151
|
Namasivayam V, Stefan K, Gorecki L, Korabecny J, Soukup O, Jansson PJ, Pahnke J, Stefan SM. Physicochemistry shapes bioactivity landscape of pan-ABC transporter modulators: Anchor point for innovative Alzheimer's disease therapeutics. Int J Biol Macromol 2022; 217:775-791. [PMID: 35839956 DOI: 10.1016/j.ijbiomac.2022.07.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a devastating neurological disorder characterized by the pathological accumulation of macromolecular Aβ and tau leading to neuronal death. Drugs approved to treat AD may ameliorate disease symptoms, however, no curative treatment exists. Aβ peptides were discovered to be substrates of adenosine triphosphate-(ATP)-binding cassette (ABC) transporters. Activators of these membrane-bound efflux proteins that promote binding and/or translocation of Aβ could revolutionize AD medicine. The knowledge about ABC transporter activators is very scarce, however, the few molecules that were reported contain substructural features of multitarget (pan-)ABC transporter inhibitors. A cutting-edge strategy to obtain new drug candidates is to explore and potentially exploit the recently proposed multitarget binding site of pan-ABC transporter inhibitors as anchor point for the development of innovative activators to promote Aβ clearance from the brain. Molecular associations between functional bioactivities and physicochemical properties of small-molecules are key to understand these processes. This study provides an analysis of a recently reported unique multitarget dataset for the correlation between multitarget bioactivity and physicochemistry. Six novel pan-ABC transporter inhibitors were validated containing substructural features of ABC transporter activators, which underpins the relevance of the multitarget binding site for the targeted development of novel AD diagnostics and therapeutics.
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- LIED, Pahnke Lab (www.pahnkelab.eu), University of Lübeck and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany; Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katja Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Lukas Gorecki
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Patric Jan Jansson
- Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St. Leonards, NSW 2065, Australia
| | - Jens Pahnke
- LIED, Pahnke Lab (www.pahnkelab.eu), University of Lübeck and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany; Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 4, 1004 Rīga, Latvia; Tel Aviv University, The Georg S. Wise Faculty of Life Sciences, Department of Neurobiology, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Sven Marcel Stefan
- LIED, Pahnke Lab (www.pahnkelab.eu), University of Lübeck and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany; Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
152
|
Kelly AM, Berry MR, Tasker SZ, McKee SA, Fan TM, Hergenrother PJ. Target-Agnostic P-Glycoprotein Assessment Yields Strategies to Evade Efflux, Leading to a BRAF Inhibitor with Intracranial Efficacy. J Am Chem Soc 2022; 144:12367-12380. [PMID: 35759775 DOI: 10.1021/jacs.2c03944] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The blood-brain barrier (BBB) presents a major hurdle in the development of central nervous system (CNS) active therapeutics, and expression of the P-glycoprotein (P-gp) efflux transporter at the blood-brain interface further impedes BBB penetrance of most small molecules. Designing efflux liabilities out of compounds can be laborious, and there is currently no generalizable approach to directly transform periphery-limited agents to ones active in the CNS. Here, we describe a target-agnostic, prospective assessment of P-gp efflux using diverse compounds. Our results demonstrate that reducing the molecular size or appending a carboxylic acid in many cases enables evasion of P-gp efflux in cell-based experiments and in mice. These strategies were then applied to transform a periphery-limited V600EBRAF inhibitor, dabrafenib, into versions that possess potent and selective anti-cancer activity but now also evade P-gp-mediated efflux. When compared to dabrafenib, the compound developed herein (everafenib) has superior BBB penetrance and superior efficacy in an intracranial mouse model of metastatic melanoma, suggesting it as a lead candidate for the treatment of melanoma metastases to the brain and gliomas with BRAF mutation. More generally, the results described herein suggest the actionability of the trends observed in these target-agnostic efflux studies and provide guidance for the conversion of non-BBB-penetrant drugs into versions that are BBB-penetrant and efficacious.
Collapse
Affiliation(s)
- Aya M Kelly
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew R Berry
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sarah Z Tasker
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sydney A McKee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Timothy M Fan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
153
|
Kondiah PPD, Rants’o TA, Makhathini SS, Mdanda S, Choonara YE. An Oral 3D Printed PLGA-Tocopherol PEG Succinate Nanocomposite Hydrogel for High-Dose Methotrexate Delivery in Maintenance Chemotherapy. Biomedicines 2022; 10:1470. [PMID: 35884775 PMCID: PMC9313284 DOI: 10.3390/biomedicines10071470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022] Open
Abstract
High-dose methotrexate (HDMTX) is one of the chemotherapeutic agents used to treat a variety of cancers in both adults and children. However, the toxicity associated with HDMTX has resulted in the spread of infections and treatment interruption. Further, poor bioavailability due to efflux pump activities mediated by P-glycoprotein has also been linked to poor therapeutic effects of methotrexate following oral administrations. D-α-Tocopheryl poly-ethylene glycol 1000 succinate (TPGS) is known to improve the bioavailability of poorly soluble drugs by inhibiting P-gp efflux activities, thus enhancing cellular uptake. Therefore, to achieve improved bioavailability for MTX, this study aimed to design and develop a novel drug delivery system employing TPGS and a biodegradable polymer, i.e., PLGA, to construct methotrexate-loaded nanoparticles fixated in alginate-gelatine 3D printable hydrogel ink to form a solid 3D printed tablet for oral delivery. The results indicated that high accuracy (>95%) of the 3D printed tablets was achieved using a 25 G needle. In vitro, drug release profiles were investigated at pH 1.2 and pH 7.4 to simulate the gastrointestinal environment. The in vitro release profile displayed a controlled and prolonged release of methotrexate over 24 h. The in silico modeling study displayed P-gp ATPase inhibition, suggesting enhanced MTX absorption from the gastrointestinal site. The 3D-printed hydrogel-based tablet has the potential to overcome the chemotherapeutic challenges that are experienced with conventional therapies.
Collapse
Affiliation(s)
| | | | | | | | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa; (P.P.D.K.); (T.A.R.); (S.S.M.); (S.M.)
| |
Collapse
|
154
|
Inoue Y, Yamaguchi T, Otsuka T, Utsunomiya Y, Pan D, Ogawa H, Kato H. Structure-based alteration of tryptophan residues of the multidrug transporter CmABCB1 to assess substrate binding using fluorescence spectroscopy. Protein Sci 2022; 31:e4331. [PMID: 35634783 PMCID: PMC9123602 DOI: 10.1002/pro.4331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/01/2022] [Accepted: 04/06/2022] [Indexed: 09/17/2023]
Abstract
ABCB1, also known as P-glycoprotein, is an essential component of many physiological barriers and extrudes a variety of hydrophobic chemicals out of the cell. Structures of ABCB1 provided insights into the structural changes that occur upon ATP binding and the characteristic architecture of the substrate binding site. Yet, the structure-function relationship between substrate binding and transporting still remains largely obscured because there is no robust method for accurately measuring substrate binding constants. The methods currently used cannot identify whether the bound substrates are located in the inner chamber of the molecule in the transmembrane region or not because of the low spatial resolution. Here, we report a system for measuring the affinity of substrate binding to the Cyanidioschyzon merolae ABCB1 (CmABCB1) using site-specific tryptophan (Trp) fluorescence quenching. We designed a CmABCB1 mutant with an extrinsic Trp residue introduced into the inner chamber. Trp fluorescence was quenched by three substrates and one inhibitor, including rhodamine 6G, in a saturable fashion, allowing for accurate estimation of the dissociation constant (KD ) for each molecule. The KD for rhodamine 6G is similar to that determined using a reciprocal fluorescence quenching assay using rhodamine 6G fluorescence, suggesting that Trp fluorescence of the mutant was quenched by the interaction between the extrinsic Trp and substrates bound in the inner chamber. Structural comparison of the ABCB1 structures suggests that the system presented in this study could be ideal method of choice to determine the substrate binding affinities of compounds bound to the chamber of mammalian ABCB1.
Collapse
Affiliation(s)
- Yoshiki Inoue
- Department of Structural Biology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Tomohiro Yamaguchi
- Department of Structural Biology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Tetsuo Otsuka
- Department of Structural Biology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Yuto Utsunomiya
- Department of Structural Biology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Dongqing Pan
- Department of Structural Biology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Haruo Ogawa
- Department of Structural Biology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Hiroaki Kato
- Department of Structural Biology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
- Advanced Photon Technology DivisionRIKEN Harima Institute at SPring‐8Sayo‐gunHyogoJapan
| |
Collapse
|
155
|
Teng YN, Kao MC, Huang SY, Wu TS, Lee TE, Kuo CY, Hung CC. Novel application of rhein and its prodrug diacerein for reversing cancer-related multidrug resistance through the dual inhibition of P-glycoprotein efflux and STAT3-mediated P-glycoprotein expression. Biomed Pharmacother 2022; 150:112995. [PMID: 35658243 DOI: 10.1016/j.biopha.2022.112995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022] Open
Abstract
Multidrug resistance (MDR) is a multifactorial issue in cancer treatment. Drug efflux transporters, particularly P-glycoprotein (P-gp), are major contributors to such resistance. In the present study, we evaluated the P-gp-inhibiting and MDR-reversing effects of two compounds, namely rhein, an anthraquinone, and diacerein, the acetylated prodrug of rhein. ABCB1/Flp-In-293 was used as a model for investigating the related molecular mechanisms, and the multi-drug-resistant cancer cell line KB/VIN was used as a platform for evaluating the reversal of MDR0. The results indicated that at a concentration of 2.5 μM, both diacerein and rhein significantly inhibited P-gp efflux function. They also downregulated P-gp expression by interacting with the signal transducer and activator of transcription 3. Further investigation of the inhibitory mechanism of these compounds revealed that both stimulated P-gp ATPase activity dose dependently and engaged in the noncompetitive inhibition of rhodamine 123 efflux. Furthermore, rhein was revealed to be a potent reverser of MDR in cancer, and the combination of 30 μM rhein and 1000 nM vincristine exerted a strong synergistic effect, achieving a high combination index (CI) of 0.092. Diacerein demonstrated potential applications as a selective cytotoxic agent against multi-drug-resistant cancer cells at a concentration of > 18.92 μM and as a mild MDR reverser at doses of < 10 μM. In conclusion, diacerein and rhein are potential candidates for P-gp inhibition and MDR reversal in cancer cells.
Collapse
Affiliation(s)
- Yu-Ning Teng
- School of Medicine, College of Medicine, I-Shou University, 8 Yida Road, Kaohsiung 82445, Taiwan.
| | - Ming-Chang Kao
- Department of Anesthesiology, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan.
| | - Shih-Ya Huang
- Department of Pharmacy, College of Pharmacy, China Medical University, 100, Section 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan.
