151
|
Hung CS, Chou CH, Liao CW, Lin YT, Wu XM, Chang YY, Chen YH, Wu VC, Su MJ, Ho YL, Chen MF, Wu KD, Lin YH. Aldosterone Induces Tissue Inhibitor of Metalloproteinases-1 Expression and Further Contributes to Collagen Accumulation. Hypertension 2016; 67:1309-20. [DOI: 10.1161/hypertensionaha.115.06768] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/07/2016] [Indexed: 11/16/2022]
Abstract
Aldosterone induces myocardial fibrosis. Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a key factor of myocardial fibrosis. This study tested the hypothesis that aldosterone induces TIMP-1 expression and contributes to the fibrotic process. We prospectively enrolled 54 patients with primary aldosteronism, and measured plasma TIMP-1 and echocardiographic parameters. In the cell study, we investigated the possible molecular mechanism by which aldosterone induces TIMP-1 secretion and the effects on collagen accumulation. In the animal study, we measured serum TIMP-1 levels, cardiac TIMP-1 levels, and cardiac structure in an aldosterone infusion mouse model using implantation of aldosterone pellets. In patients with primary aldosteronism, plasma TIMP-1 was correlated with 24-hour urinary aldosterone, left ventricular mass, and impairment of left ventricular diastolic function. In human cardiac fibroblasts, TIMP-1 protein and mRNA expressions were significantly increased by aldosterone through the glucocorticoid receptor/PI3K/Akt/nuclear factor-κB pathway. TIMP-1 small-interfering RNA significantly reduced aldosterone-induced collagen accumulation, and aldosterone did not alter the levels of collagen1a1 or matrix metalloproteinase-1 mRNA. The aldosterone-induced TIMP-1 expression was inversely related to matrix metalloproteinase-1 activity. Furthermore, in the animal model, the serum and cardiac levels of TIMP-1 were significantly elevated in the mice that received aldosterone infusion. This elevation was blocked by RU-486 but not by eplerenone, suggesting that the effect was through glucocorticoid receptors. In a long-term aldosterone infusion model, serum TIMP-1 was associated with serum aldosterone level, cardiac structure, and fibrosis. In conclusion, aldosterone induced TIMP-1 expression in vivo and in vitro. This increased TIMP-1 expression resulted in enhanced collagen accumulation via the suppression of matrix metalloproteinase-1 activity.
Collapse
Affiliation(s)
- Chi-Sheng Hung
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Chia-Hung Chou
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Che-Wei Liao
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Yen-Tin Lin
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Xue-Ming Wu
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Yi-Yao Chang
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Ying-Hsien Chen
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Vin-Cent Wu
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Ming-Jai Su
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Yi-Lwun Ho
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Ming-Fong Chen
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Kwan-Dun Wu
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Yen-Hung Lin
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| |
Collapse
|
152
|
Nguyen TTTN, Shynlova O, Lye SJ. Matrix Metalloproteinase Expression in the Rat Myometrium During Pregnancy, Term Labor, and Postpartum. Biol Reprod 2016; 95:24. [PMID: 27251092 PMCID: PMC5029434 DOI: 10.1095/biolreprod.115.138248] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/16/2016] [Indexed: 01/08/2023] Open
Abstract
Pregnancy, spontaneous term labor (TL), and postpartum (PP) involution are associated with changes in the cellular and extracellular matrix composition of the uterus. Both the uterine smooth muscle (myometrium) and the infiltrating peripheral blood leukocytes involved in the activation of labor secrete extracellular matrix-degrading enzymes (matrix metalloproteinases, MMPs) that can modulate cellular behavior and barrier function. MMP expression is induced by mechanical stretch in several tissues. We hypothesized that the expression and activity of myometrial MMPs and their tissue inhibitors (TIMPs) are modulated in preparation for TL and PP involution and are regulated by mechanical stretch of uterine walls imposed by the growing fetus. Myometrial tissues were collected from bilaterally and unilaterally pregnant rats across gestation, TL, and PP. Total RNA and proteins were subjected to real-time PCR and immunoblotting, respectively, and tissue localization and activity was examined by immunohistochemistry and in situ zymography. We found that Mmp7, Mmp11, and Mmp12 mRNA levels were upregulated during TL and PP, while Mmp2, Mmp3, Mmp8, Mmp9, Mmp10, and Mmp13 mRNAs were only upregulated during PP. Timp1–Timp4 were stably expressed throughout gestation with some fluctuations PP. Active MMP2 was induced in the empty uterine horn during gestation and in the gravid PP uterus, suggesting negative regulation by biological mechanical stretch. We conclude that specific subsets of uterine MMPs are differentially regulated in the rat myometrium in preparation for two major events: TL and PP uterine involution.
Collapse
Affiliation(s)
- Tina Tu-Thu Ngoc Nguyen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada Department of Physiology, University of Toronto, Canada
| | - Oksana Shynlova
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada Department of Obstetrics and Gynecology, University of Toronto, Canada
| | - Stephen J Lye
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada Department of Physiology, University of Toronto, Canada Department of Obstetrics and Gynecology, University of Toronto, Canada
| |
Collapse
|
153
|
Lameire N, Vanmassenhove J, Van Biesen W, Vanholder R. The cell cycle biomarkers: promising research, but do not oversell them. Clin Kidney J 2016; 9:353-8. [PMID: 27274818 PMCID: PMC4886923 DOI: 10.1093/ckj/sfw033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 12/14/2022] Open
Abstract
This review focuses on the most recent scientific and clinical information on the development and clinical applicability of the cell cycle biomarkers TIMP-2 and IGFBP-7 in the diagnosis and prognosis of patients at risk for and suffering from acute kidney injury (AKI). A number of evaluation studies have demonstrated that compared with existing biomarkers, urinary excretion of the product of both biomarkers, [TIMP-2]•[IGFBP-7], improved diagnostic performance in assessing the risk for AKI, predicting the need for renal replacement therapy, AKI-related complications and short- and long-term prognoses. The reference intervals for these biomarkers, measured by the recently approved NephroCheck test, have been determined in apparently healthy adults and those with stable chronic morbid conditions without AKI. This review recognizes that the combination of these two cell cycle arrest markers for the early detection of AKI is promising but concludes that its clinical impact is still unproved. Clinicians should understand the utility and limitations of this test before deciding whether to make it available at their institution.
Collapse
Affiliation(s)
- Norbert Lameire
- Renal Division, Department of Medicine , University Hospital , 185, De Pintelaan, Gent 9000 , Belgium
| | - Jill Vanmassenhove
- Renal Division, Department of Medicine , University Hospital , 185, De Pintelaan, Gent 9000 , Belgium
| | - Wim Van Biesen
- Renal Division, Department of Medicine , University Hospital , 185, De Pintelaan, Gent 9000 , Belgium
| | - Raymond Vanholder
- Renal Division, Department of Medicine , University Hospital , 185, De Pintelaan, Gent 9000 , Belgium
| |
Collapse
|
154
|
Ramer R, Hinz B. Antitumorigenic targets of cannabinoids - current status and implications. Expert Opin Ther Targets 2016; 20:1219-35. [PMID: 27070944 DOI: 10.1080/14728222.2016.1177512] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Molecular structures of the endocannabinoid system have gained interest as potential pharmacotherapeutical targets for systemic cancer treatment. AREAS COVERED The present review covers the contribution of the endocannabinoid system to cancer progression. Particular focus will be set on the accumulating preclinical data concerning antimetastatic, anti-invasive and anti-angiogenic mechanisms induced by cannabinoids. EXPERT OPINION The main goal of targeting endocannabinoid structures for systemic anticancer treatment is the comparatively good safety profile of cannabinoid compounds. In addition, antitumorigenic mechanisms of cannabinoids are not restricted to a single molecular cascade but involve multiple effects on various levels of cancer progression such as angiogenesis and metastasis. Particularly the latter effect has gained interest for pharmacological interventions. Thus, drugs aiming at the endocannabinoid system may represent potential 'antimetastatics' for an upgrade of a future armamentarium against cancer diseases.
Collapse
Affiliation(s)
- Robert Ramer
- a Institute of Toxicology and Pharmacology , Rostock University Medical Center , Rostock , Germany
| | - Burkhard Hinz
- a Institute of Toxicology and Pharmacology , Rostock University Medical Center , Rostock , Germany
| |
Collapse
|
155
|
Tissue Inhibitor of Matrix Metalloproteinases-1 Knockdown Suppresses the Proliferation of Human Adipose-Derived Stem Cells. Stem Cells Int 2016; 2016:4761507. [PMID: 27239203 PMCID: PMC4863124 DOI: 10.1155/2016/4761507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/10/2016] [Indexed: 12/11/2022] Open
Abstract
Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a multifunctional matrix metalloproteinase, and it is involved in the regulation of cell proliferation and apoptosis in various cell types. However, little is known about the effect of TIMP-1 expression on the proliferation of adipose-derived stem cells (ADSCs). Therefore, TIMP-1 expression in the ADSCs was firstly detected by western blotting, and TIMP-1 gene was knocked down by lentivirus-mediated shRNA. Cell proliferation was then evaluated by MTT assay and Ki67 staining, respectively. Cell cycle progression was determined by flow cytometry. The changes of p51, p21, cyclin E, cyclin-dependent kinase 2 (CDK2), and P-CDK2 caused by TIMP-1 knockdown were detected by western blotting. The results indicated that ADSCs highly expressed TIMP-1 protein, and the knockdown of TIMP-1 inhibited cell proliferation and arrested cell cycle progression at G1 phase in the ADSCs possibly through the upregulation of p53, p21, and P-CDK2 protein levels and concurrent downregulation of cyclin E and CDK2 protein levels. These findings suggest that TIMP-1 works as a positive regulator of cell proliferation in ADSCs.
Collapse
|
156
|
In JK, Kim JK, Oh JS, Seo DW. 5-Caffeoylquinic acid inhibits invasion of non-small cell lung cancer cells through the inactivation of p70S6K and Akt activity: Involvement of p53 in differential regulation of signaling pathways. Int J Oncol 2016; 48:1907-12. [PMID: 26984670 DOI: 10.3892/ijo.2016.3436] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/24/2016] [Indexed: 11/06/2022] Open
Abstract
In the present study, we investigated the effects and molecular mechanism of 5-caffeoylquinic acid (5-CQA), a natural phenolic compound isolated from Ligularia fischeri, on cell invasion, proliferation and adhesion in p53 wild-type A549 and p53-deficient H1299 non-small cell lung cancer (NSCLC) cells. 5-CQA abrogated mitogen-stimulated invasion, but not proliferation, in both A549 and H1299 cells. In addition, 5-CQA inhibited mitogen-stimulated adhesion in A549 cells only. Anti-invasive activity of 5-CQA in A549 cells was mediated by the inactivation of p70(S6K)-dependent signaling pathway. In contrast, in H1299 cells the inactivation of Akt was found to be involved in 5-CQA-mediated inhibition of cell invasion. Collectively, these findings demonstrate the pharmacological roles and molecular targets of 5-CQA in regulating NSCLC cell fate, and suggest further evaluation and development of 5-CQA as a potential therapeutic agent for the treatment and prevention of lung cancer.
