151
|
Ngomba RT, Lüttjohann A, Dexter A, Ray S, van Luijtelaar G. The Metabotropic Glutamate 5 Receptor in Sleep and Wakefulness: Focus on the Cortico-Thalamo-Cortical Oscillations. Cells 2023; 12:1761. [PMID: 37443795 PMCID: PMC10341329 DOI: 10.3390/cells12131761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Sleep is an essential innate but complex behaviour which is ubiquitous in the animal kingdom. Our knowledge of the distinct neural circuit mechanisms that regulate sleep and wake states in the brain are, however, still limited. It is therefore important to understand how these circuits operate during health and disease. This review will highlight the function of mGlu5 receptors within the thalamocortical circuitry in physiological and pathological sleep states. We will also evaluate the potential of targeting mGlu5 receptors as a therapeutic strategy for sleep disorders that often co-occur with epileptic seizures.
Collapse
Affiliation(s)
| | - Annika Lüttjohann
- Institute of Physiology I, University of Münster, 48149 Münster, Germany
| | - Aaron Dexter
- School of Pharmacy, University of Lincoln, Lincoln LN6 7DL, UK
| | - Swagat Ray
- Department of Life Sciences, School of Life and Environmental Sciences, University of Lincoln, Lincoln LN6 7DL, UK
| | | |
Collapse
|
152
|
Sharma A, Narasimha K, Manjithaya R, Sheeba V. Restoration of Sleep and Circadian Behavior by Autophagy Modulation in Huntington's Disease. J Neurosci 2023; 43:4907-4925. [PMID: 37268416 PMCID: PMC10312063 DOI: 10.1523/jneurosci.1894-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/25/2023] [Accepted: 02/16/2023] [Indexed: 06/04/2023] Open
Abstract
Circadian and sleep defects are well documented in Huntington's disease (HD). Modulation of the autophagy pathway has been shown to mitigate toxic effects of mutant Huntingtin (HTT) protein. However, it is not clear whether autophagy induction can also rescue circadian and sleep defects. Using a genetic approach, we expressed human mutant HTT protein in a subset of Drosophila circadian neurons and sleep center neurons. In this context, we examined the contribution of autophagy in mitigating toxicity caused by mutant HTT protein. We found that targeted overexpression of an autophagy gene, Atg8a in male flies, induces autophagy pathway and partially rescues several HTT-induced behavioral defects, including sleep fragmentation, a key hallmark of many neurodegenerative disorders. Using cellular markers and genetic approaches, we demonstrate that indeed the autophagy pathway is involved in behavioral rescue. Surprisingly, despite behavioral rescue and evidence for the involvement of the autophagy pathway, the large visible aggregates of mutant HTT protein were not eliminated. We show that the rescue in behavior is associated with increased mutant protein aggregation and possibly enhanced output from the targeted neurons, resulting in the strengthening of downstream circuits. Overall, our study suggests that, in the presence of mutant HTT protein, Atg8a induces autophagy and improves the functioning of circadian and sleep circuits.SIGNIFICANCE STATEMENT Defects in sleep and circadian rhythms are well documented in Huntington's disease. Recent literature suggests that circadian and sleep disturbances can exacerbate neurodegenerative phenotypes. Hence, identifying potential modifiers that can improve the functioning of these circuits could greatly improve disease management. We used a genetic approach to enhance cellular proteostasis and found that overexpression of a crucial autophagy gene, Atg8a, induces the autophagy pathway in the Drosophila circadian and sleep neurons and rescues sleep and activity rhythm. We demonstrate that the Atg8a improves synaptic function of these circuits by possibly enhancing the aggregation of the mutant protein in neurons. Further, our results suggest that differences in basal levels of protein homeostatic pathways is a factor that determines selective susceptibility of neurons.
Collapse
Affiliation(s)
- Ankit Sharma
- Chronobiology and Behavioural Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Kavyashree Narasimha
- Chronobiology and Behavioural Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Vasu Sheeba
- Chronobiology and Behavioural Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| |
Collapse
|
153
|
Versace S, Pellitteri G, Sperotto R, Tartaglia S, Da Porto A, Catena C, Gigli GL, Cavarape A, Valente M. A State-of-Art Review of the Vicious Circle of Sleep Disorders, Diabetes and Neurodegeneration Involving Metabolism and Microbiota Alterations. Int J Mol Sci 2023; 24:10615. [PMID: 37445790 DOI: 10.3390/ijms241310615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
In the context of neurodegenerative disorders, cognitive decline is frequently reported in older population. Recently, numerous metabolic pathways have been implicated in neurodegeneration, including signaling disruption of insulin and other glucose-regulating hormones. In fact, Alzheimer's disease has now been considered as "type-3 diabetes". In this review, we tried to clarify the role of sleep impairment as the third major player in the complex relationship between metabolic and neurodegenerative diseases. Altered sleep may trigger or perpetuate these vicious mechanisms, leading to the development of both dementia and type 2 diabetes mellitus. Finally, we analyzed these reciprocal interactions considering the emerging role of the gut microbiota in modulating the same processes. Conditions of dysbiosis have been linked to circadian rhythm disruption, metabolic alterations, and release of neurotoxic products, all contributing to neurodegeneration. In a future prospective, gut microbiota could provide a major contribution in explaining the tangled relationship between sleep disorders, dementia and diabetes.
Collapse
Affiliation(s)
- Salvatore Versace
- Clinical Neurology, Udine University Hospital, Piazza Santa Maria della Misericordia, 15, 33100 Udine, Italy
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Gaia Pellitteri
- Clinical Neurology, Udine University Hospital, Piazza Santa Maria della Misericordia, 15, 33100 Udine, Italy
| | - Roberto Sperotto
- Clinical Neurology, Udine University Hospital, Piazza Santa Maria della Misericordia, 15, 33100 Udine, Italy
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Sara Tartaglia
- Clinical Neurology, Udine University Hospital, Piazza Santa Maria della Misericordia, 15, 33100 Udine, Italy
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Andrea Da Porto
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
- Internal Medicine, Udine University Hospital, 33100 Udine, Italy
| | - Cristiana Catena
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
- Internal Medicine, Udine University Hospital, 33100 Udine, Italy
| | - Gian Luigi Gigli
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Alessandro Cavarape
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
- Internal Medicine, Udine University Hospital, 33100 Udine, Italy
| | - Mariarosaria Valente
- Clinical Neurology, Udine University Hospital, Piazza Santa Maria della Misericordia, 15, 33100 Udine, Italy
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| |
Collapse
|
154
|
Aslanyan V, Ortega N, Fenton L, Harrison TM, Raman R, Mack WJ, Pa J. Protective effects of sleep duration and physical activity on cognitive performance are influenced by β-amyloid and brain volume but not tau burden among cognitively unimpaired older adults. Neuroimage Clin 2023; 39:103460. [PMID: 37379733 PMCID: PMC10316126 DOI: 10.1016/j.nicl.2023.103460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND OBJECTIVES Sleep and physical activity have gained traction as modifiable risk factors for Alzheimer's disease. Sleep duration is linked to amyloid-β clearance while physical activity is associated with brain volume maintenance. We investigate how sleep duration and physical activity are associated with cognition by testing if the associations between sleep duration or physical activity to cognition are explained by amyloid-β burden and brain volume, respectively. Additionally, we explore the mediating role of tau deposition in sleep duration-cognition and physical activity-cognition relationships. METHODS This cross-sectional study obtained data from participants in the Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease (A4) study, a randomized clinical trial. In trial screening, cognitively unimpaired participants (age 65-85 years) underwent amyloid PET and brain MRI; APOE genotype and lifestyle questionnaire data were obtained. Cognitive performance was assessed using the Preclinical Alzheimer Cognitive Composite (PACC). Self-reported nightly sleep duration and weekly physical activity were the primary predictors. Regional Aβ and tau pathologies and volumes were the proposed variables influencing relationships between sleep duration or physical activity and cognition. RESULTS Aβ data were obtained from 4322 participants (1208 with MRI, 59% female, 29% amyloid positive). Sleep duration was associated with a Aβ composite score (β = -0.005, CI: (-0.01, -0.001)) and Aβ burden in the anterior cingulate (ACC) (β = -0.012, CI: (-0.017, -0.006)) and medial orbitofrontal cortices (MOC) (β = -0.009, CI: (-0.014, -0.005)). Composite (β = -1.54, 95% CI:(-1.93, -1.15)), ACC (β = -1.22, CI:(-1.54, -0.90)) and MOC (β = -1.44, CI:(-1.86, -1.02)) Aβ deposition was associated with PACC. Sleep duration-PACC association was explained by Aβ burden in path analyses. Physical activity was associated with hippocampal (β = 10.57, CI: (1.06, 20.08)), parahippocampal (β = 9.3, CI: (1.69, 16.91)), entorhinal (β = 14.68, CI: (1.75, 27.61), and fusiform gyral (β = 38.38, CI: (5.57, 71.18)) volumes, which were positively associated with PACC (p < 0.02 for hippocampus, entorhinal cortex and fusiform gyrus). Physical activity-cognition relationship was explained by regional volumes. PET tau imaging was available for 443 participants. No direct sleep duration-tau burden, physical activity by tau burden, or mediation by regional tau was observed in sleep duration-cognition or physical activity-cognition relationships. DISCUSSION Sleep duration and physical activity are associated with cognition through independent paths of brain Aβ and brain volume, respectively. These findings implicate neural and pathological mechanisms for the relationships between sleep duration and physical activity on cognition. Dementia risk reduction approaches that emphasize the adequate sleep duration and a physically active lifestyle may benefit those with risk for Alzheimer's disease.
Collapse
Affiliation(s)
- Vahan Aslanyan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Nancy Ortega
- Alzheimer's Disease Cooperative Study (ADCS), Department of Neurosciences, University of California, San Diego, CA 92121, USA
| | - Laura Fenton
- Department of Psychology, USC Dornsife College of Letters, Arts, and Sciences, Los Angeles, CA 90089, USA
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Rema Raman
- Alzheimer Therapeutic Research Institute, Keck School of Medicine, University of Southern California, San Diego, CA 92093, USA
| | - Wendy J Mack
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Judy Pa
- Alzheimer's Disease Cooperative Study (ADCS), Department of Neurosciences, University of California, San Diego, CA 92121, USA.
| |
Collapse
|
155
|
Xia TJ, Wang Z, Jin SW, Liu XM, Liu YG, Zhang SS, Pan RL, Jiang N, Liao YH, Yan MZ, Du LD, Chang Q. Melatonin-related dysfunction in chronic restraint stress triggers sleep disorders in mice. Front Pharmacol 2023; 14:1210393. [PMID: 37408758 PMCID: PMC10318904 DOI: 10.3389/fphar.2023.1210393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023] Open
Abstract
Stress may trigger sleep disorders and are also risk factors for depression. The study explored the melatonin-related mechanisms of stress-associated sleep disorders on a mouse model of chronic stress by exploring the alteration in sleep architecture, melatonin, and related small molecule levels, transcription and expression of melatonin-related genes as well as proteins. Mice undergoing chronic restraint stress modeling for 28 days showed body weight loss and reduced locomotor activity. Sleep fragmentation, circadian rhythm disorders, and insomnia exhibited in CRS-treated mice formed sleep disorders. Tryptophan and 5-hydroxytryptamine levels were increased in the hypothalamus, while melatonin level was decreased. The transcription and expression of melatonin receptors were reduced, and circadian rhythm related genes were altered. Expression of downstream effectors to melatonin receptors was also affected. These results identified sleep disorders in a mice model of chronic stress. The alteration of melatonin-related pathways was shown to trigger sleep disorders.
