151
|
Guerra AJ, Giedroc DP. Metal site occupancy and allosteric switching in bacterial metal sensor proteins. Arch Biochem Biophys 2012; 519:210-22. [PMID: 22178748 PMCID: PMC3312040 DOI: 10.1016/j.abb.2011.11.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/23/2011] [Accepted: 11/29/2011] [Indexed: 12/22/2022]
Abstract
All prokaryotes encode a panel of metal sensor or metalloregulatory proteins that govern the expression of genes that allows an organism to quickly adapt to toxicity or deprivation of both biologically essential transition metal ions, e.g., Zn, Cu, Fe, and heavy metal pollutants. As such, metal sensor proteins can be considered arbiters of intracellular transition metal bioavailability and thus potentially control the metallation state of the metalloproteins in the cell. Metal sensor proteins are specialized allosteric proteins that regulate transcription as a result direct binding of one or two cognate metal ions, to the exclusion of all others. In most cases, the binding of the cognate metal ion induces a structural change in a protein oligomer that either activates or inhibits operator DNA binding. A quantitative measure of the degree to which a particular metal drives metalloregulation of operator DNA-binding is the allosteric coupling free energy, ΔGc. In this review, we summarize recent work directed toward understanding metal occupancy and metal selectivity of these allosteric switches in selected families of metal sensor proteins and examine the structural origins of ΔGc in the functional context a thermodynamic "set-point" model of intracellular metal homeostasis.
Collapse
Affiliation(s)
- Alfredo J. Guerra
- Department of Chemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN USA 47405-7102
| | - David P. Giedroc
- Department of Chemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN USA 47405-7102
| |
Collapse
|
152
|
Characterization of the response to zinc deficiency in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2012; 194:2426-36. [PMID: 22389488 DOI: 10.1128/jb.00090-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Zur regulators control zinc homeostasis by repressing target genes under zinc-sufficient conditions in a wide variety of bacteria. This paper describes how part of a survey of duplicated genes led to the identification of the open reading frame all2473 as the gene encoding the Zur regulator of the cyanobacterium Anabaena sp. strain PCC 7120. All2473 binds to DNA in a zinc-dependent manner, and its DNA-binding sequence was characterized, which allowed us to determine the relative contribution of particular nucleotides to Zur binding. A zur mutant was found to be impaired in the regulation of zinc homeostasis, showing sensitivity to elevated concentrations of zinc but not other metals. In an effort to characterize the Zur regulon in Anabaena, 23 genes containing upstream putative Zur-binding sequences were identified and found to be regulated by Zur. These genes are organized in six single transcriptional units and six operons, some of them containing multiple Zur-regulated promoters. The identities of genes of the Zur regulon indicate that Anabaena adapts to conditions of zinc deficiency by replacing zinc metalloproteins with paralogues that fulfill the same function but presumably with a lower zinc demand, and with inducing putative metallochaperones and membrane transport systems likely being involved in the scavenging of extracellular zinc, including plasma membrane ABC transport systems and outer membrane TonB-dependent receptors. Among the Zur-regulated genes, the ones showing the highest induction level encode proteins of the outer membrane, suggesting a primary role for components of this cell compartment in the capture of zinc cations from the extracellular medium.
Collapse
|
153
|
Functional and genetic characterization of the tap efflux pump in Mycobacterium bovis BCG. Antimicrob Agents Chemother 2012; 56:2074-83. [PMID: 22232275 DOI: 10.1128/aac.05946-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Efflux pumps extrude a wide variety of chemically unrelated compounds conferring multidrug resistance and participating in numerous physiological processes. Mycobacterium tuberculosis possesses many efflux pumps, and their roles in drug resistance and physiology are actively investigated. In this work we found that tap mutant cells showed changes in morphology and a progressive loss of viability upon subcultivation in liquid medium. Transcriptome analysis in Mycobacterium bovis BCG revealed that disruption of the Rv1258c gene, encoding the Tap efflux pump, led to an extensive change in gene expression patterns during stationary phase, with no changes during exponential growth. In stationary phase, Tap inactivation triggered a general stress response and led to a general repression of genes involved in cell wall biosynthesis, in particular the formation of the peptidoglycan; this suggested the accumulation of an unknown Tap substrate that reaches toxic concentrations during stationary phase. We also found that both disruption and overexpression of tap altered susceptibility to many clinically approved antibiotics in M. bovis BCG. Acriflavine and tetracycline accumulation assays and carbonyl cyanide m-chlorophenylhydrazone (CCCP) potentiation experiments demonstrated that this phenotype was due to an active efflux mechanism. These findings emphasize the important role of the Tap efflux pump in bacterial physiology and intrinsic drug resistance.
Collapse
|
154
|
Merchant SS, Helmann JD. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. Adv Microb Physiol 2012; 60:91-210. [PMID: 22633059 PMCID: PMC4100946 DOI: 10.1016/b978-0-12-398264-3.00002-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms play a dominant role in the biogeochemical cycling of nutrients. They are rightly praised for their facility for fixing both carbon and nitrogen into organic matter, and microbial driven processes have tangibly altered the chemical composition of the biosphere and its surrounding atmosphere. Despite their prodigious capacity for molecular transformations, microorganisms are powerless in the face of the immutability of the elements. Limitations for specific elements, either fleeting or persisting over eons, have left an indelible trace on microbial genomes, physiology, and their very atomic composition. We here review the impact of elemental limitation on microbes, with a focus on selected genetic model systems and representative microbes from the ocean ecosystem. Evolutionary adaptations that enhance growth in the face of persistent or recurrent elemental limitations are evident from genome and proteome analyses. These range from the extreme (such as dispensing with a requirement for a hard to obtain element) to the extremely subtle (changes in protein amino acid sequences that slightly, but significantly, reduce cellular carbon, nitrogen, or sulfur demand). One near-universal adaptation is the development of sophisticated acclimation programs by which cells adjust their chemical composition in response to a changing environment. When specific elements become limiting, acclimation typically begins with an increased commitment to acquisition and a concomitant mobilization of stored resources. If elemental limitation persists, the cell implements austerity measures including elemental sparing and elemental recycling. Insights into these fundamental cellular properties have emerged from studies at many different levels, including ecology, biological oceanography, biogeochemistry, molecular genetics, genomics, and microbial physiology. Here, we present a synthesis of these diverse studies and attempt to discern some overarching themes.
Collapse
Affiliation(s)
- Sabeeha S. Merchant
- Institute for Genomics and Proteomics and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101
| |
Collapse
|
155
|
van der Woude AD, Luirink J, Bitter W. Getting across the cell envelope: mycobacterial protein secretion. Curr Top Microbiol Immunol 2012; 374:109-34. [PMID: 23239236 DOI: 10.1007/82_2012_298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein secretion is an essential determinant of mycobacterial virulence. Mycobacterium tuberculosis has a unique cell envelope consisting of two lipid bilayers, which requires dedicated protein secretion pathways. The conserved general Sec and Tat translocation systems are responsible for protein transport across the inner membrane and are both essential. Additionally, the accessory Sec pathway specifically contributes to virulence. How transport of Sec/Tat substrates across the outer membrane is accomplished is currently an enigma. In addition to these pathways, M. tuberculosis also developed specialized secretion systems for protein transport across both membranes, the type VII or ESX secretion systems. Here, we discuss our current knowledge about the mechanisms and substrates of these different protein translocation systems and their role in mycobacterial physiology and virulence.
Collapse
Affiliation(s)
- Aniek D van der Woude
- Department of Molecular Microbiology, Institute of Molecular Cell Biology, VU University, Amsterdam, The Netherlands
| | | | | |
Collapse
|
156
|
Ligon LS, Hayden JD, Braunstein M. The ins and outs of Mycobacterium tuberculosis protein export. Tuberculosis (Edinb) 2011; 92:121-32. [PMID: 22192870 DOI: 10.1016/j.tube.2011.11.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 11/25/2022]
Abstract
Mycobacterium tuberculosis is an important pathogen that infects approximately one-third of the world's population and kills almost two million people annually. An important aspect of M. tuberculosis physiology and pathogenesis is its ability to export proteins into and across the thick mycobacterial cell envelope, where they are ideally positioned to interact with the host. In addition to the specific proteins that are exported by M. tuberculosis, the systems through which these proteins are exported represent potential targets for future drug development. M. tuberculosis possesses two well-known and conserved export systems: the housekeeping Sec pathway and the Tat pathway. In addition, M. tuberculosis possesses specialized export systems including the accessory SecA2 pathway and five ESX pathways. Here we review the current understanding of each of these export systems, with a focus on M. tuberculosis, and discuss the contribution of each system to disease and physiology.
Collapse
Affiliation(s)
- Lauren S Ligon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, CB #7290, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
157
|
Bell C, Smith GT, Sweredoski MJ, Hess S. Characterization of the Mycobacterium tuberculosis Proteome by Liquid Chromatography Mass Spectrometry-based Proteomics Techniques: A Comprehensive Resource for Tuberculosis Research. J Proteome Res 2011; 11:119-30. [DOI: 10.1021/pr2007939] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Christina Bell
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada
| | - Geoffrey T. Smith
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Michael J. Sweredoski
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Sonja Hess
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
158
|
Youm J, Saier MH. Comparative analyses of transport proteins encoded within the genomes of Mycobacterium tuberculosis and Mycobacterium leprae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:776-97. [PMID: 22179038 DOI: 10.1016/j.bbamem.2011.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 10/15/2022]
Abstract
The co-emergence of multidrug resistant pathogenic bacterial strains and the Human Immunodeficiency Virus pandemic has made tuberculosis a leading public health threat. The causative agent is Mycobacterium tuberculosis (Mtu), a facultative intracellular parasite. Mycobacterium leprae (Mle), a related organism that causes leprosy, is an obligate intracellular parasite. Given that different transporters are required for bacterial growth and persistence under a variety of growth conditions, we conducted comparative analyses of transport proteins encoded within the genomes of these two organisms. A minimal set of genes required for intracellular and extracellular life was identified. Drug efflux systems utilizing primary active transport mechanisms have been preferentially retained in Mle and still others preferentially lost. Transporters associated with environmental adaptation found in Mtu were mostly lost in Mle. These findings provide starting points for experimental studies that may elucidate the dependencies of pathogenesis on transport for these two pathogenic mycobacteria. They also lead to suggestions regarding transporters that function in intra- versus extra-cellular growth.