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan.
| | - Tsui-Er Lee
- Office of Physical Education, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan.
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan; Department of Nursing, Cardinal Tien College of Healthcare and Management, New Taipei City, Taiwan.
| | - Chin-Chuan Hung
- Department of Pharmacy, College of Pharmacy, China Medical University, 100, Section 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan; Department of Pharmacy, China Medical University Hospital, 2 Yude Road, Taichung 40447, Taiwan; Department of Healthcare Administration, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan.
| |
Collapse
|
156
|
Bijani S, Shaikh F, Mirza S, Weng In Siu S, Jain N, Rawal R, Richards NGJ, Shah A, Radadiya A. Novel Dihydropyrimidinone Derivatives as Potential P-Glycoprotein Modulators. ACS OMEGA 2022; 7:16278-16287. [PMID: 35601326 PMCID: PMC9118204 DOI: 10.1021/acsomega.1c05839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/15/2022] [Indexed: 05/22/2023]
Abstract
P-glycoprotein (Pgp), an ATP binding cassette (ABC) transporter, is an ATP-dependent efflux pump responsible for cancer multidrug resistance. As part of efforts to identify human Pgp (hPgp) inhibitors, we prepared a series of novel triazole-conjugated dihydropyrimidinones using a synthetic approach that is well suited for obtaining compound libraries. Several of these dihydropyrimidinone derivatives modulate human P-glycoprotein (hPgp) activity with low micromolar EC50 values. Molecular docking studies suggest that these compounds bind to the M-site of the transporter.
Collapse
Affiliation(s)
- Sabera Bijani
- Center
of Excellence, National Facility for Drug Discovery Complex, Department
of Chemistry, Saurashtra University, Rajkot 360005, India
- Department
of Chemistry, Marwadi University, Rajkot 360003, India
| | - Faraz Shaikh
- Center
of Excellence, National Facility for Drug Discovery Complex, Department
of Chemistry, Saurashtra University, Rajkot 360005, India
- Department
of Computer and Information Science, University
of Macau, Macau 999078, China
| | - Sheefa Mirza
- The
Gujarat Cancer & Research Institute, Ahmedabad 380009, India
- Department
of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Shirley Weng In Siu
- Department
of Computer and Information Science, University
of Macau, Macau 999078, China
| | - Nayan Jain
- Department
of Life Sciences, School of Sciences, Gujarat
University, Ahmedabad 380009, India
| | - Rakesh Rawal
- The
Gujarat Cancer & Research Institute, Ahmedabad 380009, India
- Department
of Life Sciences, School of Sciences, Gujarat
University, Ahmedabad 380009, India
| | | | - Anamik Shah
- Center
of Excellence, National Facility for Drug Discovery Complex, Department
of Chemistry, Saurashtra University, Rajkot 360005, India
- Astha, Saurashtra
University Karmachari Cooperative Society,
B/H Forensic Lab., Street
No. 2, University Road, Rajkot 360005, India
| | - Ashish Radadiya
- Center
of Excellence, National Facility for Drug Discovery Complex, Department
of Chemistry, Saurashtra University, Rajkot 360005, India
- School
of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| |
Collapse
|
157
|
Liu M, Xu C, Qin X, Liu W, Li D, Jia H, Gao X, Wu Y, Wu Q, Xu X, Xing B, Jiang X, Lu H, Zhang Y, Ding H, Zhao Q. DHW-221, a Dual PI3K/mTOR Inhibitor, Overcomes Multidrug Resistance by Targeting P-Glycoprotein (P-gp/ABCB1) and Akt-Mediated FOXO3a Nuclear Translocation in Non-small Cell Lung Cancer. Front Oncol 2022; 12:873649. [PMID: 35646704 PMCID: PMC9137409 DOI: 10.3389/fonc.2022.873649] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) is considered as a primary hindrance for paclitaxel failure in non-small cell lung cancer (NSCLC) patients, in which P-glycoprotein (P-gp) is overexpressed and the PI3K/Akt signaling pathway is dysregulated. Previously, we designed and synthesized DHW-221, a dual PI3K/mTOR inhibitor, which exerts a remarkable antitumor potency in NSCLC cells, but its effects and underlying mechanisms in resistant NSCLC cells remain unknown. Here, we reported for the first time that DHW-221 had favorable antiproliferative activity and suppressed cell migration and invasion in A549/Taxol cells in vitro and in vivo. Importantly, DHW-221 acted as a P-gp inhibitor via binding to P-gp, which resulted in decreased P-gp expression and function. A mechanistic study revealed that the DHW-221-induced FOXO3a nuclear translocation via Akt inhibition was involved in mitochondrial apoptosis and G0/G1 cell cycle arrest only in A549/Taxol cells and not in A549 cells. Interestingly, we observed that high-concentration DHW-221 reinforced the pro-paraptotic effect via stimulating endoplasmic reticulum (ER) stress and the mitogen-activated protein kinase (MAPK) pathway. Additionally, intragastrically administrated DHW-221 generated superior potency without obvious toxicity via FOXO3a nuclear translocation in an orthotopic A549/Taxol tumor mouse model. In conclusion, these results demonstrated that DHW-221, as a novel P-gp inhibitor, represents a prospective therapeutic candidate to overcome MDR in Taxol-resistant NSCLC treatment.
Collapse
Affiliation(s)
- Mingyue Liu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Chang Xu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaochun Qin
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenwu Liu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Deping Li
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Hui Jia
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Xudong Gao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Yuting Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiong Wu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiangbo Xu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Bo Xing
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaowen Jiang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongyuan Lu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yingshi Zhang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Huaiwei Ding
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, China
| | - Qingchun Zhao
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
158
|
Exploring Natural Product Activity and Species Source Candidates for Hunting ABCB1 Transporter Inhibitors: An In Silico Drug Discovery Study. Molecules 2022; 27:molecules27103104. [PMID: 35630581 PMCID: PMC9143904 DOI: 10.3390/molecules27103104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
The P-glycoprotein (P-gp/ABCB1) is responsible for a xenobiotic efflux pump that shackles intracellular drug accumulation. Additionally, it is included in the dud of considerable antiviral and anticancer chemotherapies because of the multidrug resistance (MDR) phenomenon. In the search for prospective anticancer drugs that inhibit the ABCB1 transporter, the Natural Product Activity and Species Source (NPASS) database, containing >35,000 molecules, was explored for identifying ABCB1 inhibitors. The performance of AutoDock4.2.6 software to anticipate ABCB1 docking score and pose was first assessed according to available experimental data. The docking scores of the NPASS molecules were predicted against the ABCB1 transporter. Molecular dynamics (MD) simulations were conducted for molecules with docking scores lower than taxol, a reference inhibitor, pursued by molecular mechanics-generalized Born surface area (MM-GBSA) binding energy estimations. On the basis of MM-GBSA calculations, five compounds revealed promising binding affinities as ABCB1 inhibitors with ΔGbinding < −105.0 kcal/mol. The binding affinity and stability of the identified inhibitors were compared to the chemotherapeutic agent. Structural and energetical analyses unveiled great steadiness of the investigated inhibitors within the ABCB1 active site throughout 100 ns MD simulations. Conclusively, these findings point out that NPC104372, NPC475164, NPC2313, NPC197736, and NPC477344 hold guarantees as potential ABCB1 drug candidates and warrant further in vitro/in vivo tests.
Collapse
|
159
|
P-glycoprotein Mediates Resistance to the Anaplastic Lymphoma Kinase Inhiitor Ensartinib in Cancer Cells. Cancers (Basel) 2022; 14:cancers14092341. [PMID: 35565470 PMCID: PMC9104801 DOI: 10.3390/cancers14092341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 01/27/2023] Open
Abstract
Ensartinib (X-396) is a promising second-generation small-molecule inhibitor of anaplastic lymphoma kinase (ALK) that was developed for the treatment of ALK-positive non-small-cell lung cancer. Preclinical and clinical trial results for ensartinib showed superior efficacy and a favorable safety profile compared to the first-generation ALK inhibitors that have been approved by the U.S. Food and Drug Administration. Although the potential mechanisms of acquired resistance to ensartinib have not been reported, the inevitable emergence of resistance to ensartinib may limit its therapeutic application in cancer. In this work, we investigated the interaction of ensartinib with P-glycoprotein (P-gp) and ABCG2, two ATP-binding cassette (ABC) multidrug efflux transporters that are commonly associated with the development of multidrug resistance in cancer cells. Our results revealed that P-gp overexpression, but not expression of ABCG2, was associated with reduced cancer cell susceptibility to ensartinib. P-gp directly decreased the intracellular accumulation of ensartinib, and consequently reduced apoptosis and cytotoxicity induced by this drug. The cytotoxicity of ensartinib could be significantly reversed by treatment with the P-gp inhibitor tariquidar. In conclusion, we report that ensartinib is a substrate of P-gp, and provide evidence that this transporter plays a role in the development of ensartinib resistance. Further investigation is needed.
Collapse
|
160
|
Moesgaard L, Reinholdt P, Nielsen CU, Kongsted J. Mechanism behind Polysorbates' Inhibitory Effect on P-Glycoprotein. Mol Pharm 2022; 19:2248-2253. [PMID: 35512380 DOI: 10.1021/acs.molpharmaceut.2c00074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Much effort has been invested in the search for modulators of membrane transport proteins such as P-glycoprotein (P-gp) to improve drug bioavailability and reverse multidrug resistance in cancer. Nonionic surfactants, a class of pharmaceutical excipients, are known to inhibit such proteins, but knowledge about the exact mechanism of this inhibition is scarce. Here, we perform multiscale molecular dynamics simulations of one of these surfactants, polysorbate 20 (PS20), to reveal the behavior of such compounds on the molecular level and thereby discover the molecular mechanism of the P-gp inhibition. We show that the amphiphilic headgroup of PS20 is too hydrophobic to partition in the water phase, which drives the binding of PS20 to the amphiphilic drug-binding domain of P-gp and thereby causes the inhibition of the protein. Based on our findings, we conclude that PS20 primarily inhibits P-gp through direct binding to the drug-binding domain (DBD) from the extracellular leaflet.
