USDA-ARS, Beltsville, MD 20705, United States
| | - Diana Cox-Foster
- Pollinating Insect-biology, Management, Systematics Research Unit, USDA-ARS, Logan, UT 84322, United States
| | - Keith R Hopper
- Beneficial Insects Introduction Research Unit, USDA-ARS, Newark, DE 19713, United States
| | - Karen M Kapheim
- Utah State University, Department of Biology, Logan, UT 84322, United States
| | - Amy L Toth
- Iowa State University, Department of Ecology, Evolution, and Organismal Biology and Department of Entomology, Ames, IA 50011, United States
| | - Kim C Worley
- Human Genome Sequencing Center, and Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| |
Collapse
|
177
|
Kapheim KM, Johnson MM. Support for the reproductive ground plan hypothesis in a solitary bee: links between sucrose response and reproductive status. Proc Biol Sci 2018; 284:rspb.2016.2406. [PMID: 28100820 DOI: 10.1098/rspb.2016.2406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/15/2016] [Indexed: 01/29/2023] Open
Abstract
In social bees, foraging behaviour is correlated with reproductive status and sucrose sensitivity via endocrine pathways. This association led to the hypothesis that division of labour in social insect societies is derived from an ancestral ground plan that functions to synchronize dietary preferences with reproductive needs in solitary insects. However, the relationship between these traits is unknown for solitary bees, which represent the ancestral state of social bees. We used the proboscis extension response assay to measure sucrose response among reproductive females of the solitary alkali bee (Nomia melanderi) as a function of acute juvenile hormone (JH) treatments and reproductive physiology. We also tested long-term effects of JH on reproductive development in newly emerged females. JH did not have short-term effects on reproductive physiology or sucrose response, but did have significant long-term effects on ovary and Dufour's gland development. Dufour's gland size, not ovary development, was a significant predictor of sucrose response. This provides support for the reproductive ground plan hypothesis, because the Dufour's gland has conserved reproductive functions in bees. Differing results from this study and honeybees suggest independent origins of division of labour may have evolved via co-option of different components of a conserved ground plan.
Collapse
Affiliation(s)
- Karen M Kapheim
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA
| | - Makenna M Johnson
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA
| |
Collapse
|
178
|
Wang W, Ashby R, Ying H, Maleszka R, Forêt S. Contrasting Sex-and Caste-Dependent piRNA Profiles in the Transposon Depleted Haplodiploid Honeybee Apis mellifera. Genome Biol Evol 2018; 9:1341-1356. [PMID: 28472327 PMCID: PMC5452642 DOI: 10.1093/gbe/evx087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
Protecting genome integrity against transposable elements is achieved by intricate molecular mechanisms involving PIWI proteins, their associated small RNAs (piRNAs), and epigenetic modifiers such as DNA methylation. Eusocial bees, in particular the Western honeybee, Apis mellifera, have one of the lowest contents of transposable elements in the animal kingdom, and, unlike other animals with a functional DNA methylation system, appear not to methylate their transposons. This raises the question of whether the PIWI machinery has been retained in this species. Using comparative genomics, mass spectrometry, and expressional profiling, we present seminal evidence that the piRNA system is conserved in honeybees. We show that honey bee piRNAs contain a 2'-O-methyl modification at the 3' end, and have a bias towards a 5' terminal U, which are signature features of their biogenesis. Both piRNA repertoire and expression levels are greater in reproductive individuals than in sterile workers. Haploid males, where the detrimental effects of transposons are dominant, have the greatest piRNA levels, but surprisingly, the highest expression of transposons. These results show that even in a transposon-depleted species, the piRNA system is required to guard the vulnerable haploid genome and reproductive castes against transposon-associated genomic instability. This also suggests that dosage plays an important role in the regulation of transposons and piRNAs expression in haplo-diploid systems.
Collapse
Affiliation(s)
- Weiwen Wang
- Research School of Biology, Australian National University, Acton, ACT, Australia
| | - Regan Ashby
- Research School of Biology, Australian National University, Acton, ACT, Australia.,Centre for Research in Therapeutic Solutions, Health Research Institute, Faculty of Education, Science, Technology and Mathematics, University of Canberra, ACT, Australia
| | - Hua Ying
- Research School of Biology, Australian National University, Acton, ACT, Australia
| | - Ryszard Maleszka
- Research School of Biology, Australian National University, Acton, ACT, Australia
| | - Sylvain Forêt
- Research School of Biology, Australian National University, Acton, ACT, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
179
|
Elsik CG, Tayal A, Unni DR, Burns GW, Hagen DE. Hymenoptera Genome Database: Using HymenopteraMine to Enhance Genomic Studies of Hymenopteran Insects. Methods Mol Biol 2018; 1757:513-556. [PMID: 29761469 DOI: 10.1007/978-1-4939-7737-6_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Hymenoptera Genome Database (HGD; http://hymenopteragenome.org ) is a genome informatics resource for insects of the order Hymenoptera, which includes bees, ants and wasps. HGD provides genome browsers with manual annotation tools (JBrowse/Apollo), BLAST, bulk data download, and a data mining warehouse (HymenopteraMine). This chapter focuses on the use of HymenopteraMine to create annotation data sets that can be exported for use in downstream analyses. HymenopteraMine leverages the InterMine platform to combine genome assemblies and official gene sets with data from OrthoDB, RefSeq, FlyBase, Gene Ontology, UniProt, InterPro, KEGG, Reactome, dbSNP, PubMed, and BioGrid, as well as precomputed gene expression information based on publicly available RNAseq. Built-in template queries provide starting points for data exploration, while the QueryBuilder tool supports construction of complex custom queries. The List Analysis and Genomic Regions search tools execute queries based on uploaded lists of identifiers and genome coordinates, respectively. HymenopteraMine facilitates cross-species data mining based on orthology and supports meta-analyses by tracking identifiers across gene sets and genome assemblies.
