151
|
Telobox motifs recruit CLF/SWN–PRC2 for H3K27me3 deposition via TRB factors in Arabidopsis. Nat Genet 2018; 50:638-644. [DOI: 10.1038/s41588-018-0109-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/13/2018] [Indexed: 12/25/2022]
|
152
|
Casal JJ, Qüesta JI. Light and temperature cues: multitasking receptors and transcriptional integrators. THE NEW PHYTOLOGIST 2018; 217:1029-1034. [PMID: 29139132 DOI: 10.1111/nph.14890] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/05/2017] [Indexed: 05/21/2023]
Abstract
Contents Summary 1029 I. Introduction 1029 II. Convergence at the receptor 1030 III. Convergence at transcriptional hubs 1031 IV. Convergence involving clock components 1033 V. Conclusions 1033 Acknowledgements 1033 References 1033 SUMMARY: The combined information provided by light and temperature cues helps to optimise plant body architecture and physiology. Plants possess elaborate systems to sense and respond to these stimuli. Simultaneous perception of light and temperature by dual receptors such as phytochrome B and phototropin leads to immediate signalling convergence. Conversely, cue asynchronies initiate separate pathways and the information of the earliest cue is stored, awaiting the arrival of the later cue to control transcription. Storage mechanisms can involve changes in the activity of selected clock components or epigenetic modifications, depending on the time delay between cues (hours, days or several months). We propose a conceptual framework in which the mechanisms of integration relate to the timing of cue sensing.
Collapse
Affiliation(s)
- Jorge J Casal
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, Av. San Martín 4453, Buenos Aires, 1417, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, 1405, Argentina
| | - Julia I Qüesta
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
153
|
Abstract
Our understanding of the epigenetic mechanisms that regulate gene expression has been largely increased in recent years by the development and refinement of different techniques. This has revealed that gene transcription is highly influenced by epigenetic mechanisms, i.e., those that do not involve changes in the genome sequence, but rather in nuclear architecture, chromosome conformation and histone and DNA modifications. Our understanding of how these different levels of epigenetic regulation interact with each other and with classical transcription-factor based gene regulation to influence gene transcription has just started to emerge. This review discusses the latest advances in unraveling the complex interactions between different types of epigenetic regulation and transcription factor activity, with special attention to the approaches that can be used to study these interactions.
Collapse
Affiliation(s)
- Marian Bemer
- Department of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands.
| |
Collapse
|
154
|
Kiegle EA, Garden A, Lacchini E, Kater MM. A Genomic View of Alternative Splicing of Long Non-coding RNAs during Rice Seed Development Reveals Extensive Splicing and lncRNA Gene Families. FRONTIERS IN PLANT SCIENCE 2018; 9:115. [PMID: 29467783 PMCID: PMC5808331 DOI: 10.3389/fpls.2018.00115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/22/2018] [Indexed: 05/08/2023]
Abstract
Alternative splicing (AS) is a key modulator of development in many eukaryotic organisms. In plants, alternative splice forms of non-coding RNAs (ncRNAs) are known to modulate flowering time in Arabidopsis and fertility in rice. Here we demonstrate that alternative splicing of coding and long non-coding RNAs occurs during rice seed development by comparing AS in immature seeds vs. embryo and endosperm of mature seeds. Based on computational predictions of AS events determined from a Bayesian analysis of junction counts of RNA-seq datasets, differential splicing of protein-coding, and non-coding RNAs was determined. In contrast to roots, leaves, flowers, buds, and reproductive meristems, developing seeds had 5.8-57 times more predicted AS. Primers designed to span introns and exons were used to detect AS events predicted by rMATs in cDNA derived from early (milk) seed, embryo, and endosperm. Comparing milk seed vs. mature embryo and endosperm, AS of MORC7 (a gene implicated in epigenetic gene silencing), was markedly different. Long non-coding RNAs (lncRNAs) also underwent AS during the transition from milk seed to mature embryo and endosperm, with a complex gene structure, and were more extensively processed than predicted by current genome annotation. Exon retention of lncRNAs was enhanced in embryos. Searching all 5,515 lncRNAs in the NCBI genome annotation uncovered gene families based on highly conserved regions shared by groups of 3-35 lncRNAs. The homologies to other lncRNAs, as well as homologies to coding sequences, and the genomic context of lncRNAs provide inroads for functional analysis of multi-exonic lncRNAs that can be extensively processed during seed development.