Collapse
Affiliation(s)
- Jiwon Youm
- University of California, La Jolla, CA, USA
| | | |
Collapse
|
159
|
Functional dissection of the PE domain responsible for translocation of PE_PGRS33 across the mycobacterial cell wall. PLoS One 2011; 6:e27713. [PMID: 22110736 PMCID: PMC3218021 DOI: 10.1371/journal.pone.0027713] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/23/2011] [Indexed: 01/13/2023] Open
Abstract
PE are peculiar exported mycobacterial proteins over-represented in pathogenic mycobacterial species. They are characterized by an N-terminal domain of about 110 amino acids (PE domain) which has been demonstrated to be responsible for their export and localization. In this paper, we characterize the PE domain of PE_PGRS33 (PERv1818c), one of the best characterized PE proteins. We constructed several mutated proteins in which portions of the PE domain were deleted or subjected to defined mutations. These proteins were expressed in different mycobacterial species and their localization was characterized. We confirmed that the PE domain is essential for PE_PGRS33 surface localization, and demonstrated that a PE domain lacking its first 30 amino acids loses its function. However, single amino acid substitutions in two regions extremely well conserved within the N-terminal domain of all PE proteins had some effect on the stability of PE_PGRS33, but not on its localization. Using Mycobacterium marinum we could show that the type VII secretion system ESX-5 is essential for PE_PGRS33 export. Moreover, in M. marinum, but not in Mycobacterium bovis BCG and in Mycobacterium tuberculosis, the PE domain of PE_PGRS33 is processed and secreted into the culture medium when expressed in the absence of the PGRS domain. Finally, using chimeric proteins in which different portions of the PERv1818c domain were fused to the N-terminus of the green fluorescent protein, we could hypothesize that the first 30 amino acids of the PE domain contain a sequence that allows protein translocation.
Collapse
|
160
|
Mukhopadhyay S, Nair S, Ghosh S. Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets. FEMS Microbiol Rev 2011; 36:463-85. [PMID: 22092372 DOI: 10.1111/j.1574-6976.2011.00302.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/31/2011] [Accepted: 08/05/2011] [Indexed: 01/12/2023] Open
Abstract
Tuberculosis (TB) remains a major health problem worldwide. Attempts to control this disease have proved difficult owing to our poor understanding of the pathobiology of Mycobacterium tuberculosis and the emergence of strains that are resistant to multiple drugs currently available for treatment. Genome-wide expression profiling has provided new insight into the transcriptome signatures of the bacterium during infection, notably of macrophages and dendritic cells. These data indicate that M. tuberculosis expresses numerous genes to evade the host immune responses, to suit its intracellular life style, and to respond to various antibiotic drugs. Among the intracellularly induced genes, several have functions in lipid metabolism, cell wall synthesis, iron uptake, oxidative stress resistance, protein secretion, or inhibition of apoptosis. Herein we review these findings and discuss possible ways to exploit the data to understand the complex etiology of TB and to find new effective drug targets.
Collapse
Affiliation(s)
- Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad, India.
| | | | | |
Collapse
|
161
|
Sweeney KA, Dao DN, Goldberg MF, Hsu T, Venkataswamy MM, Henao-Tamayo M, Ordway D, Sellers RS, Jain P, Chen B, Chen M, Kim J, Lukose R, Chan J, Orme IM, Porcelli SA, Jacobs WR. A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nat Med 2011; 17:1261-8. [PMID: 21892180 DOI: 10.1038/nm.2420] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/14/2011] [Indexed: 12/13/2022]
Abstract
We report the involvement of an evolutionarily conserved set of mycobacterial genes, the esx-3 region, in evasion of bacterial killing by innate immunity. Whereas high-dose intravenous infections of mice with the rapidly growing mycobacterial species Mycobacterium smegmatis bearing an intact esx-3 locus were rapidly lethal, infection with an M. smegmatis Δesx-3 mutant (here designated as the IKE strain) was controlled and cleared by a MyD88-dependent bactericidal immune response. Introduction of the orthologous Mycobacterium tuberculosis esx-3 genes into the IKE strain resulted in a strain, designated IKEPLUS, that remained susceptible to innate immune killing and was highly attenuated in mice but had a marked ability to stimulate bactericidal immunity against challenge with virulent M. tuberculosis. Analysis of these adaptive immune responses indicated that the highly protective bactericidal immunity elicited by IKEPLUS was dependent on CD4(+) memory T cells and involved a distinct shift in the pattern of cytokine responses by CD4(+) cells. Our results establish a role for the esx-3 locus in promoting mycobacterial virulence and also identify the IKE strain as a potentially powerful candidate vaccine vector for eliciting protective immunity to M. tuberculosis.
Collapse
Affiliation(s)
- Kari A Sweeney
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Ilghari D, Lightbody KL, Veverka V, Waters LC, Muskett FW, Renshaw PS, Carr MD. Solution structure of the Mycobacterium tuberculosis EsxG·EsxH complex: functional implications and comparisons with other M. tuberculosis Esx family complexes. J Biol Chem 2011; 286:29993-30002. [PMID: 21730061 PMCID: PMC3191040 DOI: 10.1074/jbc.m111.248732] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/24/2011] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium tuberculosis encodes five type VII secretion systems that are responsible for exporting a number of proteins, including members of the Esx family, which have been linked to tuberculosis pathogenesis and survival within host cells. The gene cluster encoding ESX-3 is regulated by the availability of iron and zinc, and secreted protein products such as the EsxG·EsxH complex have been associated with metal ion acquisition. EsxG and EsxH have previously been shown to form a stable 1:1 heterodimeric complex, and here we report the solution structure of the complex, which features a core four-helix bundle decorated at both ends by long, highly flexible, N- and C-terminal arms that contain a number of highly conserved residues. Despite clear similarities in the overall backbone fold to the EsxA·EsxB complex, the structure reveals some striking differences in surface features, including a potential protein interaction site on the surface of the EsxG·EsxH complex. EsxG·EsxH was also found to contain a specific Zn(2+) binding site formed from a cluster of histidine residues on EsxH, which are conserved across obligate mycobacterial pathogens including M. tuberculosis and Mycobacterium leprae. This site may reflect an essential role in zinc ion acquisition or point to Zn(2+)-dependent regulation of its interaction with functional partner proteins. Overall, the surface features of both the EsxG·EsxH and the EsxA·EsxB complexes suggest functions mediated via interactions with one or more target protein partners.
Collapse
Affiliation(s)
- Dariush Ilghari
- From the Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester LE1 9HN, United Kingdom
| | - Kirsty L. Lightbody
- From the Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester LE1 9HN, United Kingdom
| | - Vaclav Veverka
- From the Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester LE1 9HN, United Kingdom
| | - Lorna C. Waters
- From the Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester LE1 9HN, United Kingdom
| | - Frederick W. Muskett
- From the Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester LE1 9HN, United Kingdom
| | - Philip S. Renshaw
- From the Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester LE1 9HN, United Kingdom
| | - Mark D. Carr
- From the Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
163
|
Banerjee S, Farhana A, Ehtesham NZ, Hasnain SE. Iron acquisition, assimilation and regulation in mycobacteria. INFECTION GENETICS AND EVOLUTION 2011; 11:825-38. [PMID: 21414421 DOI: 10.1016/j.meegid.2011.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 11/28/2022]
Abstract
Iron is as crucial to the pathogen as it is to the host. The tuberculosis causing bacillus, Mycobacterium tuberculosis (M.tb), is an exceptionally efficient pathogen that has evolved proficient mechanisms to sequester iron from the host despite its thick mycolate-rich outer covering and a highly impermeable membrane of phagolysosome within which it persists inside an infected host macrophage. Further, both overindulgence and moderation of iron inside a host are a threat to mycobacterial persistence. While for removing iron from the host reservoirs, mycobacteria synthesize molecules that have several times higher affinity for iron than their host counterparts, they also synthesize molecules for efficient storage of excess iron. This is supported by tightly regulated iron dependent global gene expressions. In this review we discuss the various molecules and pathways evolved by mycobacteria for an efficient iron metabolism. We also discuss the less investigated players, like iron responsive proteins and iron responsive elements in mycobacteria, and highlight the lacunae in our current understanding of iron acquisition and utilization in mycobacteria with an ultimate aim to make iron metabolism as a possible anti-mycobacterial target.
Collapse
Affiliation(s)
- Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | | | | |
Collapse
|
164
|
Graded expression of zinc-responsive genes through two regulatory zinc-binding sites in Zur. Proc Natl Acad Sci U S A 2011; 108:5045-50. [PMID: 21383173 DOI: 10.1073/pnas.1017744108] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Zinc is one of the essential transition metals in cells. Excess or lack of zinc is detrimental, and cells exploit highly sensitive zinc-binding regulators to achieve homeostasis. In this article, we present a crystal structure of active Zur from Streptomyces coelicolor with three zinc-binding sites (C-, M-, and D-sites). Mutations of the three sites differentially affected sporulation and transcription of target genes, such that C- and M-site mutations inhibited sporulation and derepressed all target genes examined, whereas D-site mutations did not affect sporulation and derepressed only a sensitive gene. Biochemical and spectroscopic analyses of representative metal site mutants revealed that the C-site serves a structural role, whereas the M- and D-sites regulate DNA-binding activity as an on-off switch and a fine-tuner, respectively. Consistent with differential effect of mutations on target genes, zinc chelation by TPEN derepressed some genes (znuA, rpmF2) more sensitively than others (rpmG2, SCO7682) in vivo. Similar pattern of TPEN-sensitivity was observed for Zur-DNA complexes formed on different promoters in vitro. The sensitive promoters bound Zur with lower affinity than the less sensitive ones. EDTA-treated apo-Zur gained its DNA binding activity at different concentrations of added zinc for the two promoter groups, corresponding to free zinc concentrations of 4.5×10(-16) M and 7.9×10(-16) M for the less sensitive and sensitive promoters, respectively. The graded expression of target genes is a clever outcome of subtly modulating Zur-DNA binding affinities in response to zinc availability. It enables bacteria to detect metal depletion with improved sensitivity and optimize gene-expression pattern.