Collapse
Affiliation(s)
- Christine G Elsik
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA.
- MU Informatics Institute, University of Missouri, Columbia, MO, USA.
| | - Aditi Tayal
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Deepak R Unni
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Gregory W Burns
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Darren E Hagen
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
180
|
Yocum GD, Childers AK, Rinehart JP, Rajamohan A, Pitts-Singer TL, Greenlee KJ, Bowsher JH. Environmental history impacts gene expression during diapause development in the alfalfa leafcutting bee, Megachile rotundata. J Exp Biol 2018; 221:jeb.173443. [DOI: 10.1242/jeb.173443] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/04/2018] [Indexed: 12/13/2022]
Abstract
Our understanding of the mechanisms controlling insect diapause has increased dramatically with the introduction of global gene expression techniques, such as RNA-seq. However, little attention has been given to how ecologically relevant field conditions may affect gene expression during diapause development because previous studies have focused on laboratory reared and maintained insects. To determine whether gene expression differs between laboratory and field conditions, prepupae of the alfalfa leafcutting bee, Megachile rotundata, entering diapause early or late in the growing season were collected. These two groups were further subdivided in early autumn into laboratory and field maintained groups, resulting in four experimental treatments of diapausing prepupae: early and late field, and early and late laboratory. RNA-seq and differential expression analyses were performed on bees from the four treatment groups in November, January, March and May. The number of treatment-specific differentially expressed genes (97 to 1249) outnumbered the number of differentially regulated genes common to all four treatments (14 to 229), indicating that exposure to laboratory or field conditions had a major impact on gene expression during diapause development. Principle component analysis and hierarchical cluster analysis yielded similar grouping of treatments, confirming that the treatments form distinct clusters. Our results support the conclusion that gene expression during the course of diapause development is not a simple ordered sequence, but rather a highly plastic response determined primarily by the environmental history of the individual insect.
Collapse
Affiliation(s)
- George D. Yocum
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
| | - Anna K. Childers
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
- USDA-ARS Bee Research Lab, Beltsville, MD, USA
| | | | - Arun Rajamohan
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
| | | | | | - Julia H. Bowsher
- Biological Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
181
|
Dhaygude K, Trontti K, Paviala J, Morandin C, Wheat C, Sundström L, Helanterä H. Transcriptome sequencing reveals high isoform diversity in the ant Formica exsecta. PeerJ 2017; 5:e3998. [PMID: 29177112 PMCID: PMC5701548 DOI: 10.7717/peerj.3998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Transcriptome resources for social insects have the potential to provide new insight into polyphenism, i.e., how divergent phenotypes arise from the same genome. Here we present a transcriptome based on paired-end RNA sequencing data for the ant Formica exsecta (Formicidae, Hymenoptera). The RNA sequencing libraries were constructed from samples of several life stages of both sexes and female castes of queens and workers, in order to maximize representation of expressed genes. We first compare the performance of common assembly and scaffolding software (Trinity, Velvet-Oases, and SOAPdenovo-trans), in producing de novo assemblies. Second, we annotate the resulting expressed contigs to the currently published genomes of ants, and other insects, including the honeybee, to filter genes that have annotation evidence of being true genes. Our pipeline resulted in a final assembly of altogether 39,262 mRNA transcripts, with an average coverage of >300X, belonging to 17,496 unique genes with annotation in the related ant species. From these genes, 536 genes were unique to one caste or sex only, highlighting the importance of comprehensive sampling. Our final assembly also showed expression of several splice variants in 6,975 genes, and we show that accounting for splice variants affects the outcome of downstream analyses such as gene ontologies. Our transcriptome provides an outstanding resource for future genetic studies on F. exsecta and other ant species, and the presented transcriptome assembly can be adapted to any non-model species that has genomic resources available from a related taxon.
