151
|
Fu W, Wan J, Zhang H, Li J, Chen W, Li Y, Guo Z, Wang Y. Photoinduced loading of electron-rich Cu single atoms by moderate coordination for hydrogen evolution. Nat Commun 2022; 13:5496. [PMID: 36127356 PMCID: PMC9489781 DOI: 10.1038/s41467-022-33275-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Single-atom catalysts offer maximal atom utilization efficiencies and high-electronegativity heteroatoms play a crucial role in coordinating reactive single metal atoms to prevent agglomeration. However, these strong coordination bonds withdraw electron density for coordinated metal atoms and consequently affect their catalytic activity. Herein we reveal the high loading (11.3 wt%) and stabilization of moderately coordinated Cu-P3 structure on black phosphorus support by a photochemical strategy with auxiliary hydrogen. Single-atom Cu sites with an exceptional electron-rich feature show the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\triangle {G}_{{{{{{\rm{H}}}}}}*}$$\end{document}△GH* close to zero to favor catalysis. Neighboring Cu atoms work in synergy to lower the energy of key water adsorption and dissociation intermediates. The reported catalyst shows a low overpotential of only 41 mV at 10 mA cm−2 and Tafel slope of 53.4 mV dec−1 for the alkaline hydrogen evolution reaction, surpassing both isolated Cu single atoms and Cu nanoclusters. The promising materials design strategy sheds light on the design and fabrication of high-loading single metal atoms and the role of neighboring single atoms for enhanced reaction kinetics. While atomically dispersed metals can maximize reaction catalytic sites, it is challenging to achieve high atomic densities without agglomeration. Here, authors prepared Cu single-atoms on black phosphorous using a photochemical strategy and auxiliary H2 as proton reduction electrocatalysts.
Collapse
Affiliation(s)
- Weiwei Fu
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, PR China
| | - Jin Wan
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, PR China
| | - Huijuan Zhang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, PR China
| | - Jian Li
- The school of Electrical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, China
| | - Weigen Chen
- The school of Electrical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, China
| | - Yuke Li
- Department of Chemistry, Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, 999077, Hong Kong
| | - Zaiping Guo
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, 5005, Australia
| | - Yu Wang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, PR China. .,The school of Electrical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, China.
| |
Collapse
|
152
|
Sun XC, Yuan K, Hua WD, Gao ZR, Zhang Q, Yuan CY, Liu HC, Zhang YW. Weakening the Metal–Support Interactions of M/CeO 2 (M = Co, Fe, Ni) Using a NH 3-Treated CeO 2 Support for an Enhanced Water–Gas Shift Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiao-Chen Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kun Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wang-De Hua
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zi-Rui Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qian Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chen-Yue Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hai-Chao Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ya-Wen Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
153
|
Kinetically rate-determining step modulation by metal—support interactions for CO oxidation on Pt/CeO2. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
154
|
Bai X, Zhao X, Zhang Y, Ling C, Zhou Y, Wang J, Liu Y. Dynamic Stability of Copper Single-Atom Catalysts under Working Conditions. J Am Chem Soc 2022; 144:17140-17148. [DOI: 10.1021/jacs.2c07178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaowan Bai
- School of Physics, Southeast University, Nanjing 211189, China
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xunhua Zhao
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Macao Institute of Materials Science and Engineering (MIMSE) and Zhuhai MUST Science and Technology Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Yehui Zhang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Chongyi Ling
- School of Physics, Southeast University, Nanjing 211189, China
| | - Yipeng Zhou
- School of Physics, Southeast University, Nanjing 211189, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Yuanyue Liu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
155
|
Huang Y, Li D, Feng S, Jia Y, Guo S, Wu X, Chen M, Shi W. Pt Atoms/Clusters on Ni‐phytate‐sensitized Carbon Nitride for Enhanced NIR‐light‐driven Overall Water Splitting beyond 800 nm. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202212234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuanyong Huang
- Jiangsu University School of Chemistry and Chemical Engineering XueFu Road 301 212013 Zhenjiang CHINA
| | - Di Li
- Jiangsu University Institute for Energy Research XueFu Road 301 212013 Zhenjiang CHINA
| | - Shuo Feng
- Jiangsu University School of Chemistry and Chemical Engineering XueFu Road 301 212013 Zhenjiang CHINA
| | - Yujing Jia
- Jiangsu University School of Chemistry and Chemical Engineering XueFu Road 301 212013 Zhenjiang CHINA
| | - Shuhui Guo
- Jiangsu University School of Chemistry and Chemical Engineering XueFu Road 301 212013 Zhenjiang CHINA
| | - Xiaojie Wu
- Jiangsu University School of Chemistry and Chemical Engineering XueFu Road 301 212013 Zhenjiang CHINA
| | - Min Chen
- Jiangsu University School of Chemistry and Chemical Engineering XueFu Road 301 212013 Zhenjiang CHINA
| | - Weidong Shi
- Jiangsu University School of Chemistry and Chemical Engineering Xuefu Road 301 212013 Zhenjiang CHINA
| |
Collapse
|
156
|
In Situ DRIFTS Study of Single-Atom, 2D, and 3D Pt on γ-Al2O3 Nanoflakes and Nanowires for C2H4 Oxidation. Processes (Basel) 2022. [DOI: 10.3390/pr10091773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Up to now, a great number of catalysts have been reported that are active in the oxidation of volatile organic compounds (VOCs). However, supported noble-metal catalysts (especially Pt-based catalysts) are still the most excellent ones for this reaction. In this study, Pt species supported on γ-Al2O3 and ranging from single-atom sites to clusters (less than 1 nm) and 1–2 nm nanoparticles were prepared and investigated for oxidizing C2H4. The Pt-loaded γ-Al2O3 nanoflakes (PtAl-NF) and Pt-loaded γ-Al2O3 nanowires (PtAl-NW) were successfully prepared. The samples were characterized using XRD, TEM, XPS, HAADF-STEM, and in situ DRIFTS. Based on in situ DRIFTS, a simple surface reaction mechanism was developed. The stable intermediates CO on single-atom Pt, subnanometer Pt particles, and fully exposed Pt clusters could be explained by the strong binding of CO molecule poisoning Pt sites. Moreover, the oxidation of C2H4 was best achieved by Pt particles that were 1–2 nm in size and the catalytic activity of PtAl-NF was better when it had less Pt. Lastly, the most exposed (110) facets of γ-Al2O3 nanoflakes were more resistant to water than the majorly exposed (100) facets of γ-Al2O3 nanowires.
Collapse
|
157
|
Yan H, Qin X, Liu JC, Cai L, Xu P, Song JJ, Ma C, Wang WW, Jin Z, Jia CJ. Releasing the limited catalytic activity of CeO2-supported noble metal catalysts via UV-induced deep dechlorination. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
158
|
Excellent stability for catalytic oxidation of methane over core–shell Pd@silicalite-1 with complete zeolite shell in wet conditions. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
159
|
Precise control of Pt encapsulation in zeolite-based catalysts for a stable low-temperature CO oxidation reaction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
160
|
Chen Z, Zhao J, Jin C, Liu J. Butterfly Effect of Electron Donor from Monoatomic Cobalt in Few-Atom Platinum Clusters: Boosting Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37727-37737. [PMID: 35943902 DOI: 10.1021/acsami.2c08959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Few-atom metal clusters feature an extremely large surface area and abundant active sites, which are particularly important for electrocatalysis. Herein, we report a monoatomic cobalt tailoring strategy to boost the performance of platinum clusters (ca. <1 nm) via hetero-charge-trapping chemistry by ultraviolet light reducing Pt-based anions anchored on target Co cations. The created Co1Ptx clusters exhibit a mass activity of 2.27 A mgPt-1, which is about 1621% higher than that obtained by state-of-the-art Pt/C (2 nm) for the oxygen reduction reaction (ORR). This can be attributed to the butterfly effect of electron donor from monoatomic cobalt in the platinum clusters. Moreover, the improved stability results from the Co located at the bottom position of the Pt host, possessing high resistance to Co leaching. Therefore, this offers a general strategy to optimize the high performance of platinum group metal (PGM) clusters for electrocatalysis.