Collapse
Affiliation(s)
- Laust Moesgaard
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark
| |
Collapse
|
161
|
Structural insight into SSE15206 in complex with tubulin provides a rational design for pyrazolinethioamides as tubulin polymerization inhibitors. Future Med Chem 2022; 14:785-794. [PMID: 35506429 DOI: 10.4155/fmc-2021-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: Tubulin protein is a promising target for antitumor drugs. Some tubulin inhibitors targeting the colchicine binding site are not substrates of the multidrug-resistance efflux pump, which can overcome the mechanism of drug resistance mediated by P-glycoprotein. Methodology/results: SSE15206 is a colchicine binding site inhibitor with antiproliferative activity against different drug-resistant cell lines. Unfortunately, the lack of detailed interaction information about SSE15206 in complex with tubulin impeded the development of potent drugs that possess similar scaffolds. Herein, the authors report the crystal structure of the tubulin-SSE15206 complex at a resolution of 2.8 Å. Conclusion: The complex structure reveals the intermolecular interactions between SSE15206 and tubulin, providing a rationale for the development of pyrazolinethioamides as tubulin polymerization inhibitors and to overcome multidrug resistance.
Collapse
|
162
|
De novo design of a transcription factor for a progesterone biosensor. Biosens Bioelectron 2022; 203:113897. [DOI: 10.1016/j.bios.2021.113897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
|
163
|
LC-MS Profiled Chemical Constituents, Molecular Modeling, and In vitro Bioactivity Evaluations of Suaeda vermiculata Extracts as Anti-Hepatocellular Carcinoma Preparation: Assessment of the Constituents’ Role, and Receptor Docking Feasibility Based Activity Projections. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
164
|
ABC Transporters in Human Diseases: Future Directions and Therapeutic Perspectives. Int J Mol Sci 2022; 23:ijms23084250. [PMID: 35457067 PMCID: PMC9028344 DOI: 10.3390/ijms23084250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
|
165
|
Kapoor K, Thangapandian S, Tajkhorshid E. Extended-ensemble docking to probe dynamic variation of ligand binding sites during large-scale structural changes of proteins. Chem Sci 2022; 13:4150-4169. [PMID: 35440993 PMCID: PMC8985516 DOI: 10.1039/d2sc00841f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
Proteins can sample a broad landscape as they undergo conformational transition between different functional states. At the same time, as key players in almost all cellular processes, proteins are important drug targets. Considering the different conformational states of a protein is therefore central for a successful drug-design strategy. Here we introduce a novel docking protocol, termed extended-ensemble docking, pertaining to proteins that undergo large-scale (global) conformational changes during their function. In its application to multidrug ABC-transporter P-glycoprotein (Pgp), extensive non-equilibrium molecular dynamics simulations employing system-specific collective variables are first used to describe the transition cycle of the transporter. An extended set of conformations (extended ensemble) representing the full transition cycle between the inward- and the outward-facing states is then used to seed high-throughput docking calculations of known substrates, non-substrates, and modulators of the transporter. Large differences are predicted in the binding affinities to different conformations, with compounds showing stronger binding affinities to intermediate conformations compared to the starting crystal structure. Hierarchical clustering of the binding modes shows all ligands preferably bind to the large central cavity of the protein, formed at the apex of the transmembrane domain (TMD), whereas only small binding populations are observed in the previously described R and H sites present within the individual TMD leaflets. Based on the results, the central cavity is further divided into two major subsites, first preferably binding smaller substrates and high-affinity inhibitors, whereas the second one shows preference for larger substrates and low-affinity modulators. These central subsites along with the low-affinity interaction sites present within the individual TMD leaflets may respectively correspond to the proposed high- and low-affinity binding sites in Pgp. We propose further an optimization strategy for developing more potent inhibitors of Pgp, based on increasing its specificity to the extended ensemble of the protein, instead of using a single protein structure, as well as its selectivity for the high-affinity binding site. In contrast to earlier in silico studies using single static structures of Pgp, our results show better agreement with experimental studies, pointing to the importance of incorporating the global conformational flexibility of proteins in future drug-discovery endeavors.
Collapse
Affiliation(s)
- Karan Kapoor
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Sundar Thangapandian
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
166
|
Clouser AF, Atkins WM. Long Range Communication between the Drug-Binding Sites and Nucleotide Binding Domains of the Efflux Transporter ABCB1. Biochemistry 2022; 61:730-740. [PMID: 35384651 PMCID: PMC9022228 DOI: 10.1021/acs.biochem.2c00056] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The ABC efflux pump
P-glycoprotein (P-gp) transports a wide variety
of drugs and is inhibited by others. Some drugs stimulate ATP hydrolysis
at the nucleotide binding domains (NBDs) and are transported, others
uncouple ATP hydrolysis and transport, and others inhibit ATP hydrolysis.
The molecular basis for the different behavior of these drugs is not
well understood despite the availability of several structural models
of P-gp complexes with ligands bound. Hypothetically, ligands differentially
alter the conformational dynamics of peptide segments that mediate
the coupling between the drug binding sites and the NBDs. Here, we
explore by hydrogen-deuterium exchange mass spectrometry the dynamic
consequences of a classic substrate and inhibitor, vinblastine and
zosuquidar, binding to mouse P-gp (mdr1a) in lipid nanodiscs. The
dynamics of P-gp in nucleotide-free, pre-hydrolysis, and post-hydrolysis
states in the presence of each drug reveal distinct mechanisms of
ATPase stimulation and implications for transport. For both drugs,
there are common regions affected in a similar manner, suggesting
that particular networks are the key to stimulating ATP hydrolysis.
However, drug binding effects diverge in the post-hydrolysis state,
particularly in the intracellular helices (ICHs 3 and 4) and neighboring
transmembrane helices. The local dynamics and conformational equilibria
in this region are critical for the coupling of drug binding and ATP
hydrolysis and are differentially modulated in the catalytic cycle.
Collapse
Affiliation(s)
- Amanda F Clouser
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States
| |
Collapse
|
167
|
Naphthoquinone derivatives as P-glycoprotein inducers in inflammatory bowel disease: 2D monolayers, 3D spheroids, and in vivo models. Pharmacol Res 2022; 179:106233. [DOI: 10.1016/j.phrs.2022.106233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 12/21/2022]
|
168
|
Dong XD, Zhang M, Cai CY, Teng QX, Wang JQ, Fu YG, Cui Q, Patel K, Wang DT, Chen ZS. Overexpression of ABCB1 Associated With the Resistance to the KRAS-G12C Specific Inhibitor ARS-1620 in Cancer Cells. Front Pharmacol 2022; 13:843829. [PMID: 35281897 PMCID: PMC8905313 DOI: 10.3389/fphar.2022.843829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
The KRAS-G12C inhibitor ARS-1620, is a novel specific covalent inhibitor of KRAS-G12C, possessing a strong targeting inhibitory effect on KRAS-G12C mutant tumors. Overexpression of ATP-binding cassette super-family B member 1 (ABCB1/P-gp) is one of the pivotal factors contributing to multidrug resistance (MDR), and its association with KRAS mutations has been extensively studied. However, the investigations about the connection between the inhibitors of mutant KRAS and the level of ABC transporters are still missing. In this study, we investigated the potential drug resistance mechanism of ARS-1620 associated with ABCB1. The desensitization effect of ARS-1620 was remarkably intensified in both drug-induced ABCB1-overexpressing cancer cells and ABCB1-transfected cells as confirmed by cell viability assay results. This desensitization of ARS-1620 could be completely reversed when co-treated with an ABCB1 reversal agent. In mechanism-based studies, [3H] -paclitaxel accumulation assay revealed that ARS-1620 could be competitively pumped out by ABCB1. Additionally, it was found that ARS-1620 remarkably stimulated ATPase activity of ABCB1, and the HPLC drug accumulation assay displayed that ARS-1620 was actively transported out of ABCB1-overexpressing cancer cells. ARS-1620 acquired a high docking score in computer molecular docking analysis, implying ARS-1620 could intensely interact with ABCB1 transporters. Taken all together, these data indicated that ARS-1620 is a substrate for ABCB1, and the potential influence of ARS-1620-related cancer therapy on ABCB1-overexpressing cancer cells should be considered in future clinical applications.
Collapse
Affiliation(s)
- Xing-Duo Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Meng Zhang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yi-Ge Fu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Ketankumar Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Dong-Tao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,Department of the Ministry of Science and Technology, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
169
|
Ghorbanzadeh V, Aljaf KAH, Wasman HM, Pirzeh L, Azimi S, Dariushnejad H. Carvacrol Enhance Apoptotic Effect of 5-FU on MCF-7 Cell Line via inhibiting P-glycoprotein: An In-silco and In-vitro Study. Drug Res (Stuttg) 2022; 72:203-208. [PMID: 35253124 DOI: 10.1055/a-1766-5491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND P-glycoprotein (P-gp), is an ATP-dependent efflux transporter and overexpressed in cancer cells which is responsible for drug resistance and transportation of anticancer agents out of cells. Hence, P-gp inhibition is a promising way to reverse multi-drug resistance, finding a suitable inhibitor is essential. Carvacrol, an active compound of thyme, has been shown anticancer properties in several types of cancers but the mechanisms underlying this effect remain unclear. Here, we evaluated the inhibitory effects of carvacrol on P-gp by In-silco and in-vitro studies. METHOD carvacrol was docked against P-gp via autodock vina software to identify the potential binding of this agent. Verapamil, a well-known P-gp inhibitor, was selected as the control ligands. Cell proliferation and apoptosis were assessed using MTT assay and ELISA cell death assay, respectively. RESULTS It was observed that carvacrol exhibited appropriate affinity (-7 kcal/mol) to drug binding pocket of P-gp when compared with verapamil that showed binding affinities of -8 kcal/mol. The result of MTT assay showed a dose-dependent inhibitory effect of carvacrol and 5-FU. Data of apoptosis assay showed that combining carvacrol with 5-FU increased apoptotic effect of 5-FU 6.7-Fold rather than the control group. This ability to enhance apoptosis is more than the combination of verapamil and 5-FU (4.26-Fold). CONCLUSION These results provide important evidence that carvacrol may be a promising agent able to overcome P-gp-mediated MDR.