Collapse
Affiliation(s)
- Tian-Ji Xia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Su-Wei Jin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Min Liu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Yong-Guang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan-Shan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui-Le Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong-Hong Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Zhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Da Du
- Institute of Molecular Medicine and Innovative Pharmaceutics, Qingdao University, Qingdao, China
- Department of Surgery, University of Toronto, Toronto, TO, Canada
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
156
|
Gerstner JR, Flores CC, Lefton M, Rogers B, Davis CJ. FABP7: a glial integrator of sleep, circadian rhythms, plasticity, and metabolic function. Front Syst Neurosci 2023; 17:1212213. [PMID: 37404868 PMCID: PMC10315501 DOI: 10.3389/fnsys.2023.1212213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
Sleep and circadian rhythms are observed broadly throughout animal phyla and influence neural plasticity and cognitive function. However, the few phylogenetically conserved cellular and molecular pathways that are implicated in these processes are largely focused on neuronal cells. Research on these topics has traditionally segregated sleep homeostatic behavior from circadian rest-activity rhythms. Here we posit an alternative perspective, whereby mechanisms underlying the integration of sleep and circadian rhythms that affect behavioral state, plasticity, and cognition reside within glial cells. The brain-type fatty acid binding protein, FABP7, is part of a larger family of lipid chaperone proteins that regulate the subcellular trafficking of fatty acids for a wide range of cellular functions, including gene expression, growth, survival, inflammation, and metabolism. FABP7 is enriched in glial cells of the central nervous system and has been shown to be a clock-controlled gene implicated in sleep/wake regulation and cognitive processing. FABP7 is known to affect gene transcription, cellular outgrowth, and its subcellular localization in the fine perisynaptic astrocytic processes (PAPs) varies based on time-of-day. Future studies determining the effects of FABP7 on behavioral state- and circadian-dependent plasticity and cognitive processes, in addition to functional consequences on cellular and molecular mechanisms related to neural-glial interactions, lipid storage, and blood brain barrier integrity will be important for our knowledge of basic sleep function. Given the comorbidity of sleep disturbance with neurological disorders, these studies will also be important for our understanding of the etiology and pathophysiology of how these diseases affect or are affected by sleep.
Collapse
Affiliation(s)
- Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Micah Lefton
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Brooke Rogers
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
157
|
Du XF, Li FN, Peng XL, Xu B, Zhang Y, Li G, Liu T, Li Y, Wang H, Yan J, Du JL. Circadian regulation of developmental synaptogenesis via the hypocretinergic system. Nat Commun 2023; 14:3195. [PMID: 37268623 DOI: 10.1038/s41467-023-38973-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/24/2023] [Indexed: 06/04/2023] Open
Abstract
The circadian clock orchestrates a wide variety of physiological and behavioral processes, enabling animals to adapt to daily environmental changes, particularly the day-night cycle. However, the circadian clock's role in the developmental processes remains unclear. Here, we employ the in vivo long-term time-lapse imaging of retinotectal synapses in the optic tectum of larval zebrafish and reveal that synaptogenesis, a fundamental developmental process for neural circuit formation, exhibits circadian rhythm. This rhythmicity arises primarily from the synapse formation rather than elimination and requires the hypocretinergic neural system. Disruption of this synaptogenic rhythm, by impairing either the circadian clock or the hypocretinergic system, affects the arrangement of the retinotectal synapses on axon arbors and the refinement of the postsynaptic tectal neuron's receptive field. Thus, our findings demonstrate that the developmental synaptogenesis is under hypocretin-dependent circadian regulation, suggesting an important role of the circadian clock in neural development.
Collapse
Affiliation(s)
- Xu-Fei Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, 200031, Shanghai, China.
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, 100049, Beijing, China.
| | - Fu-Ning Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, 100049, Beijing, China
| | - Xiao-Lan Peng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, 200031, Shanghai, China
| | - Bing Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, 200031, Shanghai, China
| | - Yu Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, 200031, Shanghai, China
| | - Guang Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, 200031, Shanghai, China
| | - Taole Liu
- Center for Circadian Clocks, Soochow University, 215123, Suzhou, Jiangsu, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Ying Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, 200031, Shanghai, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, 215123, Suzhou, Jiangsu, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, 100049, Beijing, China
| | - Jiu-Lin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, 200031, Shanghai, China.
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, 100049, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, 319 Yue-Yang Road, 200031, Shanghai, China.
| |
Collapse
|
158
|
Gao L, Li P, Gaykova N, Zheng X, Gao C, Lane JM, Saxena R, Scheer FAJL, Rutter MK, Akeju O, Hu K. Circadian Rest-Activity Rhythms, Delirium Risk, and Progression to Dementia. Ann Neurol 2023; 93:1145-1157. [PMID: 36808743 PMCID: PMC10247440 DOI: 10.1002/ana.26617] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
OBJECTIVE Delirium is a complex neurocognitive syndrome suspected to be bidirectionally linked to dementia. Circadian rhythm disturbances likely contribute to dementia pathogenesis, but whether these disturbances are related to delirium risk and progression to all-cause dementia is unknown. METHODS We analyzed continuous actigraphy data from 53,417 middle-aged or older UK Biobank participants during a median 5 years of follow-up. Four measures were used to characterize the 24-hour daily rest-activity rhythms (RARs): normalized amplitude, acrophase representing the peak activity time, interdaily stability, and intradaily variability (IV) for fragmentation of the rhythm. Cox proportional hazards models examined whether RARs predicted incident delirium (n = 551) and progression to dementia (n = 61). RESULTS Suppressed 24-hour amplitude, lowest (Q1) versus highest (Q4) quartile (hazard ratio [HR]Q1 vs Q4 = 1.94, 95% confidence interval [CI] = 1.53-2.46, p < 0.001), and more fragmented (higher IV: HRQ4 vs Q1 = 1.49, 95% CI = 1.18-1.88, p < 0.001) rhythms predicted higher delirium risk, after adjusting for age, sex, education, cognitive performance, sleep duration/disturbances, and comorbidities. In those free from dementia, each hour of delayed acrophase was associated with delirium risk (HR = 1.13, 95% CI = 1.04-1.23, p = 0.003). Suppressed 24-hour amplitude was associated with increased risk of progression from delirium to new onset dementia (HR = 1.31, 95% CI = 1.03-1.67, p = 0.03 for each 1-standard deviation decrease). INTERPRETATION Twenty-four-hour daily RAR suppression, fragmentation, and potentially delayed acrophase were associated with delirium risk. Subsequent progression to dementia was more likely in delirium cases with suppressed rhythms. The presence of RAR disturbances before delirium and prior to progression to dementia suggests that these disturbances may predict higher risk and be involved in early disease pathogenesis. ANN NEUROL 2023;93:1145-1157.
Collapse
Affiliation(s)
- Lei Gao
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Peng Li
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Nicole Gaykova
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Xi Zheng
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Chenlu Gao
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Jacqueline M Lane
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Richa Saxena
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Frank A J L Scheer
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Martin K Rutter
- Division of Diabetes, Endocrinology, and Gastroenterology, University of Manchester, Manchester, UK
- Diabetes Endocrinology and Metabolism Centre, Manchester University National Health Service Foundation Trust, Manchester, UK
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kun Hu
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| |
Collapse
|
159
|
Bormes G, Love J, Akeju O, Cherry J, Kunorozva L, Qadri S, Rahman SA, Westover B, Winkelman J, Lane JM. Self-Directed Home-Based Dim-Light Melatonin Onset Collection: The Circadia Pilot Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.26.23290467. [PMID: 37398260 PMCID: PMC10312844 DOI: 10.1101/2023.05.26.23290467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Study Objectives To test the feasibility of a novel at-home salivary Dim Light Melatonin Onset (DLMO) assessment protocol to measure the endogenous circadian phase of 10 individuals ( 1 Advanced Sleep-Wake Phase Disorder patient (ASWPD), 4 Delayed Sleep-Wake Phase Disorder patients (DSWPD), and 5 controls). Methods The study involved 10 participants (sex at birth: females = 9; male= 1), who ranged between 27 to 63 years old, with an average age of 38 years old. Our study population consisted of 7 individuals who identified as white and 3 who identified as Asian. Our participants were diverse in gender identity (woman = 7, male = 1, transgender = 1, nonbinary = 1, none = 1).The study tracked the sleep and activity patterns of 10 individuals over a 5-6 week period using self-reported online sleep diaries and objective actigraphy data. Participants completed two self-directed DLMO assessments, approximately one week apart, adhering to objective compliance measures. Participants completed the study entirely remotely: they completed all sleep diaries and other evaluations online and were mailed a kit with all materials needed to perform the actigraphy and at-home sample collections. Results Salivary DLMO times were calculated for 8/10 participants using the Hockeystick method. DLMO times were on average 3 hours and 18 minutes earlier than self-reported sleep onset times (DSPD: 12:04 AM, controls: 9:55 PM.) Among the 6 participants for whom we calculated two separate DLMO times, DLMOs 1 and 2 were 96% correlated (p<0.0005.). Conclusions Our results indicate that self-directed, at-home DLMO assessments are feasible and accurate. The current protocol may serve as a framework to reliably assess circadian phase in both clinical and general populations.
Collapse
Affiliation(s)
- Gregory Bormes
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA USA
| | - Jessica Love
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA USA
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA USA
| | - Jakob Cherry
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA USA
| | - Lovemore Kunorozva
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA USA
- Harvard Medical School, Boston, MA USA
| | - Salim Qadri
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA USA
| | - Shadab A Rahman
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA USA
| | - Brandon Westover
- Department of Neurology and Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - John Winkelman
- Harvard Medical School, Boston, MA USA
- Department of Neurology and Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Jacqueline M Lane
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA USA
- Medical and Population Genetics, Broad Institute, Cambridge, MA USA
| |
Collapse
|
160
|
Petersen RB, Walter B. Editorial: Insights into Parkinson's disease and aging related movement disorders. Front Aging Neurosci 2023; 15:1193197. [PMID: 37266403 PMCID: PMC10231216 DOI: 10.3389/fnagi.2023.1193197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Affiliation(s)
- Robert B. Petersen
- College of Medicine, Central Michigan University, Mt. Pleasant, MI, United States
| | | |
Collapse
|
161
|
Meng D, Yang M, Zhang H, Zhang L, Song H, Liu Y, Zeng Y, Yang B, Wang X, Chen Y, Liu R. Microglia activation mediates circadian rhythm disruption-induced cognitive impairment in mice. J Neuroimmunol 2023; 379:578102. [PMID: 37196595 DOI: 10.1016/j.jneuroim.2023.578102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and there are no effective treatments for this disease currently. Circadian rhythm disruption (CRD) is a hallmark of modern society that appears to be on the rise. It is well reported that AD is associated with disrupted circadian functioning and CRD can impair cognitive function. However, the cellular mechanisms underlying CRD-associated cognitive decline remain elusive. In this study, we investigated whether microglia are involved in CRD-induced cognitive decline. We established experimental 'jet lag' (phase delay of the light/dark cycles)-induced CRD mouse model and observed significant impairment of spatial learning and memory function in these mice. In the brain, CRD resulted in neuroinflammation, which was characterized by microglia activation and increased pro-inflammatory cytokine production, impairments in neurogenesis and reduction of synaptic proteins in the hippocampus. Interestingly, elimination of microglia with the colony stimulating factor-1 receptor inhibitor PLX3397 prevented CRD-induced neuroinflammation, cognitive decline, impairment of neurogenesis and loss of synaptic proteins. These findings collectively suggest that microglia activation plays a key role in CRD-induced cognitive deficit most likely through neuroinflammation-mediated impairments in adult neurogenesis and synapses.