Collapse
Affiliation(s)
- Kishor Dhaygude
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Kalevi Trontti
- Department of Biosciences, Neurogenomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Jenni Paviala
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Claire Morandin
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Christopher Wheat
- Department of Zoology Ecology, Stockholm University, Stockholm, Sweden
| | - Liselotte Sundström
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Heikki Helanterä
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| |
Collapse
|
182
|
Harpur BA, Smith NMA. Digest: Gene duplication and social evolution-Using big, open data to answer big, open questions. Evolution 2017; 71:2952-2953. [PMID: 29105748 DOI: 10.1111/evo.13390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/25/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Brock A Harpur
- Department of Molecular Genetics, University of Toronto, 160 College St., Toronto, ON M5S 3E2, Canada
| | - Nicholas M A Smith
- Behaviour and Genetics of Social Insects Laboratory, Macleay Building A12, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
183
|
Warner MR, Mikheyev AS, Linksvayer TA. Genomic Signature of Kin Selection in an Ant with Obligately Sterile Workers. Mol Biol Evol 2017; 34:1780-1787. [PMID: 28419349 PMCID: PMC5455959 DOI: 10.1093/molbev/msx123] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Kin selection is thought to drive the evolution of cooperation and conflict, but the specific genes and genome-wide patterns shaped by kin selection are unknown. We identified thousands of genes associated with the sterile ant worker caste, the archetype of an altruistic phenotype shaped by kin selection, and then used population and comparative genomic approaches to study patterns of molecular evolution at these genes. Consistent with population genetic theoretical predictions, worker-upregulated genes experienced reduced selection compared with genes upregulated in reproductive castes. Worker-upregulated genes included more taxonomically restricted genes, indicating that the worker caste has recruited more novel genes, yet these genes also experienced reduced selection. Our study identifies a putative genomic signature of kin selection and helps to integrate emerging sociogenomic data with longstanding social evolution theory.
Collapse
Affiliation(s)
- Michael R Warner
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | | |
Collapse
|
184
|
Fischman BJ, Pitts-Singer TL, Robinson GE. Nutritional Regulation of Phenotypic Plasticity in a Solitary Bee (Hymenoptera: Megachilidae). ENVIRONMENTAL ENTOMOLOGY 2017; 46:1070-1079. [PMID: 28981639 PMCID: PMC5850749 DOI: 10.1093/ee/nvx119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Indexed: 05/16/2023]
Abstract
Phenotypic plasticity involves adaptive responses to predictable environmental fluctuations and may promote evolutionary change. We studied the regulation of phenotypic plasticity in an important agricultural pollinator, the solitary alfalfa leafcutting bee (Megachile rotundata F.). Specifically, we investigated how larval nutrition affects M. rotundata diapause plasticity and how diapause plasticity affects adult female reproductive behavior. Field surveys and laboratory manipulations of aspects of larval diet demonstrated nutritional regulation of M. rotundata diapause plasticity. Manipulation of larval diet quality through the addition of royal jelly, the caste-determining substance of the honey bee Apis mellifera L., increased the probability of diapause in M. rotundata. We also found that larval nutrition and diapause status affected M. rotundata adult female reproductive behavior. Nutritional effects on larval diapause that also impact adult fitness have intriguing implications for the evolution of developmental plasticity in bees. In particular, as the solitary lifestyle of M. rotundata is considered to be the ancestral condition in bees, nutritionally regulated plasticity may have been an ancestral condition in all bees that facilitated the evolution of other forms of phenotypic plasticity, such as the castes of social bees.
Collapse
Affiliation(s)
- Brielle J Fischman
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL 61801 ()
- Current address: Department of Biology, Hobart and William Smith Colleges, Geneva, NY 14456
| | | | - Gene E Robinson
- Department of Entomology, Neuroscience Program, and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801 ()
| |
Collapse
|
185
|
Chau LM, Goodisman MAD. Gene duplication and the evolution of phenotypic diversity in insect societies. Evolution 2017; 71:2871-2884. [PMID: 28875541 DOI: 10.1111/evo.13356] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022]
Abstract
Gene duplication is an important evolutionary process thought to facilitate the evolution of phenotypic diversity. We investigated if gene duplication was associated with the evolution of phenotypic differences in a highly social insect, the honeybee Apis mellifera. We hypothesized that the genetic redundancy provided by gene duplication could promote the evolution of social and sexual phenotypes associated with advanced societies. We found a positive correlation between sociality and rate of gene duplications across the Apoidea, indicating that gene duplication may be associated with sociality. We also discovered that genes showing biased expression between A. mellifera alternative phenotypes tended to be found more frequently than expected among duplicated genes than singletons. Moreover, duplicated genes had higher levels of caste-, sex-, behavior-, and tissue-biased expression compared to singletons, as expected if gene duplication facilitated phenotypic differentiation. We also found that duplicated genes were maintained in the A. mellifera genome through the processes of conservation, neofunctionalization, and specialization, but not subfunctionalization. Overall, we conclude that gene duplication may have facilitated the evolution of social and sexual phenotypes, as well as tissue differentiation. Thus this study further supports the idea that gene duplication allows species to evolve an increased range of phenotypic diversity.