Collapse
Affiliation(s)
- Vajihe Ghorbanzadeh
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Hunar Mustafa Wasman
- Medical Laboratory Science Department, University of Raparin, Kurdistan Region, Iraq
| | - Lale Pirzeh
- Institute for Vascular Signaling, Center for Molecular Medicine, Johann Wolfgang Goethe University Frankfurt, Frankfort am Main, Germany
| | - Saleh Azimi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hassan Dariushnejad
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran.,Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
170
|
Etchart MG, Anderson LL, Ametovski A, Jones PM, George AM, Banister SD, Arnold JC. In vitro evaluation of the interaction of the cannabis constituents cannabichromene and cannabichromenic acid with ABCG2 and ABCB1. Eur J Pharmacol 2022; 922:174836. [DOI: 10.1016/j.ejphar.2022.174836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022]
|
171
|
Thaker TM, Mishra S, Zhou W, Mohan M, Tang Q, Faraldo-Goméz JD, Mchaourab HS, Tomasiak TM. Asymmetric drug binding in an ATP-loaded inward-facing state of an ABC transporter. Nat Chem Biol 2022; 18:226-235. [PMID: 34931066 PMCID: PMC9242650 DOI: 10.1038/s41589-021-00936-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022]
Abstract
Substrate efflux by ATP-binding cassette (ABC) transporters, which play a major role in multidrug resistance, entails the ATP-powered interconversion between transporter intermediates. Despite recent progress in structure elucidation, a number of intermediates have yet to be visualized and mechanistically interpreted. Here, we combine cryogenic-electron microscopy (cryo-EM), double electron-electron resonance spectroscopy and molecular dynamics simulations to profile a previously unobserved intermediate of BmrCD, a heterodimeric multidrug ABC exporter from Bacillus subtilis. In our cryo-EM structure, ATP-bound BmrCD adopts an inward-facing architecture featuring two molecules of the substrate Hoechst-33342 in a striking asymmetric head-to-tail arrangement. Deletion of the extracellular domain capping the substrate-binding chamber or mutation of Hoechst-coordinating residues abrogates cooperative stimulation of ATP hydrolysis. Together, our findings support a mechanistic role for symmetry mismatch between the nucleotide binding and the transmembrane domains in the conformational cycle of ABC transporters and is of notable importance for rational design of molecules for targeted ABC transporter inhibition.
Collapse
Affiliation(s)
- Tarjani M Thaker
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Smriti Mishra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- St Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenchang Zhou
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael Mohan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Qingyu Tang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - José D Faraldo-Goméz
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| | - Thomas M Tomasiak
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
172
|
Robertson MJ, Meyerowitz JG, Skiniotis G. Drug discovery in the era of cryo-electron microscopy. Trends Biochem Sci 2022; 47:124-135. [PMID: 34281791 PMCID: PMC8760134 DOI: 10.1016/j.tibs.2021.06.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/16/2021] [Accepted: 06/29/2021] [Indexed: 02/03/2023]
Abstract
Structure-based drug discovery (SBDD) is an indispensable approach for the design and optimization of new therapeutic agents. Here, we highlight the rapid progress that has turned cryo-electron microscopy (cryoEM) into an exceptional SBDD tool, and the wealth of new structural information it is providing for high-value pharmacological targets. We review key advantages of a technique that directly images vitrified biomolecules without the need for crystallization; both in terms of a broader array of systems that can be studied and the different forms of information it can provide, including heterogeneity and dynamics. We discuss near- and far-future developments, working in concert towards achieving the resolution and throughput necessary for cryoEM to make a widespread impact on the SBDD pipeline.
Collapse
Affiliation(s)
- Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Justin G Meyerowitz
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
173
|
Husain A, Makadia V, Valicherla GR, Riyazuddin M, Gayen JR. Approaches to minimize the effects of P-glycoprotein in drug transport: A review. Drug Dev Res 2022; 83:825-841. [PMID: 35103340 DOI: 10.1002/ddr.21918] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 12/20/2022]
Abstract
P-glycoprotein (P-gp) is a transporter protein that is come under the ATP binding cassette family of proteins. It is situated on the surface of the intestine epithelium, where P-gp substrate binds to the transporter and is pumped into the intestine lumen by the ATP-driven energy-dependent process. In this review, we summarize the role of the P-gp efflux transporter situated on the intestine, the clinical importance of P-gp related drug interactions, and approaches to minimize the effect of P-gp in drug transport. This review also focuses on the impact of P-gp on the bioavailability of the orally administered drug. Many drug's oral bioavailabilities can improve by concomitant use of P-gp inhibitors. Multidrug resistance are reduced by using some naturally occurring compounds obtained from plants and several synthetic P-gp inhibitors. Formulation strategies, one of the most important approaches to mimic the P-gp transporter's action, finally enhancing the oral bioavailability of the drug by inhibiting its P-gp efflux. Vitamin E TPGS, Gelucire 44/14 and other pharmaceutical/formulation excipients inhibit the P-gp efflux. A prodrug approach might be a useful strategy to overcome drug resistance. Prodrug helps to enhance the solubility or alter the pharmacokinetic properties but does not diminish the pharmacological action.
Collapse
Affiliation(s)
- Athar Husain
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vishal Makadia
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raibarelly, India
| | - Guru R Valicherla
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohammed Riyazuddin
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
174
|
Kita DH, de Andrade GA, Missina JM, Postal K, Boell VK, Santana FS, Zattoni IF, da Silva Zanzarini I, Moure VR, de Moraes Rego FG, Picheth G, de Souza EM, Mitchell DA, Ambudkar SV, Nunes GG, Valdameri G. Polyoxovanadates as new P-glycoprotein inhibitors: insights into the mechanism of inhibition. FEBS Lett 2022; 596:381-399. [PMID: 34939198 PMCID: PMC9340886 DOI: 10.1002/1873-3468.14265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
A promising strategy to overcome multidrug resistance is the use of inhibitors of ABC drug transporters. For this reason, we evaluated the polyoxovanadates (POVs) [V10 O28 ]6- (V10 ), [H6 V14 O38 (PO4 )]5- (V14 ), [V15 O36 Cl]6- (V15 ) and [V18 O42 I]7- (V18 ) as inhibitors of three major multidrug resistance-linked ABC transporters: P-glycoprotein (P-gp), ABCG2 and MRP1. All of the POVs selectively inhibited P-gp. V10 and V18 were the two most promising compounds, with IC50 values of transport inhibition of 25.4 and 22.7 µm, respectively. Both compounds inhibited P-gp ATPase activity, with the same IC50 value of 1.26 µm. V10 and V18 triggered different conformational changes in the P-gp protein with time-dependent inhibition, which was confirmed using the synthesized salt of V10 with rhodamine B, RhoB-V10 . The hydrophilic nature of POVs supports the hypothesis that these compounds target an unusual ligand-binding site, opening new possibilities in the development of potent modulators of ABC transporters.
Collapse
MESH Headings
- Humans
- ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/chemistry
- Multidrug Resistance-Associated Proteins/antagonists & inhibitors
- Multidrug Resistance-Associated Proteins/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/genetics
- Tungsten Compounds/pharmacology
- Tungsten Compounds/chemistry
- ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B/chemistry
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Drug Resistance, Multiple/drug effects
- Animals
Collapse
Affiliation(s)
- Diogo Henrique Kita
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, Curitiba, PR, Brazil
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gisele Alves de Andrade
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Kahoana Postal
- Department of Chemistry, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | - Ingrid Fatima Zattoni
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, Curitiba, PR, Brazil
| | - Isadora da Silva Zanzarini
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, Curitiba, PR, Brazil
| | - Vivian Rotuno Moure
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, Curitiba, PR, Brazil
- Department of Clinical Analysis, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Geraldo Picheth
- Department of Clinical Analysis, Federal University of Paraná, Curitiba, PR, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - David A. Mitchell
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Glaucio Valdameri
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, Curitiba, PR, Brazil
- Department of Clinical Analysis, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
175
|
FOXM1 Promotes Drug Resistance in Cervical Cancer Cells by Regulating ABCC5 Gene Transcription. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3032590. [PMID: 35141332 PMCID: PMC8820921 DOI: 10.1155/2022/3032590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/19/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022]
Abstract
Objective The aim of the present study was to investigate the effect of forkhead box M1 (FOXM1) to paclitaxel resistance in cervical cancer cells, to determine the underlying mechanism, and to identify novel targets for the treatment of paclitaxel-resistant cervical cancer. Methods Paclitaxel-resistant Caski cells (Caski/Taxol cells) were established by intermittently exposing the Caski cells to gradually increasing concentrations of paclitaxel. The association between FOXM1, ATP-binding cassette subfamily C member 5 (ABCC5), and cervical cancer cell drug resistance was assessed by overexpressing or knocking down the expression of FOXM1 in Caski or Caski/Taxol cells. The protein and mRNA expression levels, the ratio of cellular apoptosis, and cell migration as well as intracellular drug concentrations were measured in cells following the different treatments. Results After the successful establishment of resistant Caski/Taxol cells, cell cycle distribution analysis showed that a significantly larger percentage of Caski/Taxol cells was in the G0/G1 stage compared with the Caski cells (P < 0.01), whereas a significantly larger percentage of Caski cells was in the S and G2/M stage compared with the Caski/Taxol cells following treatment with paclitaxel (P < 0.01). Both the protein and mRNA expression levels of FOXM1 and ABCC5 transporters were significantly higher in the paclitaxel-resistant Caski/Taxol cells compared with Caski cells (P < 0.05). Knockdown of FOXM1 significantly lowered the protein expression levels of FOXM1 and ABCC5. Intracellular paclitaxel concentrations were significantly higher amongst the Caski/Taxol cells following the knockdown of FOXM1 by shRNA or Siomycin A (P < 0.05). Conclusion FOXM1 promotes drug resistance in cervical cancer cells by regulating ABCC5 gene transcription. The knockdown of FOXM1 with shRNA or Siomycin A promotes paclitaxel-induced cell death by regulating ABCC5 gene transcription.
Collapse
|
176
|
Chaptal V, Zampieri V, Wiseman B, Orelle C, Martin J, Nguyen KA, Gobet A, Di Cesare M, Magnard S, Javed W, Eid J, Kilburg A, Peuchmaur M, Marcoux J, Monticelli L, Hogbom M, Schoehn G, Jault JM, Boumendjel A, Falson P. Substrate-bound and substrate-free outward-facing structures of a multidrug ABC exporter. SCIENCE ADVANCES 2022; 8:eabg9215. [PMID: 35080979 DOI: 10.1101/2021.03.12.435132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Multidrug ABC transporters translocate drugs across membranes by a mechanism for which the molecular features of drug release are so far unknown. Here, we resolved three ATP-Mg2+-bound outward-facing conformations of the Bacillus subtilis (homodimeric) BmrA by x-ray crystallography and single-particle cryo-electron microscopy (EM) in detergent solution, one of them with rhodamine 6G (R6G), a substrate exported by BmrA when overexpressed in B. subtilis. Two R6G molecules bind to the drug-binding cavity at the level of the outer leaflet, between transmembrane (TM) helices 1-2 of one monomer and TM5'-6' of the other. They induce a rearrangement of TM1-2, highlighting a local flexibility that we confirmed by hydrogen/deuterium exchange and molecular dynamics simulations. In the absence of R6G, simulations show a fast postrelease occlusion of the cavity driven by hydrophobicity, while when present, R6G can move within the cavity, maintaining it open.