Collapse
|
165
|
Festa RA, Jones MB, Butler-Wu S, Sinsimer D, Gerads R, Bishai WR, Peterson SN, Darwin KH. A novel copper-responsive regulon in Mycobacterium tuberculosis. Mol Microbiol 2011; 79:133-48. [PMID: 21166899 PMCID: PMC3052634 DOI: 10.1111/j.1365-2958.2010.07431.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this work we describe the identification of a copper-inducible regulon in Mycobacterium tuberculosis (Mtb). Among the regulated genes was Rv0190/MT0200, a paralogue of the copper metalloregulatory repressor CsoR. The five-locus regulon, which includes a gene that encodes the copper-protective metallothionein MymT, was highly induced in wild-type Mtb treated with copper, and highly expressed in an Rv0190/MT0200 mutant. Importantly, the Rv0190/MT0200 mutant was hyper-resistant to copper. The promoters of all five loci share a palindromic motif that was recognized by the gene product of Rv0190/MT0200. For this reason we named Rv0190/MT0200 RicR for regulated in copper repressor. Intriguingly, several of the RicR-regulated genes, including MymT, are unique to pathogenic Mycobacteria. The identification of a copper-responsive regulon specific to virulent mycobacterial species suggests copper homeostasis must be maintained during an infection. Alternatively, copper may provide a cue for the expression of genes unrelated to metal homeostasis, but nonetheless necessary for survival in a host.
Collapse
Affiliation(s)
- Richard A. Festa
- New York University School of Medicine, Department of Microbiology, 550 First Avenue MSB 236, New York, NY 10016 USA
| | - Marcus B. Jones
- Pathogen Genomics Resource Center (PFGRC), J. Craig Venter Institute (JCVI), 9704 Medical Center Drive, Rockville, MD 20850 USA
| | - Susan Butler-Wu
- New York University School of Medicine, Department of Microbiology, 550 First Avenue MSB 236, New York, NY 10016 USA
| | - Daniel Sinsimer
- New York University School of Medicine, Department of Microbiology, 550 First Avenue MSB 236, New York, NY 10016 USA
| | - Russell Gerads
- Applied Speciation and Consulting, LLC, 18804 Northcreek Parkway, Bothell, WA 98011 USA
| | - William R. Bishai
- Johns Hopkins School of Medicine, Department of Medicine, Division of Infectious Diseases, 1550 Orleans St. Room 108, Baltimore, MD 21231 USA
| | - Scott N. Peterson
- Pathogen Genomics Resource Center (PFGRC), J. Craig Venter Institute (JCVI), 9704 Medical Center Drive, Rockville, MD 20850 USA
| | - K. Heran Darwin
- New York University School of Medicine, Department of Microbiology, 550 First Avenue MSB 236, New York, NY 10016 USA
| |
Collapse
|
166
|
Desrosiers DC, Bearden SW, Mier I, Abney J, Paulley JT, Fetherston JD, Salazar JC, Radolf JD, Perry RD. Znu is the predominant zinc importer in Yersinia pestis during in vitro growth but is not essential for virulence. Infect Immun 2010; 78:5163-77. [PMID: 20855510 PMCID: PMC2981304 DOI: 10.1128/iai.00732-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/12/2010] [Accepted: 09/08/2010] [Indexed: 01/08/2023] Open
Abstract
Little is known about Zn homeostasis in Yersinia pestis, the plague bacillus. The Znu ABC transporter is essential for zinc (Zn) uptake and virulence in a number of bacterial pathogens. Bioinformatics analysis identified ZnuABC as the only apparent high-affinity Zn uptake system in Y. pestis. Mutation of znuACB caused a growth defect in Chelex-100-treated PMH2 growth medium, which was alleviated by supplementation with submicromolar concentrations of Zn. Use of transcriptional reporters confirmed that Zur mediated Zn-dependent repression and that it can repress gene expression in response to Zn even in the absence of Znu. Virulence testing in mouse models of bubonic and pneumonic plague found only a modest increase in survival in low-dose infections by the znuACB mutant. Previous studies of cluster 9 (C9) transporters suggested that Yfe, a well-characterized C9 importer for manganese (Mn) and iron in Y. pestis, might function as a second, high-affinity Zn uptake system. Isothermal titration calorimetry revealed that YfeA, the solute-binding protein component of Yfe, binds Mn and Zn with comparably high affinities (dissociation constants of 17.8 ± 4.4 nM and 6.6 ± 1.2 nM, respectively), although the complete Yfe transporter could not compensate for the loss of Znu in in vitro growth studies. Unexpectedly, overexpression of Yfe interfered with the znu mutant's ability to grow in low concentrations of Zn, while excess Zn interfered with the ability of Yfe to import iron at low concentrations; these results suggest that YfeA can bind Zn in the bacterial cell but that Yfe is incompetent for transport of the metal. In addition to Yfe, we have now eliminated MntH, FetMP, Efe, Feo, a substrate-binding protein, and a putative nickel transporter as the unidentified, secondary Zn transporter in Y. pestis. Unlike other bacterial pathogens, Y. pestis does not require Znu for high-level infectivity and virulence; instead, it appears to possess a novel class of transporter, which can satisfy the bacterium's Zn requirements under in vivo metal-limiting conditions. Our studies also underscore the need for bacterial cells to balance binding and transporter specificities within the periplasm in order to maintain transition metal homeostasis.
Collapse
Affiliation(s)
- Daniel C. Desrosiers
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, Departments of Medicine, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Scott W. Bearden
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, Departments of Medicine, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Ildefonso Mier
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, Departments of Medicine, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jennifer Abney
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, Departments of Medicine, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - James T. Paulley
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, Departments of Medicine, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jacqueline D. Fetherston
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, Departments of Medicine, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Juan C. Salazar
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, Departments of Medicine, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Justin D. Radolf
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, Departments of Medicine, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Robert D. Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, Departments of Medicine, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
167
|
Reyes-Caballero H, Guerra AJ, Jacobsen FE, Kazmierczak KM, Cowart D, Koppolu UMK, Scott RA, Winkler ME, Giedroc DP. The metalloregulatory zinc site in Streptococcus pneumoniae AdcR, a zinc-activated MarR family repressor. J Mol Biol 2010; 403:197-216. [PMID: 20804771 DOI: 10.1016/j.jmb.2010.08.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/14/2010] [Accepted: 08/16/2010] [Indexed: 12/11/2022]
Abstract
Streptococcus pneumoniae D39 AdcR (adhesin competence repressor) is the first metal-sensing member of the MarR (multiple antibiotic resistance repressor) family to be characterized. Expression profiling with a ΔadcR strain grown in liquid culture (brain-heart infusion) under microaerobic conditions revealed upregulation of 13 genes, including adcR and adcCBA, encoding a high-affinity ABC uptake system for zinc, and genes encoding cell-surface zinc-binding pneumococcal histidine triad (Pht) proteins and AdcAII (Lmb, laminin binding). The ΔadcR, H108Q and H112Q adcR mutant allelic strains grown in 0.2 mM Zn(II) exhibit a slow-growth phenotype and an approximately twofold increase in cell-associated Zn(II). Apo- and Zn(II)-bound AdcR are homodimers in solution and binding to a 28-mer DNA containing an adc operator is strongly stimulated by Zn(II) with K(DNA-Zn)=2.4 × 10(8) M(-1) (pH 6.0, 0.2 M NaCl, 25 °C). AdcR binds two Zn(II) per dimer, with stepwise Zn(II) affinities K(Zn1) and K(Zn2) of ≥10(9) M(-1) at pH 6.0 and ≥10(12) M(-1) at pH 8.0, and one to three lower affinity Zn(II) depending on the pH. X-ray absorption spectroscopy of the high-affinity site reveals a pentacoordinate N/O complex and no cysteine coordination, the latter finding corroborated by wild type-like functional properties of C30A AdcR. Alanine substitution of conserved residues His42 in the DNA-binding domain, and His108 and His112 in the C-terminal regulatory domain, abolish high-affinity Zn(II) binding and greatly reduce Zn(II)-activated binding to DNA. NMR studies reveal that these mutants adopt the same folded conformation as dimeric wild type apo-AdcR, but fail to conformationally switch upon Zn(II) binding. These studies implicate His42, His108 and H112 as metalloregulatory zinc ligands in S. pneumoniae AdcR.
Collapse
|
168
|
Arbing MA, Kaufmann M, Phan T, Chan S, Cascio D, Eisenberg D. The crystal structure of the Mycobacterium tuberculosis Rv3019c-Rv3020c ESX complex reveals a domain-swapped heterotetramer. Protein Sci 2010; 19:1692-703. [PMID: 20629176 PMCID: PMC2975133 DOI: 10.1002/pro.451] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mycobacterium tuberculosis encodes five gene clusters (ESX-1 to ESX-5) for Type VII protein secretion systems that are implicated in mycobacterial pathogenicity. Substrates for the secretion apparatus are encoded within the gene clusters and in additional loci that lack the components of the secretion apparatus. The best characterized substrates are the ESX complexes, 1:1 heterodimers of ESAT-6 and CFP-10, the prototypical member that has been shown to be essential for Mycobacterium tuberculosis pathogenesis. We have determined the structure of EsxRS, a homolog of EsxGH of the ESX-3 gene cluster, at 1.91 Å resolution. The EsxRS structure is composed of two four-helix bundles resulting from the 3D domain swapping of the C-terminal domain of EsxS, the CFP-10 homolog. The four-helix bundles at the extremities of the complex have a similar architecture to the structure of ESAT-6·CFP-10 (EsxAB) of ESX-1, but in EsxRS a hinge loop linking the α-helical domains of EsxS undergoes a loop-to-helix transition that creates the domain swapped EsxRS tetramer. Based on the atomic structure of EsxRS and existing biochemical data on ESX complexes, we propose that higher order ESX oligomers may increase avidity of ESX binding to host receptor molecules or, alternatively, the conformational change that creates the domain swapped structure may be the basis of ESX complex dissociation that would free ESAT-6 to exert a cytotoxic effect.