Collapse
Affiliation(s)
- Zhiguo Chen
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Zhao
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chun Jin
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingjun Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
161
|
Nakaya Y, Hayashida E, Asakura H, Takakusagi S, Yasumura S, Shimizu KI, Furukawa S. High-Entropy Intermetallics Serve Ultrastable Single-Atom Pt for Propane Dehydrogenation. J Am Chem Soc 2022; 144:15944-15953. [PMID: 35984749 DOI: 10.1021/jacs.2c01200] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Propane dehydrogenation has been a promising propylene production process that can compensate for the increasing global demand for propylene. However, Pt-based catalysts with high stability at ≥600 °C have barely been reported because the catalysts typically result in short catalyst life owing to side reactions and coke formation. Herein, we report a new class of heterogeneous catalysts using high-entropy intermetallics (HEIs). Pt-Pt ensembles, which cause side reactions, are entirely diluted by the component inert metals in PtGe-type HEIs. The resultant HEI (PtCoCu) (GeGeSn)/Ca-SiO2 exhibited an outstandingly high catalytic stability, even at 600 °C (kd-1 = τ = 4146 h = 173 d), and almost no deactivation of the catalyst was observed for 2 months for the first time. Detailed experimental studies and theoretical calculations demonstrated that the combination of the site-isolation and entropy effects upon multi-metallization of PtGe drastically enhanced the desorption of propylene and the thermal stability, eventually suppressing the side reactions even at high reaction temperatures.
Collapse
Affiliation(s)
- Yuki Nakaya
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan
| | - Eigo Hayashida
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan
| | - Hiroyuki Asakura
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Satoru Takakusagi
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan
| | - Shunsaku Yasumura
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
162
|
Zhang Z, He G, Li Y, Zhang C, Ma J, He H. Effect of Hydroxyl Groups on Metal Anchoring and Formaldehyde Oxidation Performance of Pt/Al 2O 3. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10916-10924. [PMID: 35770877 DOI: 10.1021/acs.est.2c01278] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pt/Al2O3 catalysts showing excellent activity and stability have been used in various reactions, including HCHO oxidation. Herein, we prepared Pt-Na/Al2O3 catalysts with a Pt content of 0.05 wt % to reveal the key factors determining the anchoring of Pt as well as the catalytic activity and mechanism of HCHO oxidation. Pt-Na/nano-Al2O3 (denoted as Pt-Na/nAl2O3) catalysts with 0.05 wt % Pt content could completely oxidize HCHO to CO2 at room temperature, which is the lowest Pt content used in HCHO catalytic oxidation to our knowledge. After Na addition, terminal hydroxyl groups (denoted as HO-μter) on nano-Al2O3 were transformed to doubly bridging hydroxyl groups between Na and Al (denoted as HO-μbri(Na-Al)), which atomically dispersed Pt species. Pt anchoring further promoted the regeneration of HO-μbri(Na-Al) by activating O2 and H2O, oxidizing HCHO to CO2 directly by the fast reaction step ([HCOO-] + [OH]a → CO2 + H2O). Our study revealed that the HO-μbri(Na-Al) synergistically generated by HO-μter and Na species provided anchoring sites for Pt species.
Collapse
Affiliation(s)
- Zhilin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaobin Li
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
163
|
Sun Z, Yang Y, Fang C, Yao Y, Qin F, Gu H, Liu Q, Xu W, Tang H, Jiang Z, Ge B, Chen W, Chen Z. Atomic-Level Pt Electrocatalyst Synthesized via Iced Photochemical Method for Hydrogen Evolution Reaction with High Efficiency. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203422. [PMID: 35871552 DOI: 10.1002/smll.202203422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/04/2022] [Indexed: 06/15/2023]
Abstract
In heterogeneous catalysis, metal particle morphology and size can influence markedly the activity. It is of great significance to rationally design and control the synthesis of Pt at the atomic level to demonstrate the structure-activity relationship toward electrocatalysis. Herein, a powerful strategy is reported to synthesize graphene-supported platinum-based electrocatalyst, that is, nanocatalysts with controllable size can be prepared by iced photochemical method, including single atoms (Pt-SA@HG), nanoclusters (Pt-Clu@HG), and nanocrystalline (Pt-Nc@HG). The Pt-SA@HG exhibits unexpected electrocatalytic hydrogen evolution reaction (HER) performances with 13 mV overpotential at 10 mA cm-2 current densities which surpass Pt-Clu@HG and Pt-Nc@HG. The in situ X-ray absorption fine structure spectroscopy (XAFS) and density functional theory (DFT) calculations determine the Pt-C3 active site is linchpin to the excellent HER performance of Pt-SA@HG. Compared with the traditional Pt-Nx coordination structure, the pure carbon coordinated Pt-C3 site is more favorable for HER. This work opens up a new way to adjust the metal particle size and catalytic performance of graphene at a multiscale level.
Collapse
Affiliation(s)
- Zhiyi Sun
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuqi Yang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Chaohe Fang
- CNPC Research Institute of Petroleum, Exploration & Development, Beijing, 100083, China
| | - Yinchao Yao
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fengjuan Qin
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hongfei Gu
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qingqing Liu
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Wenjing Xu
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hao Tang
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zheng Jiang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Binghui Ge
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Anhui, 230601, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhuo Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
164
|
Zhang L, Bao Q, Zhang B, Zhang Y, Wan S, Wang S, Lin J, Xiong H, Mei D, Wang Y. Distinct Role of Surface Hydroxyls in Single-Atom Pt 1/CeO 2 Catalyst for Room-Temperature Formaldehyde Oxidation: Acid-Base Versus Redox. JACS AU 2022; 2:1651-1660. [PMID: 35911462 PMCID: PMC9327081 DOI: 10.1021/jacsau.2c00215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The development of highly efficient catalysts for room-temperature formaldehyde (HCHO) oxidation is of great interest for indoor air purification. In this work, it was found that the single-atom Pt1/CeO2 catalyst exhibits a remarkable activity with complete removal of HCHO even at 288 K. Combining density functional theory calculations and in situ DRIFTS experiments, it was revealed that the active OlatticeH site generated on CeO2 in the vicinity of Pt2+ via steam treatment plays a key role in the oxidation of HCHO to formate and its further oxidation to CO2. Such involvement of hydroxyls is fundamentally different from that of cofeeding water which dissociates on metal oxide and catalyzes the acid-base-related chemistry. This study provides an important implication for the design and synthesis of supported Pt catalysts with atom efficiency for a very important practical application-room-temperature HCHO oxidation.