Collapse
Affiliation(s)
- Jae-Kyung In
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Kyu Kim
- Biocenter, Gyeonggi Institute of Science and Technology Promotion, Suwon 16229, Republic of Korea
| | - Joa Sub Oh
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Dong-Wan Seo
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
157
|
The Predictive and Prognostic Role of Topoisomerase IIα and Tissue Inhibitor of Metalloproteinases 1 Expression in Locally Advanced Breast Carcinoma of Egyptian Patients Treated With Anthracycline-based Neoadjuvant Chemotherapy. Appl Immunohistochem Mol Morphol 2016; 24:167-78. [DOI: 10.1097/pai.0000000000000154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
158
|
Mouse mesenchymal stem cells inhibit high endothelial cell activation and lymphocyte homing to lymph nodes by releasing TIMP-1. Leukemia 2016; 30:1143-54. [PMID: 26898191 PMCID: PMC4858586 DOI: 10.1038/leu.2016.33] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/02/2015] [Accepted: 02/01/2016] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSC) represent a promising therapeutic approach in many diseases in view of their potent immunomodulatory properties, which are only partially understood. Here, we show that the endothelium is a specific and key target of MSC during immunity and inflammation. In mice, MSC inhibit activation and proliferation of endothelial cells in remote inflamed lymph nodes (LNs), affect elongation and arborization of high endothelial venules (HEVs) and inhibit T-cell homing. The proteomic analysis of the MSC secretome identified the tissue inhibitor of metalloproteinase-1 (TIMP-1) as a potential effector molecule responsible for the anti-angiogenic properties of MSC. Both in vitro and in vivo, TIMP-1 activity is responsible for the anti-angiogenic effects of MSC, and increasing TIMP-1 concentrations delivered by an Adeno Associated Virus (AAV) vector recapitulates the effects of MSC transplantation on draining LNs. Thus, this study discovers a new and highly efficient general mechanism through which MSC tune down immunity and inflammation, identifies TIMP-1 as a novel biomarker of MSC-based therapy and opens the gate to new therapeutic approaches of inflammatory diseases.
Collapse
|
159
|
Pearson JR, Zurita F, Tomás-Gallardo L, Díaz-Torres A, Díaz de la Loza MDC, Franze K, Martín-Bermudo MD, González-Reyes A. ECM-Regulator timp Is Required for Stem Cell Niche Organization and Cyst Production in the Drosophila Ovary. PLoS Genet 2016; 12:e1005763. [PMID: 26808525 PMCID: PMC4725958 DOI: 10.1371/journal.pgen.1005763] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/02/2015] [Indexed: 11/29/2022] Open
Abstract
The extracellular matrix (ECM) is a pivotal component adult tissues and of many tissue-specific stem cell niches. It provides structural support and regulates niche signaling during tissue maintenance and regeneration. In many tissues, ECM remodeling depends on the regulation of MMP (matrix metalloproteinase) activity by inhibitory TIMP (tissue inhibitors of metalloproteinases) proteins. Here, we report that the only Drosophila timp gene is required for maintaining the normal organization and function of the germline stem cell niche in adult females. timp mutant ovaries show reduced levels of both Drosophila Collagen IV α chains. In addition, tissue stiffness and the cellular organization of the ovarian niche are affected in timp mutants. Finally, loss of timp impairs the ability of the germline stem cell niche to generate new cysts. Our results demonstrating a crucial role for timp in tissue organization and gamete production thus provide a link between the regulation of ECM metabolism and tissue homeostasis. The extracellular matrix (ECM) offers signals and support to stem cell niches, local microenvironments that provide these cells with necessary factors for their survival. The ECM also helps shaping and maintaining tissues and organs in adult animals. Because the repair of damaged tissue or the replenishment of cell lineages in functional organs requires significant cellular rearrangements, ECM remodeling has to be tightly coordinated with stem cell niche activity. By studying Timp, a regulator of ECM remodeling, we have discovered that the Drosophila timp gene is required to maintain ECM composition and biophysical properties and the organization of the female germline stem cell niche. Because loss of timp prevents proper gamete production in experimental ovaries, our results thus link ECM metabolism and tissue homeostasis.
Collapse
Affiliation(s)
- John R. Pearson
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Sevilla, Spain
| | - Federico Zurita
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Centro de Investigación Biomédica, Granada, Spain
| | - Laura Tomás-Gallardo
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Sevilla, Spain
| | - Alfonsa Díaz-Torres
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Sevilla, Spain
| | | | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - María D. Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Sevilla, Spain
| | - Acaimo González-Reyes
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Sevilla, Spain
- * E-mail:
| |
Collapse
|
160
|
Esa SA, Rawy AM, El-Behissy MM, El-Bastawisy M. Study the level of sputum matrix metalloproteinase-9 and tissue inhibitor metaloprotienase-1 in patients with interstitial lung diseases. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2016. [DOI: 10.1016/j.ejcdt.2015.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
161
|
Pruefer F, Vazquez-Santillan K, Munoz-Galindo L, Cruz-Colin JL, Maldonado V, Melendez-Zajgla J. TIMP4 Modulates ER-α Signalling in MCF7 Breast Cancer Cells. Folia Biol (Praha) 2016; 62:75-81. [PMID: 27187039 DOI: 10.14712/fb2016062020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Tissue inhibitor of metalloprotease 4 (TIMP4) contributes to poor prognosis in breast and other tumours. However, the mechanisms of how TIMP4 influences breast cancer cell behaviour are unknown. Our aim was to explore the signalling pathways modulated by TIMP4 in breast cancer cells. Human recombinant TIMP4 was added to MCF7 breast cancer cells and RNASeq was performed. TIMP4 RNASeq results were validated by RT-PCR. Network analyses of TIMP4-exposed cells showed that ER-α, HIF1A and TGF-β signalling were activated, whereas FOXO3 signalling was downregulated. ER-α protein levels were increased and concordantly, promoters of TIMP4-upregulated genes were significantly enriched in oestrogen-binding sites. We concluded that TIMP4 modulates multiple signalling pathways relevant in cancer in MCF7 cells, including the ER-α cascade.
Collapse
Affiliation(s)
- F Pruefer
- Functional Genomics Laboratory and Epigenetics Laboratory, Basic Research Subdirection. Instituto Nacional de Medicina Genómica. México City, Mexico
| | - K Vazquez-Santillan
- Functional Genomics Laboratory and Epigenetics Laboratory, Basic Research Subdirection. Instituto Nacional de Medicina Genómica. México City, Mexico
| | - L Munoz-Galindo
- Functional Genomics Laboratory and Epigenetics Laboratory, Basic Research Subdirection. Instituto Nacional de Medicina Genómica. México City, Mexico
| | - J L Cruz-Colin
- Functional Genomics Laboratory and Epigenetics Laboratory, Basic Research Subdirection. Instituto Nacional de Medicina Genómica. México City, Mexico
| | - V Maldonado
- Functional Genomics Laboratory and Epigenetics Laboratory, Basic Research Subdirection. Instituto Nacional de Medicina Genómica. México City, Mexico
| | - J Melendez-Zajgla
- Functional Genomics Laboratory and Epigenetics Laboratory, Basic Research Subdirection. Instituto Nacional de Medicina Genómica. México City, Mexico
| |
Collapse
|
162
|
Chindarkar NS, Chawla LS, Straseski JA, Jortani SA, Uettwiller-Geiger D, Orr RR, Kellum JA, Fitzgerald RL. Reference intervals of urinary acute kidney injury (AKI) markers [IGFBP7]∙[TIMP2] in apparently healthy subjects and chronic comorbid subjects without AKI. Clin Chim Acta 2016; 452:32-7. [DOI: 10.1016/j.cca.2015.10.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/12/2022]
|
163
|
Alfakry H, Malle E, Koyani CN, Pussinen PJ, Sorsa T. Neutrophil proteolytic activation cascades: a possible mechanistic link between chronic periodontitis and coronary heart disease. Innate Immun 2016; 22:85-99. [PMID: 26608308 DOI: 10.1177/1753425915617521] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/13/2015] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular diseases are chronic inflammatory diseases that affect a large segment of society. Coronary heart disease (CHD), the most common cardiovascular disease, progresses over several years and affects millions of people worldwide. Chronic infections may contribute to the systemic inflammation and enhance the risk for CHD. Periodontitis is one of the most common chronic infections that affects up to 50% of the adult population. Under inflammatory conditions the activation of endogenous degradation pathways mediated by immune responses leads to the release of destructive cellular molecules from both resident and immigrant cells. Matrix metalloproteinases (MMPs) and their regulators can activate each other and play an important role in immune response via degrading extracellular matrix components and modulating cytokines and chemokines. The action of MMPs is required for immigrant cell recruitment at the site of inflammation. Stimulated neutrophils represent the major pathogen-fighting immune cells that upregulate expression of several proteinases and oxidative enzymes, which can degrade extracellular matrix components (e.g. MMP-8, MMP-9 and neutrophil elastase). The activity of MMPs is regulated by endogenous inhibitors and/or candidate MMPs (e.g. MMP-7). The balance between MMPs and their inhibitors is thought to mirror the proteolytic burden. Thus, neutrophil-derived biomarkers, including myeloperoxidase, may activate proteolytic destructive cascades that are involved in subsequent immune-pathological events associated with both periodontitis and CHD. Here, we review the existing studies on the contribution of MMPs and their regulators to the infection-related pathology. Also, we discuss the possible proteolytic involvement and role of neutrophil-derived enzymes as an etiological link between chronic periodontitis and CHD.