Collapse
Affiliation(s)
- Mark A Arbing
- UCLA-DOE Institute for Genomics and ProteomicsUCLA, Los Angeles, California 90095-1570
| | - Markus Kaufmann
- UCLA-DOE Institute for Genomics and ProteomicsUCLA, Los Angeles, California 90095-1570
| | - Tung Phan
- UCLA-DOE Institute for Genomics and ProteomicsUCLA, Los Angeles, California 90095-1570
| | - Sum Chan
- UCLA-DOE Institute for Genomics and ProteomicsUCLA, Los Angeles, California 90095-1570
| | - Duilio Cascio
- UCLA-DOE Institute for Genomics and ProteomicsUCLA, Los Angeles, California 90095-1570
| | - David Eisenberg
- UCLA-DOE Institute for Genomics and ProteomicsUCLA, Los Angeles, California 90095-1570
- Department of Biological Chemistry, David Geffen School of Medicine at UCLALos Angeles, California 90095-1737
- Department of Chemistry and Biochemistry, University of CaliforniaLos Angeles, Los Angeles, California 90095-1569
- *Correspondence to: David Eisenberg, Department of Chemistry and Biochemistry, UCLA, 611 Charles E. Young Dr. East, Los Angeles, California 90095-1569. E-mail:
| |
Collapse
|
169
|
Dynamic antibody responses to the Mycobacterium tuberculosis proteome. Proc Natl Acad Sci U S A 2010; 107:14703-8. [PMID: 20668240 DOI: 10.1073/pnas.1009080107] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Considerable effort has been directed toward controlling tuberculosis, which kills almost two million people yearly. High on the research agenda is the discovery of biomarkers of active tuberculosis (TB) for diagnosis and for monitoring treatment outcome. Rational biomarker discovery requires understanding host-pathogen interactions leading to biomarker expression. Here we report a systems immunology approach integrating clinical data and bacterial metabolic and regulatory information with high-throughput detection in human serum of antibodies to the entire Mycobacterium tuberculosis proteome. Sera from worldwide TB suspects recognized approximately 10% of the bacterial proteome. This result defines the M. tuberculosis immunoproteome, which is rich in membrane-associated and extracellular proteins. Additional analyses revealed that during active tuberculosis (i) antibody responses focused on an approximately 0.5% of the proteome enriched for extracellular proteins, (ii) relative target preference varied among patients, and (iii) responses correlated with bacillary burden. These results indicate that the B cell response tracks the evolution of infection and the pathogen burden and replicative state and suggest functions associated with B cell-rich foci seen in tuberculous lung granulomas. Our integrated proteome-scale approach is applicable to other chronic infections characterized by diverse antibody target recognition.
Collapse
|
170
|
Akama T, Tanigawa K, Kawashima A, Wu H, Ishii N, Suzuki K. Analysis of Mycobacterium leprae gene expression using DNA microarray. Microb Pathog 2010; 49:181-5. [PMID: 20553838 DOI: 10.1016/j.micpath.2010.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022]
Abstract
Mycobacterium leprae, the causative agent of leprosy, does not grow under in vitro condition, making molecular analysis of this bacterium difficult. For this reason, bacteriological information regarding M. leprae gene function is limited compared with other mycobacterium species. In this study, we performed DNA microarray analysis to clarify the RNA expression profile of the Thai53 strain of M. leprae grown in footpads of hypertensive nude rats (SHR/NCrj-rnu). Of 1605 M. leprae genes, 315 showed signal intensity twofold higher than the median. These genes include Acyl-CoA metabolic enzymes and drug metabolic enzymes, which might be related to the virulence of M. leprae. In addition, consecutive RNA expression profile and in silico analyses enabled identification of possible operons within the M. leprae genome. The present results will shed light on M. leprae gene function and further our understanding of the pathogenesis of leprosy.
Collapse
Affiliation(s)
- Takeshi Akama
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
171
|
Boldrin F, Casonato S, Dainese E, Sala C, Dhar N, Palù G, Riccardi G, Cole ST, Manganelli R. Development of a repressible mycobacterial promoter system based on two transcriptional repressors. Nucleic Acids Res 2010; 38:e134. [PMID: 20406773 PMCID: PMC2896539 DOI: 10.1093/nar/gkq235] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tightly regulated gene expression systems represent invaluable tools for studying gene function and for the validation of drug targets in bacteria. While several regulated bacterial promoters have been characterized, few of them have been successfully used in mycobacteria. In this article we describe the development of a novel repressible promoter system effective in both fast- and slow-growing mycobacteria based on two chromosomally encoded repressors, dependent on tetracycline (TetR) and pristinamycin (Pip), respectively. This uniqueness results in high versatility and stringency. Using this method we were able to obtain an ftsZ conditional mutant in Mycobacterium smegmatis and a fadD32 conditional mutant in Mycobacterium tuberculosis, confirming their essentiality for bacterial growth in vitro. This repressible promoter system could also be exploited to regulate gene expression during M. tuberculosis intracellular growth.
Collapse
Affiliation(s)
- Francesca Boldrin
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Via Gabelli, 63 35100 Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Shiloh MU, Champion PAD. To catch a killer. What can mycobacterial models teach us about Mycobacterium tuberculosis pathogenesis? Curr Opin Microbiol 2010; 13:86-92. [PMID: 20036184 PMCID: PMC2876343 DOI: 10.1016/j.mib.2009.11.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 11/17/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
Abstract
Mycobacterium tuberculosis is the causative agent of the global tuberculosis epidemic. To combat this successful human pathogen we need a better understanding of the basic biology of mycobacterial pathogenesis. The use of mycobacterial model systems has the potential to greatly facilitate our understanding of how M. tuberculosis causes disease. Recently, studies using mycobacterial models, including M. bovis BCG, M. marinum, and M. smegmatis have significantly contributed to understanding M. tuberculosis. Specifically, there have been advances in genetic manipulation of M. tuberculosis using inducible promoters and recombineering that alleviate technical limitations in working with mycobacteria. Model systems have helped elucidate how secretion systems function at both the molecular level and during virulence. Mycobacterial models have also led to interesting hypotheses about how M. tuberculosis mediates latent infection and host response. While there is utility in using model systems to understand tuberculosis, each of these models represent distinct mycobacterial species with unique environmental adaptations. Directly comparing findings in model mycobacteria to those in M. tuberculosis will illuminate the similarities and differences between these species and increase our understanding of why M. tuberculosis is such a potent human pathogen.
Collapse
Affiliation(s)
- Michael U Shiloh
- Department of Medicine, Division of Infectious Diseases, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
173
|
Schröder J, Jochmann N, Rodionov DA, Tauch A. The Zur regulon of Corynebacterium glutamicum ATCC 13032. BMC Genomics 2010; 11:12. [PMID: 20055984 PMCID: PMC2823685 DOI: 10.1186/1471-2164-11-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 01/07/2010] [Indexed: 12/30/2022] Open
Abstract
Background Zinc is considered as an essential element for all living organisms, but it can be toxic at large concentrations. Bacteria therefore tightly regulate zinc metabolism. The Cg2502 protein of Corynebacterium glutamicum was a candidate to control zinc metabolism in this species, since it was classified as metalloregulator of the zinc uptake regulator (Zur) subgroup of the ferric uptake regulator (Fur) family of DNA-binding transcription regulators. Results The cg2502 (zur) gene was deleted in the chromosome of C. glutamicum ATCC 13032 by an allelic exchange procedure to generate the zur-deficient mutant C. glutamicum JS2502. Whole-genome DNA microarray hybridizations and real-time RT-PCR assays comparing the gene expression in C. glutamicum JS2502 with that of the wild-type strain detected 18 genes with enhanced expression in the zur mutant. The expression data were combined with results from cross-genome comparisons of shared regulatory sites, revealing the presence of candidate Zur-binding sites in the mapped promoter regions of five transcription units encoding components of potential zinc ABC-type transporters (cg0041-cg0042/cg0043; cg2911-cg2912-cg2913), a putative secreted protein (cg0040), a putative oxidoreductase (cg0795), and a putative P-loop GTPase of the COG0523 protein family (cg0794). Enhanced transcript levels of the respective genes in C. glutamicum JS2502 were verified by real-time RT-PCR, and complementation of the mutant with a wild-type zur gene reversed the effect of differential gene expression. The zinc-dependent expression of the putative cg0042 and cg2911 operons was detected in vivo with a gfp reporter system. Moreover, the zinc-dependent binding of purified Zur protein to double-stranded 40-mer oligonucleotides containing candidate Zur-binding sites was demonstrated in vitro by DNA band shift assays. Conclusion Whole-genome expression profiling and DNA band shift assays demonstrated that Zur directly represses in a zinc-dependent manner the expression of nine genes organized in five transcription units. Accordingly, the Zur (Cg2502) protein is the key transcription regulator for genes involved in zinc homeostasis in C. glutamicum.
Collapse
Affiliation(s)
- Jasmin Schröder
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, D-33615 Bielefeld, Germany
| | | | | | | |
Collapse
|
174
|
Conservation of structure and protein-protein interactions mediated by the secreted mycobacterial proteins EsxA, EsxB, and EspA. J Bacteriol 2010; 192:326-35. [PMID: 19854905 DOI: 10.1128/jb.01032-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis EsxA and EsxB proteins are founding members of the WXG100 (WXG) protein family, characterized by their small size (approximately 100 amino acids) and conserved WXG amino acid motif. M. tuberculosis contains 11 tandem pairs of WXG genes; each gene pair is thought to be coexpressed to form a heterodimer. The precise role of these proteins in the biology of M. tuberculosis is unknown, but several of the heterodimers are secreted, which is important for virulence. However, WXG proteins are not simply virulence factors, since nonpathogenic mycobacteria also express and secrete these proteins. Here we show that three WXG heterodimers have structures and properties similar to those of the M. tuberculosis EsxBA (MtbEsxBA) heterodimer, regardless of their host species and apparent biological function. Biophysical studies indicate that the WXG proteins from M. tuberculosis (EsxG and EsxH), Mycobacterium smegmatis (EsxA and EsxB), and Corynebacterium diphtheriae (EsxA and EsxB) are heterodimers and fold into a predominately alpha-helical structure. An in vivo protein-protein interaction assay was modified to identify proteins that interact specifically with the native WXG100 heterodimer. MtbEsxA and MtbEsxB were fused into a single polypeptide, MtbEsxBA, to create a biomimetic bait for the native heterodimer. The MtbEsxBA bait showed specific association with several esx-1-encoded proteins and EspA, a virulence protein secreted by ESX-1. The MtbEsxBA fusion peptide was also utilized to identify residues in both EsxA and EsxB that are important for establishing protein interactions with Rv3871 and EspA. Together, the results are consistent with a model in which WXG proteins perform similar biological roles in virulent and nonvirulent species.