Collapse
Affiliation(s)
- Lina Zhang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qianqian Bao
- State
Key Laboratory of Separation Membranes and Membrane Processes, School
of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Bangjie Zhang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuanbao Zhang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shaolong Wan
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuai Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingdong Lin
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haifeng Xiong
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Donghai Mei
- State
Key Laboratory of Separation Membranes and Membrane Processes, School
of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Yong Wang
- Voiland
School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
165
|
Jia Z, Peng M, Cai X, Chen Y, Chen X, Huang F, Zhao L, Diao J, Wang N, Xiao D, Wen X, Jiang Z, Liu H, Ma D. Fully Exposed Platinum Clusters on a Nanodiamond/Graphene Hybrid for Efficient Low-Temperature CO Oxidation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhimin Jia
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Xiangbin Cai
- Department of Physics and Center for Quantum Materials, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P.R. China
| | - Yunlei Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People’s Republic of China
- University of Chinese Academy of Science, No. 19A Yuanquan Road, Beijing 100049, People’s Republic of China
| | - Xiaowen Chen
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Fei Huang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Linmin Zhao
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Jiangyong Diao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Ning Wang
- Department of Physics and Center for Quantum Materials, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P.R. China
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical Engineering, University of New Haven, 300 Boston Post Road, West Haven, Connecticut 06516, United States
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People’s Republic of China
- University of Chinese Academy of Science, No. 19A Yuanquan Road, Beijing 100049, People’s Republic of China
| | - Zheng Jiang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, People’s Republic of China
| | - Hongyang Liu
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
166
|
Felvey N, Guo J, Rana R, Xu L, Bare SR, Gates BC, Katz A, Kulkarni AR, Runnebaum RC, Kronawitter CX. Interconversion of Atomically Dispersed Platinum Cations and Platinum Clusters in Zeolite ZSM-5 and Formation of Platinum gem-Dicarbonyls. J Am Chem Soc 2022; 144:13874-13887. [PMID: 35854402 DOI: 10.1021/jacs.2c05386] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Catalysts composed of platinum dispersed on zeolite supports are widely applied in industry, and coking and sintering of platinum during operation under reactive conditions require their oxidative regeneration, with the platinum cycling between clusters and cations. The intermediate platinum species have remained only incompletely understood. Here, we report an experimental and theoretical investigation of the structure, bonding, and local environment of cationic platinum species in zeolite ZSM-5, which are key intermediates in this cycling. Upon exposure of platinum clusters to O2 at 700 °C, oxidative fragmentation occurs, and Pt2+ ions are stabilized at six-membered rings in the zeolite that contain paired aluminum sites. When exposed to CO under mild conditions, these Pt2+ ions form highly uniform platinum gem-dicarbonyls, which can be converted in H2 to Ptδ+ monocarbonyls. This conversion, which weakens the platinum-zeolite bonding, is a first step toward platinum migration and aggregation into clusters. X-ray absorption and infrared spectra provide evidence of the reductive and oxidative transformations in various gas environments. The chemistry is general, as shown by the observation of platinum gem-dicarbonyls in several commercially used zeolites (ZSM-5, Beta, mordenite, and Y).
Collapse
Affiliation(s)
- Noah Felvey
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Jiawei Guo
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Rachita Rana
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Le Xu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Alexander Katz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Ambarish R Kulkarni
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Ron C Runnebaum
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Coleman X Kronawitter
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
167
|
Zhai S, Zhang L, Sun J, Sun L, Jiang S, Yu T, Zhai D, Liu C, Li Z, Ren G. Rational Design of Synergistic Structure Between Single-Atoms and Nanoparticles for CO2 Hydrogenation to Formate Under Ambient Conditions. Front Chem 2022; 10:957412. [PMID: 35928210 PMCID: PMC9343707 DOI: 10.3389/fchem.2022.957412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Single-atom catalysts (SACs) as the new frontier in heterogeneous catalysis have attracted increasing attention. However, the rational design of SACs with high catalytic activities for specified reactions still remains challenging. Herein, we report the rational design of a Pd1-PdNPs synergistic structure on 2,6-pyridinedicarbonitrile-derived covalent triazine framework (CTF) as an efficient active site for CO2 hydrogenation to formate under ambient conditions. Compared with the catalysts mainly comprising Pd1 and PdNPs, this hybrid catalyst presented significantly improved catalytic activity. By regulating the ratio of Pd1 to PdNPs, we obtained the optimal catalytic activity with a formate formation rate of 3.66 molHCOOM·molPd−1·h−1 under ambient conditions (30°C, 0.1 MPa). Moreover, as a heterogeneous catalyst, this hybrid catalyst is easily recovered and exhibits about a 20% decrease in the catalytic activity after five cycles. These findings are significant in elucidating new rational design principles for CO2 hydrogenation catalysts with superior activity and may open up the possibilities of converting CO2 under ambient conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Tie Yu
- *Correspondence: Tie Yu, ; Guoqing Ren,
| | | | | | | | | |
Collapse
|
168
|
Wang Y, Schumann J, Happel EE, Çınar V, Sykes ECH, Stamatakis M, Michaelides A, Hannagan RT. Observation and Characterization of Dicarbonyls on a RhCu Single-Atom Alloy. J Phys Chem Lett 2022; 13:6316-6322. [PMID: 35792939 DOI: 10.1021/acs.jpclett.2c01596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dicarbonyl species are ubiquitous on Rh/oxide catalysts and are known to form on Rh+ centers. However, dicarbonyl species have never been directly observed on single-atom alloys (SAAs) where the active site is metallic. Herein, using surface science and theoretical modeling, we provide evidence of dicarbonyl species at isolated Rh sites on a RhCu(100) SAA. This approach not only enables us to directly visualize dicarbonyl species at Rh sites but also demonstrates that the transition between the mono- and dicarbonyl configuration can be achieved by changing surface temperature and CO pressure. Density functional theory calculations further support the mono- and dicarbonyl assignments and provide evidence that these species should be stable on other SAA combinations. Together, these results provide a picture of the structure and energetics of both the mono- and dicarbonyl configurations on the RhCu(100) SAA surface and should aid with IR assignments on SAA nanoparticle catalysts.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Julia Schumann
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
- Department of Physics and Astronomy, University College London, London WC1E 6BT, U.K
| | - Elizabeth E Happel
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Volkan Çınar
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - E Charles H Sykes
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Michail Stamatakis
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
- Department of Physics and Astronomy, University College London, London WC1E 6BT, U.K
| | - Ryan T Hannagan
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
169
|
Zhang L, Li Y, Zhang L, Wang K, Li Y, Wang L, Zhang X, Yang F, Zheng Z. Direct Visualization of the Evolution of a Single-Atomic Cobalt Catalyst from Melting Nanoparticles with Carbon Dissolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200592. [PMID: 35508897 PMCID: PMC9284138 DOI: 10.1002/advs.202200592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/14/2022] [Indexed: 05/11/2023]
Abstract
Transition metal single-atom catalysts (SACs) are of immense interest, but how exactly they are evolved upon pyrolysis of the corresponding precursors remains unclear as transition metal ions in the complex precursor undergo a series of morphological changes accompanied with changes in oxidation state as a result of the interactions with the carbon support. Herein, the authors record the complete evolution process of Co SAC during the pyrolysis a Co/Zn-containing zeolitic imidazolate framework. Aberration-corrected environmental TEM coupled with in-situ EELS is used for direct visualization of the evolution process at 200-1000 °C. Dissolution of carbon into the nanoparticles of Co is found to be key to modulating the wetting behavior of nanoparticles on the carbon support; melting of Co nanoparticles and their motion within the zeolitic architecture leads to the etching of the framework structure, yielding porous C/N support onto which Co-single atoms reside. This uniquely structured Co SAC is found to be effective for the oxidation of a series of aromatic alkanes to produce selective ketones among other possible products. The carbon dissolution and melting/sublimation-driven structural dynamics of transition metal revealed here will expand the methodology in synthesizing SACs and other high-temperature processes.