Collapse
|
155
|
Itabashi E, Osabe K, Fujimoto R, Kakizaki T. Epigenetic regulation of agronomical traits in Brassicaceae. PLANT CELL REPORTS 2018; 37:87-101. [PMID: 29058037 DOI: 10.1007/s00299-017-2223-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/05/2017] [Indexed: 05/08/2023]
Abstract
Epigenetic regulation, covalent modification of DNA and changes in histone proteins are closely linked to plant development and stress response through flexibly altering the chromatin structure to regulate gene expression. In this review, we will illustrate the importance of epigenetic influences by discussing three agriculturally important traits of Brassicaceae. (1) Vernalization, an acceleration of flowering by prolonged cold exposure regulated through epigenetic silencing of a central floral repressor, FLOWERING LOCUS C. This is associated with cold-dependent repressive histone mark accumulation, which confers competency of consequence vegetative-to-reproductive phase transition. (2) Hybrid vigor, in which an F1 hybrid shows superior performance to the parental lines. Combination of distinct epigenomes with different DNA methylation states between parental lines is important for increase in growth rate in a hybrid progeny. This is independent of siRNA-directed DNA methylation but dependent on the chromatin remodeler DDM1. (3) Self-incompatibility, a reproductive mating system to prevent self-fertilization. This is controlled by the S-locus consisting of SP11 and SRK which are responsible for self/non-self recognition. Because self-incompatibility in Brassicaceae is sporophytically controlled, there are dominance relationships between S haplotypes in the stigma and pollen. The dominance relationships in the pollen rely on de novo DNA methylation at the promoter region of a recessive allele, which is triggered by siRNA production from a flanking region of a dominant allele.
Collapse
Affiliation(s)
- Etsuko Itabashi
- Institute of Vegetable and Floriculture Science, NARO, Kusawa, Ano, Tsu, Mie, 514-2392, Japan.
| | - Kenji Osabe
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami, Okinawa, 904-0495, Japan
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Tomohiro Kakizaki
- Institute of Vegetable and Floriculture Science, NARO, Kusawa, Ano, Tsu, Mie, 514-2392, Japan
| |
Collapse
|
156
|
Velanis CN, Goodrich J. Vernalization and Epigenetic Inheritance: A Game of Histones. Curr Biol 2017; 27:R1324-R1326. [DOI: 10.1016/j.cub.2017.10.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
157
|
Bloomer RH, Dean C. Fine-tuning timing: natural variation informs the mechanistic basis of the switch to flowering in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5439-5452. [PMID: 28992087 DOI: 10.1093/jxb/erx270] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The evolution of diverse life history strategies has allowed Arabidopsis thaliana to adapt to worldwide locations, spanning a range of latitudinal and environmental conditions. Arabidopsis thaliana accessions are either vernalization-requiring winter annuals or rapid cyclers, with extensive natural variation in vernalization requirement and response. Genetic and molecular analysis of this variation has enhanced our understanding of the mechanisms involved in life history determination, with translation to both natural and crop systems in the Brassicaceae and beyond.
Collapse
Affiliation(s)
- R H Bloomer
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - C Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
158
|
Abstract
Polycomb-mediated silencing of the floral repressor gene FLC in response to long-term cold is a central event during vernalization in Arabidopsis thaliana, but how it is initiated is unclear. Two new studies identify a DNA element that mediates FLC silencing by attracting a pair of transcriptional repressors, VAL1 and VAL2, which in turn trigger epigenetic silencing by the Polycomb complex PHD-PRC2.