Collapse
Affiliation(s)
- Linh M Chau
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Michael A D Goodisman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
186
|
Computational genome-wide survey of odorant receptors from two solitary bees Dufourea novaeangliae (Hymenoptera: Halictidae) and Habropoda laboriosa (Hymenoptera: Apidae). Sci Rep 2017; 7:10823. [PMID: 28883425 PMCID: PMC5589748 DOI: 10.1038/s41598-017-11098-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/16/2017] [Indexed: 11/08/2022] Open
Abstract
Olfactory/odorant receptors (ORs) probably govern eusocial behaviour in honey bees through detection of cuticular hydrocarbons (CHCs) and queen mandibular gland pheromones (QMP). CHCs are involved in nest-mate recognition whereas QMP acts as sex pheromone for drones and as retinue pheromone for female workers. Further studies on the effect of eusociality on the evolution of ORs are hindered by the non-availability of comprehensive OR sets of solitary species. We report complete OR repertoires from two solitary bees Dufourea novaeangliae (112 ORs) and Habropoda laboriosa (151 ORs). We classify these ORs into 34 phylogenetic clades/subfamilies. Differences in the OR sets of solitary and eusocial bees are observed in individual subfamilies like subfamily 9-exon (putative CHC receptors) and L (contains putative QMP receptor group). A subfamily (H) including putative floral scent receptors is expanded in the generalist honey bees only, but not in the specialists. On the contrary, subfamily J is expanded in all bees irrespective of their degree of social complexity or food preferences. Finally, we show species-lineage specific and OR-subfamily specific differences in the putative cis-regulatory DNA motifs of the ORs from six hymenopteran species. Out of these, [A/G]CGCAAGCG[C/T] is a candidate master transcription factor binding site for multiple olfactory genes.
Collapse
|
187
|
The Nuclear and Mitochondrial Genomes of the Facultatively Eusocial Orchid Bee Euglossa dilemma. G3-GENES GENOMES GENETICS 2017; 7:2891-2898. [PMID: 28701376 PMCID: PMC5592917 DOI: 10.1534/g3.117.043687] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bees provide indispensable pollination services to both agricultural crops and wild plant populations, and several species of bees have become important models for the study of learning and memory, plant–insect interactions, and social behavior. Orchid bees (Apidae: Euglossini) are especially important to the fields of pollination ecology, evolution, and species conservation. Here we report the nuclear and mitochondrial genome sequences of the orchid bee Euglossa dilemma Bembé & Eltz. E. dilemma was selected because it is widely distributed, highly abundant, and it was recently naturalized in the southeastern United States. We provide a high-quality assembly of the 3.3 Gb genome, and an official gene set of 15,904 gene annotations. We find high conservation of gene synteny with the honey bee throughout 80 MY of divergence time. This genomic resource represents the first draft genome of the orchid bee genus Euglossa, and the first draft orchid bee mitochondrial genome, thus representing a valuable resource to the research community.
Collapse
|
188
|
Harpur BA, Dey A, Albert JR, Patel S, Hines HM, Hasselmann M, Packer L, Zayed A. Queens and Workers Contribute Differently to Adaptive Evolution in Bumble Bees and Honey Bees. Genome Biol Evol 2017; 9:2395-2402. [PMID: 28957466 PMCID: PMC5622336 DOI: 10.1093/gbe/evx182] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2017] [Indexed: 12/30/2022] Open
Abstract
Eusociality represents a major transition in evolution and is typified by cooperative brood care and reproductive division of labor between generations. In bees, this division of labor allows queens and workers to phenotypically specialize. Worker traits associated with helping are thought to be crucial to the fitness of a eusocial lineage, and recent studies of honey bees (genus Apis) have found that adaptively evolving genes often have worker-biased expression patterns. It is unclear however if worker-biased genes are disproportionately acted on by strong positive selection in all eusocial insects. We undertook a comparative population genomics study of bumble bees (Bombus) and honey bees to quantify natural selection on queen- and worker-biased genes across two levels of social complexity. Despite sharing a common eusocial ancestor, genes, and gene groups with the highest levels of positive selection were often unique within each genus, indicating that life history and the environment, but not sociality per se, drives patterns of adaptive molecular evolution. We uncovered differences in the contribution of queen- and worker-biased genes to adaptive evolution in bumble bees versus honey bees. Unlike honey bees, where worker-biased genes are enriched for signs of adaptive evolution, genes experiencing positive selection in bumble bees were predominately expressed by reproductive foundresses during the initial solitary-founding stage of colonies. Our study suggests that solitary founding is a major selective pressure and that the loss of queen totipotency may cause a change in the architecture of selective pressures upon the social insect genome.