Collapse
Affiliation(s)
- Luyao Zhang
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Yanyan Li
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Lei Zhang
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Kun Wang
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Yingbo Li
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Lei Wang
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Xinyu Zhang
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Feng Yang
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| | - Zhiping Zheng
- Department of ChemistryGuangdong Provincial Key Laboratory of CatalysisGuangdong Provincial Key Laboratory of Energy Materials for Electric PowerKey Laboratory of Energy Conversion and Storage Technologies (Ministry of Education)Southern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
170
|
Chen F, Sun W, Zhang D, Guo F, Zhan S, Shen Z. Identification of the Stable Pt Single Sites in the Environment of Ions: From Mechanism to Design Principle. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108504. [PMID: 35436010 DOI: 10.1002/adma.202108504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/22/2022] [Indexed: 06/14/2023]
Abstract
For single-atom (SA)-based catalysis, it is urgent to understand the nature and dynamic evolution of SA active sites during the reactions. In this work, an example of Pt SA-Zn0.5 Cd0.5 S (Pt SA-ZCS) is found to display interesting phenomena when facing the Brownian collision of ions in aqueous photocatalysis. Via synchrotron radiation, surface techniques, microscopy, and theory calculations, the results show that two kinds of Pt sites exist: PtZn-sub -S3 (Pt substituting the Zn site) and Ptads -S2 (Pt adsorbing on the surface). In Na2 S, the S2- can coordinate with Pt atoms and peel them from the Ptads -S2 sites, but leaves more stable PtZn-sub -S3 sites, bringing a low but stable catalytic activity (19.40 mmol g-1 h-1 ). Meanwhile, in ascorbic acid, the ascorbic acid ions show less complex ability with Pt atoms, but can decrease the migration barrier of Ptads -S2 sites (67.18 down to 35.96 mmol g-1 h-1 , 52.03% drop after 6 h). Therefore, the Ptads -S2 sites gradually aggregate into nanoclusters, bringing a high but decayed catalytic activity. Moreover, a Pt SA-ZCS-Sulfur composite is designed mainly covered by PtZn-sub -S3 sites accordingly (max: 79.09 mmol g-1 h-1 , 5% drop after 6 h and QE: 14.0% at 420 nm), showing a beneficial strategy "from mechanism to design principle."
Collapse
Affiliation(s)
- Fangyuan Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Wenming Sun
- College of Science, China Agricultural University, Beijing, 100193, P. R. China
| | - Dongpeng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Fa Guo
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Zhurui Shen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
171
|
Cui P, Liu C, Su X, Yang Q, Ge L, Huang M, Dang F, Wu T, Wang Y. Atomically Dispersed Manganese on Biochar Derived from a Hyperaccumulator for Photocatalysis in Organic Pollution Remediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8034-8042. [PMID: 35584092 DOI: 10.1021/acs.est.2c00992] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Phytoremediation is a potentially cost-effective and environmentally friendly remediation method for environmental pollution. However, the safe treatment and resource utilization of harvested biomass has become a limitation in practical applications. To address this, a novel manganese-carbon-based single-atom catalyst (SAC) method has been developed based on the pyrolysis of a manganese hyperaccumulator, Phytolacca americana. In this method, manganese atoms are dispersed atomically in the carbon matrix and coordinate with N atoms to form a Mn-N4 structure. The SAC developed exhibited a high photooxidation efficiency and excellent stability during the degradation of a common organic pollutant, rhodamine B. The Mn-N4 site was the active center in the transformation of photoelectrons via the transfer of photoelectrons between adsorbed O2 and Mn to produce reactive oxygen species, identified by in situ X-ray absorption fine structure spectroscopy and density functional theory calculations. This work demonstrates an approach that increases potential utilization of biomass during phytoremediation and provides a promising design strategy to synthesize cost-effective SACs for environmental applications.
Collapse
Affiliation(s)
- Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, PR China
| | - Qiang Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
- University of Chinese Academy of Science, Beijing 100049, PR China
| | - Liqiang Ge
- Technical Innovation Center of Ecological Monitoring & Restoration Project on Land (Arable), Ministry of Natural Resources, Geological Survey of Jiangsu Province, Nanjing 210018, PR China
| | - Meiying Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
- University of Chinese Academy of Science, Beijing 100049, PR China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Tongliang Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
- University of Chinese Academy of Science, Beijing 100049, PR China
| |
Collapse
|
172
|
Muravev V, Simons JFM, Parastaev A, Verheijen MA, Struijs JJC, Kosinov N, Hensen EJM. Operando Spectroscopy Unveils the Catalytic Role of Different Palladium Oxidation States in CO Oxidation on Pd/CeO
2
Catalysts. Angew Chem Int Ed Engl 2022; 61:e202200434. [PMID: 35303388 PMCID: PMC9325467 DOI: 10.1002/anie.202200434] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 11/18/2022]
Abstract
Aiming at knowledge‐driven design of novel metal–ceria catalysts for automotive exhaust abatement, current efforts mostly pertain to the synthesis and understanding of well‐defined systems. In contrast, technical catalysts are often heterogeneous in their metal speciation. Here, we unveiled rich structural dynamics of a conventional impregnated Pd/CeO2 catalyst during CO oxidation. In situ X‐ray photoelectron spectroscopy and operando X‐ray absorption spectroscopy revealed the presence of metallic and oxidic Pd states during the reaction. Using transient operando infrared spectroscopy, we probed the nature and reactivity of the surface intermediates involved in CO oxidation. We found that while low‐temperature activity is associated with sub‐oxidized and interfacial Pd sites, the reaction at elevated temperatures involves metallic Pd. These results highlight the utility of the multi‐technique operando approach for establishing structure–activity relationships of technical catalysts.
Collapse
Affiliation(s)
- Valery Muravev
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Jérôme F. M. Simons
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Alexander Parastaev
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Marcel A. Verheijen
- Department of Applied Physics Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
- Eurofins Material Science Netherlands BV 5656AE Eindhoven The Netherlands
| | - Job J. C. Struijs
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Nikolay Kosinov
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
173
|
Engineering gold-platinum core-shell nanoparticles by self-limitation in solution. Commun Chem 2022; 5:71. [PMID: 36697905 PMCID: PMC9814372 DOI: 10.1038/s42004-022-00680-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 05/04/2022] [Indexed: 01/28/2023] Open
Abstract
Core-shell particles with thin noble metal shells represent an attractive material class with potential for various applications ranging from catalysis to biomedical and pharmaceutical applications to optical crystals. The synthesis of well-defined core-shell architectures remains, however, highly challenging. Here, we demonstrate that atomically-thin and homogeneous platinum shells can be grown via a colloidal synthesis method on a variety of gold nanostructures ranging from spherical nanoparticles to nanorods and nanocubes. The synthesis is based on the exchange of low binding citrate ligands on gold, the reduction of platinum and the subsequent kinetically hindered growth by carbon monoxide as strong binding ligand. The prerequisites for homogeneous growth are low core-binding ligands with moderate fast ligand exchange in solution, a mild reducing agent to mitigate homonucleation and a strong affinity of a second ligand system that can bind to the shell's surface. The simplicity of the described synthetic route can potentially be adapted to various other material libraries to obtain atomically smooth core-shell systems.