Collapse
Affiliation(s)
- Vincent Chaptal
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Veronica Zampieri
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Benjamin Wiseman
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Cédric Orelle
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Juliette Martin
- Modeling Biological Macromolecules Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Kim-Anh Nguyen
- University of Grenoble Alpes, INSERM, LRB, 38000 Grenoble, France
| | - Alexia Gobet
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Margot Di Cesare
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Sandrine Magnard
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Waqas Javed
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Jad Eid
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Arnaud Kilburg
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Marine Peuchmaur
- University of Grenoble Alpes, CNRS, DPM UMR 5063, 38041 Grenoble, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Luca Monticelli
- Modeling Biological Macromolecules Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Martin Hogbom
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Guy Schoehn
- University of Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Jean-Michel Jault
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | | | - Pierre Falson
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| |
Collapse
|
177
|
Chaptal V, Zampieri V, Wiseman B, Orelle C, Martin J, Nguyen KA, Gobet A, Di Cesare M, Magnard S, Javed W, Eid J, Kilburg A, Peuchmaur M, Marcoux J, Monticelli L, Hogbom M, Schoehn G, Jault JM, Boumendjel A, Falson P. Substrate-bound and substrate-free outward-facing structures of a multidrug ABC exporter. SCIENCE ADVANCES 2022; 8:eabg9215. [PMID: 35080979 PMCID: PMC8791611 DOI: 10.1126/sciadv.abg9215] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Multidrug ABC transporters translocate drugs across membranes by a mechanism for which the molecular features of drug release are so far unknown. Here, we resolved three ATP-Mg2+-bound outward-facing conformations of the Bacillus subtilis (homodimeric) BmrA by x-ray crystallography and single-particle cryo-electron microscopy (EM) in detergent solution, one of them with rhodamine 6G (R6G), a substrate exported by BmrA when overexpressed in B. subtilis. Two R6G molecules bind to the drug-binding cavity at the level of the outer leaflet, between transmembrane (TM) helices 1-2 of one monomer and TM5'-6' of the other. They induce a rearrangement of TM1-2, highlighting a local flexibility that we confirmed by hydrogen/deuterium exchange and molecular dynamics simulations. In the absence of R6G, simulations show a fast postrelease occlusion of the cavity driven by hydrophobicity, while when present, R6G can move within the cavity, maintaining it open.
Collapse
Affiliation(s)
- Vincent Chaptal
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Veronica Zampieri
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Benjamin Wiseman
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Cédric Orelle
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Juliette Martin
- Modeling Biological Macromolecules Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Kim-Anh Nguyen
- University of Grenoble Alpes, INSERM, LRB, 38000 Grenoble, France
| | - Alexia Gobet
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Margot Di Cesare
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Sandrine Magnard
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Waqas Javed
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Jad Eid
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Arnaud Kilburg
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Marine Peuchmaur
- University of Grenoble Alpes, CNRS, DPM UMR 5063, 38041 Grenoble, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Luca Monticelli
- Modeling Biological Macromolecules Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Martin Hogbom
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Guy Schoehn
- University of Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Jean-Michel Jault
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | | | - Pierre Falson
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
- Corresponding author.
| |
Collapse
|
178
|
Structure and transport mechanism of the human cholesterol transporter ABCG1. Cell Rep 2022; 38:110298. [PMID: 35081353 DOI: 10.1016/j.celrep.2022.110298] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/13/2021] [Accepted: 01/04/2022] [Indexed: 12/31/2022] Open
Abstract
The reverse cholesterol transport pathway is responsible for the maintenance of human cholesterol homeostasis, an imbalance of which usually leads to atherosclerosis. As a key component of this pathway, the ATP-binding cassette transporter ABCG1 forwards cellular cholesterol to the extracellular acceptor nascent high-density lipoprotein (HDL). Here, we report a 3.26-Å cryo-electron microscopy structure of cholesterol-bound ABCG1 in an inward-facing conformation, which represents a turnover condition upon ATP binding. Structural analyses combined with functional assays reveals that a cluster of conserved hydrophobic residues, in addition to two sphingomyelins, constitute a well-defined cholesterol-binding cavity. The exit of this cavity is closed by three pairs of conserved Phe residues, which constitute a hydrophobic path for the release of cholesterol in an acceptor concentration-dependent manner. Overall, we propose an ABCG1-driven cholesterol transport cycle initiated by sphingomyelin-assisted cholesterol recruitment and accomplished by the release of cholesterol to HDL.
Collapse
|
179
|
Wang L, Hou WT, Wang J, Xu D, Guo C, Sun L, Ruan K, Zhou CZ, Chen Y. Structures of human bile acid exporter ABCB11 reveal a transport mechanism facilitated by two tandem substrate-binding pockets. Cell Res 2022; 32:501-504. [PMID: 35043010 PMCID: PMC9061823 DOI: 10.1038/s41422-021-00611-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
|
180
|
Structures of the human peroxisomal fatty acid transporter ABCD1 in a lipid environment. Commun Biol 2022; 5:7. [PMID: 35013584 PMCID: PMC8748874 DOI: 10.1038/s42003-021-02970-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/13/2021] [Indexed: 01/13/2023] Open
Abstract
The peroxisomal very long chain fatty acid (VLCFA) transporter ABCD1 is central to fatty acid catabolism and lipid biosynthesis. Its dysfunction underlies toxic cytosolic accumulation of VLCFAs, progressive demyelination, and neurological impairments including X-linked adrenoleukodystrophy (X-ALD). We present cryo-EM structures of ABCD1 in phospholipid nanodiscs in a nucleotide bound conformation open to the peroxisomal lumen and an inward facing conformation open to the cytosol at up to 3.5 Å resolution, revealing details of its transmembrane cavity and ATP dependent conformational spectrum. We identify features distinguishing ABCD1 from its closest homologs and show that coenzyme A (CoA) esters of VLCFAs modulate ABCD1 activity in a species dependent manner. Our data suggest a transport mechanism where the CoA moieties of VLCFA-CoAs enter the hydrophilic transmembrane domain while the acyl chains extend out into the surrounding membrane bilayer. The structures help rationalize disease causing mutations and may aid ABCD1 targeted structure-based drug design. Le et al. present cryo-EM structures of the peroxisomal very long chain fatty acid (VLCFA) transporter ABCD1 in phospholipid nanodiscs in a nucleotide-bound conformation open to the peroximsomal lumen and a conformation open to the cytosol. These structures provide the basis for structure-function studies to investigate VLCFA transport properties, disease-causing mutations, and drug design for disorders, such as X-linked adrenoleukodystrophy, associated with ABCD1 dysfunction.
Collapse
|
181
|
Goebel J, Chmielewski J, Hrycyna CA. The roles of the human ATP-binding cassette transporters P-glycoprotein and ABCG2 in multidrug resistance in cancer and at endogenous sites: future opportunities for structure-based drug design of inhibitors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:784-804. [PMID: 34993424 PMCID: PMC8730335 DOI: 10.20517/cdr.2021.19] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp) and ABCG2 are multidrug transporters that confer drug resistance to numerous anti-cancer therapeutics in cell culture. These findings initially created great excitement in the medical oncology community, as inhibitors of these transporters held the promise of overcoming clinical multidrug resistance in cancer patients. However, clinical trials of P-gp and ABCG2 inhibitors in combination with cancer chemotherapeutics have not been successful due, in part, to flawed clinical trial designs resulting from an incomplete molecular understanding of the multifactorial basis of multidrug resistance (MDR) in the cancers examined. The field was also stymied by the lack of high-resolution structural information for P-gp and ABCG2 for use in the rational structure-based drug design of inhibitors. Recent advances in structural biology have led to numerous structures of both ABCG2 and P-gp that elucidated more clearly the mechanism of transport and the polyspecific nature of their substrate and inhibitor binding sites. These data should prove useful helpful for developing even more potent and specific inhibitors of both transporters. As such, although possible pharmacokinetic interactions would need to be evaluated, these inhibitors may show greater effectiveness in overcoming ABC-dependent multidrug resistance in combination with chemotherapeutics in carefully selected subsets of cancers. Another perhaps even more compelling use of these inhibitors may be in reversibly inhibiting endogenously expressed P-gp and ABCG2, which serve a protective role at various blood-tissue barriers. Inhibition of these transporters at sanctuary sites such as the brain and gut could lead to increased penetration by chemotherapeutics used to treat brain cancers or other brain disorders and increased oral bioavailability of these agents, respectively.
Collapse
Affiliation(s)
- Jason Goebel
- Department of Chemistry, Purdue University West Lafayette, IN 47907, USA
| | - Jean Chmielewski
- Department of Chemistry, Purdue University West Lafayette, IN 47907, USA
| | | |
Collapse
|
182
|
Nano Drug Delivery Systems: Effective Therapy Strategies to Overcome Multidrug Resistance in Tumor Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
183
|
Wu Z, Yang Y, Lei Z, Narayanan S, Wang J, Teng Q, Murakami M, Ambudkar SV, Ping F, Chen Z. ABCB1 limits the cytotoxic activity of TAK-243, an inhibitor of the ubiquitin-activating enzyme UBA1. FRONT BIOSCI-LANDMRK 2022; 27:5. [PMID: 35090310 PMCID: PMC10258814 DOI: 10.31083/j.fbl2701005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 01/13/2025]
Abstract
BACKGROUND One of the major concerns of cancer therapy is the emergence of multidrug resistance (MDR). The MDR-associated ATP-binding cassette sub-family B member 1 (ABCB1) transporter is established to mediate resistance against numerous anticancer drugs. In this study, we demonstrated that the Ubiquitin-like modifier activating enzyme 1 (UBA1) inhibitor TAK-243 is transported by the ABCB1. METHODS MTT assay was performed to evaluate the cytotoxicity of TAK-243. Western blot was carried out to investigate if TAK-243 affect to ABCB1 protein expression in cancer cells. High Performance Liquid Chromatography (HPLC) and ATPase assay were carried out to confirm TAK-243 as an ABCB1 substrate. [3H]-paclitaxel accumulation assay was used to determine the MDR reversal effect of TAK-243. Computational docking analysis was performed to investigate the drug-transporter binding position. RESULTS The cytotoxicity profile showed that TAK-243 was less effective in ABCB1-overexpressing cells than in the parental cells, but pharmacological inhibition or knockout the gene of ABCB1 was able to reverse TAK-243 resistance. Furthermore, TAK-243 potently stimulated ABCB1 ATPase activity and the HPLC analysis revealed that TAK-243 accumulation was significantly reduced in ABCB1-overexpressing cells. Finally, the computational docking analysis indicates a high binding affinity between TAK-243 and human ABCB1 transporter. CONCLUSIONS Our in vitro data characterized TAK-243 as a substrate of ABCB1, which may predict limited anticancer effect of this compound in drug resistant tumors.