Collapse
Affiliation(s)
- Brock A. Harpur
- Department of Biology, York University, Toronto, Canada
- Present address: Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alivia Dey
- Department of Biology, York University, Toronto, Canada
| | | | - Sani Patel
- Department of Biology, York University, Toronto, Canada
| | - Heather M. Hines
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| | - Martin Hasselmann
- Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | - Amro Zayed
- Department of Biology, York University, Toronto, Canada
| |
Collapse
|
189
|
Helbing S, Lattorff HMG, Moritz RFA, Buttstedt A. Comparative analyses of the major royal jelly protein gene cluster in three Apis species with long amplicon sequencing. DNA Res 2017; 24:279-287. [PMID: 28170034 PMCID: PMC5499652 DOI: 10.1093/dnares/dsw064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 12/20/2016] [Indexed: 01/04/2023] Open
Abstract
The western honeybee, Apis mellifera is a prominent model organism in the field of sociogenomics and a recent upgrade substantially improved annotations of the reference genome. Nevertheless, genome assemblies based on short-sequencing reads suffer from problems in regions comprising e.g. multi-copy genes. We used single-molecule nanopore-based sequencing with extensive read-lengths to reconstruct the organization of the major royal jelly protein (mrjp) region in three species of the genus Apis. Long-amplicon sequencing provides evidence for lineage-specific evolutionary fates of Apis mrjps. Whereas the most basal species, A. florea, seems to encode ten mrjps, different patterns of gene loss and retention were observed for A. mellifera and A. dorsata. Furthermore, we show that a previously reported pseudogene in A. mellifera, mrjp2-like, is an assembly artefact arising from short read sequencing.
Collapse
Affiliation(s)
- Sophie Helbing
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - H Michael G Lattorff
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Robin F A Moritz
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Zoology and Entomology, University of Pretoria,Pretoria, South Africa
| | - Anja Buttstedt
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
190
|
Cardoso-Júnior CAM, Silva RP, Borges NA, de Carvalho WJ, Walter SL, Simões ZLP, Bitondi MMG, Ueira Vieira C, Bonetti AM, Hartfelder K. Methyl farnesoate epoxidase (mfe) gene expression and juvenile hormone titers in the life cycle of a highly eusocial stingless bee, Melipona scutellaris. JOURNAL OF INSECT PHYSIOLOGY 2017; 101:185-194. [PMID: 28800885 DOI: 10.1016/j.jinsphys.2017.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
In social insects, juvenile hormone (JH) has acquired novel functions related to caste determination and division of labor among workers, and this is best evidenced in the honey bee. In contrast to honey bees, stingless bees are a much more diverse group of highly eusocial bees, and the genus Melipona has long called special attention due to a proposed genetic mechanism of caste determination. Here, we examined methyl farnesoate epoxidase (mfe) gene expression, encoding an enzyme relevant for the final step in JH biosynthesis, and measured the hemolymph JH titers for all life cycle stages of Melipona scutellaris queens and workers. We confirmed that mfe is exclusively expressed in the corpora allata. The JH titer is high in the second larval instar, drops in the third, and rises again as the larvae enter metamorphosis. During the pupal stage, mfe expression is initialy elevated, but then gradually drops to low levels before adult emergence. No variation was, however, seen in the JH titer. In adult virgin queens, mfe expression and the JH titer are significantly elevated, possibly associated with their reproductive potential. For workers we found that JH titers are lower in foragers than in nurse bees, while mfe expression did not differ. Stingless bees are, thus, distinct from honey bee workers, suggesting that they have maintained the ancestral gonadotropic function for JH. Hence, the physiological circuitries underlying a highly eusocial life style may be variable, even within a monophyletic clade such as the corbiculate bees.
Collapse
Affiliation(s)
- Carlos Antônio Mendes Cardoso-Júnior
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| | - Renato Pereira Silva
- Departmento de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Pará 1720, 38400-902 Uberlândia, MG, Brazil.
| | - Naiara Araújo Borges
- Departmento de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Pará 1720, 38400-902 Uberlândia, MG, Brazil.
| | - Washington João de Carvalho
- Departmento de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Pará 1720, 38400-902 Uberlândia, MG, Brazil.
| | - S Leal Walter
- Department of Molecular and Cellular Biology, College of Biological Sciences University of California at Davis, One Shields Ave., Davis, CA 95616, USA.
| | - Zilá Luz Paulino Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirãp Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil.
| | - Marcia Maria Gentile Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirãp Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil.
| | - Carlos Ueira Vieira
- Departmento de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Pará 1720, 38400-902 Uberlândia, MG, Brazil.
| | - Ana Maria Bonetti
- Departmento de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Pará 1720, 38400-902 Uberlândia, MG, Brazil.