Collapse
Affiliation(s)
- Hatem Alfakry
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Chintan N Koyani
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Pirkko J Pussinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
164
|
Haas TL, Nwadozi E. Regulation of skeletal muscle capillary growth in exercise and disease. Appl Physiol Nutr Metab 2015; 40:1221-32. [PMID: 26554747 DOI: 10.1139/apnm-2015-0336] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Capillaries, which are the smallest and most abundant type of blood vessel, form the primary site of gas, nutrient, and waste transfer between the vascular and tissue compartments. Skeletal muscle exhibits the capacity to generate new capillaries (angiogenesis) as an adaptation to exercise training, thus ensuring that the heightened metabolic demand of the active muscle is matched by an improved capacity for distribution of gases, nutrients, and waste products. This review summarizes the current understanding of the regulation of skeletal muscle capillary growth. The multi-step process of angiogenesis is coordinated through the integration of a diverse array of signals associated with hypoxic, metabolic, hemodynamic, and mechanical stresses within the active muscle. The contributions of metabolic and mechanical factors to the modulation of key pro- and anti-angiogenic molecules are discussed within the context of responses to a single aerobic exercise bout and short-term and long-term training. Finally, the paradoxical lack of angiogenesis in peripheral artery disease and diabetes and the implications for disease progression and muscle health are discussed. Future studies that emphasize an integrated analysis of the mechanisms that control skeletal muscle capillary growth will enable development of targeted exercise programs that effectively promote angiogenesis in healthy individuals and in patient populations.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
| | - Emmanuel Nwadozi
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
165
|
Peng J, Gao K, Gao T, Lei Y, Han P, Xin H, An X, Cao B. Expression and regulation of tissue inhibitors of metalloproteinases (TIMP1 and TIMP3) in goat oviduct. Theriogenology 2015; 84:1636-43. [DOI: 10.1016/j.theriogenology.2015.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/27/2015] [Accepted: 09/02/2015] [Indexed: 12/21/2022]
|
166
|
Kim JH, Kim JK, Ahn EK, Ko HJ, Cho YR, Lee CH, Kim YK, Bae GU, Oh JS, Seo DW. Marmesin is a novel angiogenesis inhibitor: Regulatory effect and molecular mechanism on endothelial cell fate and angiogenesis. Cancer Lett 2015; 369:323-30. [DOI: 10.1016/j.canlet.2015.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 12/27/2022]
|
167
|
JOO JIHYE, HONG SEONGSU, CHO YOUNGRAK, SEO DONGWAN. 10-Gingerol inhibits proliferation and invasion of MDA-MB-231 breast cancer cells through suppression of Akt and p38MAPK activity. Oncol Rep 2015; 35:779-84. [DOI: 10.3892/or.2015.4405] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/05/2015] [Indexed: 11/06/2022] Open
|
168
|
Park SA, Kim MJ, Park SY, Kim JS, Lim W, Nam JS, Yhong Sheen Y. TIMP-1 mediates TGF-β-dependent crosstalk between hepatic stellate and cancer cells via FAK signaling. Sci Rep 2015; 5:16492. [PMID: 26549110 PMCID: PMC4637930 DOI: 10.1038/srep16492] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/14/2015] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-β (TGF-β) signaling plays a key role in progression and metastasis of HCC. This study was undertaken to gain the proof of concept of a small-molecule inhibitor of TGF-β type I receptor kinase, EW-7197 as a potent anti-cancer therapy for HCC. We identified tissue inhibitors of metalloproteinases-1 (TIMP-1) as one of the secreted proteins of hepatic stellate cells (HSCs) and a key mediator of TGF-β-mediated crosstalk between HSCs and HCC cells. TGF-β signaling led to increased expression of TIMP-1, which activates focal adhesion kinase (FAK) signaling via its interaction with CD63. Inhibition of TGF-β signaling using EW-7197 significantly attenuated the progression and intrahepatic metastasis of HCC in an SK-HEP1-Luc orthotopic-xenograft mouse model. In addition, EW-7197 inhibited TGF-β-stimulated TIMP-1 secretion by HSCs as well as the TIMP-1-induced proliferation, motility, and survival of HCC cells. Further, EW-7197 interrupted TGF-β-mediated epithelial-to-mesenchymal transition and Akt signaling, leading to significant reductions in the motility and anchorage-independent growth of HCC cells. In conclusion, we found that TIMP-1 mediates TGF-β-regulated crosstalk between HSCs and HCC cells via FAK signaling. In addition, EW-7197 demonstrates potent in vivo anti-cancer therapeutic activity and may be a potential new anti-cancer drug of choice to treat patients with liver cancer.
Collapse
Affiliation(s)
- Sang-A Park
- College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Min-Jin Kim
- College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - So-Yeon Park
- College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Jung-Shin Kim
- College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Woosung Lim
- Department of Surgery, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Jeong-Seok Nam
- Laboratory of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| | | |
Collapse
|
169
|
The tissue inhibitor of metalloproteinases 1 increases the clonogenic efficiency of human hematopoietic progenitor cells through CD63/PI3K/Akt signaling. Exp Hematol 2015. [DOI: 10.1016/j.exphem.2015.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
170
|
Fan H, Jiang W, Li H, Fang M, Xu Y, Zheng J. MMP-1/2 and TIMP-1/2 expression levels, and the levels of collagenous and elastic fibers correlate with disease progression in a hamster model of tongue cancer. Oncol Lett 2015; 11:63-68. [PMID: 26870168 PMCID: PMC4727109 DOI: 10.3892/ol.2015.3837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
Abstract
In the present study, the presence of extracellular matrix components, including collagenous and elastic fibers, and the expression of their key regulating enzymes, were investigated in different stages of hamster tongue carcinoma development. Immunohistochemical and computer-assisted morphological analyses were performed to quantify the staining intensity and area (integral optical density) of matrix metalloproteinase (MMP)-1 and -2, tissue inhibitors of metalloproteinase (TIMP)-1 and -2, and the extent of elastic and collagenous fibers in histological sections. MMP-1, MMP-2, TIMP-1 and TIMP-2 expression levels gradually increased with tongue cancer progression, and were associated with disease pathology staging (r=0.705, 0.633, 0.759 and 0.751, respectively). By contrast, elastic fiber levels gradually decreased with cancer progression and were negatively correlated with disease staging (r=-0.881). The levels of collagenous fibers gradually increased with cancer progression and showed a positive correlation (r=0.619). In summary, the study demonstrated that MMP1/2 and TIMP1/2 expression levels, and collagenous and elastic fiber levels were significantly correlated with disease progression in a hamster model of tongue cancer.
Collapse
Affiliation(s)
- Haixia Fan
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Wenhao Jiang
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Haixia Li
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ming Fang
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yudong Xu
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jinhua Zheng
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
171
|
Löffek S, Ullrich N, Görgens A, Murke F, Eilebrecht M, Menne C, Giebel B, Schadendorf D, Singer BB, Helfrich I. CEACAM1-4L Promotes Anchorage-Independent Growth in Melanoma. Front Oncol 2015; 5:234. [PMID: 26539411 PMCID: PMC4609850 DOI: 10.3389/fonc.2015.00234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 10/05/2015] [Indexed: 11/13/2022] Open
Abstract
Widespread metastasis is the leading course of death in many types of cancer, including malignant melanoma. The process of metastasis can be divided into a number of complex cell biological events, collectively termed the “invasion-metastasis cascade.” Previous reports have characterized the capability of anchorage-independent growth of cancer cells in vitro as a key characteristic of highly aggressive tumor cells, particularly with respect to metastatic potential. Biological heterogeneity as well as drastic alterations in cell adhesion of disseminated cancer cells support escape mechanisms for metastases to overcome conventional therapies. Here, we show that exclusively the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) splice variant CEACAM1-4L supports an anchorage-independent signature in malignant melanoma. These results highlight important variant-specific modulatory functions of CEACAM1 for metastatic spread in patients suffering malignant melanoma.
Collapse
Affiliation(s)
- Stefanie Löffek
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University of Duisburg-Essen , Essen , Germany ; German Cancer Consortium (DKTK), Medical Faculty, University of Duisburg-Essen , Essen , Germany
| | - Nico Ullrich
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University of Duisburg-Essen , Essen , Germany ; German Cancer Consortium (DKTK), Medical Faculty, University of Duisburg-Essen , Essen , Germany
| | - André Görgens
- Institute for Transfusion Medicine, Medical Faculty, University of Duisburg-Essen , Essen , Germany
| | - Florian Murke
- Institute for Transfusion Medicine, Medical Faculty, University of Duisburg-Essen , Essen , Germany
| | - Mara Eilebrecht
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University of Duisburg-Essen , Essen , Germany ; German Cancer Consortium (DKTK), Medical Faculty, University of Duisburg-Essen , Essen , Germany
| | - Christopher Menne
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University of Duisburg-Essen , Essen , Germany ; German Cancer Consortium (DKTK), Medical Faculty, University of Duisburg-Essen , Essen , Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, Medical Faculty, University of Duisburg-Essen , Essen , Germany
| | - Dirk Schadendorf
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University of Duisburg-Essen , Essen , Germany ; German Cancer Consortium (DKTK), Medical Faculty, University of Duisburg-Essen , Essen , Germany
| | - Bernhard B Singer
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen , Essen , Germany
| | - Iris Helfrich
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University of Duisburg-Essen , Essen , Germany ; German Cancer Consortium (DKTK), Medical Faculty, University of Duisburg-Essen , Essen , Germany
| |
Collapse
|
172
|
Johnson KM, Crocker SJ. TIMP-1 couples RhoK activation to IL-1β-induced astrocyte responses. Neurosci Lett 2015; 609:165-70. [PMID: 26484505 DOI: 10.1016/j.neulet.2015.10.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/21/2015] [Accepted: 10/13/2015] [Indexed: 12/27/2022]
Abstract
Interleukin-1β (IL-1β) is a pleotropic cytokine known to influence the central nervous system (CNS) responses to injury or infection. IL-1β also directly induces astrocytic expression of tissue inhibitor of metalloproteinases (TIMP)-1, a potent trophic factor and regulator of matrix metalloproteinase activity. In this study, we examined the functional relationship between IL-1β and TIMP-1 and determined that the behavior of astrocytes in response to IL-1β is determined by TIMP-1 expression. Using primary astrocytes from C57Bl/6 mice, we found astrocytes from wildtype (Wt) mice exhibited a robust wound healing response to a scratch wound that was arrested in response to IL-1β. In contrast, TIMP-1 knockout (TIMP-1KO) astrocytes, exhibited minimal response to the scratch wound but an accelerated response following IL-1β-treatment. We also determined that the scratch wound effect in Wt cultures was attenuated by inhibition of Rho kinase but amplified in the TIMP-1KO cultures. We propose that the specific induction of TIMP-1 from astrocytes in response to IL-1β reflects a previously unrecognized physiological relationship where the directionality of astrocytic behavior is determined by the actions of TIMP‑1. These findings may provide additional insight into glial responses in the context of neuropathology where expression of TIMP-1 may vary and astrocytic responses may be impacted by the inflammatory milieu of the CNS.
Collapse
Affiliation(s)
- Kasey M Johnson
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States.
| |
Collapse
|
173
|
Lee JC, Cha CI, Kim DS, Choe SY. Therapeutic Effects of Umbilical Cord Blood Derived Mesenchymal Stem Cell-Conditioned Medium on Pulmonary Arterial Hypertension in Rats. J Pathol Transl Med 2015; 49:472-80. [PMID: 26471341 PMCID: PMC4696528 DOI: 10.4132/jptm.2015.09.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 09/09/2015] [Indexed: 01/07/2023] Open
Abstract
Background: Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) may have multiple therapeutic applications for cell based therapy including the treatment of pulmonary artery hypertension (PAH). As low survival rates and potential tumorigenicity of implanted cells could undermine the mesenchymal stem cell (MSC) cell-based therapy, we chose to investigate the use of conditioned medium (CM) from a culture of MSC cells as a feasible alternative. Methods: CM was prepared by culturing hUCB-MSCs in three-dimensional spheroids. In a rat model of PAH induced by monocrotaline, we infused CM or the control unconditioned culture media via the tail-vein of 6-week-old Sprague-Dawley rats. Results: Compared with the control unconditioned media, CM infusion reduced the ventricular pressure, the right ventricle/(left ventricle+interventricular septum) ratio, and maintained respiratory function in the treated animals. Also, the number of interleukin 1α (IL-1α), chemokine (C-C motif) ligand 5 (CCL5), and tissue inhibitor of metalloproteinase 1 (TIMP-1)–positive cells increased in lung samples and the number of terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling technique (TUNEL)–positive cells decreased significantly in the CM treated animals. Conclusions: From our in vivo data in the rat model, the observed decreases in the TUNEL staining suggest a potential therapeutic benefit of the CM in ameliorating PAH-mediated lung tissue damage. Increased IL-1α, CCL5, and TIMP-1 levels may play important roles in this regard.