Collapse
|
159
|
Jiang D, Berger F. DNA replication-coupled histone modification maintains Polycomb gene silencing in plants. Science 2017; 357:1146-1149. [PMID: 28818970 DOI: 10.1126/science.aan4965] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/09/2017] [Indexed: 01/01/2023]
Abstract
Propagation of patterns of gene expression through the cell cycle requires prompt restoration of epigenetic marks after the twofold dilution caused by DNA replication. Here we show that the transcriptional repressive mark H3K27me3 (histone H3 lysine 27 trimethylation) is restored in replicating plant cells through DNA replication-coupled modification of histone variant H3.1. Plants evolved a mechanism for efficient K27 trimethylation on H3.1, which is essential for inheritance of the silencing memory from mother to daughter cells. We illustrate how this mechanism establishes H3K27me3-mediated silencing during the developmental transition to flowering. Our study reveals a mechanism responsible for transmission of H3K27me3 in plant cells through cell divisions, enabling H3K27me3 to function as an epigenetic mark.
Collapse
Affiliation(s)
- Danhua Jiang
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
160
|
Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis. Nat Genet 2017; 49:1546-1552. [DOI: 10.1038/ng.3937] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/21/2017] [Indexed: 12/12/2022]
|
161
|
Yang H, Berry S, Olsson TSG, Hartley M, Howard M, Dean C. Distinct phases of Polycomb silencing to hold epigenetic memory of cold in Arabidopsis. Science 2017; 357:1142-1145. [PMID: 28818969 DOI: 10.1126/science.aan1121] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/27/2017] [Accepted: 06/29/2017] [Indexed: 12/30/2022]
Abstract
Gene silencing by Polycomb complexes is central to eukaryotic development. Cold-induced epigenetic repression of FLOWERING LOCUS C (FLC) in the plant Arabidopsis provides an opportunity to study initiation and maintenance of Polycomb silencing. Here, we show that a subset of Polycomb repressive complex 2 factors nucleate silencing in a small region within FLC, locally increasing H3K27me3 levels. This nucleation confers a silenced state that is metastably inherited, with memory held in the local chromatin. Metastable memory is then converted to stable epigenetic silencing through separate Polycomb factors, which spread across the locus after cold to enlarge the domain that contains H3K27me3. Polycomb silencing at FLC thus has mechanistically distinct phases, which involve specialization of distinct Polycomb components to deliver first metastable then long-term epigenetic silencing.
Collapse
Affiliation(s)
- Hongchun Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Scott Berry
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.,Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Tjelvar S G Olsson
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew Hartley
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
162
|
Abstract
Our understanding of the detailed molecular mechanisms underpinning adaptation is still poor. One example for which mechanistic understanding of regulation has converged with studies of life history variation is Arabidopsis thaliana FLOWERING LOCUS C (FLC). FLC determines the need for plants to overwinter and their ability to respond to prolonged cold in a process termed vernalization. This review highlights how molecular analysis of vernalization pathways has revealed important insight into antisense-mediated chromatin silencing mechanisms that regulate FLC. In turn, such insight has enabled molecular dissection of the diversity in vernalization across natural populations of A. thaliana. Changes in both cotranscriptional regulation and epigenetic silencing of FLC are caused by noncoding polymorphisms at FLC. The FLC locus is therefore providing important concepts for how noncoding transcription and chromatin regulation influence gene expression and how these mechanisms can vary to underpin adaptation in natural populations.
Collapse
Affiliation(s)
- Charles Whittaker
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom;
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom;
| |
Collapse
|
163
|
Kiefer C, Severing E, Karl R, Bergonzi S, Koch M, Tresch A, Coupland G. Divergence of annual and perennial species in the Brassicaceae and the contribution of cis-acting variation at FLC orthologues. Mol Ecol 2017; 26:3437-3457. [PMID: 28261921 PMCID: PMC5485006 DOI: 10.1111/mec.14084] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 12/31/2022]
Abstract
Variation in life history contributes to reproductive success in different environments. Divergence of annual and perennial angiosperm species is an extreme example that has occurred frequently. Perennials survive for several years and restrict the duration of reproduction by cycling between vegetative growth and flowering, whereas annuals live for 1 year and flower once. We used the tribe Arabideae (Brassicaceae) to study the divergence of seasonal flowering behaviour among annual and perennial species. In perennial Brassicaceae, orthologues of FLOWERING LOCUS C (FLC), a floral inhibitor in Arabidopsis thaliana, are repressed by winter cold and reactivated in spring conferring seasonal flowering patterns, whereas in annuals, they are stably repressed by cold. We isolated FLC orthologues from three annual and two perennial Arabis species and found that the duplicated structure of the A. alpina locus is not required for perenniality. The expression patterns of the genes differed between annuals and perennials, as observed among Arabidopsis species, suggesting a broad relevance of these patterns within the Brassicaceae. Also analysis of plants derived from an interspecies cross of A. alpina and annual A. montbretiana demonstrated that cis-regulatory changes in FLC orthologues contribute to their different transcriptional patterns. Sequence comparisons of FLC orthologues from annuals and perennials in the tribes Arabideae and Camelineae identified two regulatory regions in the first intron whose sequence variation correlates with divergence of the annual and perennial expression patterns. Thus, we propose that related cis-acting changes in FLC orthologues occur independently in different tribes of the Brassicaceae during life history evolution.