Collapse
|
175
|
The zinc-responsive regulator Zur controls expression of the coelibactin gene cluster in Streptomyces coelicolor. J Bacteriol 2009; 192:608-11. [PMID: 19915027 DOI: 10.1128/jb.01022-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces coelicolor mutants lacking the zinc-responsive Zur repressor are conditionally defective in sporulation, presumably due to the overexpression of one or more Zur target genes. Gene disruption analyses revealed that deregulation of previously known Zur targets was not responsible for the sporulation phenotype. We used microarrays to identify further Zur targets and discovered that Zur controls a cluster of genes predicted to direct synthesis of an uncharacterized siderophore-related non-ribosomally encoded peptide designated coelibactin. Disruption of a key coelibactin biosynthetic gene suppressed the Zur sporulation phenotype, suggesting that deregulation of coelibactin synthesis inhibits sporulation.
Collapse
|
176
|
Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nat Genet 2009; 41:1282-9. [PMID: 19881526 DOI: 10.1038/ng.477] [Citation(s) in RCA: 269] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 09/01/2009] [Indexed: 11/08/2022]
Abstract
Reductive evolution and massive pseudogene formation have shaped the 3.31-Mb genome of Mycobacterium leprae, an unculturable obligate pathogen that causes leprosy in humans. The complete genome sequence of M. leprae strain Br4923 from Brazil was obtained by conventional methods (6x coverage), and Illumina resequencing technology was used to obtain the sequences of strains Thai53 (38x coverage) and NHDP63 (46x coverage) from Thailand and the United States, respectively. Whole-genome comparisons with the previously sequenced TN strain from India revealed that the four strains share 99.995% sequence identity and differ only in 215 polymorphic sites, mainly SNPs, and by 5 pseudogenes. Sixteen interrelated SNP subtypes were defined by genotyping both extant and extinct strains of M. leprae from around the world. The 16 SNP subtypes showed a strong geographical association that reflects the migration patterns of early humans and trade routes, with the Silk Road linking Europe to China having contributed to the spread of leprosy.
Collapse
|
177
|
Bitter W, Houben ENG, Bottai D, Brodin P, Brown EJ, Cox JS, Derbyshire K, Fortune SM, Gao LY, Liu J, Gey van Pittius NC, Pym AS, Rubin EJ, Sherman DR, Cole ST, Brosch R. Systematic genetic nomenclature for type VII secretion systems. PLoS Pathog 2009; 5:e1000507. [PMID: 19876390 PMCID: PMC2763215 DOI: 10.1371/journal.ppat.1000507] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Wilbert Bitter
- VU University Medical Centre, Amsterdam, The Netherlands
- * E-mail: (WB); (RB)
| | | | - Daria Bottai
- Dipartimento di Patologia Sperimentale, Biotecnologie Mediche, Infettivologia ed Epidemiologia, University of Pisa, Pisa, Italy
| | | | - Eric J. Brown
- Department of Microbial Pathogenesis, Genentech Inc., San Francisco, California, United States of America
| | - Jeffery S. Cox
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Keith Derbyshire
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Lian-Yong Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Jun Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Alexander S. Pym
- Unit for Clinical and Biomedical TB Research, South African MRC, Durban, South Africa
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - David R. Sherman
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | | | - Roland Brosch
- Institut Pasteur, Integrated Mycobacterial Pathogenomics, Paris, France
- * E-mail: (WB); (RB)
| |
Collapse
|
178
|
Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proc Natl Acad Sci U S A 2009; 106:18792-7. [PMID: 19846780 DOI: 10.1073/pnas.0900589106] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Esx secretion pathway is conserved across Gram-positive bacteria. Esx-1, the best-characterized system, is required for virulence of Mycobacterium tuberculosis, although its precise function during infection remains unclear. Esx-3, a paralogous system present in all mycobacterial species, is required for growth in vitro. Here, we demonstrate that mycobacteria lacking Esx-3 are defective in acquiring iron. To compete for the limited iron available in the host and the environment, these organisms use mycobactin, high-affinity iron-binding molecules. In the absence of Esx-3, mycobacteria synthesize mycobactin but are unable to use the bound iron and are impaired severely for growth during macrophage infection. Mycobacteria thus require a specialized secretion system for acquiring iron from siderophores.
Collapse
|
179
|
Haas CE, Rodionov DA, Kropat J, Malasarn D, Merchant SS, de Crécy-Lagard V. A subset of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all kingdoms of life. BMC Genomics 2009; 10:470. [PMID: 19822009 PMCID: PMC2770081 DOI: 10.1186/1471-2164-10-470] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 10/12/2009] [Indexed: 11/11/2022] Open
Abstract
Background COG0523 proteins are, like the nickel chaperones of the UreG family, part of the G3E family of GTPases linking them to metallocenter biosynthesis. Even though the first COG0523-encoding gene, cobW, was identified almost 20 years ago, little is known concerning the function of other members belonging to this ubiquitous family. Results Based on a combination of comparative genomics, literature and phylogenetic analyses and experimental validations, the COG0523 family can be separated into at least fifteen subgroups. The CobW subgroup involved in cobalamin synthesis represents only one small sub-fraction of the family. Another, larger subgroup, is suggested to play a predominant role in the response to zinc limitation based on the presence of the corresponding COG0523-encoding genes downstream from putative Zur binding sites in many bacterial genomes. Zur binding sites in these genomes are also associated with candidate zinc-independent paralogs of zinc-dependent enzymes. Finally, the potential role of COG0523 in zinc homeostasis is not limited to Bacteria. We have predicted a link between COG0523 and regulation by zinc in Archaea and show that two COG0523 genes are induced upon zinc depletion in a eukaryotic reference organism, Chlamydomonas reinhardtii. Conclusion This work lays the foundation for the pursuit by experimental methods of the specific role of COG0523 members in metal trafficking. Based on phylogeny and comparative genomics, both the metal specificity and the protein target(s) might vary from one COG0523 subgroup to another. Additionally, Zur-dependent expression of COG0523 and putative paralogs of zinc-dependent proteins may represent a mechanism for hierarchal zinc distribution and zinc sparing in the face of inadequate zinc nutrition.
Collapse
Affiliation(s)
- Crysten E Haas
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA.
| | | | | | | | | | | |
Collapse
|
180
|
Ma Z, Jacobsen FE, Giedroc DP. Coordination chemistry of bacterial metal transport and sensing. Chem Rev 2009; 109:4644-81. [PMID: 19788177 PMCID: PMC2783614 DOI: 10.1021/cr900077w] [Citation(s) in RCA: 452] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhen Ma
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128 USA
| | - Faith E. Jacobsen
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
| |
Collapse
|
181
|
Cook GM, Berney M, Gebhard S, Heinemann M, Cox RA, Danilchanka O, Niederweis M. Physiology of mycobacteria. Adv Microb Physiol 2009; 55:81-182, 318-9. [PMID: 19573696 DOI: 10.1016/s0065-2911(09)05502-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis is a prototrophic, metabolically flexible bacterium that has achieved a spread in the human population that is unmatched by any other bacterial pathogen. The success of M. tuberculosis as a pathogen can be attributed to its extraordinary stealth and capacity to adapt to environmental changes throughout the course of infection. These changes include: nutrient deprivation, hypoxia, various exogenous stress conditions and, in the case of the pathogenic species, the intraphagosomal environment. Knowledge of the physiology of M. tuberculosis during this process has been limited by the slow growth of the bacterium in the laboratory and other technical problems such as cell aggregation. Advances in genomics and molecular methods to analyze the M. tuberculosis genome have revealed that adaptive changes are mediated by complex regulatory networks and signals, resulting in temporal gene expression coupled to metabolic and energetic changes. An important goal for bacterial physiologists will be to elucidate the physiology of M. tuberculosis during the transition between the diverse conditions encountered by M. tuberculosis. This review covers the growth of the mycobacterial cell and how environmental stimuli are sensed by this bacterium. Adaptation to different environments is described from the viewpoint of nutrient acquisition, energy generation, and regulation. To gain quantitative understanding of mycobacterial physiology will require a systems biology approach and recent efforts in this area are discussed.
Collapse
Affiliation(s)
- Gregory M Cook
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | |
Collapse
|
182
|
Characterization of a Mycobacterium tuberculosis ESX-3 conditional mutant: essentiality and rescue by iron and zinc. J Bacteriol 2009; 191:6340-4. [PMID: 19684129 DOI: 10.1128/jb.00756-09] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, a novel type of secretory pathway, type VII secretion systems (T7SSs), has been characterized in mycobacteria. The chromosomes of Mycobacterium tuberculosis and Mycobacterium bovis encode five T7SSs (ESX-1 to ESX-5). The best characterized of them, ESX-1, is involved in host-pathogen interactions, and its deletion is one of the main causes of M. bovis BCG attenuation. Another T7SS, ESX-3, has been previously shown to be transcriptionally controlled by the zinc uptake repressor (Zur) and by the iron-dependent transcriptional repressor (IdeR), suggesting that it might be involved in zinc and iron homeostasis. In this study, we characterized an M. tuberculosis conditional mutant in which transcription of the ESX-3 gene cluster can be downregulated by anhydrotetracycline. We showed that this T7SS is essential for growth and that this phenotype can be complemented by zinc, iron, or supernatant from a wild-type parental strain culture, demonstrating that the ESX-3 secretion system is responsible for the secretion of some soluble factor(s) required for growth that is probably involved in optimal iron and zinc uptake.