| | - Klaus Hartfelder
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
191
|
Kasper C, Vierbuchen M, Ernst U, Fischer S, Radersma R, Raulo A, Cunha-Saraiva F, Wu M, Mobley KB, Taborsky B. Genetics and developmental biology of cooperation. Mol Ecol 2017. [PMID: 28626971 DOI: 10.1111/mec.14208] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite essential progress towards understanding the evolution of cooperative behaviour, we still lack detailed knowledge about its underlying molecular mechanisms, genetic basis, evolutionary dynamics and ontogeny. An international workshop "Genetics and Development of Cooperation," organized by the University of Bern (Switzerland), aimed at discussing the current progress in this research field and suggesting avenues for future research. This review uses the major themes of the meeting as a springboard to synthesize the concepts of genetic and nongenetic inheritance of cooperation, and to review a quantitative genetic framework that allows for the inclusion of indirect genetic effects. Furthermore, we argue that including nongenetic inheritance, such as transgenerational epigenetic effects, parental effects, ecological and cultural inheritance, provides a more nuanced view of the evolution of cooperation. We summarize those genes and molecular pathways in a range of species that seem promising candidates for mechanisms underlying cooperative behaviours. Concerning the neurobiological substrate of cooperation, we suggest three cognitive skills necessary for the ability to cooperate: (i) event memory, (ii) synchrony with others and (iii) responsiveness to others. Taking a closer look at the developmental trajectories that lead to the expression of cooperative behaviours, we discuss the dichotomy between early morphological specialization in social insects and more flexible behavioural specialization in cooperatively breeding vertebrates. Finally, we provide recommendations for which biological systems and species may be particularly suitable, which specific traits and parameters should be measured, what type of approaches should be followed, and which methods should be employed in studies of cooperation to better understand how cooperation evolves and manifests in nature.
Collapse
Affiliation(s)
- Claudia Kasper
- Institute for Ecology and Evolution, University of Bern, Bern, Switzerland
| | | | - Ulrich Ernst
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stefan Fischer
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - Aura Raulo
- Department of Zoology, University of Oxford, Oxford, UK
| | - Filipa Cunha-Saraiva
- Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, Vetmeduni Vienna, Vienna, Austria
| | - Min Wu
- Department of Environmental Sciences, Zoology and Evolution, University of Basel, Basel, Switzerland
| | - Kenyon B Mobley
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Barbara Taborsky
- Institute for Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
192
|
Lawson SP, Sigle LT, Lind AL, Legan AW, Mezzanotte JN, Honegger HW, Abbot P. An alternative pathway to eusociality: Exploring the molecular and functional basis of fortress defense. Evolution 2017; 71:1986-1998. [PMID: 28608545 DOI: 10.1111/evo.13285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022]
Abstract
Some animals express a form of eusociality known as "fortress defense," in which defense rather than brood care is the primary social act. Aphids are small plant-feeding insects, but like termites, some species express division of labor and castes of aggressive juvenile "soldiers." What is the functional basis of fortress defense eusociality in aphids? Previous work showed that the acquisition of venoms might be a key innovation in aphid social evolution. We show that the lethality of aphid soldiers derives in part from the induction of exaggerated immune responses in insects they attack. Comparisons between closely related social and nonsocial species identified a number of secreted effector molecules that are candidates for immune modulation, including a convergently recruited protease described in unrelated aphid species with venom-like functions. These results suggest that aphids are capable of antagonizing conserved features of the insect immune response, and provide new insights into the mechanisms underlying the evolution of fortress defense eusociality in aphids.
Collapse
Affiliation(s)
- Sarah P Lawson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, 37235.,Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, 03824
| | - Leah T Sigle
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, 37235
| | - Abigail L Lind
- Department of Biomedical Informatics, School of Medicine, Vanderbilt University, Nashville, Tennessee, 37205
| | - Andrew W Legan
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, 37235.,Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, 14850
| | - Jessica N Mezzanotte
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, 40202
| | - Hans-Willi Honegger
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, 37235
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, 37235
| |
Collapse
|
193
|
Wittwer B, Hefetz A, Simon T, Murphy LEK, Elgar MA, Pierce NE, Kocher SD. Solitary bees reduce investment in communication compared with their social relatives. Proc Natl Acad Sci U S A 2017; 114:6569-6574. [PMID: 28533385 PMCID: PMC5488929 DOI: 10.1073/pnas.1620780114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Social animals must communicate to define group membership and coordinate social organization. For social insects, communication is predominantly mediated through chemical signals, and as social complexity increases, so does the requirement for a greater diversity of signals. This relationship is particularly true for advanced eusocial insects, including ants, bees, and wasps, whose chemical communication systems have been well-characterized. However, we know surprisingly little about how these communication systems evolve during the transition between solitary and group living. Here, we demonstrate that the sensory systems associated with signal perception are evolutionarily labile. In particular, we show that differences in signal production and perception are tightly associated with changes in social behavior in halictid bees. Our results suggest that social species require a greater investment in communication than their solitary counterparts and that species that have reverted from eusociality to solitary living have repeatedly reduced investment in these potentially costly sensory perception systems.