Collapse
Affiliation(s)
- Zhuoxun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Zining Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Silpa Narayanan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Jingquan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Qiuxu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Fengfeng Ping
- Department of Reproductive Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Zhesheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| |
Collapse
|
184
|
Pan D, Oyama R, Sato T, Nakane T, Mizunuma R, Matsuoka K, Joti Y, Tono K, Nango E, Iwata S, Nakatsu T, Kato H. Crystal structure of CmABCB1 multi-drug exporter in lipidic mesophase revealed by LCP-SFX. IUCRJ 2022; 9:134-145. [PMID: 35059217 PMCID: PMC8733880 DOI: 10.1107/s2052252521011611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
CmABCB1 is a Cyanidioschyzon merolae homolog of human ABCB1, a well known ATP-binding cassette (ABC) transporter responsible for multi-drug resistance in various cancers. Three-dimensional structures of ABCB1 homologs have revealed the snapshots of inward- and outward-facing states of the transporters in action. However, sufficient information to establish the sequential movements of the open-close cycles of the alternating-access model is still lacking. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has proven its worth in determining novel structures and recording sequential conformational changes of proteins at room temperature, especially for medically important membrane proteins, but it has never been applied to ABC transporters. In this study, 7.7 mono-acyl-glycerol with cholesterol as the host lipid was used and obtained well diffracting microcrystals of the 130 kDa CmABCB1 dimer. Successful SFX experiments were performed by adjusting the viscosity of the crystal suspension of the sponge phase with hy-droxy-propyl methyl-cellulose and using the high-viscosity sample injector for data collection at the SACLA beamline. An outward-facing structure of CmABCB1 at a maximum resolution of 2.22 Å is reported, determined by SFX experiments with crystals formed in the lipidic cubic phase (LCP-SFX), which has never been applied to ABC transporters. In the type I crystal, CmABCB1 dimers interact with adjacent molecules via not only the nucleotide-binding domains but also the transmembrane domains (TMDs); such an interaction was not observed in the previous type II crystal. Although most parts of the structure are similar to those in the previous type II structure, the substrate-exit region of the TMD adopts a different configuration in the type I structure. This difference between the two types of structures reflects the flexibility of the substrate-exit region of CmABCB1, which might be essential for the smooth release of various substrates from the transporter.
Collapse
Affiliation(s)
- Dongqing Pan
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryo Oyama
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomomi Sato
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takanori Nakane
- Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryo Mizunuma
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Keita Matsuoka
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toru Nakatsu
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hiroaki Kato
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
185
|
Ramírez AS, Nosol K, Locher KP. Production of Human ABC Transporters and Oligosaccharyltransferase Complexes for Structural Studies. Methods Mol Biol 2022; 2507:273-294. [PMID: 35773587 DOI: 10.1007/978-1-0716-2368-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Structural studies of membrane proteins require high-quality samples. The target proteins should not only be pure and homogeneous but should also be active and allow the capture of a functionally relevant state. Here we present optimized methods for the expression and purification of human ABC transporters and oligosaccharyltransferase (OST) complexes that can be used for high-resolution structure determination using single-particle cryo-electron microscopy (cryo-EM). The protocols are based on the generation of stable cell lines that enable tetracycline-inducible expression of the target proteins. For the multidrug exporter ABCB1, we describe a protocol for reconstitution into nanodiscs and evaluation of the ATPase activity in the presence of drugs. For human OST, we describe a strategy for the purification of OST-A and OST-B complexes, including techniques to evaluate their integrity and activity using in vitro glycosylation assays. These protocols can be adapted for the production of other human ABC transporters and multimeric membrane protein complexes.
Collapse
Affiliation(s)
- Ana S Ramírez
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Kamil Nosol
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| |
Collapse
|
186
|
Palmirotta R. Direct Oral Anticoagulants (DOAC): Are We Ready for a Pharmacogenetic Approach? J Pers Med 2021; 12:17. [PMID: 35055332 PMCID: PMC8777772 DOI: 10.3390/jpm12010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Anticoagulants play an important role in reducing complications and mortality associated with thromboembolic disorders, and anticoagulant therapy has been progressively enriched over the last few years with numerous new options [...].
Collapse
Affiliation(s)
- Raffaele Palmirotta
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
187
|
Mora Lagares L, Pérez-Castillo Y, Minovski N, Novič M. Structure-Function Relationships in the Human P-Glycoprotein (ABCB1): Insights from Molecular Dynamics Simulations. Int J Mol Sci 2021; 23:ijms23010362. [PMID: 35008783 PMCID: PMC8745603 DOI: 10.3390/ijms23010362] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022] Open
Abstract
P-Glycoprotein (P-gp) is a transmembrane protein belonging to the ATP binding cassette superfamily of transporters, and it is a xenobiotic efflux pump that limits intracellular drug accumulation by pumping compounds out of cells. P-gp contributes to a reduction in toxicity, and has broad substrate specificity. It is involved in the failure of many cancer and antiviral chemotherapies due to the phenomenon of multidrug resistance (MDR), in which the membrane transporter removes chemotherapeutic drugs from target cells. Understanding the details of the ligand–P-gp interaction is therefore critical for the development of drugs that can overcome the MDR phenomenon, for the early identification of P-gp substrates that will help us to obtain a more effective prediction of toxicity, and for the subsequent outdesign of substrate properties if needed. In this work, a series of molecular dynamics (MD) simulations of human P-gp (hP-gp) in an explicit membrane-and-water environment were performed to investigate the effects of binding different compounds on the conformational dynamics of P-gp. The results revealed significant differences in the behaviour of P-gp in the presence of active and non-active compounds within the binding pocket, as different patterns of movement were identified that could be correlated with conformational changes leading to the activation of the translocation mechanism. The predicted ligand–P-gp interactions are in good agreement with the available experimental data, as well as the estimation of the binding-free energies of the studied complexes, demonstrating the validity of the results derived from the MD simulations.
Collapse
Affiliation(s)
- Liadys Mora Lagares
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
- Correspondence: (L.M.L.); (M.N.); Tel.: +386-1-4760-438 (L.M.L.); +386-1-4760-253 (M.N.)
| | - Yunierkis Pérez-Castillo
- Bio-Cheminformatics Research Group and Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Quito 170513, Ecuador;
| | - Nikola Minovski
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia;
| | - Marjana Novič
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia;
- Correspondence: (L.M.L.); (M.N.); Tel.: +386-1-4760-438 (L.M.L.); +386-1-4760-253 (M.N.)
| |
Collapse
|
188
|
Urgaonkar S, Nosol K, Said AM, Nasief NN, Bu Y, Locher KP, Lau JYN, Smolinski MP. Discovery and Characterization of Potent Dual P-Glycoprotein and CYP3A4 Inhibitors: Design, Synthesis, Cryo-EM Analysis, and Biological Evaluations. J Med Chem 2021; 65:191-216. [PMID: 34928144 DOI: 10.1021/acs.jmedchem.1c01272] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Targeted concurrent inhibition of intestinal drug efflux transporter P-glycoprotein (P-gp) and drug metabolizing enzyme cytochrome P450 3A4 (CYP3A4) is a promising approach to improve oral bioavailability of their common substrates such as docetaxel, while avoiding side effects arising from their pan inhibitions. Herein, we report the discovery and characterization of potent small molecule inhibitors of P-gp and CYP3A4 with encequidar (minimally absorbed P-gp inhibitor) as a starting point for optimization. To aid in the design of these dual inhibitors, we solved the high-resolution cryo-EM structure of encequidar bound to human P-gp. The structure guided us to prudently decorate the encequidar scaffold with CYP3A4 pharmacophores, leading to the identification of several analogues with dual potency against P-gp and CYP3A4. In vivo, dual P-gp and CYP3A4 inhibitor 3a improved the oral absorption of docetaxel by 3-fold as compared to vehicle, while 3a itself remained poorly absorbed.
Collapse
Affiliation(s)
- Sameer Urgaonkar
- Athenex Inc., Conventus Building, Buffalo, New York 14203, United States
| | - Kamil Nosol
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Ahmed M Said
- Athenex Inc., Conventus Building, Buffalo, New York 14203, United States
| | - Nader N Nasief
- Athenex Inc., Conventus Building, Buffalo, New York 14203, United States
| | - Yahao Bu
- Athenex Inc., Conventus Building, Buffalo, New York 14203, United States
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Johnson Y N Lau
- Athenex Inc., Conventus Building, Buffalo, New York 14203, United States
| | | |
Collapse
|
189
|
Characterization and tissue localization of zebrafish homologs of the human ABCB1 multidrug transporter. Sci Rep 2021; 11:24150. [PMID: 34921178 PMCID: PMC8683423 DOI: 10.1038/s41598-021-03500-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Capillary endothelial cells of the human blood–brain barrier (BBB) express high levels of P-glycoprotein (P-gp, encoded by ABCB1) and ABCG2 (encoded by ABCG2). However, little information is available regarding ATP-binding cassette transporters expressed at the zebrafish BBB, which has emerged as a potential model system. We report the characterization and tissue localization of two genes that are similar to ABCB1, zebrafish abcb4 and abcb5. When stably expressed in HEK293 cells, both Abcb4 and Abcb5 conferred resistance to P-gp substrates; however, Abcb5 poorly transported doxorubicin and mitoxantrone compared to zebrafish Abcb4. Additionally, Abcb5 did not transport the fluorescent P-gp probes BODIPY-ethylenediamine or LDS 751, while they were transported by Abcb4. High-throughput screening of 90 human P-gp substrates confirmed that Abcb4 has an overlapping substrate specificity profile with P-gp. In the brain vasculature, RNAscope probes for abcb4 colocalized with staining by the P-gp antibody C219, while abcb5 was not detected. The abcb4 probe also colocalized with claudin-5 in brain endothelial cells. Abcb4 and Abcb5 had different tissue localizations in multiple zebrafish tissues, potentially indicating different functions. The data suggest that zebrafish Abcb4 functionally phenocopies P-gp and that the zebrafish may serve as a model to study the role of P-gp at the BBB.