Collapse
Affiliation(s)
- Jae Chul Lee
- Department of Biology, School of Life Sciences, Chungbuk National University, Cheongju, Korea.,Department of Surgery, Brain Korea 21 PLUS Project for Medical Sciences and HBP Surgery and Liver Transplantation, Korea University College of Medicine, Seoul, Korea.,Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| | - Choong Ik Cha
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Sik Kim
- Department of Surgery, Brain Korea 21 PLUS Project for Medical Sciences and HBP Surgery and Liver Transplantation, Korea University College of Medicine, Seoul, Korea
| | - Soo Young Choe
- Department of Biology, School of Life Sciences, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
174
|
Ashworth Briggs EL, Toh T, Eri R, Hewitt AW, Cook AL. TIMP1, TIMP2, and TIMP4 are increased in aqueous humor from primary open angle glaucoma patients. Mol Vis 2015; 21:1162-72. [PMID: 26539028 PMCID: PMC4605751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 10/11/2015] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Elevated intraocular pressure (IOP) is the only known modifiable risk factor for primary open angle glaucoma (POAG), and it can be caused by reduced aqueous humor outflow from the anterior chamber. Outflow is predominantly regulated by the trabecular meshwork, consisting of specialized cells within a complex extracellular matrix (ECM). An imbalance between ECM-degrading matrix metalloproteinases (MMPs) and the tissue inhibitors of MMPs (TIMPs) within the trabecular meshwork is thought to contribute to POAG. This study aimed to quantify levels of TIMPs and MMPs in aqueous humor samples from glaucomatous and non-glaucomatous eyes, analyze MMP/TIMP ratios, and correlate results with age, IOP, and Humphrey's visual field pattern standard deviation (PSD). METHODS Aqueous humor samples were collected from 26 non-glaucomatous control subjects before cataract surgery and 23 POAG patients undergoing trabeculectomy or cataract surgery. Analyte concentrations were measured using multiplexed immunoassays. Statistical significance was assessed with Mann-Whitney U tests, and Spearman's method was used to assess correlations with age, IOP, and PSD. RESULTS Concentrations of TIMP1 (p = 0.0008), TIMP2 (p = 0.002), TIMP4 (p = 0.002), and MMP2 (p = 0.020) were significantly increased in aqueous humor samples from POAG versus cataract samples. For the majority of MMP/TIMP molar ratios calculated for the cataract group, TIMPs outweighed MMPs. In POAG, molar ratios of MMP2/TIMP1 (p = 0.007) and MMP9/TIMP1 (p = 0.005) showed a significant decrease, corresponding to an elevated excess of TIMPs over MMPs in POAG compared to cataract samples. Conversely, MMP2/TIMP3 (p = 0.045) and MMP3/TIMP3 (p = 0.032) molar ratios increased. Several MMP/TIMP molar ratios correlated with IOP (r = 0.476-0.609, p = 0.007-0.034) and PSD (r = -0.482 to -0.655, p = 0.005-0.046) in POAG samples and with age in cataract control samples. CONCLUSIONS An imbalance among MMPs and TIMPs was found in glaucomatous aqueous humor samples, with a shift toward raised TIMP levels. This may result in the inhibition of MMP activity, leading to an altered ECM composition in the TM and thereby contributing to increased outflow resistance.
Collapse
Affiliation(s)
| | - Tze'Yo Toh
- Launceston Eye Institute and Launceston Eye Doctors, Tasmania, Australia
| | - Rajaraman Eri
- School of Health Sciences, University of Tasmania, Australia
| | - Alex W Hewitt
- School of Health Sciences, University of Tasmania, Australia ; Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| | - Anthony L Cook
- School of Health Sciences, University of Tasmania, Australia
| |
Collapse
|
175
|
Wu WYY, Kang KH, Chen SLS, Chiu SYH, Yen AMF, Fann JCY, Su CW, Liu HC, Lee CZ, Fu WM, Chen HH, Liou HH. Hepatitis C virus infection: a risk factor for Parkinson's disease. J Viral Hepat 2015; 22:784-91. [PMID: 25608223 DOI: 10.1111/jvh.12392] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/02/2014] [Indexed: 12/12/2022]
Abstract
Recent studies found that hepatitis C virus (HCV) may invade the central nervous system, and both HCV and Parkinson's disease (PD) have in common the overexpression of inflammatory biomarkers. We analysed data from a community-based integrated screening programme based on a total of 62,276 subjects. We used logistic regression models to investigate association between HCV infection and PD. The neurotoxicity of HCV was evaluated in the midbrain neuron-glia coculture system in rats. The cytokine/chemokine array was performed to measure the differences of amounts of cytokines released from midbrain in the presence and absence of HCV. The crude odds ratios (ORs) for having PD were 0.62 [95% confidence interval (CI), 0.48-0.81] and 1.91 (95% CI, 1.48-2.47) for hepatitis B virus (HBV) and HCV. After controlling for potential confounders, the association between HCV and PD remained statistically significant (adjusted OR = 1.39; 95% CI, 1.07-1.80), but not significantly different between HBV and PD. The HCV induced 60% dopaminergic neuron death in the midbrain neuron-glia coculture system in rats, similar to that of 1-methyl-4-phenylpyridinium (MPP(+) ) but not caused by HBV. This link was further supported by the finding that HCV infection may release the inflammatory cytokines, which may play a role in the pathogenesis of PD. In conclusion, our study demonstrated a significantly positive epidemiological association between HCV infection and PD and corroborated the dopaminergic toxicity of HCV similar to that of MPP(+) .
Collapse
Affiliation(s)
- W Y-Y Wu
- Graduate Institute of Epidemiology and Preventive medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - K-H Kang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - S L-S Chen
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - S Y-H Chiu
- Department and Graduate Institute of Health Care Management, Chang Gung University, Tao-Yuan, Taiwan
| | - A M-F Yen
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - J C-Y Fann
- Department of Health Industry Management, School of Health Care Management, Kainan University, Taoyuan, Taiwan
| | - C-W Su
- Graduate Institute of Epidemiology and Preventive medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - H-C Liu
- Graduate Institute of Epidemiology and Preventive medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - C-Z Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - W-M Fu
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - H-H Chen
- Graduate Institute of Epidemiology and Preventive medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - H-H Liou
- Department of Neurology and Pharmacology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
176
|
Tissue Inhibitor of Metalloproteinase-2 Suppresses Collagen Synthesis in Cultured Keloid Fibroblasts. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2015; 3:e520. [PMID: 26495233 PMCID: PMC4596445 DOI: 10.1097/gox.0000000000000503] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/27/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Keloids are defined as a kind of dermal fibroproliferative disorder resulting from the accumulation of collagen. In the remodeling of extracellular matrix, the balance between matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs) is as critical as the proper production of extracellular matrix. We investigate the role of TIMPs and MMPs in the pathogenesis of keloids and examine the therapeutic potential of TIMP-2. METHODS The expression of TIMPs and MMPs in most inflamed parts of cultured keloid fibroblasts (KFs) and peripheral normal skin fibroblasts (PNFs) in the same individuals and the reactivity of KFs to cyclic mechanical stretch were analyzed by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay (n = 7). To evaluate the effect of treating KFs with TIMP-2, collagen synthesis was investigated by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay, and microscopic analysis was used to examine the treatment effects of TIMP-2 on ex vivo cultures of keloid tissue (n = 6). RESULTS TIMP-2 was downregulated in cultured KFs compared with PNFs in the same individuals, and the reduction in TIMP-2 was exacerbated by cyclic mechanical stretch. Administration of TIMP-2 (200 or 300 ng/mL) significantly suppressed expression of Col1A2 and Col3A1 mRNA and collagen type I protein in KFs. TIMP-2 also significantly reduced the skin dermal and collagen bundle thickness in ex vivo cultures of keloid tissue. CONCLUSION These results indicated that downregulation of TIMP-2 in KFs is a crucial event in the pathogenesis of keloids, and the TIMP-2 would be a promising candidate for the treatment of keloids.
Collapse
|
177
|
Peng J, Xin H, Han P, Gao K, Gao T, Lei Y, Ji S, An X, Cao B. Expression and regulative function of tissue inhibitor of metalloproteinase 3 in the goat ovary and its role in cultured granulosa cells. Mol Cell Endocrinol 2015; 412:104-15. [PMID: 26054746 DOI: 10.1016/j.mce.2015.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/16/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
Tissue inhibitor of metalloproteinase 3 (TIMP3) played a key role in female reproduction. However, its expression and function in goat are still unclear. In the present study, the full-length cDNA of goat TIMP3 was cloned from adult goat ovary; meanwhile, we demonstrated that putative TIMP3 protein shared a highly conserved amino acid sequence with known mammalian homologs. Real-time PCR results showed that TIMP3 was widely expressed in the tissues of adult goat. In the ovary, increasing expression of TIMP3 mRNA was discovered during the growth process of follicle and corpus luteum. Immunohistochemistry results suggested that TIMP3 protein existed in oocytes of all types of follicles, corpus luteum and granulosa and theca cells of primary, secondary, and antral but not primordial follicles. In vitro, human chorionic gonadotropin (hCG) stimulated the expression of TIMP3 in goat granulosa cells. hCG-induced TIMP3 mRNA expression was reduced by the inhibitors of protein kinase A, protein kinase C, MAPK kinase, or p38 kinase. Functionally, over-expression of TIMP3 significantly increased apoptosis and decreased the viability of cultured granulosa cells. Knockdown of TIMP3 could decrease hCG-induced progesterone secretion and the mRNA abundance of key steroidogenic enzymes (StAR, p450scc and HSD3B) as well as ECM proteins (DCN and FN). These findings provided evidence that the hCG induced expression of TIMP3 may play an important role in regulating goat granulosa cell survival and steroidogenesis.