Collapse
Affiliation(s)
- C Kiefer
- Max Planck Institute for Plant Breeding Research, Plant Developmental Biology, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - E Severing
- Max Planck Institute for Plant Breeding Research, Plant Developmental Biology, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - R Karl
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, INF 345, 69120, Heidelberg, Germany
| | - S Bergonzi
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - M Koch
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, INF 345, 69120, Heidelberg, Germany
| | - A Tresch
- Max Planck Institute for Plant Breeding Research, Plant Developmental Biology, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cologne Biocenter, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - G Coupland
- Max Planck Institute for Plant Breeding Research, Plant Developmental Biology, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| |
Collapse
|
164
|
Lämke J, Bäurle I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol 2017; 18:124. [PMID: 28655328 PMCID: PMC5488299 DOI: 10.1186/s13059-017-1263-6] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Plants frequently have to weather both biotic and abiotic stressors, and have evolved sophisticated adaptation and defense mechanisms. In recent years, chromatin modifications, nucleosome positioning, and DNA methylation have been recognized as important components in these adaptations. Given their potential epigenetic nature, such modifications may provide a mechanistic basis for a stress memory, enabling plants to respond more efficiently to recurring stress or even to prepare their offspring for potential future assaults. In this review, we discuss both the involvement of chromatin in stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory.
Collapse
Affiliation(s)
- Jörn Lämke
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Isabel Bäurle
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany.
| |
Collapse
|
165
|
Alternative Splicing in Plant Genes: A Means of Regulating the Environmental Fitness of Plants. Int J Mol Sci 2017; 18:ijms18020432. [PMID: 28230724 PMCID: PMC5343966 DOI: 10.3390/ijms18020432] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/04/2017] [Accepted: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
Gene expression can be regulated through transcriptional and post-transcriptional mechanisms. Transcription in eukaryotes produces pre-mRNA molecules, which are processed and spliced post-transcriptionally to create translatable mRNAs. More than one mRNA may be produced from a single pre-mRNA by alternative splicing (AS); thus, AS serves to diversify an organism’s transcriptome and proteome. Previous studies of gene expression in plants have focused on the role of transcriptional regulation in response to environmental changes. However, recent data suggest that post-transcriptional regulation, especially AS, is necessary for plants to adapt to a changing environment. In this review, we summarize recent advances in our understanding of AS during plant development in response to environmental changes. We suggest that alternative gene splicing is a novel means of regulating the environmental fitness of plants.
Collapse
|
166
|
|
167
|
Li J, Wang Z, Hu Y, Cao Y, Ma L. Polycomb Group Proteins RING1A and RING1B Regulate the Vegetative Phase Transition in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:867. [PMID: 28596781 PMCID: PMC5443144 DOI: 10.3389/fpls.2017.00867] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/09/2017] [Indexed: 05/18/2023]
Abstract
Polycomb group (PcG) protein-mediated gene silencing is a major regulatory mechanism in higher eukaryotes that affects gene expression at the transcriptional level. Here, we report that two conserved homologous PcG proteins, RING1A and RING1B (RING1A/B), are required for global H2A monoubiquitination (H2Aub) in Arabidopsis. The mutation of RING1A/B increased the expression of members of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family and caused an early vegetative phase transition. The early vegetative phase transition observed in ring1a ring1b double mutant plants was dependent on an SPL family gene, and the H2Aub status of the chromatin at SPL locus was dependent on RING1A/B. Moreover, mutation in RING1A/B affected the miRNA156a-mediated vegetative phase transition, and RING1A/B and the AGO7-miR390-TAS3 pathway were found to additively regulate this transition in Arabidopsis. Together, our results demonstrate that RING1A/B regulates the vegetative phase transition in Arabidopsis through the repression of SPL family genes.