Collapse
Affiliation(s)
- Dongli Meng
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengzhe Yang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiliang Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lun Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyue Song
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zeng
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Yang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Chen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rong Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
162
|
Khezri MR, Ghasemnejad-Berenji M. Gut microbiota and circadian rhythm in Alzheimer's disease pathophysiology: a review and hypothesis on their association. NPJ AGING 2023; 9:9. [PMID: 37130863 PMCID: PMC10154390 DOI: 10.1038/s41514-023-00104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/15/2023] [Indexed: 05/04/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and the leading cause of dementia worldwide. Different pathologic changes have been introduced to be involved in its progression. Although amyloid-β (Aβ) deposition and tau hyperphosphorylation and aggregation are mainly considered the main characterizations of AD, several other processes are involved. In recent years, several other changes, including alterations in gut microbiota proportion and circadian rhythms, have been noticed due to their role in AD progression. However, the exact mechanism indicating the association between circadian rhythms and gut microbiota abundance has not been investigated yet. This paper aims to review the role of gut microbiota and circadian rhythm in AD pathophysiology and introduces a hypothesis to explain their association.
Collapse
Affiliation(s)
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
163
|
Ma Y, Chang MC, Litrownik D, Wayne PM, Yeh GY. Day-night patterns in heart rate variability and complexity: differences with age and cardiopulmonary disease. J Clin Sleep Med 2023; 19:873-882. [PMID: 36692177 PMCID: PMC10152358 DOI: 10.5664/jcsm.10434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 01/25/2023]
Abstract
STUDY OBJECTIVES Heart rate variability (HRV) measures provide valuable insights into physiology; however, gaps remain in understanding circadian patterns in heart rate dynamics. We aimed to explore day-night differences in heart rate dynamics in patients with chronic cardiopulmonary disease compared with healthy controls. METHODS Using 24-hour heart rate data from patients with chronic obstructive pulmonary disease (COPD) and/or heart failure (n = 16) and healthy adult controls (older group: ≥50 years, n = 42; younger group: 20-49 years, n = 136), we compared day-night differences in conventional time and frequency domain HRV indices and a multiscale-entropy-based complexity index (CI1-20) of HRV among the 3 groups. RESULTS Twenty-four-hour HRV showed significant day-night differences (marked with "△") among younger healthy (mean age: 34.5 years), older healthy (mean age: 61.6 years), and cardiopulmonary patients (mean age: 68.4 years), including change in percentage of adjacent intervals that differ > 50 ms (△pNN50), high frequency (△HF), normalized low frequency (△nLF), ratio (△LF/HF), and △CI1-20. Among these, △LF/HF (2.13 ± 2.35 vs 1.1 ± 2.47 vs -0.35 ± 1.25; P < .001) and △CI1-20 (0.15 ± 0.24 vs 0.02 ± 0.28 vs -0.21 ± 0.27; P < .001) were significant in each pairwise comparison following analysis of variance tests. Average CI1-20 was highest in younger healthy individuals and lowest in cardiopulmonary patients (1.37 ± 0.12 vs 1.01 ± 0.27; P < .001). Younger healthy patients showed a heart rate complexity dipping pattern (night < day), older healthy patients showed nondipping, and cardiopulmonary patients showed reverse dipping (night > day). CONCLUSIONS As measures of 24-hour variability, traditional and complexity-based metrics of HRV exhibit large day-night differences in healthy individuals; these differences are blunted, or even reversed, in individuals with cardiopulmonary pathology. Measures of diurnal dynamics may be useful indices of reduced adaptive capacity in patients with cardiopulmonary conditions. CITATION Ma Y, Chang M-C, Litrownik D, Wayne PM, Yeh GY. Day-night patterns in heart rate variability and complexity: differences with age and cardiopulmonary disease. J Clin Sleep Med. 2023;19(5):873-882.
Collapse
Affiliation(s)
- Yan Ma
- Osher Center for Integrative Medicine, Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mei-Chu Chang
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Daniel Litrownik
- Osher Center for Integrative Medicine, Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Division of General Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Peter M. Wayne
- Osher Center for Integrative Medicine, Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gloria Y. Yeh
- Osher Center for Integrative Medicine, Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Division of General Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
164
|
Ma XY, Yang TT, Liu L, Peng XC, Qian F, Tang FR. Ependyma in Neurodegenerative Diseases, Radiation-Induced Brain Injury and as a Therapeutic Target for Neurotrophic Factors. Biomolecules 2023; 13:754. [PMID: 37238624 PMCID: PMC10216700 DOI: 10.3390/biom13050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The neuron loss caused by the progressive damage to the nervous system is proposed to be the main pathogenesis of neurodegenerative diseases. Ependyma is a layer of ciliated ependymal cells that participates in the formation of the brain-cerebrospinal fluid barrier (BCB). It functions to promotes the circulation of cerebrospinal fluid (CSF) and the material exchange between CSF and brain interstitial fluid. Radiation-induced brain injury (RIBI) shows obvious impairments of the blood-brain barrier (BBB). In the neuroinflammatory processes after acute brain injury, a large amount of complement proteins and infiltrated immune cells are circulated in the CSF to resist brain damage and promote substance exchange through the BCB. However, as the protective barrier lining the brain ventricles, the ependyma is extremely vulnerable to cytotoxic and cytolytic immune responses. When the ependyma is damaged, the integrity of BCB is destroyed, and the CSF flow and material exchange is affected, leading to brain microenvironment imbalance, which plays a vital role in the pathogenesis of neurodegenerative diseases. Epidermal growth factor (EGF) and other neurotrophic factors promote the differentiation and maturation of ependymal cells to maintain the integrity of the ependyma and the activity of ependymal cilia, and may have therapeutic potential in restoring the homeostasis of the brain microenvironment after RIBI or during the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin-Yu Ma
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Ting-Ting Yang
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Lian Liu
- Department of Pharmacology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Feng Qian
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Feng-Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
165
|
Barrio-Alonso E, Lituma PJ, Notaras MJ, Albero R, Bouchekioua Y, Wayland N, Stankovic IN, Jain T, Gao S, Calderon DP, Castillo PE, Colak D. Circadian protein TIMELESS regulates synaptic function and memory by modulating cAMP signaling. Cell Rep 2023; 42:112375. [PMID: 37043347 PMCID: PMC10564971 DOI: 10.1016/j.celrep.2023.112375] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
The regulation of neurons by circadian clock genes is thought to contribute to the maintenance of neuronal functions that ultimately underlie animal behavior. However, the impact of specific circadian genes on cellular and molecular mechanisms controlling synaptic plasticity and cognitive function remains elusive. Here, we show that the expression of the circadian protein TIMELESS displays circadian rhythmicity in the mammalian hippocampus. We identify TIMELESS as a chromatin-bound protein that targets synaptic-plasticity-related genes such as phosphodiesterase 4B (Pde4b). By promoting Pde4b transcription, TIMELESS negatively regulates cAMP signaling to modulate AMPA receptor GluA1 function and influence synaptic plasticity. Conditional deletion of Timeless in the adult forebrain impairs working and contextual fear memory in mice. These cognitive phenotypes were accompanied by attenuation of hippocampal Schaffer-collateral synapse long-term potentiation. Together, these data establish a neuron-specific function of mammalian TIMELESS by defining a mechanism that regulates synaptic plasticity and cognitive function.
Collapse
Affiliation(s)
- Estibaliz Barrio-Alonso
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Pablo J Lituma
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Michael J Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Robert Albero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Youcef Bouchekioua
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Natalie Wayland
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Isidora N Stankovic
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Tanya Jain
- Program of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Sijia Gao
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | | | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA; Gale & Ira Drukier Institute for Children's Health, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
166
|
Morrone CD, Raghuraman R, Hussaini SA, Yu WH. Proteostasis failure exacerbates neuronal circuit dysfunction and sleep impairments in Alzheimer's disease. Mol Neurodegener 2023; 18:27. [PMID: 37085942 PMCID: PMC10119020 DOI: 10.1186/s13024-023-00617-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
Failed proteostasis is a well-documented feature of Alzheimer's disease, particularly, reduced protein degradation and clearance. However, the contribution of failed proteostasis to neuronal circuit dysfunction is an emerging concept in neurodegenerative research and will prove critical in understanding cognitive decline. Our objective is to convey Alzheimer's disease progression with the growing evidence for a bidirectional relationship of sleep disruption and proteostasis failure. Proteostasis dysfunction and tauopathy in Alzheimer's disease disrupts neurons that regulate the sleep-wake cycle, which presents behavior as impaired slow wave and rapid eye movement sleep patterns. Subsequent sleep loss further impairs protein clearance. Sleep loss is a defined feature seen early in many neurodegenerative disorders and contributes to memory impairments in Alzheimer's disease. Canonical pathological hallmarks, β-amyloid, and tau, directly disrupt sleep, and neurodegeneration of locus coeruleus, hippocampal and hypothalamic neurons from tau proteinopathy causes disruption of the neuronal circuitry of sleep. Acting in a positive-feedback-loop, sleep loss and circadian rhythm disruption then increase spread of β-amyloid and tau, through impairments of proteasome, autophagy, unfolded protein response and glymphatic clearance. This phenomenon extends beyond β-amyloid and tau, with interactions of sleep impairment with the homeostasis of TDP-43, α-synuclein, FUS, and huntingtin proteins, implicating sleep loss as an important consideration in an array of neurodegenerative diseases and in cases of mixed neuropathology. Critically, the dynamics of this interaction in the neurodegenerative environment are not fully elucidated and are deserving of further discussion and research. Finally, we propose sleep-enhancing therapeutics as potential interventions for promoting healthy proteostasis, including β-amyloid and tau clearance, mechanistically linking these processes. With further clinical and preclinical research, we propose this dynamic interaction as a diagnostic and therapeutic framework, informing precise single- and combinatorial-treatments for Alzheimer's disease and other brain disorders.
Collapse
Affiliation(s)
- Christopher Daniel Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
| | - Radha Raghuraman
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
| | - S Abid Hussaini
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
| | - Wai Haung Yu
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Geriatric Mental Health Research Services, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
167
|
Amidfar M, Garcez ML, Kim YK. The shared molecular mechanisms underlying aging of the brain, major depressive disorder, and Alzheimer's disease: The role of circadian rhythm disturbances. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110721. [PMID: 36702452 DOI: 10.1016/j.pnpbp.2023.110721] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
An association with circadian clock function and pathophysiology of aging, major depressive disorder (MDD), and Alzheimer's disease (AD) is well established and has been proposed as a factor in the development of these diseases. Depression and changes in circadian rhythm have been increasingly suggested as the two primary overlapping and interpenetrating changes that occur with aging. The relationship between AD and depression in late life is not completely understood and probably is complex. Patients with major depression or AD suffer from disturbed sleep/wake cycles and altered rhythms in daily activities. Although classical monoaminergic hypotheses are traditionally proposed to explain the pathophysiology of MDD, several clinical and preclinical studies have reported a strong association between circadian rhythm and mood regulation. In addition, a large body of evidence supports an association between disruption of circadian rhythm and AD. Some clock genes are dysregulated in rodent models of depression. If aging, AD, and MDD share a common biological basis in pathophysiology, common therapeutic tools could be investigated for their prevention and treatment. Nitro-oxidative stress (NOS), for example, plays a fundamental role in aging, as well as in the pathogenesis of AD and MDD and is associated with circadian clock disturbances. Thus, development of therapeutic possibilities with these NOS-related conditions is advisable. This review describes recent findings that link disrupted circadian clocks to aging, MDD, and AD and summarizes the experimental evidence that supports connections between the circadian clock and molecular pathologic factors as shared common pathophysiological mechanisms underlying aging, AD, and MDD.