Collapse
Affiliation(s)
- Bernadette Wittwer
- School of BioSciences, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Abraham Hefetz
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Tovit Simon
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Li E K Murphy
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Mark A Elgar
- School of BioSciences, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Naomi E Pierce
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Sarah D Kocher
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138;
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540
| |
Collapse
|
194
|
Sensory and cognitive adaptations to social living in insect societies. Proc Natl Acad Sci U S A 2017; 114:6424-6426. [PMID: 28600351 DOI: 10.1073/pnas.1707141114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
195
|
Boomsma JJ, Gawne R. Superorganismality and caste differentiation as points of no return: how the major evolutionary transitions were lost in translation. Biol Rev Camb Philos Soc 2017; 93:28-54. [PMID: 28508537 DOI: 10.1111/brv.12330] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 03/04/2017] [Accepted: 03/08/2017] [Indexed: 12/27/2022]
Abstract
More than a century ago, William Morton Wheeler proposed that social insect colonies can be regarded as superorganisms when they have morphologically differentiated reproductive and nursing castes that are analogous to the metazoan germ-line and soma. Following the rise of sociobiology in the 1970s, Wheeler's insights were largely neglected, and we were left with multiple new superorganism concepts that are mutually inconsistent and uninformative on how superorganismality originated. These difficulties can be traced to the broadened sociobiological concept of eusociality, which denies that physical queen-worker caste differentiation is a universal hallmark of superorganismal colonies. Unlike early evolutionary naturalists and geneticists such as Weismann, Huxley, Fisher and Haldane, who set out to explain the acquisition of an unmated worker caste, the goal of sociobiology was to understand the evolution of eusociality, a broad-brush convenience category that covers most forms of cooperative breeding. By lumping a diverse spectrum of social systems into a single category, and drawing attention away from the evolution of distinct quantifiable traits, the sociobiological tradition has impeded straightforward connections between inclusive fitness theory and the major evolutionary transitions paradigm for understanding irreversible shifts to higher organizational complexity. We evaluate the history by which these inconsistencies accumulated, develop a common-cause approach for understanding the origins of all major transitions in eukaryote hierarchical complexity, and use Hamilton's rule to argue that they are directly comparable. We show that only Wheeler's original definition of superorganismality can be unambiguously linked to irreversible evolutionary transitions from context-dependent reproductive altruism to unconditional differentiation of permanently unmated castes in the ants, corbiculate bees, vespine wasps and higher termites. We argue that strictly monogamous parents were a necessary, albeit not sufficient condition for all transitions to superorganismality, analogous to single-zygote bottlenecking being a necessary but not sufficient condition for the convergent origins of complex soma across multicellular eukaryotes. We infer that conflict reduction was not a necessary condition for the origin of any of these major transitions, and conclude that controversies over the status of inclusive fitness theory primarily emanate from the arbitrarily defined sociobiological concepts of superorganismality and eusociality, not from the theory itself.
Collapse
Affiliation(s)
- Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.,Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Richard Gawne
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.,Department of Biology, Duke University, 130 Science Drive, Durham, NC, 27708, USA
| |
Collapse
|
196
|
Ghoul M, Andersen SB, West SA. Sociomics: Using Omic Approaches to Understand Social Evolution. Trends Genet 2017; 33:408-419. [PMID: 28506494 DOI: 10.1016/j.tig.2017.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
All of life is social, from genes cooperating to form organisms, to animals cooperating to form societies. Omic approaches offer exceptional opportunities to solve major outstanding problems in the study of how sociality evolves. First, omics can be used to clarify the extent and form of sociality in natural populations. This is especially useful in species where it is difficult to study social traits in natural populations, such as bacteria and other microbes. Second, omics can be used to examine the consequences of sociality for genome evolution and gene expression. This is especially useful in cases where there is clear variation in the level of sociality, such as the social insects. Major tasks for the future are to apply these approaches to a wider range of non-model organisms, and to move from exploratory analyses to the testing of evolutionary theory.
Collapse
Affiliation(s)
- Melanie Ghoul
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| | - Sandra B Andersen
- Langone Medical Center, New York University, 423 East 23rd Street, New York, NY 10010, USA.
| | - Stuart A West
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
197
|
Bossert S, Murray EA, Blaimer BB, Danforth BN. The impact of GC bias on phylogenetic accuracy using targeted enrichment phylogenomic data. Mol Phylogenet Evol 2017; 111:149-157. [PMID: 28390323 DOI: 10.1016/j.ympev.2017.03.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/06/2017] [Accepted: 03/24/2017] [Indexed: 01/08/2023]
Abstract
The field of sequence based phylogenetic analyses is currently being transformed by novel hybrid-based targeted enrichment methods, such as the use of ultraconserved elements (UCEs). Rather than analyzing relationships among organisms using a small number of genes, these methods now allow us to evaluate relationships with many hundreds to thousands of individual gene loci. However, the inclusion of thousands of loci does not necessarily overcome the long-standing challenge of incongruence among phylogenetic trees derived from different genes or gene regions. One factor that impacts the level of incongruence in phylogenomic data sets is the level of GC bias. GC rich gene regions are prone to higher recombination rates than AT rich regions, driven by a process referred to as "GC biased gene conversion". As a result, high GC content can be negatively associated with phylogenetic accuracy, but the extent to which this impacts incongruence among UCEs is currently unstudied. We investigated the impact of GC content on phylogeny reconstruction using in silico captured UCE data for the corbiculate bees (Hymenoptera: Apidae). The phylogeny of this group has been the subject of extensive study, and incongruence among gene trees is thought to be a source of phylogenetic error. We conducted coalescent- and concatenation-based analyses of 810 individual gene loci from all 13 currently available bee genomes, including 8 corbiculate taxa. Both coalescent- and concatenation-based methods converged on a single topology for the corbiculate tribes. In contrast to concatenation, the coalescent-based methods revealed significant topological conflict at nodes involving the orchid bees (Euglossini) and honeybees (Apini). Partitioning the loci by GC content reveals decreasing support for the inferred topology with increasing GC bias. Based on the results of this study, we report the first evidence that GC biased gene conversion may contribute to topological incongruence in studies based on ultraconserved elements.