Collapse
|
174
|
Liu X, Zhang X, Meng C. Coadsorption Interfered CO Oxidation over Atomically Dispersed Au on h-BN. Molecules 2022; 27:3627. [PMID: 35684560 PMCID: PMC9182313 DOI: 10.3390/molecules27113627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/10/2022] Open
Abstract
Similar to the metal centers in biocatalysis and homogeneous catalysis, the metal species in single atom catalysts (SACs) are charged, atomically dispersed and stabilized by support and substrate. The reaction condition dependent catalytic performance of SACs has long been realized, but seldom investigated before. We investigated CO oxidation pathways over SACs in reaction conditions using atomically dispersed Au on h-BN (AuBN) as a model with extensive first-principles-based calculations. We demonstrated that the adsorption of reactants, namely CO, O2 and CO2, and their coadsorption with reaction species on AuBN would be condition dependent, leading to various reaction species with different reactivity and impact the CO conversion. Specifically, the revised Langmuir-Hinshelwood pathway with the CO-mediated activation of O2 and dissociation of cyclic peroxide intermediate followed by the Eley-Rideal type reduction is dominant at high temperatures, while the coadsorbed CO-mediated dissociation of peroxide intermediate becomes plausible at low temperatures and high CO partial pressures. Carbonate species would also form in existence of CO2, react with coadsorbed CO and benefit the conversion. The findings highlight the origin of the condition-dependent CO oxidation performance of SACs in detailed conditions and may help to rationalize the current understanding of the superior catalytic performance of SACs.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, Dalian 116024, China;
| | | | - Changgong Meng
- State Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, Dalian 116024, China;
| |
Collapse
|
175
|
Guo J, Peng M, Jia Z, Li C, Liu H, Zhang H, Ma D. Kinetic Evidence of Most Abundant Surface Intermediates Variation over Pt n and Pt p: Few-Atom Pt Ensembles Enable Efficient Catalytic Cyclohexane Dehydrogenation for Hydrogen Production-II. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinqiu Guo
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300350, China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| | - Zhimin Jia
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chengyu Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| | - Hongyang Liu
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hongbo Zhang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300350, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| |
Collapse
|
176
|
Yang Y, Shen T, Xu X. Towards the rational design of Pt-based alloy catalysts for the low-temperature water-gas shift reaction: from extended surfaces to single atom alloys. Chem Sci 2022; 13:6385-6396. [PMID: 35733891 PMCID: PMC9159103 DOI: 10.1039/d2sc01729f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
The rational design of Pt-based catalysts for the low-temperature water-gas-shift (LT-WGS) reaction is an active research field because of its important role played in the fuel cell-based hydrogen economy, especially in mobile applications. Previous theoretical analyses have suggested that Pt alloys, leading to a weaker CO binding affinity than the Pt metal, could help alleviate CO poisoning and thus should be promising catalysts of the LT-WGS reaction. However, experimental research along this line was rather ineffective in the past decade. In the present work, we employed the state-of-the-art kinetic Monte Carlo (KMC) simulations to examine the influences of the electronic effect by introducing sub-surface alloys and/or core–shell structures, and the synergetic effect by introducing single atom alloys on the catalytic performance of Pt-alloy catalysts. Our KMC simulations have highlighted the importance of the OH binding affinity on the catalyst surfaces to reduce the barrier of water dissociation as the rate determining step, instead of the CO binding affinity as has been emphasized before in conventional mean-field kinetic models. Along this new direction of catalyst design, we found that Pt–Ru synergetic effects can significantly increase the activity of the Pt metal, leading to Ru1–3@Pt alloys with a tetrahedron site of one surface-three subsurface Ru atoms on the Pt host, showing a turnover frequency of about five orders of magnitude higher than the Pt metal. KMC simulations show that decreasing the barrier of H2O decomposition is more beneficial than decreasing the CO binding affinity in LT-WGS, while the latter was overemphasized by MF-MKM. Here Ru1–3@Pt alloy is proposed as a promising catalyst.![]()
Collapse
Affiliation(s)
- Yuqi Yang
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University Shanghai 200433 People's Republic of China
| | - Tonghao Shen
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University Shanghai 200433 People's Republic of China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University Shanghai 200433 People's Republic of China
| |
Collapse
|
177
|
Abstract
Hydrogen (H2) has emerged as a sustainable energy carrier capable of replacing/complementing the global carbon-based energy matrix. Although studies in this area have often focused on the fundamental understanding of catalytic processes and the demonstration of their activities towards different strategies, much effort is still needed to develop high-performance technologies and advanced materials to accomplish widespread utilization. The main goal of this review is to discuss the recent contributions in the H2 production field by employing nanomaterials with well-defined and controllable physicochemical features. Nanoengineering approaches at the sub-nano or atomic scale are especially interesting, as they allow us to unravel how activity varies as a function of these parameters (shape, size, composition, structure, electronic, and support interaction) and obtain insights into structure–performance relationships in the field of H2 production, allowing not only the optimization of performances but also enabling the rational design of nanocatalysts with desired activities and selectivity for H2 production. Herein, we start with a brief description of preparing such materials, emphasizing the importance of accomplishing the physicochemical control of nanostructures. The review finally culminates in the leading technologies for H2 production, identifying the promising applications of controlled nanomaterials.
Collapse
|
178
|
Sun H, Tang R, Huang J. Considering single-atom catalysts as photocatalysts from synthesis to application. iScience 2022; 25:104232. [PMID: 35521535 PMCID: PMC9065725 DOI: 10.1016/j.isci.2022.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
With the ever-increased greenhouse effect and energy crisis, developing novel photocatalysts to realize high-efficient solar-driven chemicals/fuel production is of great scientific and practical significance. Recently, single-atom photocatalysts (SAPs) are promising catalysts with maximized metal dispersion and tuneable coordination environments. SAPs exhibit boosted photocatalytic performance by enhancing optical response, facilitating charge carrier transfer behaviors or directly manipulating surface reaction processes. In this regard, this article systematically reviews the state-of-the-art progress in the development and application of SAPs, especially the mechanism and performance of SAPs on various reaction processes. Some future challenges and potential research directions over SAPs are outlined at the final stage.
Collapse
Affiliation(s)
- Haoyue Sun
- School of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Rui Tang
- School of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Jun Huang
- School of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
179
|
Pan Y, Xu L, He W, Li H, Chen W, Sun Z. Optimizing the synergy between alloy and alloy-oxide interface for CO oxidation in bimetallic catalysts. NANOSCALE 2022; 14:7303-7313. [PMID: 35532914 DOI: 10.1039/d2nr01171a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Creating synergetic metal-oxide interfaces is a promising strategy to promote the catalytic performance of heterogeneous catalysts. However, this strategy has been mainly applied to monometallic catalysts, while scarcely applied to alloy catalysts. In this work, we present a comprehensive study on the synergetic alloy-oxide interfaces in the bimetallic Pt-Co/Al2O3 catalysts for CO oxidation. A series of Pt1Cox/Al2O3 catalysts with various Co/Pt molar ratios with x ranging from 0.5 to 3.8 was synthesized via a facile wet-chemistry strategy. Among them, the Pt1Co0.5/Al2O3 catalyst exhibits the best catalytic performance for CO oxidation, with the lowest CO complete conversion temperature of -10 °C and the highest mass specific rate of 2.61 (mol CO) h-1 (g Pt)-1. From in situ X-ray absorption fine structure and diffuse reflectance infrared Fourier-transform spectroscopy studies, the superior catalytic performance of Pt1Co0.5/Al2O3 originates from the optimal length of the three-dimensional alloy-oxide perimeter sites. We further extended this strategy to other bimetallic systems of Pt-Fe and Pt-Ni, which also show similar structural properties and remarkable promotional effects on the catalytic activity.