Collapse
Affiliation(s)
- Meysam Amidfar
- Department of Neuroscience, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Michelle Lima Garcez
- Laboratory of Translational Neuroscience, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
168
|
Zhang Y, Pan J, Liu Y, Zhang X, Cheng K. Effects of Ficus pandurata Hance var. angustifolia Cheng Flavonoids on Intestinal Barrier and Cognitive Function by Regulating Intestinal Microbiota. Foods 2023; 12:foods12081682. [PMID: 37107477 PMCID: PMC10137925 DOI: 10.3390/foods12081682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/25/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
More and more evidence has supported the interaction between circadian rhythms and intestinal microbes, which provides new insights into how dietary nutrition can improve host health. Our research showed that Ficus pandurata Hance var. angustifolia Cheng flavonoids (FCF) ameliorated the pathological damage of colon and abnormal intestinal microflora structure in mice with circadian clock disorder and improved their exploration and memory behaviors. Mechanism studies have shown that FCF is involved in regulating metabolic pathways and related metabolites, regulating the expression of related tight junction proteins in the colon and the levels of Aβ and inflammatory factors in the hippocampus. Further analysis found that these metabolites showed a certain correlation with intestinal flora and played a certain role in alleviating intestinal physiological damage and cognitive decline.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Junjie Pan
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Kejun Cheng
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China
| |
Collapse
|
169
|
Wendrich KS, Azimi H, Ripperger JA, Ravussin Y, Rainer G, Albrecht U. Deletion of the Circadian Clock Gene Per2 in the Whole Body, but Not in Neurons or Astroglia, Affects Sleep in Response to Sleep Deprivation. Clocks Sleep 2023; 5:204-225. [PMID: 37092429 PMCID: PMC10123656 DOI: 10.3390/clockssleep5020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
The sleep-wake cycle is a highly regulated behavior in which a circadian clock times sleep and waking, whereas a homeostatic process controls sleep need. Both the clock and the sleep homeostat interact, but to what extent they influence each other is not understood. There is evidence that clock genes, in particular Period2 (Per2), might be implicated in the sleep homeostatic process. Sleep regulation depends also on the proper functioning of neurons and astroglial cells, two cell-types in the brain that are metabolically dependent on each other. In order to investigate clock-driven contributions to sleep regulation we non-invasively measured sleep of mice that lack the Per2 gene either in astroglia, neurons, or all body cells. We observed that mice lacking Per2 in all body cells (Per2Brdm and TPer2 animals) display earlier onset of sleep after sleep deprivation (SD), whereas neuronal and astroglial Per2 knock-out animals (NPer2 and GPer2, respectively) were normal in that respect. It appears that systemic (whole body) Per2 expression is important for physiological sleep architecture expressed by number and length of sleep bouts, whereas neuronal and astroglial Per2 weakly impacts night-time sleep amount. Our results suggest that Per2 contributes to the timing of the regulatory homeostatic sleep response by delaying sleep onset after SD and attenuating the early night rebound response.
Collapse
Affiliation(s)
- Katrin S Wendrich
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Hamid Azimi
- Section of Medicine, Department of Neuroscience, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jürgen A Ripperger
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Yann Ravussin
- Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, 1700 Fribourg, Switzerland
| | - Gregor Rainer
- Section of Medicine, Department of Neuroscience, University of Fribourg, 1700 Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
170
|
Satpati A, Neylan T, Grinberg LT. Histaminergic neurotransmission in aging and Alzheimer's disease: A review of therapeutic opportunities and gaps. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12379. [PMID: 37123051 PMCID: PMC10130560 DOI: 10.1002/trc2.12379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 05/02/2023]
Abstract
Introduction Alzheimer's disease (AD) is a progressive neurodegenerative disorderfeaturing a brain accumulation of extracellular β-amyloidplaques (Aβ) and intracellular neurofibrillary tautangles (NFTs). Although cognitive decline is a disease-defining symptom of AD, sleep dysfunction, a common symptom often preceding cognitive decline, hasrecently gained more attention as a core AD symptom. Polysomnography and othersleep measures show sleep fragmentation with shortening of N3 sleep togetherwith excessive daytime sleepiness (EDS) and sundowning as the main findings in AD patients. The latter reflects dysfunction of the wake-promoting neurons (WPNs), including histaminergic neurons (HAN) located in thetuberomammillary nucleus (TMN) of the posterior hypothalamus, which projectunmyelinated axons to various parts of the brain. Histamine's role in cognitionand arousal is broadly recognized. Selective targeting of histaminergic subtype-3 and 4 receptors show therapeutic potential in rodent models of AD andaging. Method Based on PubMed, Scopus, and google scholar databases search, this review summarizes the current knowledge on the histaminergic system in AD and aging, its therapeutic potential in AD, and highlight areas where moreresearch is needed. Results Animal studies have demonstrated that pharmacological manipulation of histaminergic receptors or histamine supplementation improves cognition in AD models. However, measurements of HA or HA metabolite levels in the human brainand CSF present contradictory reports due to either lack of power or controls for known confounders. Discussion Systemic studies including broad age, sex, neuropathological diagnosis, and disease stage are warranted to fill the gap in our current understanding of the histaminergic neurotransmitter/neuromodulator system in humans, especially age-related changes, and therapeuticpotential of histamine in AD-related dysfunction.
Collapse
Affiliation(s)
- Abhijit Satpati
- Memory and Aging CenterDepartment of NeurologySandler Neurosciences CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Thomas Neylan
- Memory and Aging CenterDepartment of NeurologySandler Neurosciences CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Weill Institute of NeuroscienceUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Lea T. Grinberg
- Memory and Aging CenterDepartment of NeurologySandler Neurosciences CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
| |
Collapse
|
171
|
Leng S, Jin Y, Vitiello MV, Zhang Y, Ren R, Lu L, Shi J, Tang X. Self-reported insomnia symptoms are associated with urinary incontinence among older Indian adults: evidence from the Longitudinal Ageing Study in India (LASI). BMC Public Health 2023; 23:552. [PMID: 36959651 PMCID: PMC10037814 DOI: 10.1186/s12889-023-15472-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/20/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Insomnia and urinary incontinence (UI) are both diseases burdening older adults. However, the association between them has not been well elucidated. The purpose of this study is to assess the correlation between insomnia symptoms and UI in a large community-dwelling sample of older Indian adults. METHODS Data were from Wave 1 (2017-2018) of the Longitudinal Ageing Study of India (LASI). Male and female participants aged ≥ 60 years who provided complete information on insomnia symptoms, UI, stress UI (SUI), and covariates were included. Insomnia symptoms were identified by a report of: trouble falling asleep, waking up at night, or waking too early, ≥ 5 times/week. UI was defined by self-reported diagnosis. SUI was identified by self-report of involuntary urine leakage when sneezing, coughing, laughing, or lifting weights. Multivariable logistic regression analyses evaluated the associations between insomnia symptoms and UI and SUI. Stratified linear regression evaluated for interactions in prespecified subgroups. RESULTS Twenty-six thousand eight hundred twenty-one LASI participants met entry criteria. 2979 (11.11%) reported insomnia symptoms, 976 (3.64%) UI, and 2726 (10.16%) SUI. After full adjustment, insomnia symptoms were associated with both UI and SUI among males (OR 1.53; 95%CI 1.20-1.96 and OR 1.51; 95%CI 1.25-1.83) and females (OR 1.53; 95% CI 1.21-1.92 and OR 1.50; 95% CI 1.31-1.73). A significant interaction effect by age was observed between insomnia symptoms and SUI among both males (p = 0.048) and females (p = 0.042). CONCLUSIONS Insomnia symptoms were associated with UI and with SUI in both male and female older Indian adults. Further prospective study is called for to better characterize these associations and to explore underlying mechanisms.
Collapse
Affiliation(s)
- Siqi Leng
- Sleep Medicine Center, Department of Urology, Department of Respiratory and Critical Care Medicine, Mental Health Center, West China Hospital, Sichuan University, Dian Xin Nan Jie 28#, Chengdu, 610041, China
| | - Yuming Jin
- Sleep Medicine Center, Department of Urology, Department of Respiratory and Critical Care Medicine, Mental Health Center, West China Hospital, Sichuan University, Dian Xin Nan Jie 28#, Chengdu, 610041, China
| | - Michael V Vitiello
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Ye Zhang
- Sleep Medicine Center, Department of Urology, Department of Respiratory and Critical Care Medicine, Mental Health Center, West China Hospital, Sichuan University, Dian Xin Nan Jie 28#, Chengdu, 610041, China
| | - Rong Ren
- Sleep Medicine Center, Department of Urology, Department of Respiratory and Critical Care Medicine, Mental Health Center, West China Hospital, Sichuan University, Dian Xin Nan Jie 28#, Chengdu, 610041, China
| | - Lin Lu
- National Institute On Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Jie Shi
- National Institute On Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Urology, Department of Respiratory and Critical Care Medicine, Mental Health Center, West China Hospital, Sichuan University, Dian Xin Nan Jie 28#, Chengdu, 610041, China.
| |
Collapse
|
172
|
Šmon J, Kočar E, Pintar T, Dolenc-Grošelj L, Rozman D. Is obstructive sleep apnea a circadian rhythm disorder? J Sleep Res 2023:e13875. [PMID: 36922163 DOI: 10.1111/jsr.13875] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/06/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
Obstructive sleep apnea is the most common sleep-related breathing disorder worldwide and remains underdiagnosed. Its multiple associated comorbidities contribute to a decreased quality of life and work performance as well as an increased risk of death. Standard treatment seems to have limited effects on cardiovascular and metabolic aspects of the disease, emphasising the need for early diagnosis and additional therapeutic approaches. Recent evidence suggests that the dysregulation of circadian rhythms, processes with endogenous rhythmicity that are adjusted to the environment through various cues, is involved in the pathogenesis of comorbidities. In patients with obstructive sleep apnea, altered circadian gene expression patterns have been demonstrated. Obstructive respiratory events may promote circadian dysregulation through the effects of sleep disturbance and intermittent hypoxia, with subsequent inflammation and disruption of neural and hormonal homeostasis. In this review, current knowledge on obstructive sleep apnea, circadian rhythm regulation, and circadian rhythm sleep disorders is summarised. Studies that connect obstructive sleep apnea to circadian rhythm abnormalities are critically evaluated. Furthermore, pathogenetic mechanisms that may underlie this association, most notably hypoxia signalling, are presented. A bidirectional relationship between obstructive sleep apnea and circadian rhythm dysregulation is proposed. Approaching obstructive sleep apnea as a circadian rhythm disorder may prove beneficial for the development of new, personalised diagnostic, therapeutic and prognostic tools. However, further studies are needed before the clinical approach to obstructive sleep apnea includes targeting the circadian system.