Collapse
Affiliation(s)
- Silas Bossert
- Department of Entomology, Cornell University, Ithaca, New York, USA.
| | | | - Bonnie B Blaimer
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
198
|
Kohno H, Suenami S, Takeuchi H, Sasaki T, Kubo T. Production of Knockout Mutants by CRISPR/Cas9 in the European Honeybee, Apis mellifera L. Zoolog Sci 2017; 33:505-512. [PMID: 27715425 DOI: 10.2108/zs160043] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The European honeybee (Apis mellifera L.) is used as a model organism in studies of the molecular and neural mechanisms underlying social behaviors and/or advanced brain functions. The entire honeybee genome has been sequenced, which has further advanced molecular biologic studies of the honeybee. Functions of genes of interest, however, remain largely to be elucidated in the honeybee due to the lack of effective reverse genetic methods. Moreover, genetically modified honeybees must be maintained under restricted laboratory conditions due to legal restrictions, further complicating the application of reverse genetics to this species. Here we applied CRISPR/Cas9 to the honeybee to develop an effective reverse genetic method. We targeted major royal jelly protein 1 (mrjp1) for genome editing, because this gene is predominantly expressed in adult workers and its mutation is not expected to affect normal development. By injecting sgRNA and Cas9 mRNA into 57 fertilized embryos collected within 3 h after oviposition, we successfully created six queens, one of which produced genome-edited male offspring. Of the 161 males produced, genotyping demonstrated that the genome was edited in 20 males. All of the processes necessary for producing these genome-edited queens and males were performed in the laboratory. Therefore, we developed essential techniques to create knockout honeybees by CRISPR/Cas9. Our findings also suggested that mrjp1 is dispensable for normal male development, at least till the pupal stage. This new technology could pave the way for future functional analyses of candidate genes involved in honeybee social behaviors.
Collapse
Affiliation(s)
- Hiroki Kohno
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shota Suenami
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideaki Takeuchi
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tetsuhiko Sasaki
- 2 Honeybee Science Research Center, Research Institute, Tamagawa University,Machida, Tokyo 194-8610, Japan
| | - Takeo Kubo
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
199
|
Cardoso-Júnior CAM, Fujimura PT, Santos-Júnior CD, Borges NA, Ueira-Vieira C, Hartfelder K, Goulart LR, Bonetti AM. Epigenetic modifications and their relation to caste and sex determination and adult division of labor in the stingless bee Melipona scutellaris. Genet Mol Biol 2017; 40:61-68. [PMID: 28257527 PMCID: PMC5409779 DOI: 10.1590/1678-4685-gmb-2016-0242] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/12/2017] [Indexed: 12/03/2022] Open
Abstract
Stingless bees of the genus Melipona, have long been considered an
enigmatic case among social insects for their mode of caste determination, where in
addition to larval food type and quantity, the genotype also has a saying, as
proposed over 50 years ago by Warwick E. Kerr. Several attempts have since tried to
test his Mendelian two-loci/two-alleles segregation hypothesis, but only recently a
single gene crucial for sex determination in bees was evidenced to be
sex-specifically spliced and also caste-specifically expressed in a
Melipona species. Since alternative splicing is frequently
associated with epigenetic marks, and the epigenetic status plays a major role in
setting the caste phenotype in the honey bee, we investigated here epigenetic
chromatin modification in the stingless bee Melipona scutellaris. We
used an ELISA-based methodology to quantify global methylation status and western
blot assays to reveal histone modifications. The results evidenced DNA
methylation/demethylation events in larvae and pupae, and significant differences in
histone methylation and phosphorylation between newly emerged adult queens and
workers. The epigenetic dynamics seen in this stingless bee species represent a new
facet in the caste determination process in Melipona bees and
suggest a possible mechanism that is likely to link a genotype component to the
larval diet and adult social behavior of these bees.
Collapse
Affiliation(s)
- Carlos A M Cardoso-Júnior
- Departamento de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.,Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Patrícia Tieme Fujimura
- Departamento de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | - Naiara Araújo Borges
- Departamento de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Carlos Ueira-Vieira
- Departamento de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz Ricardo Goulart
- Departamento de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Ana Maria Bonetti
- Departamento de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
200
|
Abstract
DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects.
Collapse
Affiliation(s)
- Adam J. Bewick
- Department of Genetics, University of Georgia, Athens, GA
| | - Kevin J. Vogel
- Department of Entomology, University of Georgia, Athens, GA
| | - Allen J. Moore
- Department of Genetics, University of Georgia, Athens, GA
| | | |
Collapse
|