Collapse
Affiliation(s)
- Ya Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Liuxin Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Wenxue He
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Hongmei Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Wei Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| |
Collapse
|
180
|
Zheng B, Duan J, Tang Q. Electronic metal-support interaction constructed for preparing sinter-resistant nano-platinum catalyst with redox property. Dalton Trans 2022; 51:7491-7502. [PMID: 35506442 DOI: 10.1039/d1dt04142h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Generally, support materials with particular structural properties could effectively anchor metal nanoparticles and provide lower activation barriers in heterogeneous catalysis. To tailor the structure of stable iron oxide, NiFe2O4 of inverse spinel structure was obtained by combining nickel with iron element under an alkaline environment and high-temperature calcination. The p-type conductivity of NiFe2O4 provides the possibility of constructing electronic interfacial interaction with Pt nanoparticles by electron transfer. The constructed metal-support interaction could effectively stabilize Pt nanoparticles and be further enhanced during long-term harsh calcination (700 °C for 48 h) even under an O2 atmosphere. Meanwhile, the abundant structural defects of NiFe2O4 are beneficial for constructing low-temperature redox centers with the aid of Pt nanoparticles. Pt/NiFe2O4 exhibited not only excellent activity in room-temperature oxidation (CO and HCHO) and reduction reactions (chemo-selective hydrogenation of nitroarenes), but also high stability even after storage for more than 6 months. A self-adjusting mechanism triggered by structural defects is disclosed by in situ characterization and systematic reaction results. This work demonstrates an alternative concept to construct sinter-resistant and highly-effective nano-platinum catalysts robust for oxidation and reduction reactions.
Collapse
Affiliation(s)
- Bin Zheng
- Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou, 510632, P. R. China. .,School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China
| | - Jialong Duan
- Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou, 510632, P. R. China.
| | - Qunwei Tang
- Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou, 510632, P. R. China.
| |
Collapse
|
181
|
Zhang L, Ren X, Zhao X, Zhu Y, Pang R, Cui P, Jia Y, Li S, Zhang Z. Synergetic Charge Transfer and Spin Selection in CO Oxidation at Neighboring Magnetic Single-Atom Catalyst Sites. NANO LETTERS 2022; 22:3744-3750. [PMID: 35437988 DOI: 10.1021/acs.nanolett.2c00711] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Deciphering the precise physical mechanism of interaction between an adsorbed species and a reactive site in heterogeneous catalysis is crucial for predictive design of highly efficient catalysts. Here, using first-principles calculations we identify that the two-dimensional ferromagnetic metal organic framework of Mn2C18H12 can serve as a highly efficient single-atom catalyst for spin-triplet O2 activation and CO oxidation. The underlying mechanism is via "concerted charge-spin catalysis", involving a delicate synergetic process of charge transfer, provided by the hosting Mn atom, and spin selection, preserved through active participation of its nearest neighboring Mn atoms for the crucial step of O2 activation. The synergetic mechanism is further found to be broadly applicable in O2 adsorption on magnetic X2C18H12 (X = Mn, Fe, Co, and Ni) with a well-defined linear scaling dependence between the chemical activity and spin excitation energy. The present findings provide new insights into chemical reactions wherein spin selection plays a vital role.
Collapse
Affiliation(s)
- Liying Zhang
- Key Laboratory of Material Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China
- Key Laboratory for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Xiaoyan Ren
- Key Laboratory of Material Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xingju Zhao
- Key Laboratory of Material Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yandi Zhu
- Key Laboratory of Material Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Rui Pang
- Key Laboratory of Material Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ping Cui
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Jia
- Key Laboratory of Material Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shunfang Li
- Key Laboratory of Material Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhenyu Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
182
|
Promotional Effect of Pt-Doping on the Catalytic Performance of Pt−CeO2 Catalyst for CO Oxidation. Catalysts 2022. [DOI: 10.3390/catal12050529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Growing interest in the development of a hydrogen economy means that CO oxidation is increasingly important for upgrading H2-rich fuel gas streams for fuel cells. CeO2-supported catalysts are the most promising candidates for the catalytic oxidation of CO because of their high activity. In the present work, DFT+U calculations were performed to investigate the stability and CO oxidation reactivity of Ptn (n = 1−4) clusters supported on CeO2(111) (Pt/CeO2) and Pt-doped CeO2(111) (Pt/(Pt−Ce)O2) surfaces. The Pt clusters showed similar nucleation behavior on both CeO2 and (Pt−Ce)O2 surfaces. Further, the formation of oxygen vacancies (Ov) was facilitated because of surface charge depletion caused by the dopant Pt. Our DFT results suggest that the interfacial OV plays an important role in the CO oxidation reaction cycle, and the calculated energy barrier for the CO oxidation reaction on the Pt/(Pt−Ce)O2 surface is approximately 0.43 eV lower than that on the surface of the undoped catalyst, suggesting enhanced CO oxidation reactivity. Therefore, the chemical modification of the CeO2 support via doping is an effective strategy for improving the catalytic performance of Pt/CeO2.
Collapse
|
183
|
Chen Y, Rana R, Huang Z, Vila FD, Sours T, Perez-Aguilar JE, Zhao X, Hong J, Hoffman AS, Li X, Shang C, Blum T, Zeng J, Chi M, Salmeron M, Kronawitter CX, Bare SR, Kulkarni AR, Gates BC. Atomically Dispersed Platinum in Surface and Subsurface Sites on MgO Have Contrasting Catalytic Properties for CO Oxidation. J Phys Chem Lett 2022; 13:3896-3903. [PMID: 35471032 DOI: 10.1021/acs.jpclett.2c00667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Atomically dispersed metals on metal oxide supports are a rapidly growing class of catalysts. Developing an understanding of where and how the metals are bonded to the supports is challenging because support surfaces are heterogeneous, and most reports lack a detailed consideration of these points. Herein, we report two atomically dispersed CO oxidation catalysts having markedly different metal-support interactions: platinum in the first layer of crystalline MgO powder and platinum in the second layer of this support. Structural models have been determined on the basis of data and computations, including those determined by extended X-ray absorption fine structure and X-ray absorption near edge structure spectroscopies, infrared spectroscopy of adsorbed CO, and scanning transmission electron microscopy. The data demonstrate the transformation of surface to subsurface platinum as the temperature of sample calcination increased. Catalyst performance data demonstrate the lower activity but greater stability of the subsurface platinum than of the surface platinum.