Collapse
Affiliation(s)
- Julija Šmon
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Kočar
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadeja Pintar
- Department of Abdominal Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Leja Dolenc-Grošelj
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
173
|
Lee RMQ, Koh TW. Genetic modifiers of synucleinopathies-lessons from experimental models. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad001. [PMID: 38596238 PMCID: PMC10913850 DOI: 10.1093/oons/kvad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2024]
Abstract
α-Synuclein is a pleiotropic protein underlying a group of progressive neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Together, these are known as synucleinopathies. Like all neurological diseases, understanding of disease mechanisms is hampered by the lack of access to biopsy tissues, precluding a real-time view of disease progression in the human body. This has driven researchers to devise various experimental models ranging from yeast to flies to human brain organoids, aiming to recapitulate aspects of synucleinopathies. Studies of these models have uncovered numerous genetic modifiers of α-synuclein, most of which are evolutionarily conserved. This review discusses what we have learned about disease mechanisms from these modifiers, and ways in which the study of modifiers have supported ongoing efforts to engineer disease-modifying interventions for synucleinopathies.
Collapse
Affiliation(s)
- Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Block S3 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
174
|
Abstract
PURPOSE OF REVIEW The aim of this review is to summarize the current evidence on the relationship between sleep and cognition and present available data reporting the impact that sleep alterations may have on cognitive functions. RECENT FINDINGS Research findings support the idea that sleep is involved in cognitive processes and that altered sleep homeostasis or circadian rhythms may lead to clinical and biochemical changes associated with cognitive impairment. Evidence is particularly solid for the association between specific sleep architecture and circadian alterations and Alzheimer's disease. Sleep changes, as early manifestations or possible risk factors for neurodegeneration and cognitive decline, may be appropriate targets for interventions aiming to reduce the likelihood of dementia.
Collapse
|
175
|
Chauhan S, Norbury R, Faßbender KC, Ettinger U, Kumari V. Beyond sleep: A multidimensional model of chronotype. Neurosci Biobehav Rev 2023; 148:105114. [PMID: 36868368 DOI: 10.1016/j.neubiorev.2023.105114] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
Chronotype can be defined as an expression or proxy for circadian rhythms of varied mechanisms, for example in body temperature, cortisol secretion, cognitive functions, eating and sleeping patterns. It is influenced by a range of internal (e.g., genetics) and external factors (e.g., light exposure), and has implications for health and well-being. Here, we present a critical review and synthesis of existing models of chronotype. Our observations reveal that most existing models and, as a consequence, associated measures of chronotype have focused solely or primarily on the sleep dimension, and typically have not incorporated social and environmental influences on chronotype. We propose a multidimensional model of chronotype, integrating individual (biological and psychological), environmental and social factors that appear to interact to determine an individual's true chronotype with potential feedback loops between these factors. This model could be beneficial not only from a basic science perspective but also in the context of understanding health and clinical implications of certain chronotypes as well as designing preventive and therapeutic approaches for related illnesses.
Collapse
Affiliation(s)
- Satyam Chauhan
- Department of Psychology, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom; Centre for Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom.
| | - Ray Norbury
- Department of Psychology, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom; Centre for Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom
| | | | | | - Veena Kumari
- Department of Psychology, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom; Centre for Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom.
| |
Collapse
|
176
|
Ahmad F, Sachdeva P, Sarkar J, Izhaar R. Circadian dysfunction and Alzheimer's disease - An updated review. Aging Med (Milton) 2023; 6:71-81. [PMID: 36911088 PMCID: PMC10000289 DOI: 10.1002/agm2.12221] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease (AD) is considered to be the most typical form of dementia that provokes irreversible cognitive impairment. Along with cognitive impairment, circadian rhythm dysfunction is a fundamental factor in aggravating AD. A link among circadian rhythms, sleep, and AD has been well-documented. The etiopathogenesis of circadian system disruptions and AD serves some general characteristics that also open up the possibility of viewing them as a mutually reliant path. In this review, we have focused on different factors that are related to circadian rhythm dysfunction. The various pathogenic factors, such as amyloid-beta, neurofibrillary tangles, oxidative stress, neuroinflammation, and circadian rhythm dysfunction may all contribute to AD. In this review, we also tried to focus on melatonin which is produced from the pineal gland and can be used to treat circadian dysfunction in AD. Aside from amyloid beta, tau pathology may have a notable influence on sleep. Conclusively, the center of this review is primarily based on the principal mechanistic complexities associated with circadian rhythm disruption, sleep deprivation, and AD, and it also emphasizes the potential therapeutic strategies to treat and prevent the progression of AD.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Medical Elementology and ToxicologyJamia Hamdard UniversityDelhiIndia
| | - Punya Sachdeva
- Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaUttar PradeshIndia
| | - Jasmine Sarkar
- Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaUttar PradeshIndia
| | | |
Collapse
|
177
|
Kroll JL, Ritz T. Asthma, the central nervous system, and neurocognition: Current findings, potential mechanisms, and treatment implications. Neurosci Biobehav Rev 2023; 146:105063. [PMID: 36708797 DOI: 10.1016/j.neubiorev.2023.105063] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Accumulating behavioral evidence suggests that asthma is associated with cognitive deficits. A number of studies have identified potential biological contributions to cognition in asthma; however, mechanistic pathways of central nervous system (CNS) involvement in asthma are yet to be established. We therefore conducted a literature review to identify studies examining potential CNS contributions to cognition in asthma. In this review, we discuss our general understanding of the CNS in asthma in the context of cognitive performance and outline a working model of mechanistic pathways linking the proposed neural influences of asthma pathology with cognition. To this extent, we incorporate neural, behavioral, psychological, social and environmental factors. Finally, we underscore the clinical significance of the CNS and neurocognitive sequelae in asthma, highlighting potential opportunities for routine monitoring, therapeutic intervention, and recommend key areas for future research.
Collapse
Affiliation(s)
- Juliet L Kroll
- Department of Psychology, Southern Methodist University, Dallas, TX, USA; Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Thomas Ritz
- Department of Psychology, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
178
|
Zhou L, Kong J, Li X, Ren Q. Sex differences in the effects of sleep disorders on cognitive dysfunction. Neurosci Biobehav Rev 2023; 146:105067. [PMID: 36716906 DOI: 10.1016/j.neubiorev.2023.105067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
Sleep is an essential physiological function that sustains human life. Sleep disorders involve problems with the quality, duration, and abnormal behaviour of sleep. Insomnia is the most common sleep disorder, followed by sleep-disordered breathing (SDB). Sleep disorders often occur along with medical conditions or other mental health conditions. Of particular interest to researchers is the role of sleep disorders in cognitive dysfunction. Sleep disorder is a risk factor for cognitive dysfunction, yet the exact pathogenesis is still far from agreement. Little is known about how sex differences influence the changes in cognitive functions caused by sleep disorders. This narrative review examines how sleep disorders might affect cognitive impairment, and then explores the sex-specific consequences of sleep disorders as a risk factor for dementia and the potential underlying mechanisms. Some insights on the direction of further research are also presented.
Collapse
Affiliation(s)
- Lv Zhou
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Jingting Kong
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiaoli Li
- School of Medicine, Southeast University, Nanjing 210009, China; Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, China
| | - Qingguo Ren
- School of Medicine, Southeast University, Nanjing 210009, China; Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, China.
| |
Collapse
|
179
|
Yang Y, Yu P, Lu Y, Gao C, Sun Q. Disturbed rhythmicity of intestinal hydrogen peroxide alters gut microbial oscillations in BMAL1-deficient monkeys. Cell Rep 2023; 42:112183. [PMID: 36857177 DOI: 10.1016/j.celrep.2023.112183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
Circadian oscillation of gut microbiota exerts significant influence on host physiology, but the host factors that sustain microbial oscillations are rarely reported. We compared the gut microbiome and metabolome of wild-type and BMAL1-deficient cynomolgus monkeys during a diurnal cycle by performing 16S rRNA sequencing and untargeted fecal metabolomics and uncovered the influence of intestinal H2O2 on microbial compositions. Ablation of BMAL1 induced expansion of Bacteroidota at midnight and altered microbial oscillations. Some important fecal metabolites changed significantly, and we investigated their correlations with microbes. Further analyses revealed that disturbed rhythmicity of NOX1-derived intestinal H2O2 was responsible for the altered microbial oscillations in BMAL1-deficient monkeys. Mechanistic studies showed that BMAL1 transactivated NOX1 via binding to the E1-E2 site in its promoter. Notably, BMAL1-dependent activation of NOX1 was conserved in cynomolgus monkeys and humans. Our study demonstrates the importance of intestine clock-controlled H2O2 rhythmicity on the rhythmic oscillation of gut microbiota.
Collapse
Affiliation(s)
- Yunpeng Yang
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China; Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P.R. China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, P.R. China.
| | - Peijun Yu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yong Lu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Changshan Gao
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Qiang Sun
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China.
| |
Collapse
|
180
|
Circle(s) of Life: The Circadian Clock from Birth to Death. BIOLOGY 2023; 12:biology12030383. [PMID: 36979075 PMCID: PMC10045474 DOI: 10.3390/biology12030383] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
Most lifeforms on earth use endogenous, so-called circadian clocks to adapt to 24-h cycles in environmental demands driven by the planet’s rotation around its axis. Interactions with the environment change over the course of a lifetime, and so does regulation of the circadian clock system. In this review, we summarize how circadian clocks develop in humans and experimental rodents during embryonic development, how they mature after birth and what changes occur during puberty, adolescence and with increasing age. Special emphasis is laid on the circadian regulation of reproductive systems as major organizers of life segments and life span. We discuss differences in sexes and outline potential areas for future research. Finally, potential options for medical applications of lifespan chronobiology are discussed.
Collapse
|
181
|
Li Q, Wang L, Cao Y, Wang X, Tang C, Zheng L. Stable Expression of dmiR-283 in the Brain Promises Positive Effects in Endurance Exercise on Sleep-Wake Behavior in Aging Drosophila. Int J Mol Sci 2023; 24:ijms24044180. [PMID: 36835595 PMCID: PMC9966282 DOI: 10.3390/ijms24044180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Sleep-wake stability is imbalanced with natural aging, and microRNAs (miRNAs) play important roles in cell proliferation, apoptosis, and aging; however, the biological functions of miRNAs in regulating aging-related sleep-wake behavior remain unexplored. This study varied the expression pattern of dmiR-283 in Drosophila and the result showed that the aging decline in sleep-wake behavior was caused by the accumulation of brain dmiR-283 expression, whereas the core clock genes cwo and Notch signaling pathway might be suppressed, which regulate the aging process. In addition, to identify exercise intervention programs of Drosophila that promote healthy aging, mir-283SP/+ and Pdf > mir-283SP flies were driven to perform endurance exercise for a duration of 3 weeks starting at 10 and 30 days, respectively. The results showed that exercise starting in youth leads to an enhanced amplitude of sleep-wake rhythms, stable periods, increased activity frequency upon awakening, and the suppression of aging brain dmiR-283 expression in mir-283SP/+ middle-aged flies. Conversely, exercise performed when the brain dmiR-283 reached a certain accumulation level showed ineffective or negative effects. In conclusion, the accumulation of dmiR-283 expression in the brain induced an age-dependent decline in sleep-wake behavior. Endurance exercise commencing in youth counteracts the increase in dmiR-283 in the aging brain, which ameliorates the deterioration of sleep-wake behavior during aging.