Collapse
|
190
|
Frozen motion: how cryo-EM changes the way we look at ABC transporters. Trends Biochem Sci 2021; 47:136-148. [PMID: 34930672 DOI: 10.1016/j.tibs.2021.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
ATP-binding cassette (ABC) transporters are widely present molecular machines that transfer substrates across the cell membrane. ABC transporters are involved in numerous physiological processes and are often clinical targets. Structural biology is fundamental to obtain the molecular details underlying ABC transporter function and suggest approaches to modulate it. Until recently, X-ray crystallography has been the only method capable of providing high-resolution structures of ABC transporters. However, modern cryo-electron microscopy (cryo-EM) opens entirely new ways of studying these dynamic membrane proteins. Cryo-EM enables analyses of targets that resist X-ray crystallography, challenging multicomponent complexes, and the exploration of conformational dynamics. These unique capacities have turned cryo-EM into the dominant technique for structural studies of membrane proteins, including ABC transporters.
Collapse
|
191
|
Pahnke J, Bascuñana P, Brackhan M, Stefan K, Namasivayam V, Koldamova R, Wu J, Möhle L, Stefan SM. Strategies to gain novel Alzheimer's disease diagnostics and therapeutics using modulators of ABCA transporters. FREE NEUROPATHOLOGY 2021; 2:33. [PMID: 34977908 PMCID: PMC8717091 DOI: 10.17879/freeneuropathology-2021-3528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
Adenosine-triphosphate-(ATP)-binding cassette (ABC) transport proteins are ubiquitously present membrane-bound efflux pumps that distribute endo- and xenobiotics across intra- and intercellular barriers. Discovered over 40 years ago, ABC transporters have been identified as key players in various human diseases, such as multidrug-resistant cancer and atherosclerosis, but also neurodegenerative diseases, such as Alzheimer's disease (AD). Most prominent and well-studied are ABCB1, ABCC1, and ABCG2, not only due to their contribution to the multidrug resistance (MDR) phenotype in cancer, but also due to their contribution to AD. However, our understanding of other ABC transporters is limited, and most of the 49 human ABC transporters have been largely neglected as potential targets for novel small-molecule drugs. This is especially true for the ABCA subfamily, which contains several members known to play a role in AD initiation and progression. This review provides up-to-date information on the proposed functional background and pathological role of ABCA transporters in AD. We also provide an overview of small-molecules shown to interact with ABCA transporters as well as potential in silico, in vitro, and in vivo methodologies to gain novel templates for the development of innovative ABC transporter-targeting diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jens Pahnke
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
- LIED, University of Lübeck, Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Rīga, Latvia
| | - Pablo Bascuñana
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Mirjam Brackhan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
- LIED, University of Lübeck, Lübeck, Germany
| | - Katja Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Vigneshwaran Namasivayam
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Radosveta Koldamova
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jingyun Wu
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Luisa Möhle
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Sven Marcel Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
192
|
Teng YN, Chen LH, Chen Kui Vavulengan YH. Repositioning application of polyoxyethylene (20) sorbitan monooleate on ocular drug resistance and cancer multi-drug resistance by inhibiting the ATPase activity of human multidrug resistance protein 1 and P-glycoprotein. Eur J Pharm Biopharm 2021; 170:77-90. [PMID: 34896572 DOI: 10.1016/j.ejpb.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022]
Abstract
Drug efflux transporters were highly related to the clinical drug resistance issues, such as cancer multi-drug resistance (MDR) and ocular drug resistance. In the present study, with the focus on human multi-drug resistance protein 1 (MRP1) and P-glycoprotein (P-gp), the inhibitory kinetics of polyoxyethylene (20) sorbitan monooleate (Tween 80) on both drug binding sites and ATPase were in-depth evaluated. We used the stable-cloned ABCB1/Flp-InTM-293 and ABCC1/Flp-InTM-293 cell lines, and inside-out membrane vesicles for underlying mechanisms investigation while used the drug induced cancer MDR cell line KB/VIN and human retinal pigmented epithelium cell line ARPE-19 for efficacy evaluation. Results showed that Tween 80 exhibited non-competitive inhibition on the doxorubicin efflux of P-gp and MRP1, with the inhibitory affinity 0.00195% (14.89 μM) and 0.00245% (18.7 μM), respectively. Tween 80 inhibited the basal ATPase activity of P-gp and MRP1 in a dose-dependent manner (0.0002% to 0.02%) and demonstrated significant reversing effects on the doxorubicin, paclitaxel, and vincristine resistance at the concentration of 0.001% (7.63 μM). This was the first thorough study revealing the interactions between Tween 80 and P-gp or MRP1 at a molecular level and these findings suggested that Tween 80 was a potential candidate for future combinatorial regimens applied in the "drug resistance" issue.
Collapse
Affiliation(s)
- Yu-Ning Teng
- School of Medicine, College of Medicine, I-Shou University, 8 Yida Road, Kaohsiung 82445, Taiwan, R.O.C.
| | - Li-Hung Chen
- School of Medicine, College of Medicine, I-Shou University, 8 Yida Road, Kaohsiung 82445, Taiwan, R.O.C.
| | | |
Collapse
|
193
|
Abdulla N, Vincent CT, Kaur M. Mechanistic Insights Delineating the Role of Cholesterol in Epithelial Mesenchymal Transition and Drug Resistance in Cancer. Front Cell Dev Biol 2021; 9:728325. [PMID: 34869315 PMCID: PMC8640133 DOI: 10.3389/fcell.2021.728325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the significant advancements made in targeted anti-cancer therapy, drug resistance constitutes a multifaceted phenomenon leading to therapy failure and ultimately mortality. Emerging experimental evidence highlight a role of cholesterol metabolism in facilitating drug resistance in cancer. This review aims to describe the role of cholesterol in facilitating multi-drug resistance in cancer. We focus on specific signaling pathways that contribute to drug resistance and the link between these pathways and cholesterol. Additionally, we briefly discuss the molecular mechanisms related to the epithelial-mesenchymal transition (EMT), and the documented link between EMT, metastasis and drug resistance. We illustrate this by specifically focusing on hypoxia and the role it plays in influencing cellular cholesterol content following EMT induction. Finally, we provide a proposed model delineating the crucial role of cholesterol in EMT and discuss whether targeting cholesterol could serve as a novel means of combatting drug resistance in cancer progression and metastasis.
Collapse
Affiliation(s)
- Naaziyah Abdulla
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - C Theresa Vincent
- Department of Immunology, Genetics and Pathology, Uppsala, Sweden.,Department of Microbiology, New York University School of Medicine, New York, NY, United States
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
194
|
Singh K, Tarapcsák S, Gyöngy Z, Ritter Z, Batta G, Bosire R, Remenyik J, Goda K. Effects of Polyphenols on P-Glycoprotein (ABCB1) Activity. Pharmaceutics 2021; 13:pharmaceutics13122062. [PMID: 34959345 PMCID: PMC8707248 DOI: 10.3390/pharmaceutics13122062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
P-glycoprotein (Pgp, ABCB1) is a member of one of the largest families of active transporter proteins called ABC transporters. Thanks to its expression in tissues with barrier functions and its broad substrate spectrum, it is an important determinant of the absorption, metabolism and excretion of many drugs. Pgp and/or some other drug transporting ABC proteins (e.g., ABCG2, MRP1) are overexpressed in nearly all cancers and cancer stem cells by which cancer cells become resistant against many drugs. Thus, Pgp inhibition might be a strategy for fighting against drug-resistant cancer cells. Previous studies have shown that certain polyphenols interact with human Pgp. We tested the effect of 15 polyphenols of sour cherry origin on the basal and verapamil-stimulated ATPase activity of Pgp, calcein-AM and daunorubicin transport as well as on the conformation of Pgp using the conformation sensitive UIC2 mAb. We found that quercetin, quercetin-3-glucoside, narcissoside and ellagic acid inhibited the ATPase activity of Pgp and increased the accumulation of calcein and daunorubicin by Pgp-positive cells. Cyanidin-3O-sophoroside, catechin, naringenin, kuromanin and caffeic acid increased the ATPase activity of Pgp, while they had only a weaker effect on the intracellular accumulation of fluorescent Pgp substrates. Several tested polyphenols including epicatechin, trans-ferulic acid, oenin, malvin and chlorogenic acid were ineffective in all assays applied. Interestingly, catechin and epicatechin behave differently, although they are stereoisomers. We also investigated the effect of quercetin, naringenin and ellagic acid added in combination with verapamil on the transport activity of Pgp. In these experiments, we found that the transport inhibitory effect of the tested polyphenols and verapamil was additive or synergistic. Generally, our data demonstrate diverse interactions of the tested polyphenols with Pgp. Our results also call attention to the potential risks of drug–drug interactions (DDIs) associated with the consumption of dietary polyphenols concurrently with chemotherapy treatment involving Pgp substrate/inhibitor drugs.
Collapse
Affiliation(s)
- Kuljeet Singh
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (S.T.); (Z.G.); (Z.R.); (G.B.); (R.B.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Szabolcs Tarapcsák
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (S.T.); (Z.G.); (Z.R.); (G.B.); (R.B.)
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Zsuzsanna Gyöngy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (S.T.); (Z.G.); (Z.R.); (G.B.); (R.B.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsuzsanna Ritter
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (S.T.); (Z.G.); (Z.R.); (G.B.); (R.B.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Gyula Batta
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (S.T.); (Z.G.); (Z.R.); (G.B.); (R.B.)
- Department of Genetics and Applied Microbiology, Faculty of Science of Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Rosevalentine Bosire
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (S.T.); (Z.G.); (Z.R.); (G.B.); (R.B.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Judit Remenyik
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| | - Katalin Goda
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (S.T.); (Z.G.); (Z.R.); (G.B.); (R.B.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
195
|
Nielsen RB, Holm R, Pijpers I, Snoeys J, Nielsen UG, Nielsen CU. Oral etoposide and zosuquidar bioavailability in rats: Effect of co-administration and in vitro-in vivo correlation of P-glycoprotein inhibition. Int J Pharm X 2021; 3:100089. [PMID: 34977557 PMCID: PMC8683663 DOI: 10.1016/j.ijpx.2021.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/03/2021] [Indexed: 11/01/2022] Open
Abstract
P-glycoprotein inhibitors, like zosuquidar, have widely been used to study the role of P-glycoprotein in oral absorption. Still, systematic studies on the inhibitor dose-response relationship on intestinal drug permeation are lacking. In the present study, we investigated the effect of 0.79 nM-2.5 μM zosuquidar on etoposide permeability across Caco-2 cell monolayers. We also investigated etoposide pharmacokinetics after oral or IV administration to Sprague Dawley rats with co-administration of 0.063–63 mg/kg zosuquidar, as well as the pharmacokinetics of zosuquidar itself. Oral zosuquidar bioavailability was 2.6–4.2%, while oral etoposide bioavailability was 5.5 ± 0.9%, which increased with increasing zosuquidar doses to 35 ± 5%. The intestinal zosuquidar concentration required to induce a half-maximal increase in bioavailability was estimated to 180 μM. In contrast, the IC50 of zosuquidar on etoposide permeability in vitro was only 5–10 nM, and a substantial in vitro-in vivo discrepancy of at least four orders of magnitude was thereby identified. Overall, the present study provides valuable insights for future formulation development that applies fixed dose combinations of P-glycoprotein inhibitors to increase the absorption of poorly permeable P-glycoprotein substrate drugs.