Collapse
|
183
|
Chen K, Roberts E, Luthey-Schulten Z. Horizontal gene transfer of zinc and non-zinc forms of bacterial ribosomal protein S4. BMC Evol Biol 2009; 9:179. [PMID: 19640295 PMCID: PMC3087516 DOI: 10.1186/1471-2148-9-179] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 07/29/2009] [Indexed: 11/25/2022] Open
Abstract
Background The universal ribosomal protein S4 is essential for the initiation of small subunit ribosomal assembly and translational accuracy. Being part of the information processing machinery of the cell, the gene for S4 is generally thought of as being inherited vertically and has been used in concatenated gene phylogenies. Here we report the evolution of ribosomal protein S4 in relation to a broad sharing of zinc/non-zinc forms of the gene and study the scope of horizontal gene transfer (HGT) of S4 during bacterial evolution. Results In this study we present the complex evolutionary history of ribosomal protein S4 using 660 bacterial genomes from 16 major bacterial phyla. According to conserved characteristics in the sequences, S4 can be classified into C+ (zinc-binding) and C- (zinc-free) variants, with 26 genomes (mainly from the class Clostridia) containing genes for both. A maximum likelihood phylogenetic tree of the S4 sequences was incongruent with the standard bacterial phylogeny, indicating a departure from strict vertical inheritance. Further analysis using the genome content near the S4 genes, which are usually located in a conserved gene cluster, showed not only that HGT of the C- gene had occurred at various stages of bacterial evolution, but also that both the C- and C+ genes were present before the individual phyla diverged. To explain the latter, we theorize that a gene pool existed early in bacterial evolution from which bacteria could sample S4 gene variants, according to environmental conditions. The distribution of the C+/- variants for seven other zinc-binding ribosomal proteins in these 660 bacterial genomes is consistent with that seen for S4 and may shed light on the evolutionary pressures involved. Conclusion The complex history presented for "core" protein S4 suggests the existence of a gene pool before the emergence of bacterial lineages and reflects the pervasive nature of HGT in subsequent bacterial evolution. This has implications for both theoretical models of evolution and practical applications of phylogenetic reconstruction as well as the control of zinc economy in bacterial cells.
Collapse
Affiliation(s)
- Ke Chen
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
184
|
Bottai D, Brosch R. Mycobacterial PE, PPE and ESX clusters: novel insights into the secretion of these most unusual protein families. Mol Microbiol 2009; 73:325-8. [PMID: 19602151 DOI: 10.1111/j.1365-2958.2009.06784.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human pathogen Mycobacterium tuberculosis harbours a large number of genes that encode proteins whose N-termini contain the characteristic motifs Pro-Glu (PE) or Pro-Pro-Glu (PPE). A subgroup of the PE proteins contains polymorphic GC-rich sequences (PGRS), while a subgroup of the PPE proteins contains major polymorphic tandem repeats (MPTR). The function of most of these proteins remains unknown. However, in this issue of Molecular Microbiology, Abdallah and colleagues show that PE_PGRS proteins from the model organism Mycobacterium marinum are secreted by components of the ESX-5 system that belongs to the recently defined type VII secretion systems. These observations, which now need to be addressed and confirmed in M. tuberculosis, open new perspectives on the function of these highly abundant proteins.
Collapse
Affiliation(s)
- Daria Bottai
- Dipartimento di Patologia Sperimentale, Biotecnologie Mediche, Infettivologia ed Epidemiologia, University of Pisa, Pisa, Italy
| | | |
Collapse
|
185
|
At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci. Microbiol Mol Biol Rev 2009; 73:233-48. [PMID: 19487727 DOI: 10.1128/mmbr.00005-09] [Citation(s) in RCA: 295] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacteria live in environments that are subject to rapid changes in the availability of the nutrients that are necessary to provide energy and biosynthetic intermediates for the synthesis of macromolecules. Consequently, bacterial survival depends on the ability of bacteria to regulate the expression of genes coding for enzymes required for growth in the altered environment. In pathogenic bacteria, adaptation to an altered environment often includes activating the transcription of virulence genes; hence, many virulence genes are regulated by environmental and nutritional signals. Consistent with this observation, the regulation of most, if not all, virulence determinants in staphylococci is mediated by environmental and nutritional signals. Some of these external signals can be directly transduced into a regulatory response by two-component regulators such as SrrAB; however, other external signals require transduction into intracellular signals. Many of the external environmental and nutritional signals that regulate virulence determinant expression can also alter bacterial metabolic status (e.g., iron limitation). Altering the metabolic status results in the transduction of external signals into intracellular metabolic signals that can be "sensed" by regulatory proteins (e.g., CodY, Rex, and GlnR). This review uses information derived primarily using Bacillus subtilis and Escherichia coli to articulate how gram-positive pathogens, with emphasis on Staphylococcus aureus and Staphylococcus epidermidis, regulate virulence determinant expression in response to a changing environment.
Collapse
|
186
|
Li Y, Qiu Y, Gao H, Guo Z, Han Y, Song Y, Du Z, Wang X, Zhou D, Yang R. Characterization of Zur-dependent genes and direct Zur targets in Yersinia pestis. BMC Microbiol 2009; 9:128. [PMID: 19552825 PMCID: PMC2706843 DOI: 10.1186/1471-2180-9-128] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 06/25/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The zinc uptake regulator Zur is a Zn2+-sensing metalloregulatory protein involved in the maintenance of bacterial zinc homeostasis. Up to now, regulation of zinc homeostasis by Zur is poorly understood in Y. pestis. RESULTS We constructed a zur null mutant of Y. pestis biovar microtus strain 201. Microarray expression analysis disclosed a set of 154 Zur-dependent genes of Y. pestis upon exposure to zinc rich condition. Real-time reverse transcription (RT)-PCR was subsequently used to validate the microarray data. Based on the 154 Zur-dependent genes, predicted regulatory Zur motifs were used to screen for potential direct Zur targets including three putative operons znuA, znuCB and ykgM-RpmJ2. The LacZ reporter fusion analysis verified that Zur greatly repressed the promoter activity of the above three operons. The subsequent electrophoretic mobility shift assay (EMSA) demonstrated that a purified Zur protein was able to bind to the promoter regions of the above three operons. The DNase I footprinting was used to identify the Zur binding sites for the above three operons, verifying the Zur box sequence as predicted previously in gamma-Proteobacteria. The primer extension assay was further used to determine the transcription start sites for the above three operons and to localize the -10 and -35 elements. Zur binding sites overlapped the -10 sequence of its target promoters, which was consistent with the previous observation that Zur binding would block the entry of the RNA polymerase to repress the transcription of its target genes. CONCLUSION Zur as a repressor directly controls the transcription of znuA, znuCB and ykgM-RpmJ2 in Y. pestis by employing a conserved mechanism of Zur-promoter DNA association as observed in gamma-Proteobacteria. Zur contributes to zinc homeostasis in Y. pestis likely through transcriptional repression of the high-affinity zinc uptake system ZnuACB and two alternative ribosomal proteins YkgM and RpmJ2.
Collapse
Affiliation(s)
- Yingli Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Mehra S, Kaushal D. Functional genomics reveals extended roles of the Mycobacterium tuberculosis stress response factor sigmaH. J Bacteriol 2009; 191:3965-80. [PMID: 19376862 PMCID: PMC2698404 DOI: 10.1128/jb.00064-09] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 04/07/2009] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis is one of the most successful pathogens of humankind. During infection, M. tuberculosis must cope with and survive against a variety of different environmental conditions. Sigma factors likely facilitate the modulation of the pathogen's gene expression in response to changes in its extracellular milieu during infection. sigma(H), an alternate sigma factor encoded by the M. tuberculosis genome, is induced by thiol-oxidative stress, heat shock, and phagocytosis. In response to these conditions, sigma(H) induces the expression of sigma(B), sigma(E), and the thioredoxin regulon. In order to more effectively characterize the transcriptome controlled by sigma(H), we studied the long-term effects of the induction of sigma(H) on global transcription in M. tuberculosis. The M. tuberculosis isogenic mutant of sigma(H) (Delta-sigma(H)) is more susceptible to diamide stress than wild-type M. tuberculosis. To study the long-term effects of sigma(H) induction, we exposed both strains to diamide, rapidly washed it away, and resumed culturing in diamide-free medium (post-diamide stress culturing). Analysis of the effects of sigma(H) induction in this experiment revealed a massive temporal programming of the M. tuberculosis transcriptome. Immediately after the induction of sigma(H), genes belonging to the functional categories "virulence/detoxification" and "regulatory proteins" were induced in large numbers. Fewer genes belonging to the "lipid metabolism" category were induced, while a larger number of genes belonging to this category were downregulated. sigma(H) caused the induction of the ATP-dependent clp proteolysis regulon, likely mediated by a transcription factor encoded by Rv2745c, several members of the mce1 virulence regulon, and the sulfate acquisition/transport network.
Collapse
Affiliation(s)
- Smriti Mehra
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | | |
Collapse
|
188
|
Provvedi R, Boldrin F, Falciani F, Palù G, Manganelli R. Global transcriptional response to vancomycin in Mycobacterium tuberculosis. MICROBIOLOGY-SGM 2009; 155:1093-1102. [PMID: 19332811 DOI: 10.1099/mic.0.024802-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to gain additional understanding of the physiological mechanisms used by bacteria to maintain surface homeostasis and to identify potential targets for new antibacterial drugs, we analysed the variation of the Mycobacterium tuberculosis transcriptional profile in response to inhibitory and subinhibitory concentrations of vancomycin. Our analysis identified 153 genes differentially regulated after exposing bacteria to a concentration of the drug ten times higher than the MIC, and 141 genes differentially expressed when bacteria were growing in a concentration of the drug eightfold lower than the MIC. Hierarchical clustering analysis indicated that the response to these different conditions is different, although with some overlap. This approach allowed us to identify several genes whose products could be involved in the protection from antibiotic stress targeting the envelope and help to confer the basal level of M. tuberculosis resistance to antibacterial drugs, such as Rv2623 (UspA-like), Rv0116c, PE20-PPE31, PspA and proteins related to toxin-antitoxin systems. Moreover, we also demonstrated that the alternative sigma factor sigma(E) confers basal resistance to vancomycin, once again underlining its importance in the physiology of the mycobacterial surface stress response.