Collapse
Affiliation(s)
- Qiufang Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Lingxiao Wang
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yurou Cao
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Xiaoya Wang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Chao Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
- Correspondence: ; Tel.: +86-731-88631-351
| |
Collapse
|
182
|
Bešlić I, Lugović-Mihić L, Vrtarić A, Bešlić A, Škrinjar I, Hanžek M, Crnković D, Artuković M. Melatonin in Dermatologic Allergic Diseases and Other Skin Conditions: Current Trends and Reports. Int J Mol Sci 2023; 24:4039. [PMID: 36835450 PMCID: PMC9967801 DOI: 10.3390/ijms24044039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Melatonin is the main hormone that regulates the sleep cycle, and it is mostly produced by the pineal gland from the amino acid tryptophan. It has cytoprotective, immunomodulatory, and anti-apoptotic effects. Melatonin is also one of the most powerful natural antioxidants, directly acting on free radicals and the intracellular antioxidant enzyme system. Furthermore, it participates in antitumor activity, hypopigmentation processes in hyperpigmentary disorders, anti-inflammatory, and immunomodulating activity in inflammatory dermatoses, maintaining the integrity of the epidermal barrier and thermoregulation of the body. Due predominantly to its positive influence on sleep, melatonin can be used in the treatment of sleep disturbances for those with chronic allergic diseases accompanied by intensive itching (such as atopic dermatitis and chronic spontaneous urticaria). According to the literature data, there are also many proven uses for melatonin in photoprotection and skin aging (due to melatonin's antioxidant effects and role in preventing damage due to DNA repair mechanisms), hyperpigmentary disorders (e.g., melasma) and scalp diseases (such as androgenic alopecia and telogen effluvium).
Collapse
Affiliation(s)
- Iva Bešlić
- Department of Dermatovenereology, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Liborija Lugović-Mihić
- Department of Dermatovenereology, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Alen Vrtarić
- Department of Clinical Chemistry, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
| | - Ante Bešlić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University, 31000 Osijek, Croatia
| | - Ivana Škrinjar
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Oral Medicine, University Hospital Centre, 10000 Zagreb, Croatia
| | - Milena Hanžek
- Department of Clinical Chemistry, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
| | - Danijel Crnković
- Department of Psychiatry, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
| | - Marinko Artuković
- Department of Polemology, Special Hospital for Pulmonary Diseases, 10000 Zagreb, Croatia
| |
Collapse
|
183
|
Circadian disruption and sleep disorders in neurodegeneration. Transl Neurodegener 2023; 12:8. [PMID: 36782262 PMCID: PMC9926748 DOI: 10.1186/s40035-023-00340-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Disruptions of circadian rhythms and sleep cycles are common among neurodegenerative diseases and can occur at multiple levels. Accumulating evidence reveals a bidirectional relationship between disruptions of circadian rhythms and sleep cycles and neurodegenerative diseases. Circadian disruption and sleep disorders aggravate neurodegeneration and neurodegenerative diseases can in turn disrupt circadian rhythms and sleep. Importantly, circadian disruption and various sleep disorders can increase the risk of neurodegenerative diseases. Thus, harnessing the circadian biology findings from preclinical and translational research in neurodegenerative diseases is of importance for reducing risk of neurodegeneration and improving symptoms and quality of life of individuals with neurodegenerative disorders via approaches that normalize circadian in the context of precision medicine. In this review, we discuss the implications of circadian disruption and sleep disorders in neurodegenerative diseases by summarizing evidence from both human and animal studies, focusing on the bidirectional links of sleep and circadian rhythms with prevalent forms of neurodegeneration. These findings provide valuable insights into the pathogenesis of neurodegenerative diseases and suggest a promising role of circadian-based interventions.
Collapse
|
184
|
Liu S, Li H, Shen Y, Zhu W, Wang Y, Wang J, Zhang N, Li C, Xie L, Wu Q. Moxibustion improves hypothalamus Aqp4 polarization in APP/PS1 mice: Evidence from spatial transcriptomics. Front Aging Neurosci 2023; 15:1069155. [PMID: 36819717 PMCID: PMC9931733 DOI: 10.3389/fnagi.2023.1069155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Aquaporin-4 (AQP4) is highly polarized to perivascular astrocytic endfeet. Loss of AQP4 polarization is associated with many diseases. In Alzheimer's disease (AD), AQP4 loses its normal location and thus reduces the clearance of amyloid-β plaques and tau protein. Clinical and experimental studies showed that moxibustion can improve the learning and memory abilities of AD. To explore whether moxibustion can affect the polarization of AQP4 around the blood-brain barrier (BBB), we used spatial transcriptomics (ST) to analyze the expression and polarization of Aqp4 in wild-type mice, APP/PS1 mice, and APP/PS1 mice intervened by moxibustion. The results showed that moxibustion improved the loss of abnormal polarization of AQP4 in APP/PS1 mice, especially in the hypothalamic BBB. Besides, the other 31 genes with Aqp4 as the core have similar depolarization in APP/PS1 mice, most of which are also membrane proteins. The majority of them have been reversed by moxibustion. At the same time, we employed the cerebrospinal fluid circulation gene set, which was found to be at a higher level in the group of APP/PS1 mice with moxibustion treatment. Finally, to further explore its mechanism, we analyzed the mitochondrial respiratory chain complex enzymes closely related to energy metabolism and found that moxibustion can significantly increase the expression of mitochondrial respiratory chain enzymes such as Cox6a2 in the hypothalamus, which could provide energy for mRNA transport. Our research shows that increasing the polarization of hypothalamic Aqp4 through mitochondrial energy supply may be an important target for moxibustion to improve cognitive impairment in APP/PS1 mice.
Collapse
Affiliation(s)
- Shuqing Liu
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hongying Li
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuan Shen
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Weikang Zhu
- National Center for Mathematics and Interdisciplinary Sciences, CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| | - Yong Wang
- National Center for Mathematics and Interdisciplinary Sciences, CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| | - Junmeng Wang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ning Zhang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chenyu Li
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lushuang Xie
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiaofeng Wu
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,*Correspondence: Qiaofeng Wu,
| |
Collapse
|
185
|
Fifel K, Yanagisawa M, Deboer T. Mechanisms of Sleep/Wake Regulation under Hypodopaminergic State: Insights from MitoPark Mouse Model of Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203170. [PMID: 36515271 PMCID: PMC9929135 DOI: 10.1002/advs.202203170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Sleep/wake alterations are predominant in neurological and neuropsychiatric disorders involving dopamine dysfunction. Unfortunately, specific, mechanisms-based therapies for these debilitating sleep problems are currently lacking. The pathophysiological mechanisms of sleep/wake alterations within a hypodopaminergic MitoPark mouse model of Parkinson's disease (PD) are investigated. MitoPark mice replicate most PD-related sleep alterations, including sleep fragmentation, hypersomnia, and daytime sleepiness. Surprisingly, these alterations are not accounted for by a dysfunction in the circadian or homeostatic regulatory processes of sleep, nor by acute masking effects of light or darkness. Rather, the sleep phenotype is linked with the impairment of instrumental arousal and sleep modulation by behavioral valence. These alterations correlate with changes in high-theta (8-11.5 Hz) electroencephalogram power density during motivationally-charged wakefulness. These results demonstrate that sleep/wake alterations induced by dopamine dysfunction are mediated by impaired modulation of sleep by motivational valence and provide translational insights into sleep problems associated with disorders linked to dopamine dysfunction.
Collapse
Affiliation(s)
- Karim Fifel
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of Tsukuba1‐1‐1 TennodaiTsukubaIbaraki305–8575Japan
- Department of Cell and Chemical BiologyLaboratory of NeurophysiologyLeiden University Medical CenterP.O. Box 9600Leiden2300 RCThe Netherlands
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of Tsukuba1‐1‐1 TennodaiTsukubaIbaraki305–8575Japan
| | - Tom Deboer
- Department of Cell and Chemical BiologyLaboratory of NeurophysiologyLeiden University Medical CenterP.O. Box 9600Leiden2300 RCThe Netherlands
| |
Collapse
|
186
|
Zhang J, Wang S, Liu B. New Insights into the Genetics and Epigenetics of Aging Plasticity. Genes (Basel) 2023; 14:329. [PMID: 36833255 PMCID: PMC9956228 DOI: 10.3390/genes14020329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Biological aging is characterized by irreversible cell cycle blockade, a decreased capacity for tissue regeneration, and an increased risk of age-related diseases and mortality. A variety of genetic and epigenetic factors regulate aging, including the abnormal expression of aging-related genes, increased DNA methylation levels, altered histone modifications, and unbalanced protein translation homeostasis. The epitranscriptome is also closely associated with aging. Aging is regulated by both genetic and epigenetic factors, with significant variability, heterogeneity, and plasticity. Understanding the complex genetic and epigenetic mechanisms of aging will aid the identification of aging-related markers, which may in turn aid the development of effective interventions against this process. This review summarizes the latest research in the field of aging from a genetic and epigenetic perspective. We analyze the relationships between aging-related genes, examine the possibility of reversing the aging process by altering epigenetic age.
Collapse
Affiliation(s)
- Jie Zhang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen 518000, China
| | - Shixiao Wang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen 518000, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen 518000, China
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, School of Basic Medical Sciences, Medical School, Lihu Campus, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
187
|
Circadian rhythm disruption is associated with skeletal muscle dysfunction within the blind Mexican Cavefish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525368. [PMID: 36747688 PMCID: PMC9900830 DOI: 10.1101/2023.01.25.525368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Circadian control of physiology and metabolism is pervasive throughout nature, with circadian disruption contributing to premature aging, neurodegenerative disease, and type 2 diabetes (Musiek et al. 2016; Panda, 2016). It has become increasingly clear that peripheral tissues, such as skeletal muscle, possess cell-autonomous clocks crucial for metabolic homeostasis (Gabriel et al. 2021). In fact, disruption of the skeletal muscle circadian rhythm results in insulin resistance, sarcomere disorganization, and muscle weakness in both vertebrates and non-vertebrates - indicating that maintenance of a functional muscle circadian rhythm provides an adaptive advantage. We and others have found that cavefish possess a disrupted central circadian rhythm and, interestingly, a skeletal muscle phenotype strikingly similar to circadian knock-out mutants; namely, muscle loss, muscle weakness, and insulin resistance (Olsen et al. 2022; Riddle et al. 2018; Mack et al. 2021). However, whether the cavefish muscle phenotype results from muscle-specific circadian disruption remains untested. To this point, we investigated genome-wide, circadian-regulated gene expression within the skeletal muscle of the Astyanax mexicanus - comprised of the river-dwelling surface fish and troglobitic cavefish - providing novel insights into the evolutionary consequence of circadian disruption on skeletal muscle physiology.
Collapse
|
188
|
Vanrobaeys Y, Peterson ZJ, Walsh EN, Chatterjee S, Lin LC, Lyons LC, Nickl-Jockschat T, Abel T. Spatial transcriptomics reveals unique gene expression changes in different brain regions after sleep deprivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524406. [PMID: 36712009 PMCID: PMC9882298 DOI: 10.1101/2023.01.18.524406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sleep deprivation has far-reaching consequences on the brain and behavior, impacting memory, attention, and metabolism. Previous research has focused on gene expression changes in individual brain regions, such as the hippocampus or cortex. Therefore, it is unclear how uniformly or heterogeneously sleep loss affects the brain. Here, we use spatial transcriptomics to define the impact of a brief period of sleep deprivation across the brain. We find that sleep deprivation induced pronounced differences in gene expression across the brain, with the greatest changes in the hippocampus, neocortex, hypothalamus, and thalamus. Both the differentially expressed genes and the direction of regulation differed markedly across regions. Importantly, we developed bioinformatic tools to register tissue sections and gene expression data into a common anatomical space, allowing a brain-wide comparison of gene expression patterns between samples. Our results suggest that distinct molecular mechanisms acting in discrete brain regions underlie the biological effects of sleep deprivation.