Collapse
Affiliation(s)
- Jiayin Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haiyun Xin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kexin Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Teyang Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingnan Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengyue Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
178
|
Spinal Glia Division Contributes to Conditioning Lesion-Induced Axon Regeneration Into the Injured Spinal Cord: Potential Role of Cyclic AMP-Induced Tissue Inhibitor of Metalloproteinase-1. J Neuropathol Exp Neurol 2015; 74:500-11. [PMID: 25933384 DOI: 10.1097/nen.0000000000000192] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Regeneration of sensory neurons after spinal cord injury depends on the function of dividing neuronal-glial antigen 2 (NG2)-expressing cells. We have shown that increases in the number of dividing NG2-positive cells through short-term pharmacologic inhibition of matrix metalloproteinases contributes to recovery after spinal cord injury. A conditioning sciatic nerve crush (SNC) preceding spinal cord injury stimulates central sensory axon regeneration via the intraganglionic action of cyclic adenosine monophosphate. Here, using bromodeoxyuridine, mitomycin (mitosis inhibitor), and cholera toxin B tracer, we demonstrate that SNC-induced division of spinal glia is related to the spinal induction of tissue inhibitor of metalloproteinase-1 and contributes to central sensory axon growth into the damaged spinal cord. Dividing cells were mainly NG2-positive and Iba1-positive and included myeloid NG2-positive populations. The cells dividing in response to SNC mainly matured into oligodendrocytes and microglia within the injured spinal cord. Some postmitotic cells remained NG2-reactive and were associated with regenerating fibers. Moreover, intraganglionic tissue inhibitor of metalloproteinase-1 expression was induced after administration of SNC or cyclic adenosine monophosphate analog (dbcAMP) to dorsal root ganglia in vivo and in primary adult dorsal root ganglia cultures. Collectively, these findings support a novel model whereby a cyclic adenosine monophosphate-activated regeneration program induced in sensory neurons by a conditioning peripheral nerve lesion uses tissue inhibitor of metalloproteinase-1 to protect against short-term proteolysis, enabling glial cell division and promoting axon growth into the damaged CNS.
Collapse
|
179
|
Mejia-Cristobal LM, Reus E, Lizarraga F, Espinosa M, Ceballos-Cancino G, López TV, Garay S, Maldonado V, Melendez-Zajgla J. Tissue inhibitor of metalloproteases-4 (TIMP-4) modulates adipocyte differentiation in vitro. Exp Cell Res 2015; 335:207-15. [PMID: 25999146 DOI: 10.1016/j.yexcr.2015.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 11/16/2022]
Abstract
Tissue inhibitors of metalloproteases (TIMPs) are multifunctional proteins that inhibit matrix metalloproteases (MMPs). The latest described member of the family, TIMP-4, is expressed mainly in adipose tissue, with detectable levels in the brain and heart. Besides its high expression in fat, the role of this inhibitor in adipose tissue is unknown. In order to study the role of TIMP-4 during adipogenesis in vitro, 3T3-L1 cells were stably transfected with a TIMP-4 specific shRNA or a control shRNA. Unexpectedly, upon TIMP-4 knockdown, 3T3-L1 cells differentiated faster into mature adipocytes. To get better insight of TIMP-4's role in adipogenesis, microarray expression analyses were performed. Network enrichment analyses uncovered 25 significant upstream signaling pathways, among which the NFκB cascade was found. Previous works have shown that NFκB is a key regulator of adipogenesis. In accordance, we found that TIMP-4 knockdown decreased NFκB activity during adipogenesis. The present work suggests that TIMP-4 might act as a negative regulator of adipogenesis through NFκB cascade modulation.
Collapse
Affiliation(s)
- Luz María Mejia-Cristobal
- Basic Research Subdirection, National Institute of Genomic Medicine, Functional Genomics Laboratory, Periferico Sur 4809, Col. Arenal Tepepan, Del. Tlalpan, Mexico D.F. 14610, Mexico.
| | - Erika Reus
- Basic Research Subdirection, National Institute of Genomic Medicine, Functional Genomics Laboratory, Periferico Sur 4809, Col. Arenal Tepepan, Del. Tlalpan, Mexico D.F. 14610, Mexico.
| | - Floria Lizarraga
- Basic Research Subdirection, National Institute of Genomic Medicine, Functional Genomics Laboratory, Periferico Sur 4809, Col. Arenal Tepepan, Del. Tlalpan, Mexico D.F. 14610, Mexico.
| | - Magali Espinosa
- Basic Research Subdirection, National Institute of Genomic Medicine, Functional Genomics Laboratory, Periferico Sur 4809, Col. Arenal Tepepan, Del. Tlalpan, Mexico D.F. 14610, Mexico.
| | - Gisela Ceballos-Cancino
- Basic Research Subdirection, National Institute of Genomic Medicine, Functional Genomics Laboratory, Periferico Sur 4809, Col. Arenal Tepepan, Del. Tlalpan, Mexico D.F. 14610, Mexico.
| | - Tania V López
- Basic Research Subdirection, National Institute of Genomic Medicine, Functional Genomics Laboratory, Periferico Sur 4809, Col. Arenal Tepepan, Del. Tlalpan, Mexico D.F. 14610, Mexico.
| | - Sergio Garay
- Basic Research Subdirection, National Institute of Genomic Medicine, Functional Genomics Laboratory, Periferico Sur 4809, Col. Arenal Tepepan, Del. Tlalpan, Mexico D.F. 14610, Mexico.
| | - Vilma Maldonado
- Basic Research Subdirection, National Institute of Genomic Medicine, Functional Genomics Laboratory, Periferico Sur 4809, Col. Arenal Tepepan, Del. Tlalpan, Mexico D.F. 14610, Mexico.
| | - Jorge Melendez-Zajgla
- Basic Research Subdirection, National Institute of Genomic Medicine, Functional Genomics Laboratory, Periferico Sur 4809, Col. Arenal Tepepan, Del. Tlalpan, Mexico D.F. 14610, Mexico.
| |
Collapse
|
180
|
Peng JY, Han P, Xin HY, Ji SY, Gao KX, An XP, Cao BY. Molecular characterization and hormonal regulation of tissue inhibitor of metalloproteinase 1 in goat ovarian granulosa cells. Domest Anim Endocrinol 2015; 52:1-10. [PMID: 25700266 DOI: 10.1016/j.domaniend.2015.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 01/01/2023]
Abstract
Tissue inhibitor of metalloproteinase 1 (TIMP1) belongs to a group of endogenous inhibitors that control the activity of matrix metalloproteinases and other metalloproteinases. TIMP1 is ubiquitously expressed and implicated in many physiological and pathologic processes. In this study, the full-length complementary DNA of goat (Capra hircus) Timp1 was cloned from adult goat ovary for the first time to better understand the regulatory role of TIMP1. The putative TIMP1 protein shared a high amino acid sequence identity with other species. Real-time polymerase chain reaction results showed that Timp1 was widely expressed in adult goat tissues, and messenger RNA expression was higher in the ovary than in other tissues; meanwhile, increasing expression of Timp1 was also discovered during the process of follicle growth and corpus luteum. We then investigated Timp1 expression patterns in different types of ovarian follicular cells from goats. In small or large antral follicles, Timp1 expression was higher (P < 0.05) in theca cells than in granulosa cells, cumulus cells, and oocytes. Increasing expression of Timp1 in theca and granulosa cells was observed as the variation of the follicle size. Immunohistochemical analyses further revealed the presence of the TIMP1 proteins in follicles at all antral stages of development. The most intense staining for TIMP1 was observed in the theca cells and granulosa cells of large antral follicles and corpus luteum. Timp1 was highly (P < 0.05) induced in granulosa cells in vitro after treatment with the luteinizing hormone agonist, human chorionic gonadotropin. Treatments with forskolin, phorbol 12-myristate 13-acetate, or phorbol 12-myristate 13-acetate + forskolin could also stimulate Timp1 messenger RNA expression. The effects of human chorionic gonadotropin were reduced (P < 0.05) by the inhibitors of protein kinase A, protein kinase C, MAPK kinase, or p38 kinase, indicating that Timp1 expression could be adjusted by luteinizing hormone-initiated activation of these signaling mediators. Our results suggested that TIMP1 may be involved in regulating ovarian follicle development and ovulation.
Collapse
Affiliation(s)
- J Y Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - P Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - H Y Xin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - S Y Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - K X Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - X P An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - B Y Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.
| |
Collapse
|
181
|
Lin SJ, Wu SW, Chou YC, Lin JH, Huang YC, Chen MR, Ma N, Tsai CH. Novel expression and regulation of TIMP-1 in Epstein Barr virus-infected cells and its impact on cell survival. Virology 2015; 481:24-33. [PMID: 25765004 DOI: 10.1016/j.virol.2015.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/25/2015] [Accepted: 02/10/2015] [Indexed: 11/26/2022]
|
182
|
TIMP-1 overexpression in lung carcinoma enhances tumor kinetics and angiogenesis in brain metastasis. J Neuropathol Exp Neurol 2015; 74:293-304. [PMID: 25756591 DOI: 10.1097/nen.0000000000000175] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tissue inhibitors of matrix metalloproteinase (TIMP) orchestrate many biologic activities, including inhibition of matrix metalloproteinase activity, activation of pro-matrix metalloproteinases, and regulation of cell proliferation, angiogenesis, and apoptosis induction. Tissue inhibitors of matrix metalloproteinase can play a protective role during tumor invasion and metastasis, but elevated TIMP messenger RNA levels have also been associated with aggressive cancers and poor clinical outcome. We examined the potential roles of TIMP-1 in H2009 lung adenocarcinoma cells and in cells transfected with a human TIMP-1-overexpressing vector (HB-6 and HB-1). Tumors resulting from the implantation of parental cell lines and transfected HB-1 cells into the brains of nude mice had a typical carcinoma profile, but human TIMP-1-overexpressing tumors showed enhanced tumor kinetics and focally more infiltrative features; vessel density assessed with anti-CD31 immunohistochemistry was also greater within HB-1 tumor implants. Similar effects on HB-6 and HB-1 cells versus parental cell lines and empty vector clones were observed in endothelial cell assays. Anchorage-independent growth and invasion through Matrigel were also increased in TIMP-1-overexpressing cells. Together, these results indicate tumor-promoting functions of TIMP-1 through alterations in angiogenesis, increased tumorigenicity, and invasive behavior. Although matrix metalloproteinase inhibition has been the traditionally identified function of TIMP-1, matrix metalloproteinase-independent interactions may contribute to the growth of metastatic carcinomas in the brain.
Collapse
|
183
|
Radisky ES, Radisky DC. Matrix metalloproteinases as breast cancer drivers and therapeutic targets. Front Biosci (Landmark Ed) 2015; 20:1144-63. [PMID: 25961550 DOI: 10.2741/4364] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Members of the matrix metalloproteinase (MMP) family have been identified as poor prognosis markers for breast cancer patients and as drivers of many facets of the tumor phenotype in experimental models. Early enthusiasm for MMPs as therapeutic targets was tempered following disappointing clinical trials that utilized broad spectrum, small molecule catalytic site inhibitors. However, subsequent research has continued to define key roles for MMPs as breast cancer promoters, to elucidate the complex roles that that these proteins play in breast cancer development and progression, and to identify how these roles are linked to specific and unique biochemical features of individual members of the MMP family. Here, we provide an overview of the structural features of the MMPs, then discuss clinical studies identifying which MMP family members are linked with breast cancer development and new experimental studies that reveal how these specific MMPs may play unique roles in the breast cancer microenvironment. We conclude with a discussion of the most promising avenues for development of therapeutic agents capable of targeting the tumor-promoting properties of MMPs.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224,
| | | |
Collapse
|
184
|
Kobuch J, Cui H, Grünwald B, Saftig P, Knolle PA, Krüger A. TIMP-1 signaling via CD63 triggers granulopoiesis and neutrophilia in mice. Haematologica 2015; 100:1005-13. [PMID: 26001794 DOI: 10.3324/haematol.2014.121590] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 05/08/2015] [Indexed: 12/20/2022] Open
Abstract
The homeostasis of neutrophil granulocytes can affect the outcome of several inflammation-associated diseases including cancer. The regulation of this homeostasis is still not completely understood. We previously found that elevated systemic levels of tissue inhibitor of metalloproteinases-1 (TIMP-1) induce an increase of neutrophils in the liver, which in turn strongly promotes liver metastasis. Here, we report that increasing systemic TIMP-1 levels were sufficient to induce neutrophilia in mice. This was not attributed to prolonged survival or direct mobilization of neutrophils. However, TIMP-1 induced enrichment of myeloid progenitors and concomitant upregulation of granulopoiesis-associated genes in the bone marrow compartment. BrdU pulse-labeling confirmed that proliferating progenitors accounted for TIMP-1-induced neutrophilia. TIMP-1 variants that dissect its protease-inhibitory from its CD63 binding function relevant for cell signaling revealed that the TIMP-1 signaling domain was necessary and sufficient to augment granulopoiesis. Consequently, ablation of the TIMP-1 receptor CD63 abolished both neutrophilia and TIMP-1-enhanced granulopoiesis in the bone marrow. Our findings reveal that elevated levels of TIMP-1 impact on neutrophil homeostasis via signaling through CD63. This may provide a link to clinical observations, where TIMP-1 correlates with high severity and bad prognosis in inflammation-associated diseases.
Collapse
Affiliation(s)
- Julia Kobuch
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Haissi Cui
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Barbara Grünwald
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Germany
| | - Percy A Knolle
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Achim Krüger
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Klinikum rechts der Isar, Technische Universität München, Germany
| |
Collapse
|
185
|
Kim JH, Kim HJ, Kim JK, Ahn EK, Ko HJ, Cho YR, Lee SJ, Bae GU, Kim YK, Park JW, Oh JS, Seo DW. Ligularia fischeri inhibits endothelial cell proliferation, invasion and tube formation through the inactivation of mitogenic signaling pathways and regulation of vascular endothelial cadherin distribution and matrix metalloproteinase expression. Oncol Rep 2015; 34:221-6. [PMID: 25998480 DOI: 10.3892/or.2015.4000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/04/2015] [Indexed: 11/05/2022] Open
Abstract
Ligularia fischeri (LF) has been used as an edible herb and traditional medicine for the treatment of inflammatory and infectious diseases. In the present study, we report the effects and molecular mechanism of the ethanolic extract of LF on cell proliferation, invasion and tube formation in human umbilical vein endothelial cells (HUVECs). LF-mediated inhibition of cell proliferation was accompanied by reduced expression of cell cycle-related proteins such as cyclin-dependent kinases (Cdks) and cyclins, leading to pRb hypophosphorylation and G1 phase cell cycle arrest. We also show that LF treatment inhibited cell invasion and tube formation in HUVECs. These anti-angiogenic activities of LF were associated with the inactivation of mitogenic signaling pathways, induction of vascular endothelial (VE)-cadherin distribution at cell-cell contacts and inhibition of matrix metalloproteinase (MMP) expression. Collectively, our findings demonstrate the pharmacological functions and molecular mechanisms of LF in regulating endothelial cell fates, and support further development as a potential therapeutic agent for the treatment and prevention of angiogenesis-related disorders including cancer.
Collapse
Affiliation(s)
- Jae Hyeon Kim
- College of Pharmacy, Dankook University, Cheonan 330-714, Republic of Korea
| | - Hyeon-Ju Kim
- College of Pharmacy, Dankook University, Cheonan 330-714, Republic of Korea
| | - Jin-Kyu Kim
- Natural Products Research Institute, Gyeonggi Institute of Science and Technology Promotion, Suwon 443‑270, Republic of Korea
| | - Eun-Kyung Ahn
- Natural Products Research Institute, Gyeonggi Institute of Science and Technology Promotion, Suwon 443‑270, Republic of Korea
| | - Hye-Jin Ko
- Natural Products Research Institute, Gyeonggi Institute of Science and Technology Promotion, Suwon 443‑270, Republic of Korea
| | - Young-Rak Cho
- Natural Products Research Institute, Gyeonggi Institute of Science and Technology Promotion, Suwon 443‑270, Republic of Korea
| | - Sang-Jin Lee
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Gyu-Un Bae
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Yong Kee Kim
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Jong Woo Park
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Joa Sub Oh
- College of Pharmacy, Dankook University, Cheonan 330-714, Republic of Korea
| | - Dong-Wan Seo
- College of Pharmacy, Dankook University, Cheonan 330-714, Republic of Korea
| |
Collapse
|
186
|
Donizy P, Rudno-Rudzinska J, Kaczorowski M, Kabarowski J, Frejlich E, Kielan W, Matkowski R, Halon A. Disrupted Balance of MMPs/TIMPs in Gastric Carcinogenesis-Paradoxical Low MMP-2 Expression in Tumor and Stromal Compartments as a Potential Marker of Unfavorable Outcome. Cancer Invest 2015; 33:286-93. [PMID: 25965559 DOI: 10.3109/07357907.2015.1024316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The aim of the study was to find correlations between MMP/TIMP reactivity and the expression of angiogenic factors, and relationships between these parameters and clinicopathological features of gastric cancer patients. Receiver Operating Characteristic curve analysis was used to find cut-off points that enabled fair decision-making in survival analysis. Low levels of MMP-2 expression in tumor and stromal compartments were significantly associated with poor prognosis-the probability that a patient would die within 60 months of surgery if their MMP-2 was low, and was about 0.8 in both neoplastic and stromal compartments.
Collapse
Affiliation(s)
- Piotr Donizy
- 1Department of Pathomorphology and Oncological Cytology
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Kono TM, Sims EK, Moss DR, Yamamoto W, Ahn G, Diamond J, Tong X, Day KH, Territo PR, Hanenberg H, Traktuev DO, March KL, Evans-Molina C. Human adipose-derived stromal/stem cells protect against STZ-induced hyperglycemia: analysis of hASC-derived paracrine effectors. Stem Cells 2015; 32:1831-42. [PMID: 24519994 DOI: 10.1002/stem.1676] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 12/30/2013] [Accepted: 01/18/2014] [Indexed: 01/03/2023]
Abstract
Adipose-derived stromal/stem cells (ASCs) ameliorate hyperglycemia in rodent models of islet transplantation and autoimmune diabetes, yet the precise human ASC (hASC)-derived factors responsible for these effects remain largely unexplored. Here, we show that systemic administration of hASCs improved glucose tolerance, preserved β cell mass, and increased β cell proliferation in streptozotocin-treated nonobese diabetic/severe combined immunodeficient mice. Coculture experiments combining mouse or human islets with hASCs demonstrated that islet viability and function were improved by hASCs following prolonged culture or treatment with proinflammatory cytokines. Analysis of hASC-derived factors revealed vascular endothelial growth factor and tissue inhibitor of metalloproteinase 1 (TIMP-1) to be highly abundant factors secreted by hASCs. Notably, TIMP-1 secretion increased in the presence of islet stress from cytokine treatment, while TIMP-1 blockade was able to abrogate in vitro prosurvival effects of hASCs. Following systemic administration by tail vein injection, hASCs were detected in the pancreas and human TIMP-1 was increased in the serum of injected mice, while recombinant TIMP-1 increased viability in INS-1 cells treated with interleukin-1beta, interferon-gamma, and tumor necrosis factor alpha. In aggregate, our data support a model whereby factors secreted by hASCs, such as TIMP-1, are able to mitigate against β cell death in rodent and in vitro models of type 1 diabetes through a combination of local paracrine as well as systemic effects.
Collapse
Affiliation(s)
- Tatsuyoshi M Kono
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Illemann M, Eefsen RHL, Bird NC, Majeed A, Osterlind K, Laerum OD, Alpízar-Alpízar W, Lund IK, Høyer-Hansen G. Tissue inhibitor of matrix metalloproteinase-1 expression in colorectal cancer liver metastases is associated with vascular structures. Mol Carcinog 2015; 55:193-208. [PMID: 25594187 PMCID: PMC6680289 DOI: 10.1002/mc.22269] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/30/2014] [Accepted: 11/26/2014] [Indexed: 01/22/2023]
Abstract
Metastatic growth by colorectal cancer cells in the liver requires the ability of the cancer cells to interact with the new microenvironment. This interaction results in three histological growth patterns of liver metastases: desmoplastic, pushing, and replacement. In primary colorectal cancer several proteases, involved in the degradation of extracellular matrix components, are up‐regulated. In liver metastases, their expression is growth pattern dependent. Tissue inhibitor of matrix metalloproteinase‐1 (TIMP‐1) is a strong prognostic marker in plasma from colorectal cancer patients, with significant higher levels in patients with metastatic disease. We therefore wanted to determine the expression pattern of TIMP‐1 in primary colorectal cancers and their matching liver metastases. TIMP‐1 mRNA was primarily seen in α‐smooth‐muscle actin (α‐SMA)‐positive cells. In all primary tumors and liver metastases with desmoplastic growth pattern, TIMP‐1 mRNA was primarily found in α‐SMA‐positive myofibroblasts located at the invasive front. Some α‐SMA‐positive cells with TIMP‐1 mRNA were located adjacent to CD34‐positive endothelial cells, identifying them as pericytes. This indicates that TIMP‐1 in primary tumors and liver metastases with desmoplastic growth pattern has dual functions; being an MMP‐inhibitor at the cancer periphery and involved in tumor‐induced angiogenesis in the pericytes. In the liver metastases with pushing or replacement growth patterns, TIMP‐1 was primarily expressed by activated hepatic stellate cells at the metastasis/liver parenchyma interface. These cells were located adjacent to CD34‐positive endothelial cells, suggesting a function in tumor‐induced angiogenesis. We therefore conclude that TIMP‐1 expression is growth pattern dependent in colorectal cancer liver metastases. © 2015 The Authors. Molecular Carcinogenesis published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Martin Illemann
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Rikke Helene Løvendahl Eefsen
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark.,Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | | | - Ali Majeed
- Academic Surgical Unit, University of Sheffield, Sheffield, England
| | - Kell Osterlind
- Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | - Ole Didrik Laerum
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Warner Alpízar-Alpízar
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark.,Center for Research on Microscopic Structures, University of Costa Rica, San José, Costa Rica
| | - Ida Katrine Lund
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Gunilla Høyer-Hansen
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
189
|
Down-regulation of TIMP-1 inhibits cell migration, invasion, and metastatic colonization in lung adenocarcinoma. Tumour Biol 2015; 36:3957-67. [PMID: 25578494 DOI: 10.1007/s13277-015-3039-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022] Open
Abstract
Tissue inhibitor metalloproteinase-1 (TIMP-1) is clinically associated with a poor prognosis for various cancers, but the roles of TIMP-1 in lung cancer metastasis are controversial. Our previous secretomic study revealed that TIMP-1 is highly abundant in high invasiveness cells of lung adenocarcinoma. In the current study, TIMP-1 abundances in primary lung adenocarcinoma tissues, as revealed by immunohistochemistry, are significantly higher in patients with lymph invasion and distant metastasis than in those without. Receiver operating characteristic curve analyses suggest 73.7 and 86.2 % accuracy to separate patients with lymph node and distant metastasis and those without, respectively. Moreover, we demonstrate that the expression level of TIMP-1 positively associates with cell mobility, invasiveness, and metastatic colonization. Most notably, the novel mechanism in which TIMP-1 facilitates metastatic colonization through the mediation of pericellular polyFN1 assembly was revealed. In summary, this study presents novel functions of TIMP-1 in promoting cancer metastasis and suggests TIMP-1 is a potential tissue biomarker for lymph invasion and distant metastasis of lung adenocarcinoma.
Collapse
|
190
|
Koyner JL, Shaw AD, Chawla LS, Hoste EAJ, Bihorac A, Kashani K, Haase M, Shi J, Kellum JA. Tissue Inhibitor Metalloproteinase-2 (TIMP-2)⋅IGF-Binding Protein-7 (IGFBP7) Levels Are Associated with Adverse Long-Term Outcomes in Patients with AKI. J Am Soc Nephrol 2014; 26:1747-54. [PMID: 25535301 DOI: 10.1681/asn.2014060556] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 09/26/2014] [Indexed: 01/06/2023] Open
Abstract
Tissue inhibitor metalloproteinase-2 (TIMP-2) and IGF-binding protein-7 (IGFBP7) have been validated for risk stratification in AKI. However, the association of urinary TIMP-2 and IGFBP7 with long-term outcomes is unknown. We evaluated the 9-month incidence of a composite end point of all-cause mortality or the need for RRT in a secondary analysis of a prospective observational international study of critically ill adults. Two predefined [TIMP-2]⋅[IGFBP7] cutoffs (0.3 for high sensitivity and 2.0 for high specificity) for the development of AKI were evaluated. Cox proportional hazards models were used to determine risk for the composite end point. Baseline [TIMP-2]⋅[IGFBP7] values were available for 692 subjects, of whom 382 (55.2%) subjects developed stage 1 AKI (defined by Kidney Disease Improving Global Outcomes guidelines) within 72 hours of enrollment and 217 (31.4%) subjects met the composite end point. Univariate analysis showed that [TIMP-2]⋅[IGFBP7]>2.0 was associated with increased risk of the composite end point (hazard ratio [HR], 2.11; 95% confidence interval [95% CI], 1.37 to 3.23; P<0.001). In a multivariate analysis adjusted for the clinical model, [TIMP-2]⋅[IGFBP7] levels>0.3 were associated with death or RRT only in subjects who developed AKI (compared with levels≤0.3: HR, 1.44; 95% CI, 1.00 to 2.06 for levels>0.3 to ≤2.0; P=0.05 and HR, 2.16; 95% CI, 1.32 to 3.53 for levels>2.0; P=0.002). In conclusion, [TIMP-2]⋅[IGFBP7] measured early in the setting of critical illness may identify patients with AKI at increased risk for mortality or receipt of RRT over the next 9 months.
Collapse
Affiliation(s)
- Jay L Koyner
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Andrew D Shaw
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lakhmir S Chawla
- Department of Medicine, Divisions of Intensive Care Medicine and Nephrology, Washington DC Veterans Affairs Medical Center, Washington DC
| | - Eric A J Hoste
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Azra Bihorac
- Department of Anesthesiology, University of Florida, Gainesville, Florida
| | - Kianoush Kashani
- Department of Medicine, Division of Nephrology and Hypertension and Division of Pulmonary Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael Haase
- Department of Nephrology, Hypertension, Diabetes and Endocrinology, Otto von Guericke University, Magdeburg, Germany
| | - Jing Shi
- Statistics at Walker BioSciences, Carlsbad, California; and
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | |
Collapse
|
191
|
Yamashita T, Doi K, Hamasaki Y, Matsubara T, Ishii T, Yahagi N, Nangaku M, Noiri E. Evaluation of urinary tissue inhibitor of metalloproteinase-2 in acute kidney injury: a prospective observational study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:716. [PMID: 25524453 PMCID: PMC4300076 DOI: 10.1186/s13054-014-0716-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 12/11/2014] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Tissue inhibitor of metalloproteinase-2 (TIMP-2) is an emerging acute kidney injury (AKI) biomarker. We evaluated the performance of urinary TIMP-2 in an adult mixed ICU by comparison with other biomarkers that reflect several different pathways of AKI. METHODS In this study, we prospectively enrolled 98 adult critically ill patients who had been admitted to the adult mixed ICU. Urinary TIMP-2 and N-acetyl-β-D-glucosaminidase (NAG) and plasma neutrophil gelatinase-associated lipocalin (NGAL), interleukin-6 (IL-6) and erythropoietin (EPO) were measured on ICU admission. We evaluated these biomarkers' capability of detecting AKI and its severity as determined by using the Kidney Disease Improving Global Outcomes serum creatinine criteria, as well as its capacity to predict in-hospital mortality. The impact of sepsis, the leading cause of AKI in ICUs, was also evaluated. RESULTS We found AKI in 42 patients (42.9%). All biomarkers were significantly higher in AKI than in non-AKI. In total, 27 patients (27.6%) developed severe AKI. Urinary TIMP-2 was able to distinguish severe AKI from non-severe AKI with an area under the receiver operating characteristic curve (AUC-ROC) of 0.80 (95% confidence interval, 0.66 to 0.90). A total of 41 cases (41.8%) were complicated with sepsis. Although plasma NGAL and IL-6 were increased by sepsis, urinary TIMP-2 and NAG were increased not by sepsis, but by the presence of severe AKI. Plasma EPO was increased only by septic AKI. In-hospital mortality was 15.3% in this cohort. Urinary TIMP-2 and NAG, and plasma NGAL, were significantly higher in non-survivors than in survivors, although plasma IL-6 and EPO were not. Among the biomarkers, only urinary TIMP-2 was able to predict in-hospital mortality significantly better than serum creatinine. CONCLUSION Urinary TIMP-2 can detect severe AKI with performance equivalent to plasma NGAL and urinary NAG, with an AUC-ROC value higher than 0.80. Furthermore, urinary TIMP-2 was associated with mortality. Sepsis appeared to have only a limited impact on urinary TIMP-2, in contrast to plasma NGAL.
Collapse
Affiliation(s)
- Tetsushi Yamashita
- Department of Nephrology and Endocrinology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Kent Doi
- Department of Emergency and Critical Care Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Yoshifumi Hamasaki
- 22nd Century Medical and Research Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Takehiro Matsubara
- Department of Emergency and Critical Care Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Takeshi Ishii
- Department of Emergency and Critical Care Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Naoki Yahagi
- Department of Emergency and Critical Care Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Masaomi Nangaku
- Department of Nephrology and Endocrinology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Eisei Noiri
- Department of Nephrology and Endocrinology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan. .,Japan Science and Technology Agency/Japan International Cooperation Agency (JST/JICA), Science and Technology Research Partnership for Sustainable Development (SATREPS), 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan.
| |
Collapse
|
192
|
Kim HJ, Ko HY, Choi SW, Seo DW. Anti-angiogenic effects of Siegesbeckia glabrescens are mediated by suppression of the Akt and p70S6K-dependent signaling pathways. Oncol Rep 2014; 33:699-704. [PMID: 25434554 DOI: 10.3892/or.2014.3630] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/12/2014] [Indexed: 11/05/2022] Open
Abstract
Siegesbeckia glabrescens (SG) Makino (Compositae) has been used as a traditional medicine for the treatment of allergic and inflammatory diseases. In the present study, we report the effects and molecular mechanism of an ethanolic extract of SG on cell proliferation, migration and tube formation in vascular endothelial growth factor-A (VEGF-A)-treated human umbilical vein endothelial cells. SG treatment inhibited VEGF-A-stimulated endothelial cell proliferation through downregulation of cyclin D and upregulation of cyclin-dependent kinase inhibitors such as p27Kip1 and p21WAF1/Cip1. In addition, SG inhibited VEGF‑A-stimulated endothelial cell migration and tube formation. These anti-angiogenic activities of SG were mediated by inactivation of the Akt- and p70S6K-dependent signaling pathways. Collectively, our findings demonstrate the pharmacological roles and molecular mechanism of SG in regulating angiogenic responses and support further evaluation and development of SG as a potential therapeutic agent for the treatment and prevention of angiogenesis-related diseases including cancer.
Collapse
Affiliation(s)
- Hyeon-Ju Kim
- College of Pharmacy, Dankook University, Cheonan 330-714, Republic of Korea
| | - Hee-Young Ko
- College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Shin-Wook Choi
- Radiant Reasearch Institute, Radiant Inc., Chuncheon 200-883, Republic of Korea
| | - Dong-Wan Seo
- College of Pharmacy, Dankook University, Cheonan 330-714, Republic of Korea
| |
Collapse
|
193
|
Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov 2014; 13:904-27. [DOI: 10.1038/nrd4390] [Citation(s) in RCA: 524] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
194
|
Meersch M, Schmidt C, Van Aken H, Rossaint J, Görlich D, Stege D, Malec E, Januszewska K, Zarbock A. Validation of cell-cycle arrest biomarkers for acute kidney injury after pediatric cardiac surgery. PLoS One 2014; 9:e110865. [PMID: 25343505 PMCID: PMC4208780 DOI: 10.1371/journal.pone.0110865] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/25/2014] [Indexed: 12/22/2022] Open
Abstract
Background The lack of early biomarkers for acute kidney injury (AKI) seriously inhibits the initiation of preventive and therapeutic measures for this syndrome in a timely manner. We tested the hypothesis that insulin-like growth factor-binding protein 7 (IGFBP7) and tissue inhibitor of metalloproteinases-2 (TIMP-2), both inducers of G1 cell cycle arrest, function as early biomarkers for AKI after congenital heart surgery with cardiopulmonary bypass (CPB). Methods We prospectively studied 51 children undergoing cardiac surgery with CPB. Serial urine samples were analyzed for [TIMP-2]•[IGFBP7]. The primary outcome measure was AKI defined by the pRIFLE criteria within 72 hours after surgery. Results 12 children (24%) developed AKI within 1.67 (SE 0.3) days after surgery. Children who developed AKI after cardiac surgery had a significant higher urinary [TIMP-2]•[IGFBP7] as early as 4 h after the procedure, compared to children who did not develop AKI (mean of 1.93 ((ng/ml)2/1000) (SE 0.4) vs 0.47 ((ng/ml)2/1000) (SE 0.1), respectively; p<0.05). Urinary [TIMP-2]•[IGFBP7] 4 hours following surgery demonstrated an area under the receiver-operating characteristic curve of 0.85. Sensitivity was 0.83, and specificity was 0.77 for a cutoff value of 0.70 ((ng/ml)2/1000). Conclusions Urinary [TIMP-2]•[IGFBP7] represent sensitive, specific, and highly predictive early biomarkers for AKI after surgery for congenital heart disease. Trial Registration www.germanctr.de/, DRKS00005062
Collapse
Affiliation(s)
- Melanie Meersch
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Christoph Schmidt
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Hugo Van Aken
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Jan Rossaint
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Dirk Stege
- Department of Pediatric Cardiology, University of Münster, Münster, Germany
| | - Edward Malec
- Department of Pediatric Heart Surgery, University of Münster, Münster, Germany
| | | | - Alexander Zarbock
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| |
Collapse
|
195
|
Wei H, Wang S, Zhen L, Yang Q, Wu Z, Lei X, Lv J, Xiong L, Xue R. Resveratrol attenuates the blood-brain barrier dysfunction by regulation of the MMP-9/TIMP-1 balance after cerebral ischemia reperfusion in rats. J Mol Neurosci 2014; 55:872-9. [PMID: 25330860 DOI: 10.1007/s12031-014-0441-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 10/09/2014] [Indexed: 12/30/2022]
Abstract
The collapse of the blood-brain barrier (BBB) is one of the fundamental pathophysiology changes during cerebral ischemia reperfusion injury. Resveratrol has been recently reported to reduce cerebral ischemic damage by regulating the matrix metalloproteinase-9 (MMP-9). But, more direct evidence for the explanation of the BBB protected by resveratrol against cerebral ischemia reperfusion is still lacking. Therefore, the present study was aimed to investigate the regulation of BBB integrity by resveratrol after cerebral ischemia reperfusion and to determine the role of the MMP-9 and its endogenous inhibitor TIMP-1 balance in this process. Cerebral ischemia was induced by middle cerebral artery occlusion in rats. The BBB function was evaluated by brain water content and the Evans blue dye extravasation; the activities of MMP-9 and TIMP-1 were detected by using gelatin zymography analysis, and cellular apoptosis was examined by TUNEL staining. We confirmed that resveratrol reduced the cerebral ischemia reperfusion damage, brain edema, and Evans blue dye extravasation. Moreover, we found that resveratrol improved the balance of MMP-9/TIMP-1 in terms of their expressions and activities. A TIMP-1 neutralizing antibody reversed those neuroprotective effects of resveratrol. In conclusion, resveratrol attenuated the cerebral ischemia by maintaining the integrity of BBB via regulation of MMP-9 and TIMP-1.
Collapse
Affiliation(s)
- Haidong Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Balaiya S, Grant MB, Priluck J, Chalam KV. Growth factors/chemokines in diabetic vitreous and aqueous alter the function of bone marrow-derived progenitor (CD34⁺) cells in humans. Am J Physiol Endocrinol Metab 2014; 307:E695-702. [PMID: 25159325 PMCID: PMC4200305 DOI: 10.1152/ajpendo.00253.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ocular ischemic microenvironment plays a critical role in the progression of diabetic retinopathy (DR). In this study, we investigated the effect of vitreous and aqueous obtained from proliferative DR patients on the function of CD34⁺ cells derived from healthy humans. Human CD34⁺ cells were incubated with vitreous or aqueous of subjects with PDR. After incubation, cell migration of CD34⁺ was evaluated with CXCL12. Intracellular levels of nitric oxide (NO) were measured with DAF-FM. Tube formation assay was used to evaluate the effect of treated CD34⁺ cells on in vitro angiogenesis. Angiogenic protein array and mass spectrometry (MS) were performed to ascertain the factors secreted by healthy nondiabetic CD34⁺ cells exposed to diabetic vitreous or aqueous. PDR vitreous/aqueous reduced migration of CD34⁺ cells (672.45 ± 42.1/736.75 ± 101.7 AFU; P < 0.01) and attenuated intracellular NO levels (182 ± 1.4/184.5 ± 6.3 AFU, P = 0.002). Pretreatment with PDR vitreous suppressed tube formation of human retinal endothelial cells (64 ± 1.6 vs. 80 ± 2.5). CD34⁺ exposed to PDR vitreous resulted in the increased expression of CXCL4 and serpin F1, whereas CD34⁺ exposed to PDR aqueous showed increased expression of CXCL4, serpin F1, and endothelin-1 (ET-1). MS analysis of CD34⁺ (exposed to PDR vitreous) expressed J56 gene segment, isoform 2 of SPARC-related modular calcium-binding protein 2, isoform 1 of uncharacterized protein c1 orf167, integrin α-M, and 40s ribosomal protein s21. Exposure of healthy nondiabetic CD34⁺ cells to PDR vitreous and aqueous resulted in decreased migration, reduced generation of NO, and altered paracrine secretory function. Our results suggest that the contribution of CD34⁺ cells to the aberrant neovascularization observed in PDR is driven more by the proangiogenic effects of the retinal cells rather than the influence of the vitreous.
Collapse
Affiliation(s)
- Sankarathi Balaiya
- Department of Ophthalmology, University of Florida College of Medicine, Jacksonville, Florida; and
| | - Maria B Grant
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
| | - Joshua Priluck
- Department of Ophthalmology, University of Florida College of Medicine, Jacksonville, Florida; and
| | - Kakarla V Chalam
- Department of Ophthalmology, University of Florida College of Medicine, Jacksonville, Florida; and
| |
Collapse
|
197
|
Esa SA, Rawy AM, EL-Behissy MM, Kamel MH, El-Hwaitty HMMM. Study of the level of sputum matrix metalloproteinase-9 (MMP-9) and tissue inhibitor metalloproteinase-1 (TIMP-1) in COPD patients. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2014. [DOI: 10.1016/j.ejcdt.2014.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
198
|
Cui H, Seubert B, Stahl E, Dietz H, Reuning U, Moreno-Leon L, Ilie M, Hofman P, Nagase H, Mari B, Krüger A. Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes. Oncogene 2014; 34:3640-50. [DOI: 10.1038/onc.2014.300] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 12/12/2022]
|
199
|
Tang SC, Chen YC. Novel therapeutic targets for pancreatic cancer. World J Gastroenterol 2014; 20:10825-10844. [PMID: 25152585 PMCID: PMC4138462 DOI: 10.3748/wjg.v20.i31.10825] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/13/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer has become the fourth leading cause of cancer death in the last two decades. Only 3%-15% of patients diagnosed with pancreatic cancer had 5 year survival rate. Drug resistance, high metastasis, poor prognosis and tumour relapse contributed to the malignancies and difficulties in treating pancreatic cancer. The current standard chemotherapy for pancreatic cancer is gemcitabine, however its efficacy is far from satisfactory, one of the reasons is due to the complex tumour microenvironment which decreases effective drug delivery to target cancer cell. Studies of the molecular pathology of pancreatic cancer have revealed that activation of KRAS, overexpression of cyclooxygenase-2, inactivation of p16INK4A and loss of p53 activities occurred in pancreatic cancer. Co-administration of gemcitabine and targeting the molecular pathological events happened in pancreatic cancer has brought an enhanced therapeutic effectiveness of gemcitabine. Therefore, studies looking for novel targets in hindering pancreatic tumour growth are emerging rapidly. In order to give a better understanding of the current findings and to seek the direction in future pancreatic cancer research; in this review we will focus on targets suppressing tumour metastatsis and progression, KRAS activated downstream effectors, the relationship of Notch signaling and Nodal/Activin signaling with pancreatic cancer cells, the current findings of non-coding RNAs in inhibiting pancreatic cancer cell proliferation, brief discussion in transcription remodeling by epigenetic modifiers (e.g., HDAC, BMI1, EZH2) and the plausible therapeutic applications of cancer stem cell and hyaluronan in tumour environment.
Collapse
|
200
|
Mandal RK, Akhter N, Haque S, Panda AK, Mittal RD, Alqumber MAA. No correlation between TIMP2 -418 G>C polymorphism and increased risk of cancer: evidence from a meta-analysis. PLoS One 2014; 9:e88184. [PMID: 25136829 PMCID: PMC4138026 DOI: 10.1371/journal.pone.0088184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/30/2014] [Indexed: 11/24/2022] Open
Abstract
Aim Tissue inhibitor of metalloproteinase (TIMP2) is involved in the regulation of matrix metalloproteinase 2 (MMP2) and shown to implicate in cancer development and progression. The results from the published studies based on the association between TIMP2 -418 G>C polymorphism and cancer risk are inconsistent. In this meta-analysis, we aimed to evaluate the potential association between TIMP2 -418 G>C polymorphism and cancer risk. Methodology We searched PubMed (Medline) and EMBASE web databases to cover all studies based on relationship of TIMP2 -418 G>C polymorphism and risk of cancer until October 2013. The meta-analysis was performed for selected case-control studies and pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated for all genetic models. Results A total of 2225 cancer cases and 2532 controls were included from ten eligible case-control studies. Results from overall pooled analysis suggested no evidence of significant risk between TIMP2 -418 G>C polymorphism and cancer risk in any of the genetic models, such as, allele (C vs. G: OR = 1.293, 95% CI = 0.882 to 1.894, p = 0.188), homozygous (CC vs. GG: OR = 0.940, 95% CI = 0.434 to 2.039, p = 0.876), heterozygous (GC vs. GG: OR = 1.397, 95% CI = 0.888 to 2.198, p = 0.148), dominant (CC+GC vs. GG: OR = 1.387, 95% CI = 0.880 to 2.187, p = 0.159) and recessive (CC vs. GG+GC: OR = 0.901, 95% CI = 0.442 to 1.838, p = 0.774) models. No evidence of publication bias was detected during the analysis. Conclusions The present meta-analysis suggests that the TIMP2 -418 G>C polymorphism may not be involved in predisposing risk factor for cancer in overall population. However, future larger studies with group of populations are needed to analyze the possible correlation.
Collapse
Affiliation(s)
- Raju K. Mandal
- Department of Urology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Shafiul Haque
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Aditya K. Panda
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Rama D. Mittal
- Department of Urology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Mohammed A. A. Alqumber
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
- * E-mail:
| |
Collapse
|