Collapse
Affiliation(s)
| | - Francesca Boldrin
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, 35100 Padua, Italy
| | - Francesco Falciani
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Giorgio Palù
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, 35100 Padua, Italy
| | - Riccardo Manganelli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, 35100 Padua, Italy
| |
Collapse
|
189
|
D'Orazio M, Cervoni L, Giartosio A, Rotilio G, Battistoni A. Thermal stability and redox properties of M. tuberculosis CuSOD. Arch Biochem Biophys 2009; 486:119-24. [PMID: 19383490 DOI: 10.1016/j.abb.2009.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 04/07/2009] [Accepted: 04/11/2009] [Indexed: 11/19/2022]
Abstract
The superoxide dismutase from Mycobacterium tuberculosis is the only Cu-containing superoxide dismutase that lacks zinc in the active site. To explore the structural properties of this unusual enzyme, we have investigated its stability by differential scanning calorimetry. We have found that the holo-enzyme is significantly more stable than the apo-protein or the partially metallated enzyme, but that its melting temperature is markedly lower than that of all the other characterized eukaryotic and prokaryotic Cu,Zn superoxide dismutases. We have also observed that, unlike the zinc-free eukaryotic or bacterial enzymes, the active site copper of the mycobacterial enzyme is not reduced by ascorbate, confirming that its redox properties are comparable to those typical of the enzymes containing zinc in the active site. Our findings highlight the role of zinc in conferring stability to Cu,Zn superoxide dismutases and indicate that the structural rearrangements observed in M. tuberculosis Cu,SOD compensate for the absence of zinc in achieving a fully active enzyme.
Collapse
|
190
|
Maciag A, Piazza A, Riccardi G, Milano A. Transcriptional analysis of ESAT-6 cluster 3 in Mycobacterium smegmatis. BMC Microbiol 2009; 9:48. [PMID: 19257911 PMCID: PMC2660348 DOI: 10.1186/1471-2180-9-48] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 03/04/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ESAT-6 (early secreted antigenic target, 6 kDa) family collects small mycobacterial proteins secreted by Mycobacterium tuberculosis, particularly in the early phase of growth. There are 23 ESAT-6 family members in M. tuberculosis H37Rv. In a previous work, we identified the Zur- dependent regulation of five proteins of the ESAT-6/CFP-10 family (esxG, esxH, esxQ, esxR, and esxS). esxG and esxH are part of ESAT-6 cluster 3, whose expression was already known to be induced by iron starvation. RESULTS In this research, we performed EMSA experiments and transcriptional analysis of ESAT-6 cluster 3 in Mycobacterium smegmatis (msmeg0615-msmeg0625) and M. tuberculosis. In contrast to what we had observed in M. tuberculosis, we found that in M. smegmatis ESAT-6 cluster 3 responds only to iron and not to zinc. In both organisms we identified an internal promoter, a finding which suggests the presence of two transcriptional units and, by consequence, a differential expression of cluster 3 genes. We compared the expression of msmeg0615 and msmeg0620 in different growth and stress conditions by means of relative quantitative PCR. The expression of msmeg0615 and msmeg0620 genes was essentially similar; they appeared to be repressed in most of the tested conditions, with the exception of acid stress (pH 4.2) where msmeg0615 was about 4-fold induced, while msmeg0620 was repressed. Analysis revealed that in acid stress conditions M. tuberculosis rv0282 gene was 3-fold induced too, while rv0287 induction was almost insignificant. CONCLUSION In contrast with what has been reported for M. tuberculosis, our results suggest that in M. smegmatis only IdeR-dependent regulation is retained, while zinc has no effect on gene expression. The role of cluster 3 in M. tuberculosis virulence is still to be defined; however, iron- and zinc-dependent expression strongly suggests that cluster 3 is highly expressed in the infective process, and that the cluster contributes to the antigenic profile during the course of infection. Moreover, cluster 3 induction in acid stress conditions strengthens the hypothesis that cluster 3 is expressed in the course of infection.In M. smegmatis, the expression of msmeg0615 and msmeg0620 genes is broadly similar in differing growth phases and in stress conditions, with the exception of acid stress (pH 4.2). Differences in expression between cluster 3 genes can be explained by the presence of internal promoters, both in M. smegmatis and M. tuberculosis.
Collapse
Affiliation(s)
- Anna Maciag
- Department of Genetics and Microbiology, University of Pavia, Pavia, Italy.
| | | | | | | |
Collapse
|
191
|
Simeone R, Bottai D, Brosch R. ESX/type VII secretion systems and their role in host-pathogen interaction. Curr Opin Microbiol 2009; 12:4-10. [PMID: 19155186 DOI: 10.1016/j.mib.2008.11.003] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 11/24/2008] [Accepted: 11/26/2008] [Indexed: 01/22/2023]
Abstract
The ESX-1 system is responsible for the secretion of the prototypic ESX proteins, namely the 6 kDa early secreted antigenic target (ESAT-6) and the 10 kDa culture filtrate protein (CFP-10). These two proteins, which form a 1:1 heterodimeric complex, are among the most important proteins of Mycobacterium tuberculosis involved in host-pathogen interaction. They induce a strong T cell mediated immune response, are apparently involved in membrane and/or host-cell lysis and represent key virulence factors. There are four other paralogous ESX systems in M. tuberculosis, some of which are essential for in vitro growth. ESX systems also exist in many other actinobacteria and Gram-positive bacteria, and have recently been suggested to be named type VII secretion systems.
Collapse
Affiliation(s)
- Roxane Simeone
- Institut Pasteur, UP Pathogénomique Mycobactérienne Intégrée, 25 Rue du Dr. Roux, 75724 Paris, France
| | | | | |
Collapse
|
192
|
Abstract
Protein metal-coordination sites are richly varied and exquisitely attuned to their inorganic partners, yet many metalloproteins still select the wrong metals when presented with mixtures of elements. Cells have evolved elaborate mechanisms to scavenge for sufficient metal atoms to meet their needs and to adjust their needs to match supply. Metal sensors, transporters and stores have often been discovered as metal-resistance determinants, but it is emerging that they perform a broader role in microbial physiology: they allow cells to overcome inadequate protein metal affinities to populate large numbers of metalloproteins with the right metals.
Collapse
|
193
|
Regulation and activity of a zinc uptake regulator, Zur, in Corynebacterium diphtheriae. J Bacteriol 2008; 191:1595-603. [PMID: 19074382 DOI: 10.1128/jb.01392-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of metal ion homeostasis is essential to bacterial cell survival, and in most species it is controlled by metal-dependent transcriptional regulators. In this study, we describe a Corynebacterium diphtheriae ferric uptake regulator-family protein, Zur, that controls expression of genes involved in zinc uptake. By measuring promoter activities and mRNA levels, we demonstrate that Zur represses transcription of three genes (zrg, cmrA, and troA) in zinc-replete conditions. All three of these genes have similarity to genes involved in zinc uptake. Transcription of zrg and cmrA was also shown to be regulated in response to iron and manganese, respectively, by mechanisms that are independent of Zur. We demonstrate that the activity of the zur promoter is slightly decreased under low zinc conditions in a process that is dependent on Zur itself. This regulation of zur transcription is distinctive and has not yet been described for any other zur. An adjacent gene, predicted to encode a metal-dependent transcriptional regulator in the ArsR/SmtB family, is transcribed from a separate promoter whose activity is unaffected by Zur. A C. diphtheriae zur mutant was more sensitive to peroxide stress, which suggests that zur has a role in protecting the bacterium from oxidative damage. Our studies provide the first evidence of a zinc specific transcriptional regulator in C. diphtheriae and give new insights into the intricate regulatory network responsible for regulating metal ion concentrations in this toxigenic human pathogen.
Collapse
|
194
|
Osorio H, Martínez V, Nieto PA, Holmes DS, Quatrini R. Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility. BMC Microbiol 2008; 8:203. [PMID: 19025650 PMCID: PMC2631029 DOI: 10.1186/1471-2180-8-203] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 11/24/2008] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Iron is an essential nutrient but can be toxic at high intracellular concentrations and organisms have evolved tightly regulated mechanisms for iron uptake and homeostasis. Information on iron management mechanisms is available for organisms living at circumneutral pH. However, very little is known about how acidophilic bacteria, especially those used for industrial copper bioleaching, cope with environmental iron loads that can be 1018 times the concentration found in pH neutral environments. This study was motivated by the need to fill this lacuna in knowledge. An understanding of how microorganisms thrive in acidic ecosystems with high iron loads requires a comprehensive investigation of the strategies to acquire iron and to coordinate this acquisition with utilization, storage and oxidation of iron through metal responsive regulation. In silico prediction of iron management genes and Fur regulation was carried out for three Acidithiobacilli: Acidithiobacillus ferrooxidans (iron and sulfur oxidizer) A. thiooxidans and A. caldus (sulfur oxidizers) that can live between pH 1 and pH 5 and for three strict iron oxidizers of the Leptospirillum genus that live at pH 1 or below. RESULTS Acidithiobacilli have predicted FeoB-like Fe(II) and Nramp-like Fe(II)-Mn(II) transporters. They also have 14 different TonB dependent ferri-siderophore transporters of diverse siderophore affinity, although they do not produce classical siderophores. Instead they have predicted novel mechanisms for dicitrate synthesis and possibly also for phosphate-chelation mediated iron uptake. It is hypothesized that the unexpectedly large number and diversity of Fe(III)-uptake systems confers versatility to this group of acidophiles, especially in higher pH environments (pH 4-5) where soluble iron may not be abundant. In contrast, Leptospirilla have only a FtrI-Fet3P-like permease and three TonB dependent ferri-dicitrate siderophore systems. This paucity of iron uptake systems could reflect their obligatory occupation of extremely low pH environments where high concentrations of soluble iron may always be available and were oxidized sulfur species might not compromise iron speciation dynamics. Presence of bacterioferritin in the Acidithiobacilli, polyphosphate accumulation functions and variants of FieF-like diffusion facilitators in both Acidithiobacilli and Leptospirilla, indicate that they may remove or store iron under conditions of variable availability. In addition, the Fe(II)-oxidizing capacity of both A. ferrooxidans and Leptospirilla could itself be a way to evade iron stress imposed by readily available Fe(II) ions at low pH. Fur regulatory sites have been predicted for a number of gene clusters including iron related and non-iron related functions in both the Acidithiobacilli and Leptospirilla, laying the foundation for the future discovery of iron regulated and iron-phosphate coordinated regulatory control circuits. CONCLUSION In silico analyses of the genomes of acidophilic bacteria are beginning to tease apart the mechanisms that mediate iron uptake and homeostasis in low pH environments. Initial models pinpoint significant differences in abundance and diversity of iron management mechanisms between Leptospirilla and Acidithiobacilli, and begin to reveal how these two groups respond to iron cycling and iron fluctuations in naturally acidic environments and in industrial operations. Niche partitions and ecological successions between acidophilic microorganisms may be partially explained by these observed differences. Models derived from these analyses pave the way for improved hypothesis testing and well directed experimental investigation. In addition, aspects of these models should challenge investigators to evaluate alternative iron management strategies in non-acidophilic model organisms.