Collapse
Affiliation(s)
- Yann Vanrobaeys
- Interdisciplinary Graduate Program in Genetics, University of Iowa, 357 Medical Research Center Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, Carver College of Medicine, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, 51 Newton Road, 2-417B Bowen Science Building, University of Iowa, Iowa City, IA 52242, USA
| | - Zeru J. Peterson
- Iowa Neuroscience Institute, Carver College of Medicine, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, University of Iowa, Iowa City, IA 52242, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Emily. N. Walsh
- Iowa Neuroscience Institute, Carver College of Medicine, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, 51 Newton Road, 2-417B Bowen Science Building, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA 52242, USA
| | - Snehajyoti Chatterjee
- Iowa Neuroscience Institute, Carver College of Medicine, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, 51 Newton Road, 2-417B Bowen Science Building, University of Iowa, Iowa City, IA 52242, USA
| | - Li-Chun Lin
- Iowa Neuroscience Institute, Carver College of Medicine, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, 51 Newton Road, 2-417B Bowen Science Building, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Lisa C. Lyons
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Thomas Nickl-Jockschat
- Iowa Neuroscience Institute, Carver College of Medicine, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, 51 Newton Road, 2-417B Bowen Science Building, University of Iowa, Iowa City, IA 52242, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Ted Abel
- Iowa Neuroscience Institute, Carver College of Medicine, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, 51 Newton Road, 2-417B Bowen Science Building, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
189
|
Morrone CD, Tsang AA, Giorshev SM, Craig EE, Yu WH. Concurrent behavioral and electrophysiological longitudinal recordings for in vivo assessment of aging. Front Aging Neurosci 2023; 14:952101. [PMID: 36742209 PMCID: PMC9891465 DOI: 10.3389/fnagi.2022.952101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/12/2022] [Indexed: 01/19/2023] Open
Abstract
Electrophysiological and behavioral alterations, including sleep and cognitive impairments, are critical components of age-related decline and neurodegenerative diseases. In preclinical investigation, many refined techniques are employed to probe these phenotypes, but they are often conducted separately. Herein, we provide a protocol for one-time surgical implantation of EMG wires in the nuchal muscle and a skull-surface EEG headcap in mice, capable of 9-to-12-month recording longevity. All data acquisitions are wireless, making them compatible with simultaneous EEG recording coupled to multiple behavioral tasks, as we demonstrate with locomotion/sleep staging during home-cage video assessments, cognitive testing in the Barnes maze, and sleep disruption. Time-course EEG and EMG data can be accurately mapped to the behavioral phenotype and synchronized with neuronal frequencies for movement and the location to target in the Barnes maze. We discuss critical steps for optimizing headcap surgery and alternative approaches, including increasing the number of EEG channels or utilizing depth electrodes with the system. Combining electrophysiological and behavioral measurements in preclinical models of aging and neurodegeneration has great potential for improving mechanistic and therapeutic assessments and determining early markers of brain disorders.
Collapse
Affiliation(s)
- Christopher Daniel Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,*Correspondence: Christopher Daniel Morrone,
| | - Arielle A. Tsang
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Sarah M. Giorshev
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Emily E. Craig
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Wai Haung Yu
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Geriatric Mental Health Research Services, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada,Wai Haung Yu,
| |
Collapse
|
190
|
Schurhoff N, Toborek M. Circadian rhythms in the blood-brain barrier: impact on neurological disorders and stress responses. Mol Brain 2023; 16:5. [PMID: 36635730 PMCID: PMC9835375 DOI: 10.1186/s13041-023-00997-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Circadian disruption has become more prevalent in society due to the increase in shift work, sleep disruption, blue light exposure, and travel via different time zones. The circadian rhythm is a timed transcription-translation feedback loop with positive regulators, BMAL1 and CLOCK, that interact with negative regulators, CRY and PER, to regulate both the central and peripheral clocks. This review highlights the functions of the circadian rhythm, specifically in the blood-brain barrier (BBB), during both healthy and pathological states. The BBB is a highly selective dynamic interface composed of CNS endothelial cells, astrocytes, pericytes, neurons, and microglia that form the neurovascular unit (NVU). Circadian rhythms modulate BBB integrity through regulating oscillations of tight junction proteins, assisting in functions of the NVU, and modulating transporter functions. Circadian disruptions within the BBB have been observed in stress responses and several neurological disorders, including brain metastasis, epilepsy, Alzheimer's disease, and Parkinson's disease. Further understanding of these interactions may facilitate the development of improved treatment options and preventative measures.
Collapse
Affiliation(s)
- Nicolette Schurhoff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33155, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33155, USA.
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065, Katowice, Poland.
| |
Collapse
|
191
|
Morton AJ. Sleep and Circadian Rhythm Dysfunction in Animal Models of Huntington's Disease. J Huntingtons Dis 2023; 12:133-148. [PMID: 37334613 PMCID: PMC10473141 DOI: 10.3233/jhd-230574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/20/2023]
Abstract
Sleep and circadian disruption affects most individuals with Huntington's disease (HD) at some stage in their lives. Sleep and circadian dysregulation are also present in many mouse and the sheep models of HD. Here I review evidence for sleep and/or circadian dysfunction in HD transgenic animal models and discuss two key questions: 1) How relevant are such findings to people with HD, and 2) Whether or not therapeutic interventions that ameliorate deficits in animal models of HD might translate to meaningful therapies for people with HD.
Collapse
Affiliation(s)
- A. Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
192
|
Gao C, Scullin MK. Longitudinal trajectories of spectral power during sleep in middle-aged and older adults. AGING BRAIN 2023; 3:100058. [PMID: 36911257 PMCID: PMC9997163 DOI: 10.1016/j.nbas.2022.100058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Age-related changes in sleep appear to contribute to cognitive aging and dementia. However, most of the current understanding of sleep across the lifespan is based on cross-sectional evidence. Using data from the Sleep Heart Health Study, we investigated longitudinal changes in sleep micro-architecture, focusing on whether such age-related changes are experienced uniformly across individuals. Participants were 2,202 adults (ageBaseline = 62.40 ± 10.38, 55.36 % female, 87.92 % White) who completed home polysomnography assessment at two study visits, which were 5.23 years apart (range: 4-7 years). We analyzed NREM and REM spectral power density for each 0.5 Hz frequency bin, including slow oscillation (0.5-1 Hz), delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), sigma (12-15 Hz), and beta-1 (15-20 Hz) bands. Longitudinal comparisons showed a 5-year decline in NREM delta (p <.001) and NREM sigma power density (p <.001) as well as a 5-year increase in theta power density during NREM (p =.001) and power density for all frequency bands during REM sleep (ps < 0.05). In contrast to the notion that sleep declines linearly with advancing age, longitudinal trajectories varied considerably across individuals. Within individuals, the 5-year changes in NREM and REM power density were strongly correlated (slow oscillation: r = 0.46; delta: r = 0.67; theta r = 0.78; alpha r = 0.66; sigma: r = 0.71; beta-1: r = 0.73; ps < 0.001). The convergence in the longitudinal trajectories of NREM and REM activity may reflect age-related neural de-differentiation and/or compensation processes. Future research should investigate the neurocognitive implications of longitudinal changes in sleep micro-architecture and test whether interventions for improving key sleep micro-architecture features (such as NREM delta and sigma activity) also benefit cognition over time.
Collapse
Affiliation(s)
- Chenlu Gao
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA.,Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael K Scullin
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| |
Collapse
|
193
|
Lee KW, Yang CC, Chen CH, Hung CH, Chuang HY. Shift work is significantly and positively associated with dementia: A meta-analysis study. Front Public Health 2023; 11:998464. [PMID: 36875407 PMCID: PMC9978382 DOI: 10.3389/fpubh.2023.998464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Background Shift work may disrupt the sleep and wake cycles and negatively affect physical and mental health. Dementia is a neurodegenerative disorder with progressively declining cognition that is receiving increasing attention. Studies on the association between shift work and dementia are rare. Herein, we conducted a meta-analysis to investigate the association between shift work and dementia. Materials and methods This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched the PubMed, Embase, and Web of Science databases using a related set of keywords. The inclusion criteria were as follows: (1) adult employees working in a factory, company, or organization; (2) exposure to shift work/non-shift work; and (3) outcome of dementia based on examination or assessment. A meta-analysis using a fixed-effects model was performed. The hazard ratio of dementia was compared between shift workers and non-shift workers. Results Five studies were included in the quantitative synthesis, and two were selected for further meta-analysis. A random-effects model showed a modest association between shift work and an increase in dementia cases (pooled hazard ratio = 1.13; 95% confidence interval: 1.04-1.23; p = 0.04). This association also occurred in night workers for more than 1 year. Conclusion Shift work and long-term night work were modestly associated with a higher risk of developing dementia. Avoiding long-term night shifts may be effective in reducing dementia risk. Further studies are required to confirm this hypothesis.
Collapse
Affiliation(s)
- Kuo-Wei Lee
- Department of Neurology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chen-Cheng Yang
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Occupational and Environmental Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Hung Chen
- Department of Neurology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Environmental and Occupational Medicine Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Yi Chuang
- Department of Occupational and Environmental Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Public Health and Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
194
|
Mondino A, Catanzariti M, Mateos DM, Khan M, Ludwig C, Kis A, Gruen ME, Olby NJ. Sleep and cognition in aging dogs. A polysomnographic study. Front Vet Sci 2023; 10:1151266. [PMID: 37187924 PMCID: PMC10175583 DOI: 10.3389/fvets.2023.1151266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Sleep is fundamental for cognitive homeostasis, especially in senior populations since clearance of amyloid beta (key in the pathophysiology of Alzheimer's disease) occurs during sleep. Some electroencephalographic characteristics of sleep and wakefulness have been considered a hallmark of dementia. Owners of dogs with canine cognitive dysfunction syndrome (a canine analog to Alzheimer's disease) report that their dogs suffer from difficulty sleeping. The aim of this study was to quantify age-related changes in the sleep-wakefulness cycle macrostructure and electroencephalographic features in senior dogs and to correlate them with their cognitive performance. Methods We performed polysomnographic recordings in 28 senior dogs during a 2 h afternoon nap. Percentage of time spent in wakefulness, drowsiness, NREM, and REM sleep, as well as latency to the three sleep states were calculated. Spectral power, coherence, and Lempel Ziv Complexity of the brain oscillations were estimated. Finally, cognitive performance was evaluated by means of the Canine Dementia Scale Questionnaire and a battery of cognitive tests. Correlations between age, cognitive performance and sleep-wakefulness cycle macrostructure and electroencephalographic features were calculated. Results Dogs with higher dementia scores and with worse performance in a problem-solving task spent less time in NREM and REM sleep. Additionally, quantitative electroencephalographic analyses showed differences in dogs associated with age or cognitive performance, some of them reflecting shallower sleep in more affected dogs. Discussion Polysomnographic recordings in dogs can detect sleep-wakefulness cycle changes associated with dementia. Further studies should evaluate polysomnography's potential clinical use to monitor the progression of canine cognitive dysfunction syndrome.