Collapse
|
196
|
Namasivayam V, Stefan K, Pahnke J, Stefan SM. Binding mode analysis of ABCA7 for the prediction of novel Alzheimer's disease therapeutics. Comput Struct Biotechnol J 2021; 19:6490-6504. [PMID: 34976306 PMCID: PMC8666613 DOI: 10.1016/j.csbj.2021.11.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
The adenosine-triphosphate-(ATP)-binding cassette (ABC) transporter ABCA7 is a genetic risk factor for Alzheimer's disease (AD). Defective ABCA7 promotes AD development and/or progression. Unfortunately, ABCA7 belongs to the group of 'under-studied' ABC transporters that cannot be addressed by small-molecules. However, such small-molecules would allow for the exploration of ABCA7 as pharmacological target for the development of new AD diagnostics and therapeutics. Pan-ABC transporter modulators inherit the potential to explore under-studied ABC transporters as novel pharmacological targets by potentially binding to the proposed 'multitarget binding site'. Using the recently reported cryogenic-electron microscopy (cryo-EM) structures of ABCA1 and ABCA4, a homology model of ABCA7 has been generated. A set of novel, diverse, and potent pan-ABC transporter inhibitors has been docked to this ABCA7 homology model for the discovery of the multitarget binding site. Subsequently, application of pharmacophore modelling identified the essential pharmacophore features of these compounds that may support the rational drug design of innovative diagnostics and therapeutics against AD.
Collapse
Key Words
- ABC transporter (ABCA1, ABCA4, ABCA7)
- ABC, ATP-binding cassette
- AD, Alzheimer’s disease
- APP, amyloid precursor protein
- ATP, Adenosine-triphosphate
- Alzheimer’s disease (AD)
- BBB, blood-brain barrier
- BODIPY-cholesterol, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-cholesterol
- ECD, extracellular domain
- EH, extracellular helix
- GSH, reduced glutathione
- HTS, high-throughput screening
- IC, intracellular helix
- MOE, Molecular Operating Environment
- MSD, membrane spanning domain
- Multitarget modulation (PANABC)
- NBD, nucleotide binding domain
- NBD-cholesterol, 7-nitro-2-1,3-benzoxadiazol-4-yl-cholesterol
- PDB, protein data bank
- PET tracer (PETABC)
- PET, positron emission tomography
- PLIF, protein ligand interaction
- PSO, particle swarm optimization
- Polypharmacology
- R-domain/region, regulatory domain/region
- RMSD, root mean square distance
- Rational drug design and development
- SNP, single-nucleotide polymorphism
- TM, transmembrane helix
- cryo-EM, cryogenic-electron microscopy
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katja Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Jens Pahnke
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- LIED, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 1, 1004 Rīga, Latvia
| | - Sven Marcel Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| |
Collapse
|
197
|
Structure of ABCB1/P-Glycoprotein in the Presence of the CFTR Potentiator Ivacaftor. MEMBRANES 2021; 11:membranes11120923. [PMID: 34940424 PMCID: PMC8703531 DOI: 10.3390/membranes11120923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022]
Abstract
ABCB1/P-glycoprotein is an ATP binding cassette transporter that is involved in the clearance of xenobiotics, and it affects the disposition of many drugs in the body. Conformational flexibility of the protein within the membrane is an intrinsic part of its mechanism of action, but this has made structural studies challenging. Here, we have studied different conformations of P-glycoprotein simultaneously in the presence of ivacaftor, a known competitive inhibitor. In order to conduct this, we used high contrast cryo-electron microscopy imaging with a Volta phase plate. We associate the presence of ivacaftor with the appearance of an additional density in one of the conformational states detected. The additional density is in the central aqueous cavity and is associated with a wider separation of the two halves of the transporter in the inward-facing state. Conformational changes to the nucleotide-binding domains are also observed and may help to explain the stimulation of ATPase activity that occurs when transported substrate is bound in many ATP binding cassette transporters.
Collapse
|
198
|
Teng YN, Huang BH, Huang SY, Wu IT, Wu TS, Lee TE, Hung CC. Cinnamophilin overcomes cancer multi-drug resistance via allosterically modulating human P-glycoprotein on both drug binding sites and ATPase binding sites. Biomed Pharmacother 2021; 144:112379. [PMID: 34794239 DOI: 10.1016/j.biopha.2021.112379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Cancer multi-drug resistance (MDR) caused by P-glycoprotein (P-gp) efflux is a critical unresolved clinical concern. The present study analyzed the effect of cinnamophilin on P-gp inhibition and MDR reversion. The effect of cinnamophilin on P-gp was investigated through drug efflux assay, ATPase assay, MDR1 shift assay, and molecular docking. The cancer MDR-reversing ability and mechanisms were analyzed through cytotoxicity and combination index (CI), cell cycle, and apoptosis experiments. P-gp efflux function was significantly inhibited by cinnamophilin without influencing the drug's expression or conformation. Cinnamophilin uncompetitively inhibited the efflux of doxorubicin and rhodamine 123 and exhibited a distinct binding behavior compared with verapamil, the P-gp standard inhibitor. The half maximal inhibitory concentration of cinnamophilin for doxorubicin and rhodamine 123 efflux was 12.47 and 11.59 μM, respectively. In regard to P-gp energy consumption, verapamil-stimulated ATPase activity was further enhanced by cinnamophilin at concentrations of 0.1, 1, 10, and 20 μM. In terms of MDR reversion, cinnamophilin demonstrated synergistic cytotoxic effects when combined with docetaxel, vincristine, or paclitaxel. The CI was < 0.7 in all experimental combination treatments. The present study showed that cinnamophilin possesses P-gp-modulating effects and cancer MDR resensitizing ability.
Collapse
Affiliation(s)
- Yu-Ning Teng
- School of Medicine, College of Medicine, I-Shou University, 8 Yida Road, Kaohsiung 82445, Taiwan, ROC.
| | - Bo-Hau Huang
- Department of Pharmacy, China Medical University Hsinchu Hospital, No. 199, Section1, Xinglong Rd., Zhubei City, Hsinchu Country 302056, Taiwan, ROC.
| | - Shih-Ya Huang
- Department of Pharmacy, College of Pharmacy, China Medical University, 100, Section 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan, ROC.
| | - I-Ting Wu
- Department of Pharmacy, College of Pharmacy, China Medical University, 100, Section 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan, ROC.
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, ROC; Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan, ROC.
| | - Tsui-Er Lee
- Office of Physical Education, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan, ROC.
| | - Chin-Chuan Hung
- Department of Pharmacy, College of Pharmacy, China Medical University, 100, Section 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan, ROC; Department of Pharmacy, China Medical University Hospital, 2 Yude Road, Taichung 40447, Taiwan, ROC; Department of Healthcare Administration, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan, ROC.
| |
Collapse
|
199
|
Nanotherapeutics approaches to overcome P-glycoprotein-mediated multi-drug resistance in cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 40:102494. [PMID: 34775061 DOI: 10.1016/j.nano.2021.102494] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022]
Abstract
Multidrug resistance (MDR) in cancer chemotherapy is a growing concern for medical practitioners. P-glycoprotein (P-gp) overexpression is one of the major reasons for multidrug resistance in cancer chemotherapy. The P-gp overexpression in cancer cells depends on several factors like adenosine triphosphate (ATP) hydrolysis, hypoxia-inducible factor 1 alpha (HIF-1α), and drug physicochemical properties such as lipophilicity, molecular weight, and molecular size. Further multiple exposures of anticancer drugs to the P-gp efflux protein cause acquired P-gp overexpression. Unique structural and functional characteristics of nanotechnology-based drug delivery systems provide opportunities to circumvent P-gp mediated MDR. The primary mechanism behind the nanocarrier systems in P-gp inhibition includes: bypassing or inhibiting the P-gp efflux pump to combat MDR. In this review, we discuss the role of P-gp in MDR and highlight the recent progress in different nanocarriers to overcome P-gp mediated MDR in terms of their limitations and potentials.
Collapse
|
200
|
Fu T, Li F, Zhang Y, Yin J, Qiu W, Li X, Liu X, Xin W, Wang C, Yu L, Gao J, Zheng Q, Zeng S, Zhu F. VARIDT 2.0: structural variability of drug transporter. Nucleic Acids Res 2021; 50:D1417-D1431. [PMID: 34747471 PMCID: PMC8728241 DOI: 10.1093/nar/gkab1013] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/08/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
The structural variability data of drug transporter (DT) are key for research on precision medicine and rational drug use. However, these valuable data are not sufficiently covered by the available databases. In this study, a major update of VARIDT (a database previously constructed to provide DTs' variability data) was thus described. First, the experimentally resolved structures of all DTs reported in the original VARIDT were discovered from PubMed and Protein Data Bank. Second, the structural variability data of each DT were collected by literature review, which included: (a) mutation-induced spatial variations in folded state, (b) difference among DT structures of human and model organisms, (c) outward/inward-facing DT conformations and (d) xenobiotics-driven alterations in the 3D complexes. Third, for those DTs without experimentally resolved structural variabilities, homology modeling was further applied as well-established protocol to enrich such valuable data. As a result, 145 mutation-induced spatial variations of 42 DTs, 1622 inter-species structures originating from 292 DTs, 118 outward/inward-facing conformations belonging to 59 DTs, and 822 xenobiotics-regulated structures in complex with 57 DTs were updated to VARIDT (https://idrblab.org/varidt/ and http://varidt.idrblab.net/). All in all, the newly collected structural variabilities will be indispensable for explaining drug sensitivity/selectivity, bridging preclinical research with clinical trial, revealing the mechanism underlying drug-drug interaction, and so on.
Collapse
Affiliation(s)
- Tingting Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Jiayi Yin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenqi Qiu
- Department of Surgery, HKU-SZH & Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xuedong Li
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xingang Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Wenwen Xin
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Chengzhao Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Lushan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Qingchuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|