Collapse
|
168
|
Kwak JS, Son GH, Song JT, Seo HS. Post-translational modifications of FLOWERING LOCUS C modulate its activity. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:383-389. [PMID: 28204510 DOI: 10.1093/jxb/erw431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Flowering Locus C (FLC) is a key floral repressor that precisely controls flowering time. The role of FLC has been extensively studied at the transcriptional level using molecular biological and epigenetic approaches. However, how FLC functions and how its stability is controlled at the post-translational level are only beginning to be understood. Recent studies show that various post-translational modifications (PTMs) control the stability and activity of FLC. In this review, we focus on three types of PTMs that regulate FLC function: phosphorylation, ubiquitination, and sumoylation. This report should serve as a model to guide post-translational studies of other important floral regulators.
Collapse
Affiliation(s)
- Jun Soo Kwak
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Ga Hyun Son
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Hak Soo Seo
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
169
|
H3K27 methylation: a promiscuous repressive chromatin mark. Curr Opin Genet Dev 2016; 43:31-37. [PMID: 27940208 DOI: 10.1016/j.gde.2016.11.001] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/21/2016] [Accepted: 11/04/2016] [Indexed: 12/24/2022]
Abstract
Polycomb Repressive Complex 2 (PRC2) is a multiprotein complex that catalyzes the methylation of lysine 27 on histone H3 (H3K27me). This histone modification is a feature of facultative heterochromatin in many eukaryotes and maintains transcriptional repression established during early development. Understanding how PRC2 targets regions of the genome to be methylated remains poorly understood. Different cell types can show disparate patterns of H3K27me, and chromatin perturbations, such as loss of marks of constitutive heterochromatin, can cause redistribution of H3K27me, implying that DNA sequence, per se, is not sufficient to define the distribution of this mark. Emerging information supports the idea that the chromatin context-including histone modifications, DNA methylation, transcription, chromatin structure and organization within the nucleus-informs PRC2 target selection.
Collapse
|
170
|
Xiao J, Lee US, Wagner D. Tug of war: adding and removing histone lysine methylation in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:41-53. [PMID: 27614255 DOI: 10.1016/j.pbi.2016.08.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/11/2016] [Accepted: 08/24/2016] [Indexed: 05/17/2023]
Abstract
Histone lysine methylation plays a fundamental role in the epigenetic regulation of gene expression in multicellular eukaryotes, including plants. It shapes plant developmental and growth programs as well as responses to the environment. The methylation status of certain amino-acids, in particular of the histone 3 (H3) lysine tails, is dynamically controlled by opposite acting histone methyltransferase 'writers' and histone demethylase 'erasers'. The methylation status is interpreted by a third set of proteins, the histone modification 'readers', which specifically bind to a methylated amino-acid on the H3 tail. Histone methylation writers, readers, and erasers themselves are regulated by intrinsic or extrinsic stimuli; this forms a feedback loop that contributes to development and environmental adaptation in Arabidopsis and other plants. Recent studies have expanded our knowledge regarding the biological roles and dynamic regulation of histone methylation. In this review, we will discuss recent advances in understanding the regulation and roles of histone methylation in plants and animals.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Un-Sa Lee
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
171
|
Yuan W, Luo X, Li Z, Yang W, Wang Y, Liu R, Du J, He Y. A cis cold memory element and a trans epigenome reader mediate Polycomb silencing of FLC by vernalization in Arabidopsis. Nat Genet 2016; 48:1527-1534. [DOI: 10.1038/ng.3712] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022]
|