Collapse
Affiliation(s)
- Alejandra Mondino
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Magaly Catanzariti
- Instituto de Matemática Aplicada del Litoral, Consejo Nacional de Investigaciones Científicas y Técninas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Diego Martin Mateos
- Instituto de Matemática Aplicada del Litoral, Consejo Nacional de Investigaciones Científicas y Técninas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Physics Department, Universidad Autónoma de Entre Ríos (UADER), Oro Verde, Entre Ríos, Argentina
| | - Michael Khan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Claire Ludwig
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Anna Kis
- Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Budapest, Hungary
| | - Margaret E. Gruen
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Natasha J. Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Natasha J. Olby
| |
Collapse
|
195
|
Saidane HA, Rasmussen T, Andersen K, Iversen HK, West AS. An Explorative Investigation of the Effect of Naturalistic Light on Agitation-Associated Behavior in Nursing Home Residents With Dementia: A Pilot Study. HERD-HEALTH ENVIRONMENTS RESEARCH & DESIGN JOURNAL 2022; 16:146-154. [PMID: 36573255 DOI: 10.1177/19375867221146154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aim: To study the effect of naturalistic light, programmed to replicate the spectrum distribution of natural light from dusk to dawn, on agitation measured with a Cohen-Mansfield Agitation Inventory–inspired score of nursing home residents with dementia. Background: Though the effects of different types of light on the sleep-wake patterns of senior adults and people with dementia have been examined in several studies, the effects of naturalistic light systems, as a possible nonpharmacological intervention to improve sleep and reduce agitation, have yet to be extensively evaluated due to the relative novelty of the technology. Methods: The study was designed as a 6-month pilot study of a prospective interventional longitudinal cohort study, with five participants recruited from a single department of a Danish nursing home. The effect of naturalistic lighting on agitation-associated behaviors was recorded over a 3-day period pre- and postintervention. Results: An overall 71.2% reduction in the frequency of agitation-associated behaviors was recorded, with the frequency of some behaviors even reduced by 100%. Conclusions: This pilot study estimates that naturalistic lighting may be a promising nonpharmacological intervention to improve the overall agitation of nursing home residents with dementia, with a possible added benefit of an improved work environment for the staff. This study, therefore, finds indication for the performance of a randomized controlled trial with the same intervention and a larger cohort.
Collapse
Affiliation(s)
| | | | - Knud Andersen
- The Administration of the Elderly and Disabled, Odense, Denmark
| | - Helle Klingenberg Iversen
- Department of Neurology, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | |
Collapse
|
196
|
Jeon SY, Byun MS, Yi D, Jung G, Lee JY, Kim YK, Sohn CH, Kang KM, Lee YJ, Lee DY. Circadian rest-activity rhythm and longitudinal brain changes underlying late-life cognitive decline. Psychiatry Clin Neurosci 2022; 77:205-212. [PMID: 36527292 PMCID: PMC10360409 DOI: 10.1111/pcn.13521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
AIM The neurobiological substrates underlying the relationship of circadian rest-activity rhythm (RAR) alteration with accelerated late-life cognitive decline are not clearly understood. In the present study, the longitudinal relationship of objectively measured circadian RAR with in vivo Alzheimer disease (AD) pathologies and cerebrovascular injury was investigated in older adults without dementia. METHODS The present study included 129 participants without dementia who participated in the KBASE (Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's Disease) cohort. All participants underwent actigraphy at baseline and two consecutive [11 C] Pittsburgh compound-B positron emission tomography (PET), [18 F] fluorodeoxyglucose-PET, magnetic resonance imaging, and Mini-Mental State Examination (MMSE) at baseline and at a 2-year follow-up assessment. The associations of circadian RAR with annualized change in neuroimaging measures including global amyloid-beta retention, AD-signature region cerebral glucose metabolism (AD-CM), and white matter hyperintensity volume were examined. RESULTS Delayed acrophase at baseline was significantly associated with greater annualized decline of AD-CM over a 2-year period, but not with that of other neuroimaging measures. In contrast, other circadian RAR parameters at baseline had no association with annualized change of any neuroimaging measures. Annualized decline of AD-CM was also significantly positively associated with the annual change in MMSE scores. Furthermore, a mediation analysis showed that greater reduction in AD-CM mediated the effect of delayed acrophase at baseline on faster decline of MMSE score. CONCLUSION The findings indicate that delayed acrophase in late life may cause or predict hypometabolism at AD-signature brain regions, which underlies cognitive decline in the near future.
Collapse
Affiliation(s)
- So Yeon Jeon
- Department of Psychiatry, Chungnam National University Hospital, Daejeon, Republic of Korea.,Department of Psychiatry, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Centre, Seoul National University, Seoul, South Korea
| | - Gijung Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, South Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University College of Medcine, Seoul, South Korea.,Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Yu Jin Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, Medical Research Centre, Seoul National University, Seoul, South Korea
| | | |
Collapse
|
197
|
Chen X, Holtzman DM. Emerging roles of innate and adaptive immunity in Alzheimer's disease. Immunity 2022; 55:2236-2254. [PMID: 36351425 PMCID: PMC9772134 DOI: 10.1016/j.immuni.2022.10.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/15/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, with characteristic extracellular amyloid-β (Aβ) deposition and intracellular accumulation of hyperphosphorylated, aggregated tau. Several key regulators of innate immune pathways are genetic risk factors for AD. While these genetic risk factors as well as in vivo data point to key roles for microglia, emerging evidence also points to a role of the adaptive immune response in disease pathogenesis. We review the roles of innate and adaptive immunity, their niches, their communication, and their contributions to AD development and progression. We also summarize the cellular compositions and physiological functions of immune cells in the parenchyma, together with those in the brain border structures that form a dynamic disease-related immune niche. We propose that both innate and adaptive immune responses in brain parenchyma and border structures could serve as important therapeutic targets for treating both the pre-symptomatic and the symptomatic stages of AD.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
198
|
Kim E, Yoo SH, Chen Z. Circadian stabilization loop: the regulatory hub and therapeutic target promoting circadian resilience and physiological health. F1000Res 2022; 11:1236. [PMID: 36415204 PMCID: PMC9652504 DOI: 10.12688/f1000research.126364.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
The circadian clock is a fundamental biological mechanism that orchestrates essential cellular and physiological processes to optimize fitness and health. The basic functional unit is the cell-autonomous oscillator, consisting of intersecting negative feedback loops. Whereas the core loop is primarily responsible for rhythm generation, auxiliary loops, most notably the secondary or stabilization loop, play pivotal roles to confer temporal precision and molecular robustness. The stabilization loop contains opposing nuclear receptor subfamilies REV-ERBs and retinoic acid receptor-related orphan receptors (RORs), competing to modulate rhythmic expression of the basic helix-loop-helix ARNT like 1 ( Bmal1) genes in the core loop as well as other clock-controlled genes. Therefore, REV-ERBs and RORs are strategically located to interface the oscillator and the global transcriptomic network, promoting cellular homeostasis and physiological fitness throughout lifespan. Disruption of REV-ERB and ROR functions has been linked with diseases and aging, and pharmacological manipulation of these factors has shown promise in various mouse disease models. Nobiletin is a natural compound that directly binds to and activates RORα/γ, modulating circadian rhythms, and shows robust in vivo efficacies to combat clock-associated pathophysiologies and age-related decline. Results from several studies demonstrate an inverse relation between nobiletin efficacy and clock functional state, where nobiletin elicits little effect in young and healthy mice with growing efficacy as the clock is perturbed by environmental and genetic challenges. This mode of action is consistent with the function of the stabilization loop to promote circadian and physiological resilience. Future studies should further investigate the function and mechanism of REV-ERBs and RORs, and test strategies targeting these factors against disease and aging.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA,
| |
Collapse
|
199
|
Kim E, Yoo SH, Chen Z. Circadian stabilization loop: the regulatory hub and therapeutic target promoting circadian resilience and physiological health. F1000Res 2022; 11:1236. [PMID: 36415204 PMCID: PMC9652504.2 DOI: 10.12688/f1000research.126364.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The circadian clock is a fundamental biological mechanism that orchestrates essential cellular and physiological processes to optimize fitness and health. The basic functional unit is the cell-autonomous oscillator, consisting of intersecting negative feedback loops. Whereas the core loop is primarily responsible for rhythm generation, auxiliary loops, most notably the secondary or stabilization loop, play pivotal roles to confer temporal precision and molecular robustness. The stabilization loop contains opposing nuclear receptor subfamilies REV-ERBs and retinoic acid receptor-related orphan receptors (RORs), competing to modulate rhythmic expression of the basic helix-loop-helix ARNT like 1 ( Bmal1) genes in the core loop as well as other clock-controlled genes. Therefore, REV-ERBs and RORs are strategically located to interface the oscillator and the global transcriptomic network, promoting cellular homeostasis and physiological fitness throughout lifespan. Disruption of REV-ERB and ROR functions has been linked with diseases and aging, and pharmacological manipulation of these factors has shown promise in various mouse disease models. Nobiletin is a natural compound that directly binds to and activates RORα/γ, modulating circadian rhythms, and shows robust in vivo efficacies to combat clock-associated pathophysiologies and age-related decline. Results from several studies demonstrate an inverse relation between nobiletin efficacy and clock functional state, where nobiletin elicits little effect in young and healthy mice with growing efficacy as the clock is perturbed by environmental and genetic challenges. This mode of action is consistent with the function of the stabilization loop to promote circadian and physiological resilience. Future studies should further investigate the function and mechanism of REV-ERBs and RORs, and test strategies targeting these factors against disease and aging.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA,
| |
Collapse
|
200
|
Pontrello CG, McWhirt JM, Glabe CG, Brewer GJ. Age-Related Oxidative Redox and Metabolic Changes Precede Intraneuronal Amyloid-β Accumulation and Plaque Deposition in a Transgenic Alzheimer's Disease Mouse Model. J Alzheimers Dis 2022; 90:1501-1521. [PMID: 36278355 PMCID: PMC9789488 DOI: 10.3233/jad-220824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Many identified mechanisms could be upstream of the prominent amyloid-β (Aβ) plaques in Alzheimer's disease (AD). OBJECTIVE To profile the progression of pathology in AD. METHODS We monitored metabolic signaling, redox stress, intraneuronal amyloid-β (iAβ) accumulation, and extracellular plaque deposition in the brains of 3xTg-AD mice across the lifespan. RESULTS Intracellular accumulation of aggregated Aβ in the CA1 pyramidal cells at 9 months preceded extracellular plaques that first presented in the CA1 at 16 months of age. In biochemical assays, brain glutathione (GSH) declined with age in both 3xTg-AD and non-transgenic controls, but the decline was accelerated in 3xTg-AD brains from 2 to 4 months. The decline in GSH correlated exponentially with the rise in iAβ. Integrated metabolic signaling as the ratio of phospho-Akt (pAkt) to total Akt (tAkt) in the PI3kinase and mTOR pathway declined at 6, 9, and 12 months, before rising at 16 and 20 months. These pAkt/tAkt ratios correlated with both iAβ and GSH levels in a U-shaped relationship. Selective vulnerability of age-related AD-genotype-specific pAkt changes was greatest in the CA1 pyramidal cell layer. To demonstrate redox causation, iAβ accumulation was lowered in cultured middle-age adult 3xTg-AD neurons by treatment of the oxidized redox state in the neurons with exogenous cysteine. CONCLUSION The order of pathologic progression in the 3xTg-AD mouse was loss of GSH (oxidative redox shift) followed by a pAkt/tAkt metabolic shift in CA1, iAβ accumulation in CA1, and extracellular Aβ deposition. Upstream targets may prove strategically more effective for therapy before irreversible changes.
Collapse
Affiliation(s)
- Crystal G. Pontrello
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA,
Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Joshua M. McWhirt
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Charles G. Glabe
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA,
Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA,
MIND Institute, University of California Irvine, Irvine, CA, USA
| | - Gregory J. Brewer
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA,
Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA,
MIND Institute, University of California Irvine, Irvine, CA, USA,Correspondence to: Gregory J. Brewer, Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA. Tel.: +1 217 502 4511; E-mail:
| |
Collapse
|