Collapse
Affiliation(s)
- Héctor Osorio
- Center for Bioinformatics and Genome Biology, Fundación Ciencia para la Vida, MIFAB, Santiago, Chile
- Depto. de Ciencias Biologicas, Facultad de Ciencias de la Salud, Universidad Andres Bello, Santiago, Chile
| | - Verónica Martínez
- Center for Bioinformatics and Genome Biology, Fundación Ciencia para la Vida, MIFAB, Santiago, Chile
| | - Pamela A Nieto
- Center for Bioinformatics and Genome Biology, Fundación Ciencia para la Vida, MIFAB, Santiago, Chile
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia para la Vida, MIFAB, Santiago, Chile
- Depto. de Ciencias Biologicas, Facultad de Ciencias de la Salud, Universidad Andres Bello, Santiago, Chile
| | - Raquel Quatrini
- Center for Bioinformatics and Genome Biology, Fundación Ciencia para la Vida, MIFAB, Santiago, Chile
| |
Collapse
|
195
|
Milano A, Pasca MR, Provvedi R, Lucarelli AP, Manina G, Ribeiro ALDJL, Manganelli R, Riccardi G. Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5-MmpL5 efflux system. Tuberculosis (Edinb) 2008; 89:84-90. [PMID: 18851927 DOI: 10.1016/j.tube.2008.08.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 08/01/2008] [Accepted: 08/19/2008] [Indexed: 10/21/2022]
Abstract
Tuberculosis (TB) remains the leading cause of mortality due to a bacterial pathogen, Mycobacterium tuberculosis. Moreover, the recent isolation of M. tuberculosis strains resistant to both first- and second-line antitubercular drugs (XDR-TB) threatens to make the treatment of this disease extremely difficult and becoming a threat to public health worldwide. Recently, it has been shown that azoles are potent inhibitors of mycobacterial cell growth and have antitubercular activity in mice, thus favoring the hypothesis that these drugs may constitute a novel strategy against tuberculosis disease. To investigate the mechanisms of resistance to azoles in mycobacteria, we isolated and characterized several spontaneous azoles resistant mutants from M. tuberculosis and Mycobacterium bovis BCG. All the analyzed resistant mutants exhibited both increased econazole efflux and increased transcription of mmpS5-mmpL5 genes, encoding a hypothetical efflux system belonging to the resistance-nodulation-division (RND) family of transporters. We found that the up-regulation of mmpS5-mmpL5 genes was linked to mutations either in the Rv0678 gene, hypothesized to be involved in the transcriptional regulation of this efflux system, or in its putative promoter/operator region.
Collapse
Affiliation(s)
- Anna Milano
- Department of Genetics and Microbiology, University of Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Functional definition and global regulation of Zur, a zinc uptake regulator in a Streptococcus suis serotype 2 strain causing streptococcal toxic shock syndrome. J Bacteriol 2008; 190:7567-78. [PMID: 18723622 DOI: 10.1128/jb.01532-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zinc is an essential trace element for all living organisms and plays pivotal roles in various cellular processes. However, an excess of zinc is extremely deleterious to cells. Bacteria have evolved complex machineries (such as efflux/influx systems) to control the concentration at levels appropriate for the maintenance of zinc homeostasis in cells and adaptation to the environment. The Zur (zinc uptake regulator) protein is one of these functional members involved in the precise control of zinc homeostasis. Here we identified a zur homologue designated 310 from Streptococcus suis serotype 2, strain 05ZYH33, a highly invasive isolate causing streptococcal toxic shock syndrome. Biochemical analysis revealed that the protein product of gene 310 exists as a dimer form and carries zinc ions. An isogenic gene replacement mutant of gene 310, the Delta310 mutant, was obtained by homologous recombination. Physiological tests demonstrated that the Delta310 mutant is specifically sensitive to Zn(2+), while functional complementation of the Delta310 mutant can restore its duration capability, suggesting that 310 is a functional member of the Zur family. Two-dimensional electrophoresis indicated that nine proteins in the Delta310 mutant are overexpressed in comparison with those in the wild type. DNA microarray analyses suggested that 121 genes in the Delta310 mutant are affected, of which 72 genes are upregulated and 49 are downregulated. The transcriptome of S. suis serotype 2 with high Zn(2+) concentrations also showed 117 differentially expressed genes, with 71 upregulated and 46 downregulated. Surprisingly, more than 70% of the genes differentially expressed in the Delta310 mutant were the same as those in S. suis serotype 2 that were differentially expressed in response to high Zn(2+) concentration, consistent with the notion that 310 is involved in zinc homeostasis. We thus report for the first time a novel zinc-responsive regulator, Zur, from Streptococcus suis serotype 2.
Collapse
|
197
|
Lucarelli D, Vasil ML, Meyer-Klaucke W, Pohl E. The Metal-Dependent Regulators FurA and FurB from Mycobacterium Tuberculosis. Int J Mol Sci 2008; 9:1548-1560. [PMID: 19169435 PMCID: PMC2630230 DOI: 10.3390/ijms9081548] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 11/17/2022] Open
Abstract
The ferric uptake regulators (Fur) form a large family of bacterial metal-activated DNA-binding proteins that control a diverse set of genes at the transcriptional level. Mycobacterium tuberculosis, the causative agent of tuberculosis, expresses two members of the Fur family, designated FurA and FurB. Although both belong to the same family, they share only approximately 25% sequence identity and as a consequence, they differ significantly in some of their key biological functions. FurA appears to be a specialized iron-dependent regulator that controls the katG gene, which encodes for a catalase-peroxidase involved in the response of M. tuberculosis to oxidative stress. KatG is also the key mycobacterial enzyme responsible for the activation of the first-line tuberculosis drug Isoniazid. FurB in contrast requires Zn(2+) rather than Fe(2+), to bind to its target sequence in regulated genes, which include those involved in Zn(2+)-homeostasis. Recent biochemical, crystallographic and spectroscopic data have now shed light on the activation and metal discrimination mechanisms in this protein family.
Collapse
Affiliation(s)
- Debora Lucarelli
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestr. 85, D-22603 Hamburg, Germany. E-Mails:
(D. L.);
(W. M-K.)
| | - Michael L. Vasil
- Department of Microbiology, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO 80045, USA. E-Mail:
(M. V.)
| | - Wolfram Meyer-Klaucke
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestr. 85, D-22603 Hamburg, Germany. E-Mails:
(D. L.);
(W. M-K.)
| | - Ehmke Pohl
- Department of Chemistry & School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
198
|
Evidence of complex transcriptional, translational, and posttranslational regulation of the extracytoplasmic function sigma factor sigmaE in Mycobacterium tuberculosis. J Bacteriol 2008; 190:5963-71. [PMID: 18606740 DOI: 10.1128/jb.00622-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracytoplasmic factor (ECF) sigma factor sigma(E) is one of the most studied sigma factors of Mycobacterium tuberculosis. It has been shown to be involved in virulence as well as in survival under conditions of high temperature, alkaline pH, and exposure to detergents and oxidative stress. Unlike many ECF sigma factors, sigma(E) does not directly regulate the transcription of its own gene. Two promoters have been identified upstream of the sigE gene; one is regulated by the two-component system MprAB, while the other has been shown to be sigma(H) dependent. In this paper, we further characterize the regulation of sigma(E) by identifying its anti-sigma factor and a previously unknown promoter. Finally, we show that sigE can be translated from three different translational start codons, depending on the promoter used. Taken together, our data demonstrate that sigma(E) not only is subjected to complex transcriptional regulation but is also controlled at the translational and posttranslational levels.
Collapse
|
199
|
Huang DL, Tang DJ, Liao Q, Li HC, Chen Q, He YQ, Feng JX, Jiang BL, Lu GT, Chen B, Tang JL. The Zur of Xanthomonas campestris functions as a repressor and an activator of putative zinc homeostasis genes via recognizing two distinct sequences within its target promoters. Nucleic Acids Res 2008; 36:4295-309. [PMID: 18586823 PMCID: PMC2490734 DOI: 10.1093/nar/gkn328] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It has been long considered that zinc homeostasis in bacteria is maintained by export systems and uptake systems, which are separately controlled by their own regulators and the uptake systems are negatively regulated by Zur which binds to an about 30-bp AT-rich sequence known as Zur-box present in its target promoters to block the entry of RNA polymerase. Here, we demonstrated in vivo and in vitro that in addition to act as a repressor of putative Zn2+-uptake systems, the Zur of the bacterial phytopathogen Xanthomonas campestris pathovar campestris (Xcc) acts as an activator of a Zn2+ efflux pump. The Xcc Zur binds to a similar Zur-box with ∼30-bp AT-rich sequence in the promoters of the genes encoding putative Zn2+-uptake systems but a 59-bp GC-rich sequence with a 20-bp inverted repeat overlapping the promoter's −35 to −10 sequence of the gene encoding a Zn2+-export system. Mutagenesis of the inverted repeat sequence resulted in abolishment of the in vitro binding and the in vivo and in vitro activation of the export gene's promoter by Zur. These results reveal that the Xcc Zur functions as a repressor and an activator of putative zinc homeostasis genes via recognizing two distinct sequences within its target promoters.
Collapse
Affiliation(s)
- Dong-Liang Huang
- The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning Guangxi 530004, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Lightbody KL, Ilghari D, Waters LC, Carey G, Bailey MA, Williamson RA, Renshaw PS, Carr MD. