151
|
Chailloux Peguero JD, Mendoza-Montoya O, Antelis JM. Single-Option P300-BCI Performance Is Affected by Visual Stimulation Conditions. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7198. [PMID: 33339105 PMCID: PMC7765532 DOI: 10.3390/s20247198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/18/2023]
Abstract
The P300 paradigm is one of the most promising techniques for its robustness and reliability in Brain-Computer Interface (BCI) applications, but it is not exempt from shortcomings. The present work studied single-trial classification effectiveness in distinguishing between target and non-target responses considering two conditions of visual stimulation and the variation of the number of symbols presented to the user in a single-option visual frame. In addition, we also investigated the relationship between the classification results of target and non-target events when training and testing the machine-learning model with datasets containing different stimulation conditions and different number of symbols. To this end, we designed a P300 experimental protocol considering, as conditions of stimulation: the color highlighting or the superimposing of a cartoon face and from four to nine options. These experiments were carried out with 19 healthy subjects in 3 sessions. The results showed that the Event-Related Potentials (ERP) responses and the classification accuracy are stronger with cartoon faces as stimulus type and similar irrespective of the amount of options. In addition, the classification performance is reduced when using datasets with different type of stimulus, but it is similar when using datasets with different the number of symbols. These results have a special connotation for the design of systems, in which it is intended to elicit higher levels of evoked potentials and, at the same time, optimize training time.
Collapse
|
152
|
Kinney-Lang E, Kelly D, Floreani ED, Jadavji Z, Rowley D, Zewdie ET, Anaraki JR, Bahari H, Beckers K, Castelane K, Crawford L, House S, Rauh CA, Michaud A, Mussi M, Silver J, Tuck C, Adams K, Andersen J, Chau T, Kirton A. Advancing Brain-Computer Interface Applications for Severely Disabled Children Through a Multidisciplinary National Network: Summary of the Inaugural Pediatric BCI Canada Meeting. Front Hum Neurosci 2020; 14:593883. [PMID: 33343318 PMCID: PMC7744376 DOI: 10.3389/fnhum.2020.593883] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/10/2020] [Indexed: 11/15/2022] Open
Abstract
Thousands of youth suffering from acquired brain injury or other early-life neurological disease live, mature, and learn with only limited communication and interaction with their world. Such cognitively capable children are ideal candidates for brain-computer interfaces (BCI). While BCI systems are rapidly evolving, a fundamental gap exists between technological innovators and the patients and families who stand to benefit. Forays into translating BCI systems to children in recent years have revealed that kids can learn to operate simple BCI with proficiency akin to adults. BCI could bring significant boons to the lives of many children with severe physical impairment, supporting their complex physical and social needs. However, children have been neglected in BCI research and a collaborative BCI research community is required to unite and push pediatric BCI development forward. To this end, the pediatric BCI Canada collaborative network (BCI-CAN) was formed, under a unified goal to cooperatively drive forward pediatric BCI innovation and impact. This article reflects on the topics and discussions raised in the foundational BCI-CAN meeting held in Toronto, ON, Canada in November 2019 and suggests the next steps required to see BCI impact the lives of children with severe neurological disease and their families.
Collapse
Affiliation(s)
- Eli Kinney-Lang
- Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Dion Kelly
- Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Erica D Floreani
- Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Zeanna Jadavji
- Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Danette Rowley
- Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Ephrem Takele Zewdie
- Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Javad R Anaraki
- Department of Rehabilitation Science, Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,PRISM Laboratory, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Hosein Bahari
- I CAN Centre, Glenrose Rehabilitation Hospital, Alberta Health Services, Edmonton, AB, Canada
| | - Kim Beckers
- Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Karen Castelane
- PRISM Laboratory, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Lindsey Crawford
- PRISM Laboratory, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Sarah House
- PRISM Laboratory, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Chelsea A Rauh
- PRISM Laboratory, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Amber Michaud
- I CAN Centre, Glenrose Rehabilitation Hospital, Alberta Health Services, Edmonton, AB, Canada
| | - Matheus Mussi
- Assistive Technology Laboratory, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Jessica Silver
- PRISM Laboratory, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Corinne Tuck
- I CAN Centre, Glenrose Rehabilitation Hospital, Alberta Health Services, Edmonton, AB, Canada
| | - Kim Adams
- Assistive Technology Laboratory, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - John Andersen
- I CAN Centre, Glenrose Rehabilitation Hospital, Alberta Health Services, Edmonton, AB, Canada.,Assistive Technology Laboratory, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tom Chau
- Department of Rehabilitation Science, Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,PRISM Laboratory, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Adam Kirton
- Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
153
|
Benzy VK, Vinod AP, Subasree R, Alladi S, Raghavendra K. Motor Imagery Hand Movement Direction Decoding Using Brain Computer Interface to Aid Stroke Recovery and Rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2020; 28:3051-3062. [PMID: 33211662 DOI: 10.1109/tnsre.2020.3039331] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Motor Imagery (MI)-based Brain Computer Interface (BCI) system is a potential technology for active neurorehabilitation of stroke patients by complementing the conventional passive rehabilitation methods. Research to date mainly focused on classifying left vs. right hand/foot MI of stroke patients. Though a very few studies have reported decoding imagined hand movement directions using electroencephalogram (EEG)-based BCI, the experiments were conducted on healthy subjects. Our work analyzes MI-based brain cortical activity from EEG signals and decodes the imagined hand movement directions in stroke patients. The decoded direction (left vs. right) of hand movement imagination is used to provide control commands to a motorized arm support on which patient's affected (paralyzed) arm is placed. This enables the patient to move his/her stroke-affected hand towards the intended (imagined) direction that aids neuroplasticity in the brain. The synchronization measure called Phase Locking Value (PLV), extracted from EEG, is the neuronal signature used to decode the directional movement of the MI task. Event-related desynchronization/synchronization (ERD/ERS) analysis on Mu and Beta frequency bands of EEG is done to select the time bin corresponding to the MI task. The dissimilarities between the two directions of MI tasks are identified by selecting the most significant channel pairs that provided maximum difference in PLV features. The training protocol has an initial calibration session followed by a feedback session with 50 trials of MI task in each session. The feedback session extracts PLV features corresponding to most significant channel pairs which are identified in the calibration session and is used to predict the direction of MI task in left/right direction. An average MI direction classification accuracy of 74.44% is obtained in performing the training protocol and 68.63% from the prediction protocol during feedback session on 16 stroke patients.
Collapse
|
154
|
Chen X, Huang X, Wang Y, Gao X. Combination of Augmented Reality Based Brain- Computer Interface and Computer Vision for High-Level Control of a Robotic Arm. IEEE Trans Neural Syst Rehabil Eng 2020; 28:3140-3147. [PMID: 33196442 DOI: 10.1109/tnsre.2020.3038209] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recent advances in robotics, neuroscience, and signal processing make it possible to operate a robot through electroencephalography (EEG)-based brain-computer interface (BCI). Although some successful attempts have been made in recent years, the practicality of the entire system still has much room for improvement. The present study designed and realized a robotic arm control system by combing augmented reality (AR), computer vision, and steady-state visual evoked potential (SSVEP)-BCI. AR environment was implemented by a Microsoft HoloLens. Flickering stimuli for eliciting SSVEPs were presented on the HoloLens, which allowed users to see both the robotic arm and the user interface of the BCI. Thus users did not need to switch attention between the visual stimulator and the robotic arm. A four-command SSVEP-BCI was built for users to choose the specific object to be operated by the robotic arm. Once an object was selected, the computer vision would provide the location and color of the object in the workspace. Subsequently, the object was autonomously picked up and placed by the robotic arm. According to the online results obtained from twelve participants, the mean classification accuracy of the proposed system was 93.96 ± 5.05%. Moreover, all subjects could utilize the proposed system to successfully pick and place objects in a specific order. These results demonstrated the potential of combining AR-BCI and computer vision to control robotic arms, which is expected to further promote the practicality of BCI-controlled robots.
Collapse
|
155
|
Iwama S, Tsuchimoto S, Hayashi M, Mizuguchi N, Ushiba J. Scalp electroencephalograms over ipsilateral sensorimotor cortex reflect contraction patterns of unilateral finger muscles. Neuroimage 2020; 222:117249. [PMID: 32798684 DOI: 10.1016/j.neuroimage.2020.117249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
A variety of neural substrates are implicated in the initiation, coordination, and stabilization of voluntary movements underpinned by adaptive contraction and relaxation of agonist and antagonist muscles. To achieve such flexible and purposeful control of the human body, brain systems exhibit extensive modulation during the transition from resting state to motor execution and to maintain proper joint impedance. However, the neural structures contributing to such sensorimotor control under unconstrained and naturalistic conditions are not fully characterized. To elucidate which brain regions are implicated in generating and coordinating voluntary movements, we employed a physiologically inspired, two-stage method to decode relaxation and three patterns of contraction in unilateral finger muscles (i.e., extension, flexion, and co-contraction) from high-density scalp electroencephalograms (EEG). The decoder consisted of two parts employed in series. The first discriminated between relaxation and contraction. If the EEG data were discriminated as contraction, the second stage then discriminated among the three contraction patterns. Despite the difficulty in dissociating detailed contraction patterns of muscles within a limb from scalp EEG signals, the decoder performance was higher than chance-level by 2-fold in the four-class classification. Moreover, weighted features in the trained decoders revealed EEG features differentially contributing to decoding performance. During the first stage, consistent with previous reports, weighted features were localized around sensorimotor cortex (SM1) contralateral to the activated fingers, while those during the second stage were localized around ipsilateral SM1. The loci of these weighted features suggested that the coordination of unilateral finger muscles induced different signaling patterns in ipsilateral SM1 contributing to motor control. Weighted EEG features enabled a deeper understanding of human sensorimotor processing as well as of a more naturalistic control of brain-computer interfaces.
Collapse
Affiliation(s)
- Seitaro Iwama
- School of Fundamental Science and Technology, Graduate School of Keio University, Kanagawa, Japan
| | - Shohei Tsuchimoto
- School of Fundamental Science and Technology, Graduate School of Keio University, Kanagawa, Japan; Center of Assistive Robotics and Rehabilitation for Longevity and Good Health, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Masaaki Hayashi
- School of Fundamental Science and Technology, Graduate School of Keio University, Kanagawa, Japan
| | - Nobuaki Mizuguchi
- Center of Assistive Robotics and Rehabilitation for Longevity and Good Health, National Center for Geriatrics and Gerontology, Aichi, Japan; Department of Biosciences and informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Junichi Ushiba
- Department of Biosciences and informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| |
Collapse
|
156
|
Meir Y, Sardi S, Hodassman S, Kisos K, Ben-Noam I, Goldental A, Kanter I. Power-law scaling to assist with key challenges in artificial intelligence. Sci Rep 2020; 10:19628. [PMID: 33184422 PMCID: PMC7665018 DOI: 10.1038/s41598-020-76764-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022] Open
Abstract
Power-law scaling, a central concept in critical phenomena, is found to be useful in deep learning, where optimized test errors on handwritten digit examples converge as a power-law to zero with database size. For rapid decision making with one training epoch, each example is presented only once to the trained network, the power-law exponent increased with the number of hidden layers. For the largest dataset, the obtained test error was estimated to be in the proximity of state-of-the-art algorithms for large epoch numbers. Power-law scaling assists with key challenges found in current artificial intelligence applications and facilitates an a priori dataset size estimation to achieve a desired test accuracy. It establishes a benchmark for measuring training complexity and a quantitative hierarchy of machine learning tasks and algorithms.
Collapse
Affiliation(s)
- Yuval Meir
- Department of Physics, Bar-Ilan University, 52900, Ramat-Gan, Israel
| | - Shira Sardi
- Department of Physics, Bar-Ilan University, 52900, Ramat-Gan, Israel
| | - Shiri Hodassman
- Department of Physics, Bar-Ilan University, 52900, Ramat-Gan, Israel
| | - Karin Kisos
- Department of Physics, Bar-Ilan University, 52900, Ramat-Gan, Israel
| | - Itamar Ben-Noam
- Department of Physics, Bar-Ilan University, 52900, Ramat-Gan, Israel
| | - Amir Goldental
- Department of Physics, Bar-Ilan University, 52900, Ramat-Gan, Israel
| | - Ido Kanter
- Department of Physics, Bar-Ilan University, 52900, Ramat-Gan, Israel.
- Gonda Interdisciplinary Brain Research Center, Bar-Ilan University, 52900, Ramat-Gan, Israel.
| |
Collapse
|
157
|
Suma D, Meng J, Edelman BJ, He B. Spatial-temporal aspects of continuous EEG-based neurorobotic control. J Neural Eng 2020; 17:10.1088/1741-2552/abc0b4. [PMID: 33049729 PMCID: PMC8041920 DOI: 10.1088/1741-2552/abc0b4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
Abstract
Objective.The goal of this work is to identify the spatio-temporal facets of state-of-the-art electroencephalography (EEG)-based continuous neurorobotics that need to be addressed, prior to deployment in practical applications at home and in the clinic.Approach.Nine healthy human subjects participated in five sessions of one-dimensional (1D) horizontal (LR), 1D vertical (UD) and two-dimensional (2D) neural tracking from EEG. Users controlled a robotic arm and virtual cursor to continuously track a Gaussian random motion target using EEG sensorimotor rhythm modulation via motor imagery (MI) commands. Continuous control quality was analyzed in the temporal and spatial domains separately.Main results.Axis-specific errors during 2D tasks were significantly larger than during 1D counterparts. Fatigue rates were larger for control tasks with higher cognitive demand (LR, left- and right-hand MI) compared to those with lower cognitive demand (UD, both hands MI and rest). Additionally robotic arm and virtual cursor control exhibited equal tracking error during all tasks. However, further spatial error analysis of 2D control revealed a significant reduction in tracking quality that was dependent on the visual interference of the physical device. In fact, robotic arm performance was significantly greater than that of virtual cursor control when the users' sightlines were not obstructed.Significance.This work emphasizes the need for practical interfaces to be designed around real-world tasks of increased complexity. Here, the dependence of control quality on cognitive task demand emphasizes the need for decoders that facilitate the translation of 1D task mastery to 2D control. When device footprint was accounted for, the introduction of a physical robotic arm improved control quality, likely due to increased user engagement. In general, this work demonstrates the need to consider both the physical footprint of devices, the complexity of training tasks, and the synergy of control strategies during the development of neurorobotic control.
Collapse
Affiliation(s)
- Daniel Suma
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh PA, 15213
| | - Jianjun Meng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh PA, 15213
| | - Bradley Jay Edelman
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305
| | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh PA, 15213
| |
Collapse
|
158
|
Kobler RJ, Sburlea AI, Mondini V, Hirata M, Müller-Putz GR. Distance- and speed-informed kinematics decoding improves M/EEG based upper-limb movement decoder accuracy. J Neural Eng 2020; 17:056027. [PMID: 33146148 DOI: 10.1088/1741-2552/abb3b3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE One of the main goals in brain-computer interface (BCI) research is the replacement or restoration of lost function in individuals with paralysis. One line of research investigates the inference of movement kinematics from brain activity during different volitional states. A growing number of electroencephalography (EEG) and magnetoencephalography (MEG) studies suggest that information about directional (e.g. velocity) and nondirectional (e.g. speed) movement kinematics is accessible noninvasively. We sought to assess if the neural information associated with both types of kinematics can be combined to improve the decoding accuracy. APPROACH In an offline analysis, we reanalyzed the data of two previous experiments containing the recordings of 34 healthy participants (15 EEG, 19 MEG). We decoded 2D movement trajectories from low-frequency M/EEG signals in executed and observed tracking movements, and compared the accuracy of an unscented Kalman filter (UKF) that explicitly modeled the nonlinear relation between directional and nondirectional kinematics to the accuracies of linear Kalman (KF) and Wiener filters which did not combine both types of kinematics. MAIN RESULTS At the group level, posterior-parietal and parieto-occipital (executed and observed movements) and sensorimotor areas (executed movements) encoded kinematic information. Correlations between the recorded position and velocity trajectories and the UKF decoded ones were on average 0.49 during executed and 0.36 during observed movements. Compared to the other filters, the UKF could achieve the best trade-off between maximizing the signal to noise ratio and minimizing the amplitude mismatch between the recorded and decoded trajectories. SIGNIFICANCE We present direct evidence that directional and nondirectional kinematic information is simultaneously detectable in low-frequency M/EEG signals. Moreover, combining directional and nondirectional kinematic information significantly improves the decoding accuracy upon a linear KF.
Collapse
Affiliation(s)
- Reinmar J Kobler
- Institute of Neural Engineering, Graz University of Technology, Graz 8010, Styria, Austria
| | | | | | | | | |
Collapse
|
159
|
The Neuropolitics of Brain Science and Its Implications for Human Enhancement and Intellectual Property Law. PHILOSOPHIES 2020. [DOI: 10.3390/philosophies5040033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
As we learn more about how the brain functions, the study of the brain changes what we know about human creativity and innovation and our ability to enhance the brain with technology. The possibilities of direct brain-to-brain communication, the use of cognitive enhancing drugs to enhance human intelligence and creativity, and the extended connections between brains and the larger technological world, all suggest areas of linkage between intellectual property (IP) law and policy and the study of the brain science. Questions of importance include: Who owns creativity in such a world when humans are enhanced with technology? And how does one define an original work of authorship or invention if either were created with the aid of an enhancement technology? This paper suggests that new conceptualizations of the brain undermine the notion of the autonomous individual and may serve to locate creativity and originality beyond that of individual creation. In this scenario, the legal fiction of individual ownership of a creative work will be displaced, and as this paper warns, under current conditions the IP policies which may take its place will be of concern absent a rethinking of human agency in the neuropolitical age.
Collapse
|
160
|
Wang J, Bi L, Fei W, Guan C. Decoding Single-Hand and Both-Hand Movement Directions From Noninvasive Neural Signals. IEEE Trans Biomed Eng 2020; 68:1932-1940. [PMID: 33108279 DOI: 10.1109/tbme.2020.3034112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Decoding human movement parameters from electroencephalograms (EEG) signals is of great value for human-machine collaboration. However, existing studies on hand movement direction decoding concentrate on the decoding of a single-hand movement direction from EEG signals given the opposite hand is maintained still. In practice, the cooperative movement of both hands is common. In this paper, we investigated the neural signatures and decoding of single-hand and both-hand movement directions from EEG signals. The potentials of EEG signals and power sums in the low frequency band of EEG signals from 24 channels were used as decoding features. The linear discriminant analysis (LDA) and support vector machine (SVM) classifiers were used for decoding. Experimental results showed a significant difference in the negative offset maximums of movement-related cortical potentials (MRCPs) at electrode Cz between single-hand and both-hand movements. The recognition accuracies for six-class classification, including two single-hand and four both-hand movement directions, reached 70.29%± 10.85% by using EEG potentials as features with the SVM classifier. These findings showed the feasibility of decoding single-hand and both-hand movement directions. This work can lay a foundation for the future development of an active human-machine collaboration system based on EEG signals and open a new research direction in the field of decoding hand movement parameters from EEG signals.
Collapse
|
161
|
Yang J, Sawan M. From Seizure Detection to Smart and Fully Embedded Seizure Prediction Engine: A Review. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:1008-1023. [PMID: 32822304 DOI: 10.1109/tbcas.2020.3018465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent review papers have investigated seizure prediction, creating the possibility of preempting epileptic seizures. Correct seizure prediction can significantly improve the standard of living for the majority of epileptic patients, as the unpredictability of seizures is a major concern for them. Today, the development of algorithms, particularly in the field of machine learning, enables reliable and accurate seizure prediction using desktop computers. However, despite extensive research effort being devoted to developing seizure detection integrated circuits (ICs), dedicated seizure prediction ICs have not been developed yet. We believe that interdisciplinary study of system architecture, analog and digital ICs, and machine learning algorithms can promote the translation of scientific theory to a more realistic intelligent, integrated, and low-power system that can truly improve the standard of living for epileptic patients. This review explores topics ranging from signal acquisition analog circuits to classification algorithms and dedicated digital signal processing circuits for detection and prediction purposes, to provide a comprehensive and useful guideline for the construction, implementation and optimization of wearable and integrated smart seizure prediction systems.
Collapse
|
162
|
Stieger JR, Engel S, Jiang H, Cline CC, Kreitzer MJ, He B. Mindfulness Improves Brain-Computer Interface Performance by Increasing Control Over Neural Activity in the Alpha Band. Cereb Cortex 2020; 31:426-438. [PMID: 32965471 DOI: 10.1093/cercor/bhaa234] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Brain-computer interfaces (BCIs) are promising tools for assisting patients with paralysis, but suffer from long training times and variable user proficiency. Mind-body awareness training (MBAT) can improve BCI learning, but how it does so remains unknown. Here, we show that MBAT allows participants to learn to volitionally increase alpha band neural activity during BCI tasks that incorporate intentional rest. We trained individuals in mindfulness-based stress reduction (MBSR; a standardized MBAT intervention) and compared performance and brain activity before and after training between randomly assigned trained and untrained control groups. The MBAT group showed reliably faster learning of BCI than the control group throughout training. Alpha-band activity in electroencephalogram signals, recorded in the volitional resting state during task performance, showed a parallel increase over sessions, and predicted final BCI performance. The level of alpha-band activity during the intentional resting state correlated reliably with individuals' mindfulness practice as well as performance on a breath counting task. Collectively, these results show that MBAT modifies a specific neural signal used by BCI. MBAT, by increasing patients' control over their brain activity during rest, may increase the effectiveness of BCI in the large population who could benefit from alternatives to direct motor control.
Collapse
Affiliation(s)
- James R Stieger
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55414, USA
| | - Stephen Engel
- Department of Psychology, University of Minnesota, Minneapolis, MN 55414, USA
| | - Haiteng Jiang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Christopher C Cline
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55414, USA
| | - Mary Jo Kreitzer
- Earl E. Bakken Center for Spirituality & Healing, University of Minnesota, Minneapolis, MN 55414, USA
| | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
163
|
Steven Waterstone T, Niazi IK, Navid MS, Amjad I, Shafique M, Holt K, Haavik H, Samani A. Functional Connectivity Analysis on Resting-State Electroencephalography Signals Following Chiropractic Spinal Manipulation in Stroke Patients. Brain Sci 2020; 10:E644. [PMID: 32957711 PMCID: PMC7564276 DOI: 10.3390/brainsci10090644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
Stroke impairments often present as cognitive and motor deficits, leading to a decline in quality of life. Recovery strategy and mechanisms, such as neuroplasticity, are important factors, as these can help improve the effectiveness of rehabilitation. The present study investigated chiropractic spinal manipulation (SM) and its effects on resting-state functional connectivity in 24 subacute to chronic stroke patients monitored by electroencephalography (EEG). Functional connectivity of both linear and non-linear coupling was estimated by coherence and phase lag index (PLI), respectively. Non-parametric cluster-based permutation tests were used to assess the statistical significance of the changes in functional connectivity following SM. Results showed a significant increase in functional connectivity from the PLI metric in the alpha band within the default mode network (DMN). The functional connectivity between the posterior cingulate cortex and parahippocampal regions increased following SM, t (23) = 10.45, p = 0.005. No significant changes occurred following the sham control procedure. These findings suggest that SM may alter functional connectivity in the brain of stroke patients and highlights the potential of EEG for monitoring neuroplastic changes following SM. Furthermore, the altered connectivity was observed between areas which may be affected by factors such as decreased pain perception, episodic memory, navigation, and space representation in the brain. However, these factors were not directly monitored in this study. Therefore, further research is needed to elucidate the underlying mechanisms and clinical significance of the observed changes.
Collapse
Affiliation(s)
| | - Imran Khan Niazi
- Department of Health Science and Technology, Aalborg University, 9000 Aalborg, Denmark
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
- Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland 1010, New Zealand
| | - Muhammad Samran Navid
- Department of Health Science and Technology, Aalborg University, 9000 Aalborg, Denmark
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
| | - Imran Amjad
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
- Faculty of Rehabilitation and Allied Sciences & Faculty of Engineering and Applied Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Muhammad Shafique
- Faculty of Rehabilitation and Allied Sciences & Faculty of Engineering and Applied Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Kelly Holt
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
| | - Heidi Haavik
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
| | - Afshin Samani
- Department of Health Science and Technology, Aalborg University, 9000 Aalborg, Denmark
| |
Collapse
|
164
|
Lun X, Yu Z, Chen T, Wang F, Hou Y. A Simplified CNN Classification Method for MI-EEG via the Electrode Pairs Signals. Front Hum Neurosci 2020; 14:338. [PMID: 33100985 PMCID: PMC7522466 DOI: 10.3389/fnhum.2020.00338] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/31/2020] [Indexed: 11/13/2022] Open
Abstract
A brain-computer interface (BCI) based on electroencephalography (EEG) can provide independent information exchange and control channels for the brain and the outside world. However, EEG signals come from multiple electrodes, the data of which can generate multiple features. How to select electrodes and features to improve classification performance has become an urgent problem to be solved. This paper proposes a deep convolutional neural network (CNN) structure with separated temporal and spatial filters, which selects the raw EEG signals of the electrode pairs over the motor cortex region as hybrid samples without any preprocessing or artificial feature extraction operations. In the proposed structure, a 5-layer CNN has been applied to learn EEG features, a 4-layer max pooling has been used to reduce dimensionality, and a fully-connected (FC) layer has been utilized for classification. Dropout and batch normalization are also employed to reduce the risk of overfitting. In the experiment, the 4 s EEG data of 10, 20, 60, and 100 subjects from the Physionet database are used as the data source, and the motor imaginations (MI) tasks are divided into four types: left fist, right fist, both fists, and both feet. The results indicate that the global averaged accuracy on group-level classification can reach 97.28%, the area under the receiver operating characteristic (ROC) curve stands out at 0.997, and the electrode pair with the highest accuracy on 10 subjects dataset is FC3-FC4, with 98.61%. The research results also show that this CNN classification method with minimal (2) electrode can obtain high accuracy, which is an advantage over other methods on the same database. This proposed approach provides a new idea for simplifying the design of BCI systems, and accelerates the process of clinical application.
Collapse
Affiliation(s)
- Xiangmin Lun
- College of Mechanical and Electric Engineering, Changchun University of Science and Technology, Changchun, China.,School of Automation Engineering, Northeast Electric Power University, Jilin, China
| | - Zhenglin Yu
- College of Mechanical and Electric Engineering, Changchun University of Science and Technology, Changchun, China
| | - Tao Chen
- School of Automation Engineering, Northeast Electric Power University, Jilin, China
| | - Fang Wang
- School of Automation Engineering, Northeast Electric Power University, Jilin, China
| | - Yimin Hou
- School of Automation Engineering, Northeast Electric Power University, Jilin, China
| |
Collapse
|
165
|
Huang Z, Zheng W, Wu Y, Wang Y. Ensemble or pool: A comprehensive study on transfer learning for c-VEP BCI during interpersonal interaction. J Neurosci Methods 2020; 343:108855. [PMID: 32645409 DOI: 10.1016/j.jneumeth.2020.108855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/08/2020] [Accepted: 07/04/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND To reduce calibration time of brain-computer interface (BCI) or even implement zero-training BCI, researchers have been studying how to effectively apply transfer learning in the field. In order to thoroughly investigate the performance of transfer learning in BCI and the key factors affecting transfer performance in the field, we carried out a comprehensive study. NEW METHOD In general, transferring knowledge in BCI is implemented in two ways: ensemble or pool. In this work, we propose two different transfer approaches. One is to transfer the information of all channels as a whole from the source subjects to a target subject. The second approach is to transfer the information of corresponding channels between the subjects. A subject transfer framework is built by combining the two approaches with ensemble or pool. RESULTS We investigated the performances of eight implementations of this framework on a data set acquired by an interpersonal interaction (Chicken Game) experiment based on code-modulated visual evoked potential (c-VEP) BCI. The results show that transfer learning generally provides acceptable classification performance. Additionally, an in-depth analysis reveals that a target subject usually shares different brain signal distribution with different source subjects. In fact, this is a hypothesis usually implied by this kind of research. CONCLUSIONS Transfer learning for c-VEP BCI can be qualified for reducing calibration time or starting the recognition of BCI without sufficient subjects' own data. In addition, our finding suggests a solid validity of the hypothesis underlying transferring knowledge in BCI.
Collapse
Affiliation(s)
- Zhihua Huang
- College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China.
| | - Wenming Zheng
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China
| | - Yingjie Wu
- College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China
| | - Yiwen Wang
- School of Economics and Management, Institute of Psychological and Cognitive Sciences, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
166
|
Neural signal analysis with memristor arrays towards high-efficiency brain-machine interfaces. Nat Commun 2020; 11:4234. [PMID: 32843643 PMCID: PMC7447752 DOI: 10.1038/s41467-020-18105-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022] Open
Abstract
Brain-machine interfaces are promising tools to restore lost motor functions and probe brain functional mechanisms. As the number of recording electrodes has been exponentially rising, the signal processing capability of brain–machine interfaces is falling behind. One of the key bottlenecks is that they adopt conventional von Neumann architecture with digital computation that is fundamentally different from the working principle of human brain. In this work, we present a memristor-based neural signal analysis system, where the bio-plausible characteristics of memristors are utilized to analyze signals in the analog domain with high efficiency. As a proof-of-concept demonstration, memristor arrays are used to implement the filtering and identification of epilepsy-related neural signals, achieving a high accuracy of 93.46%. Remarkably, our memristor-based system shows nearly 400× improvements in the power efficiency compared to state-of-the-art complementary metal-oxide-semiconductor systems. This work demonstrates the feasibility of using memristors for high-performance neural signal analysis in next-generation brain–machine interfaces. Designing energy efficient and high performance brain-machine interfaces with millions of recording electrodes for in-situ analysis remains a challenge. Here, the authors develop a memristor-based neural signal analysis system capable of filtering and identifying epilepsy-related brain activities with an accuracy of 93.46%.
Collapse
|
167
|
Riquelme-Ros JV, Rodríguez-Bermúdez G, Rodríguez-Rodríguez I, Rodríguez JV, Molina-García-Pardo JM. On the Better Performance of Pianists with Motor Imagery-Based Brain-Computer Interface Systems. SENSORS 2020; 20:s20164452. [PMID: 32785025 PMCID: PMC7472325 DOI: 10.3390/s20164452] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022]
Abstract
Motor imagery (MI)-based brain-computer interface (BCI) systems detect electrical brain activity patterns through electroencephalogram (EEG) signals to forecast user intention while performing movement imagination tasks. As the microscopic details of individuals' brains are directly shaped by their rich experiences, musicians can develop certain neurological characteristics, such as improved brain plasticity, following extensive musical training. Specifically, the advanced bimanual motor coordination that pianists exhibit means that they may interact more effectively with BCI systems than their non-musically trained counterparts; this could lead to personalized BCI strategies according to the users' previously detected skills. This work assessed the performance of pianists as they interacted with an MI-based BCI system and compared it with that of a control group. The Common Spatial Patterns (CSP) and Linear Discriminant Analysis (LDA) machine learning algorithms were applied to the EEG signals for feature extraction and classification, respectively. The results revealed that the pianists achieved a higher level of BCI control by means of MI during the final trial (74.69%) compared to the control group (63.13%). The outcome indicates that musical training could enhance the performance of individuals using BCI systems.
Collapse
Affiliation(s)
| | - Germán Rodríguez-Bermúdez
- University Center of Defense, San Javier Air Force Base, Ministerio de Defensa-Universidad Politécnica de Cartagena, E30720 Santiago de la Ribera, Spain;
| | - Ignacio Rodríguez-Rodríguez
- Departamento de Ingeniería de Comunicaciones, ATIC Research Group, Universidad de Málaga, E29071 Málaga, Spain;
| | - José-Víctor Rodríguez
- Departamento de Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Cartagena, E30202 Cartagena, Spain;
- Correspondence:
| | - José-María Molina-García-Pardo
- Departamento de Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Cartagena, E30202 Cartagena, Spain;
| |
Collapse
|
168
|
Lee M, Yoon JG, Lee SW. Predicting Motor Imagery Performance From Resting-State EEG Using Dynamic Causal Modeling. Front Hum Neurosci 2020; 14:321. [PMID: 32903663 PMCID: PMC7438792 DOI: 10.3389/fnhum.2020.00321] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022] Open
Abstract
Motor imagery-based brain–computer interfaces (MI-BCIs) send commands to a computer using the brain activity registered when a subject imagines—but does not perform—a given movement. However, inconsistent MI-BCI performance occurs in variations of brain signals across subjects and experiments; this is considered to be a significant problem in practical BCI. Moreover, some subjects exhibit a phenomenon referred to as “BCI-inefficiency,” in which they are unable to generate brain signals for BCI control. These subjects have significant difficulties in using BCI. The primary goal of this study is to identify the connections of the resting-state network that affect MI performance and predict MI performance using these connections. We used a public database of MI, which includes the results of psychological questionnaires and pre-experimental resting-state taken over two sessions on different days. A dynamic causal model was used to calculate the coupling strengths between brain regions with directionality. Specifically, we investigated the motor network in resting-state, including the dorsolateral prefrontal cortex, which performs motor planning. As a result, we observed a significant difference in the connectivity strength from the supplementary motor area to the right dorsolateral prefrontal cortex between the low- and high-MI performance groups. This coupling, measured in the resting-state, is significantly stronger in the high-MI performance group than the low-MI performance group. The connection strength is positively correlated with MI-BCI performance (Session 1: r = 0.54; Session 2: r = 0.42). We also predicted MI performance using linear regression based on this connection (r-squared = 0.31). The proposed predictors, based on dynamic causal modeling, can develop new strategies for improving BCI performance. These findings can further our understanding of BCI-inefficiency and help BCI users to lower costs and save time.
Collapse
Affiliation(s)
- Minji Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Jae-Geun Yoon
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Seong-Whan Lee
- Department of Artificial Intelligence, Korea University, Seoul, South Korea
| |
Collapse
|
169
|
Zhang W, Zhou T, Zhao J, Ji B, Wu Z. Recognition of the idle state based on a novel IFB-OCN method for an asynchronous brain-computer interface. J Neurosci Methods 2020; 341:108776. [PMID: 32479971 DOI: 10.1016/j.jneumeth.2020.108776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/27/2020] [Accepted: 05/11/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND A major difficulty for the asynchronous brain-computer interface (BCI) lies in the accurate recognition of the control and idle states. Although subject's attention level was found to be different in these states, the validity of recognizing them using attention features has not been studied. NEW METHODS This paper proposed a novel Individualized Frequency Band based Optimized Complex Network (IFB-OCN) method to enhance the performance of discriminating the control and idle states. The IFB-OCN method extracted the attention features from a single FPz channel, selected the first three individualized frequency bands with the highest accuracies, and integrated the features of these bands for classification. RESULTS The performance was evaluated using a steady-state visual evoked potential (SSVEP)-based BCI task. In the offline evaluation, the IFB-OCN method achieved the highest average accuracy of 93.5 % with the data length of 4 s, and achieved the highest information transfer rate (ITR) of 47.3 bits/min with the data length of 0.5 s. In the simulated online evaluation, the IFB-OCN method obtained a true positive rate (TPR) of 89.8 % and a true negative rate (TNR) of 86.2 %. COMPARISON WITH EXISTING METHODS The proposed IFB-OCN method recognized the control and idle states using a single FPz channel rather than the occipital channels, and outperformed the existing algorithms in the accuracy of detecting the attention level. CONCLUSIONS These results demonstrate that the proposed IFB-OCN method is efficient in recognizing the idle state and has a great potential for enhancing the asynchronous BCIs.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Electrical Engineering and the Key Laboratory of Intelligent Rehabilitation and Neromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| | - Tianyi Zhou
- Department of Electrical Engineering and the Key Laboratory of Intelligent Rehabilitation and Neromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| | - Jing Zhao
- Department of Electrical Engineering and the Key Laboratory of Intelligent Rehabilitation and Neromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| | - Bolun Ji
- Department of Electrical Engineering and the Key Laboratory of Intelligent Rehabilitation and Neromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| | - Zhengping Wu
- School of Innovations, Sanjiang University, Nanjing 210012, China.
| |
Collapse
|
170
|
Abstract
From its inception, the NIH Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative, an ambitious project focused on understanding the human brain, has made a concerted effort to integrate neuroethics into its science. In the past five years, the BRAIN Initiative has given rise to powerful tools and neurotechnologies capable of probing deeply into the brain circuits in animal models. As these tools mature and move to human applications they will raise a host of important neuroethical considerations not just for the medical community but for society as a whole. Now marks a pivotal moment to assess the status and consider the future of the BRAIN Initiative's neuroethics efforts. Here we describe core issues of neuroscience advances, the state of neurotechnologies in human neuroscience, and how ethics will be incorporated into the BRAIN Initiative as this ten-year project enters its second phase. BRAIN Initiative neurotechnologies have immense potential to transform the way we diagnose and treat neurological disease; therefore, they may become more commonplace in research, medicine, and society. We also discuss future global efforts to ensure continued guidance and open dialogue surrounding neuroethics.
Collapse
Affiliation(s)
| | - Jackie Ward
- National Institute of Neurolgogical Disorders and Stroke
| | | |
Collapse
|
171
|
Abstract
Imagined speech is a relatively new electroencephalography (EEG) neuro-paradigm, which has seen little use in Brain-Computer Interface (BCI) applications. Imagined speech can be used to allow physically impaired patients to communicate and to use smart devices by imagining desired commands and then detecting and executing those commands in a smart device. The goal of this research is to verify previous classification attempts made and then design a new, more efficient neural network that is noticeably less complex (fewer number of layers) that still achieves a comparable classification accuracy. The classifiers are designed to distinguish between EEG signal patterns corresponding to imagined speech of different vowels and words. This research uses a dataset that consists of 15 subjects imagining saying the five main vowels (a, e, i, o, u) and six different words. Two previous studies on imagined speech classifications are verified as those studies used the same dataset used here. The replicated results are compared. The main goal of this study is to take the proposed convolutional neural network (CNN) model from one of the replicated studies and make it much more simpler and less complex, while attempting to retain a similar accuracy. The pre-processing of data is described and a new CNN classifier with three different transfer learning methods is described and used to classify EEG signals. Classification accuracy is used as the performance metric. The new proposed CNN, which uses half as many layers and less complex pre-processing methods, achieved a considerably lower accuracy, but still managed to outperform the initial model proposed by the authors of the dataset by a considerable margin. It is recommended that further studies investigating classifying imagined speech should use more data and more powerful machine learning techniques. Transfer learning proved beneficial and should be used to improve the effectiveness of neural networks.
Collapse
|
172
|
Vu PP, Chestek CA, Nason SR, Kung TA, Kemp SW, Cederna PS. The future of upper extremity rehabilitation robotics: research and practice. Muscle Nerve 2020; 61:708-718. [PMID: 32413247 PMCID: PMC7868083 DOI: 10.1002/mus.26860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 01/14/2023]
Abstract
The loss of upper limb motor function can have a devastating effect on people's lives. To restore upper limb control and functionality, researchers and clinicians have developed interfaces to interact directly with the human body's motor system. In this invited review, we aim to provide details on the peripheral nerve interfaces and brain-machine interfaces that have been developed in the past 30 years for upper extremity control, and we highlight the challenges that still remain to transition the technology into the clinical market. The findings show that peripheral nerve interfaces and brain-machine interfaces have many similar characteristics that enable them to be concurrently developed. Decoding neural information from both interfaces may lead to novel physiological models that may one day fully restore upper limb motor function for a growing patient population.
Collapse
Affiliation(s)
- Philip P. Vu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Section of Plastic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Cynthia A. Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Robotics Institute, University of Michigan, Ann Arbor, Michigan
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Samuel R. Nason
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Theodore A. Kung
- Section of Plastic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Stephen W.P. Kemp
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Section of Plastic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Paul S. Cederna
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Section of Plastic Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
173
|
Focus on better care and ethics: Are medical ethics lagging behind the development of new medical technologies? Intensive Care Med 2020; 46:1611-1613. [PMID: 32462323 PMCID: PMC7251219 DOI: 10.1007/s00134-020-06112-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/11/2020] [Indexed: 01/29/2023]
|
174
|
Jeong JH, Shim KH, Kim DJ, Lee SW. Brain-Controlled Robotic Arm System Based on Multi-Directional CNN-BiLSTM Network Using EEG Signals. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1226-1238. [DOI: 10.1109/tnsre.2020.2981659] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
175
|
Sardi S, Vardi R, Meir Y, Tugendhaft Y, Hodassman S, Goldental A, Kanter I. Brain experiments imply adaptation mechanisms which outperform common AI learning algorithms. Sci Rep 2020; 10:6923. [PMID: 32327697 PMCID: PMC7181840 DOI: 10.1038/s41598-020-63755-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/31/2020] [Indexed: 11/09/2022] Open
Abstract
Attempting to imitate the brain's functionalities, researchers have bridged between neuroscience and artificial intelligence for decades; however, experimental neuroscience has not directly advanced the field of machine learning (ML). Here, using neuronal cultures, we demonstrate that increased training frequency accelerates the neuronal adaptation processes. This mechanism was implemented on artificial neural networks, where a local learning step-size increases for coherent consecutive learning steps, and tested on a simple dataset of handwritten digits, MNIST. Based on our on-line learning results with a few handwriting examples, success rates for brain-inspired algorithms substantially outperform the commonly used ML algorithms. We speculate this emerging bridge from slow brain function to ML will promote ultrafast decision making under limited examples, which is the reality in many aspects of human activity, robotic control, and network optimization.
Collapse
Affiliation(s)
- Shira Sardi
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Roni Vardi
- Gonda Interdisciplinary Brain Research Center and the Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Yuval Meir
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Yael Tugendhaft
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Shiri Hodassman
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Amir Goldental
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Ido Kanter
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel.
- Gonda Interdisciplinary Brain Research Center and the Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| |
Collapse
|
176
|
Tang T, Goh WL, Yao L, Cheong JH, Gao Y. An Integrated Multi-Channel Biopotential Recording Analog Front-End IC With Area-Efficient Driven-Right-Leg Circuit. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:297-304. [PMID: 31831435 DOI: 10.1109/tbcas.2019.2959412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A multi-channel biopotential recording analog front-end (AFE) with a fully integrated area-efficient driven-right-leg (DRL) circuit is presented in this paper. The proposed AFE includes 10 channels of low-noise capacitive coupled instrumentation amplifier (CCIA), one shared 10-bit SAR ADC and a fully integrated DRL to enhance the system-level common-mode rejection ratio (CMRR). The proposed DRL circuit senses the common-mode at the CCIA output so that the AFE gain is reused as the DRL loop gain. Therefore, area efficient unit-gain buffer with small averaging capacitors can be used in DRL circuit to reduce the circuit area significantly. The proposed AFE has been implemented in a standard 0.18-μm CMOS process. The DRL circuit achieved more than 85% chip area reduction compared to the state-of-art on-chip DRL circuits and maximum 60 dB enhancement to system-level CMRR. Measurement results show high/low AFE gain of 60 dB/54 dB respectively with 1 μA/channel current consumption under 1.0 V power supply. The measured AFE input-referred noise in 1 Hz - 10k Hz range is 4.2 μVrms and the maximum system-level CMRR is 110 dB.
Collapse
|
177
|
Amo Usanos C, Boquete L, de Santiago L, Barea Navarro R, Cavaliere C. Induced Gamma-Band Activity during Actual and Imaginary Movements: EEG Analysis. SENSORS 2020; 20:s20061545. [PMID: 32168747 PMCID: PMC7146111 DOI: 10.3390/s20061545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 11/16/2022]
Abstract
The purpose of this paper is to record and analyze induced gamma-band activity (GBA) (30-60 Hz) in cerebral motor areas during imaginary movement and to compare it quantitatively with activity recorded in the same areas during actual movement using a simplified electroencephalogram (EEG). Brain activity (basal activity, imaginary motor task and actual motor task) is obtained from 12 healthy volunteer subjects using an EEG (Cz channel). GBA is analyzed using the mean power spectral density (PSD) value. Event-related synchronization (ERS) is calculated from the PSD values of the basal GBA (GBAb), the GBA of the imaginary movement (GBAim) and the GBA of the actual movement (GBAac). The mean GBAim and GBAac values for the right and left hands are significantly higher than the GBAb value (p = 0.007). No significant difference is detected between mean GBA values during the imaginary and actual movement (p = 0.242). The mean ERS values for the imaginary movement (ERSimM (%) = 23.52) and for the actual movement (ERSacM = 27.47) do not present any significant difference (p = 0.117). We demonstrated that ERS could provide a useful way of indirectly checking the function of neuronal motor circuits activated by voluntary movement, both imaginary and actual. These results, as a proof of concept, could be applied to physiology studies, brain-computer interfaces, and diagnosis of cognitive or motor pathologies.
Collapse
|
178
|
Saha S, Baumert M. Intra- and Inter-subject Variability in EEG-Based Sensorimotor Brain Computer Interface: A Review. Front Comput Neurosci 2020; 13:87. [PMID: 32038208 PMCID: PMC6985367 DOI: 10.3389/fncom.2019.00087] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/16/2019] [Indexed: 12/05/2022] Open
Abstract
Brain computer interfaces (BCI) for the rehabilitation of motor impairments exploit sensorimotor rhythms (SMR) in the electroencephalogram (EEG). However, the neurophysiological processes underpinning the SMR often vary over time and across subjects. Inherent intra- and inter-subject variability causes covariate shift in data distributions that impede the transferability of model parameters amongst sessions/subjects. Transfer learning includes machine learning-based methods to compensate for inter-subject and inter-session (intra-subject) variability manifested in EEG-derived feature distributions as a covariate shift for BCI. Besides transfer learning approaches, recent studies have explored psychological and neurophysiological predictors as well as inter-subject associativity assessment, which may augment transfer learning in EEG-based BCI. Here, we highlight the importance of measuring inter-session/subject performance predictors for generalized BCI frameworks for both normal and motor-impaired people, reducing the necessity for tedious and annoying calibration sessions and BCI training.
Collapse
Affiliation(s)
- Simanto Saha
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
| | - Mathias Baumert
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
179
|
Volkova K, Lebedev MA, Kaplan A, Ossadtchi A. Decoding Movement From Electrocorticographic Activity: A Review. Front Neuroinform 2019; 13:74. [PMID: 31849632 PMCID: PMC6901702 DOI: 10.3389/fninf.2019.00074] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023] Open
Abstract
Electrocorticography (ECoG) holds promise to provide efficient neuroprosthetic solutions for people suffering from neurological disabilities. This recording technique combines adequate temporal and spatial resolution with the lower risks of medical complications compared to the other invasive methods. ECoG is routinely used in clinical practice for preoperative cortical mapping in epileptic patients. During the last two decades, research utilizing ECoG has considerably grown, including the paradigms where behaviorally relevant information is extracted from ECoG activity with decoding algorithms of different complexity. Several research groups have advanced toward the development of assistive devices driven by brain-computer interfaces (BCIs) that decode motor commands from multichannel ECoG recordings. Here we review the evolution of this field and its recent tendencies, and discuss the potential areas for future development.
Collapse
Affiliation(s)
- Ksenia Volkova
- Center for Bioelectric Interfaces, Higher School of Economics, National Research University, Moscow, Russia
| | - Mikhail A. Lebedev
- Center for Bioelectric Interfaces, Higher School of Economics, National Research University, Moscow, Russia
| | - Alexander Kaplan
- Center for Bioelectric Interfaces, Higher School of Economics, National Research University, Moscow, Russia
- Center for Biotechnology Development, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Laboratory for Neurophysiology and Neuro-Computer Interfaces, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexei Ossadtchi
- Center for Bioelectric Interfaces, Higher School of Economics, National Research University, Moscow, Russia
| |
Collapse
|