Collapse
Affiliation(s)
- Yizhen Chen
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Rachita Rana
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Zhennan Huang
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Fernando D Vila
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Tyler Sours
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Jorge E Perez-Aguilar
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Jiyun Hong
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chunyan Shang
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Thomas Blum
- University of California Irvine, Irvine, California 92697, United States
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Miaofang Chi
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | | | - Coleman X Kronawitter
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ambarish R Kulkarni
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
184
|
Hu L, Poeppelmeier KR. Synthesis of Perovskite Polyhedron Nanocrystals with Equivalent Facets and the Controlled Growth of Pt Nanoparticles with Differing Surface Concentration of Oxidized Pt4+/Pt2+Species. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
185
|
Jiang B, Cha X, Huang Z, Hu S, Xu K, Cai D, Xiao J, Zhan G. Green fabrication of hierarchically-structured Pt/bio-CeO2 nanocatalysts using natural pollen templates for low-temperature CO oxidation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
186
|
Affiliation(s)
- Divakar R. Aireddy
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kunlun Ding
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
187
|
Wang C, Wang Z, Mao S, Chen Z, Wang Y. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
188
|
Jiao S, Kong M, Hu Z, Zhou S, Xu X, Liu L. Pt Atom on the Wall of Atomic Layer Deposition (ALD)-Made MoS 2 Nanotubes for Efficient Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105129. [PMID: 35253963 DOI: 10.1002/smll.202105129] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Single-atom catalysts (SACs) can achieve excellent catalytic efficiency at ultralow catalyst consumptions. Herein, platinum (Pt) atoms are fixed on the wall of atomic layer deposition (ALD)-made molybdenum disulfide nanotube arrays (MoS2 -NTA) for efficient hydrogen evolution reaction (HER). More concretely, MoS2 -NTA with different nanotube diameters and wall thicknesses are fabricated by a sacrificial strategy of anodic aluminum oxide (AAO) template via ALD; then Pt atoms are fixed on the wall of Ti3 C2 -supported MoS2 -NTA as a catalytic system. The MoS2 -NTA/Ti3 C2 decorated with 0.13 wt.% of Pt results in a low overpotential of 32 mV to deliver a current density of 10 mA cm-2 , which is superior to 20 wt.% commercial Pt/C (41 mV). Ordered MoS2 -NTA instead of 2D MoS2 prevents Pt atoms from aggregating and then exerts catalytic activities. The density functional theory calculations suggest that the Pt atoms are more likely to occupy the sites on the tubular MoS2 than the planar MoS2 , and the Pt atoms accumulated at the Mo site of MoS2 -NT have a moderate Gibbs free energy (close to zero).
Collapse
Affiliation(s)
- Songlong Jiao
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Mengshu Kong
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Zhenpeng Hu
- School of Physics, Nankai University, Tianjin, 300071, P. R. China
| | - Shiming Zhou
- Hefei National Laboratory for Physics Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiaoxuan Xu
- Nanjing Vocat Univ Ind Technol, Nanjing, 210023, P. R. China
| | - Lei Liu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
189
|
CO oxidation on MXene (Mo2CS2) supported single-atom catalyst: a termolecular Eley-Rideal mechanism. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
190
|
Dai L, Shen Y, Chen JZ, Zhou L, Wu X, Li Z, Wang J, Huang W, Miller JT, Wang Q, Cao A, Wu Y. MXene-Supported, Atomic-Layered Iridium Catalysts Created by Nanoparticle Re-Dispersion for Efficient Alkaline Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105226. [PMID: 35182021 DOI: 10.1002/smll.202105226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Tailoring the structure of metal components and interaction with their anchored substrates is essential for improving the catalytic performance of supported metal catalysts; the ideal catalytic configuration, especially down to the range of atomic layers, clusters, and even single atoms, remains a subject under intensive study. Here, an Ir-on-MXene (Mo2 TiC2 Tx ) catalyst with controlled morphology changing from nanoparticles down to flattened atomic layers, and finally ultrathin layers and single atoms dispersed on MXene nanosheets at elevated temperature, is presented. The intermediate structure, consisting of mostly Ir atomic layers, shows the highest activity toward the hydrogen evolution reaction (HER) under industry-compatible alkaline conditions. In addition, the better HER activity of Ir atomic layers than that of single atoms suggests that the former serves as the main active sites. Detailed mechanism analysis reveals that the nanoparticle re-dispersion process and Ir atomic layers with a moderate interaction to the substrate associate with unconventional electron transfer from MXene to Ir, leading to suitable H* adsorption. The results indicate that the structural design is important for the development of highly efficient catalysts.
Collapse
Affiliation(s)
- Linxiu Dai
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
- Life and Health Intelligent Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Yiheng Shen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Johnny Zhu Chen
- Davison School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Lin Zhou
- Division of Materials Science and Engineering, Ames National Laboratory, Ames, IA, 50011, USA
| | - Xun Wu
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Zhe Li
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Jiayang Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Wenyu Huang
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Jeffrey T Miller
- Davison School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Qian Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Anyuan Cao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yue Wu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
191
|
A comparison of Cu/CeO2 catalysts prepared via different precipitants/digestion methods for single stage water gas shift reactions. Catal Today 2022. [DOI: 10.1016/j.cattod.2020.06.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
192
|
Meier M, Hulva J, Jakub Z, Kraushofer F, Bobić M, Bliem R, Setvin M, Schmid M, Diebold U, Franchini C, Parkinson GS. CO oxidation by Pt 2/Fe 3O 4: Metastable dimer and support configurations facilitate lattice oxygen extraction. SCIENCE ADVANCES 2022; 8:eabn4580. [PMID: 35363523 PMCID: PMC10938578 DOI: 10.1126/sciadv.abn4580] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Heterogeneous catalysts based on subnanometer metal clusters often exhibit strongly size-dependent properties, and the addition or removal of a single atom can make all the difference. Identifying the most active species and deciphering the reaction mechanism is extremely difficult, however, because it is often not clear how the catalyst evolves in operando. Here, we use a combination of atomically resolved scanning probe microscopies, spectroscopic techniques, and density functional theory (DFT)-based calculations to study CO oxidation by a model Pt/Fe3O4(001) "single-atom" catalyst. We demonstrate that (PtCO)2 dimers, formed dynamically through the agglomeration of mobile Pt-carbonyl species, catalyze a reaction involving the oxide support to form CO2. Pt2 dimers produce one CO2 molecule before falling apart into two adatoms, releasing the second CO. Olattice extraction only becomes facile when both the Pt-dimer and the Fe3O4 support can access metastable configurations, suggesting that substantial, concerted rearrangements of both cluster and support must be considered for reactions occurring at elevated temperature.
Collapse
Affiliation(s)
- Matthias Meier
- Institute of Applied Physics, TU Wien, Vienna, Austria
- Computational Materials Physics, University of Vienna, Vienna, Austria
| | - Jan Hulva
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | - Zdenek Jakub
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | | | - Mislav Bobić
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | - Roland Bliem
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | - Martin Setvin
- Institute of Applied Physics, TU Wien, Vienna, Austria
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | | | | | - Cesare Franchini
- Computational Materials Physics, University of Vienna, Vienna, Austria
- Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | | |
Collapse
|
193
|
Muravev V, Simons JF, Parastaev A, Verheijen MA, Struijs JJ, Kosinov N, Hensen E. Operando Spectroscopy Unveils the Catalytic Role of Different Palladium Oxidation States in CO oxidation on Pd/CeO2 catalysts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Valery Muravev
- Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| | - Jérôme F.M. Simons
- TU/e: Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| | - Alexander Parastaev
- TU/e: Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| | | | - Job J.C. Struijs
- TU/e: Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| | - Nikolay Kosinov
- TU/e: Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| | - Emiel Hensen
- Department of Chemical Engineering Eindhoven University of Technology Schuit Institute of Catalysis PO Box 513 5600 MB Eindhoven NETHERLANDS
| |
Collapse
|
194
|
Deng Y, Tian P, Liu S, He H, Wang Y, Ouyang L, Yuan S. Enhanced catalytic performance of atomically dispersed Pd on Pr-doped CeO 2 nanorod in CO oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127793. [PMID: 34839976 DOI: 10.1016/j.jhazmat.2021.127793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Single-atom noble metal catalysts have been widely studied for catalytic oxidation of CO. Regulating the coordination environment of single metal atom site is an effective strategy to improve the intrinsic catalytic activity of single atom catalyst. In this work, single atom Pd catalyst supported on Pr-doped CeO2 nanorods was prepared, and the performance and nature of Pr-coordinated atomic Pd site in CO catalytic oxidation are systematically investigated. The structure characterization using AC-HAADF-STEM, EXAFS, XRD and Raman spectroscopy demonstrate the formation of single atom Pd site and abundant surface oxygen vacancies on the surface of Pr-doped CeO2 nanorod. With the combination of the XPS characterization and DFT calculations, the oxidation state of Pd on Pr-doped CeO2 nanorod is determined lower than that on CeO2 nanorod. The turnover frequency of CO oxidation is markedly increased from 8.4 × 10-3 to 31.9 × 10-3 s with Pr-doping at 130 ºC and GHSV of 70,000 h-1. Combined with kinetic studies, DRIFT and DFT calculations, the doped-Pr atoms reduced the formation energy of oxygen vacancies and generate more oxygen vacancies around the atomically dispersed Pd sites on the surface of cerium oxide, which reduces the dissociation energy of oxygen, thereby accelerating the reaction rate of CO oxidation.
Collapse
Affiliation(s)
- Yanbo Deng
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Pengfei Tian
- Key Laboratory of Pressure Systems and Safety (Ministry of Education), School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China Key Laboratory of Pressure Systems and Safety (Ministry of Education), School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shijie Liu
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Huaqiang He
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuan Wang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Like Ouyang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
195
|
Eggart D, Huang X, Zimina A, Yang J, Pan Y, Pan X, Grunwaldt JD. Operando XAS Study of Pt-Doped CeO 2 for the Nonoxidative Conversion of Methane. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Eggart
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Xin Huang
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023 Dalian, China
| | - Anna Zimina
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jiuzhong Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 42 South Hezuohua Road, 230029 Hefei, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 42 South Hezuohua Road, 230029 Hefei, China
| | - Xiulian Pan
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023 Dalian, China
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
196
|
Shaaban E, Li G. Probing active sites for carbon oxides hydrogenation on Cu/TiO 2 using infrared spectroscopy. Commun Chem 2022; 5:32. [PMID: 36697577 PMCID: PMC9814513 DOI: 10.1038/s42004-022-00650-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/16/2022] [Indexed: 01/28/2023] Open
Abstract
The valorization of carbon oxides on metal/metal oxide catalysts has been extensively investigated because of its ecological and economical relevance. However, the ambiguity surrounding the active sites in such catalysts hampers their rational development. Here, in situ infrared spectroscopy in combination with isotope labeling revealed that CO molecules adsorbed on Ti3+ and Cu+ interfacial sites in Cu/TiO2 gave two disparate carbonyl peaks. Monitoring each of these peaks under various conditions enabled tracking the adsorption of CO, CO2, H2, and H2O molecules on the surface. At room temperature, CO was initially adsorbed on the oxygen vacancies to produce a high frequency CO peak, Ti3+-CO. Competitive adsorption of water molecules on the oxygen vacancies eventually promoted CO migration to copper sites to produce a low-frequency CO peak. In comparison, the presence of gaseous CO2 inhibits such migration by competitive adsorption on the copper sites. At temperatures necessary to drive CO2 and CO hydrogenation reactions, oxygen vacancies can still bind CO molecules, and H2 spilled-over from copper also competed for adsorption on such sites. Our spectroscopic observations demonstrate the existence of bifunctional active sites in which the metal sites catalyze CO2 dissociation whereas oxygen vacancies bind and activate CO molecules.
Collapse
Affiliation(s)
- Ehab Shaaban
- Department of Chemistry, University of New Hampshire, Durham, NH, 03824, USA
| | - Gonghu Li
- Department of Chemistry, University of New Hampshire, Durham, NH, 03824, USA.
| |
Collapse
|
197
|
Zhang X, Li Z, Pei W, Li G, Liu W, Du P, Wang Z, Qin Z, Qi H, Liu X, Zhou S, Zhao J, Yang B, Shen W. Crystal-Phase-Mediated Restructuring of Pt on TiO 2 with Tunable Reactivity: Redispersion versus Reshaping. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05695] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xiaoben Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhimin Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Pei
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Pengfei Du
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Zhaoxian Qin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Qi
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Si Zhou
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Bing Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
198
|
Di M, Simmance K, Schaefer A, Feng Y, Hemmingsson F, Skoglundh M, Bell T, Thompsett D, Ajakaiye Jensen LI, Blomberg S, Carlsson PA. Chasing PtO species in ceria supported platinum during CO oxidation extinction with correlative operando spectroscopic techniques. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
199
|
Guo Q, Wang Y, Han J, Zhang J, Wang F. Interfacial Tandem Catalysis for Ethylene Carbonylation and C–C Coupling to 3-Pentanone on Rh/Ceria. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qiang Guo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023 Dalian, China
| | - Yehong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023 Dalian, China
| | - Jianyu Han
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023 Dalian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023 Dalian, China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023 Dalian, China
| |
Collapse
|
200
|
Yoo M, Kang E, Ha H, Yun J, Choi H, Lee JH, Kim TJ, Min J, Choi JS, Lee KS, Jung N, Kim S, Kim C, Yu YS, Kim HY. Interspersing CeO x Clusters to the Pt-TiO 2 Interfaces for Catalytic Promotion of TiO 2-Supported Pt Nanoparticles. J Phys Chem Lett 2022; 13:1719-1725. [PMID: 35156829 DOI: 10.1021/acs.jpclett.2c00080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We propose an interface-engineered oxide-supported Pt nanoparticle-based catalyst with improved low-temperature activity toward CO oxidation. By wet-impregnating 1 wt % Ce on TiO2, we synthesized hybrid oxide support of CeOx-TiO2, in which dense CeOx clusters formed on the surface of TiO2. Then, the Pt/CeOx-TiO2 catalyst was synthesized by impregnating 2 wt % Pt on the CeOx-TiO2 supporting oxide. Pt-CeOx-TiO2 triphase interfaces were eventually formed upon impregnation of Pt on CeOx-TiO2. The Pt-CeOx-TiO2 interfaces open up the interface-mediated Mars-van Krevelen CO oxidation pathway, thus providing additional interfacial reaction sites for CO oxidation. Consequently, the specific reaction rate of Pt/CeOx-TiO2 for CO oxidation was increased by 3.2 times compared with that of Pt/TiO2 at 140 °C. Our results demonstrate a widely applicable and straightforward method of catalytic activation of the interfaces between metal nanoparticles and supporting oxides, which enabled fine-tuning of the catalytic performance of oxide-supported metal nanoparticle classes of heterogeneous catalysts.
Collapse
Affiliation(s)
- Mi Yoo
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eunji Kang
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyunwoo Ha
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jieun Yun
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyuk Choi
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ju Hyeok Lee
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae Jun Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jiho Min
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin-Seok Choi
- KAIST Analysis Center for Research Advancement, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34144, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Namgee Jung
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sungtak Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chunjoong Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young-Sang Yu
- Department of Physics, Chungbuk National University, Cheongju 28644, Republic of Korea
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hyun You Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|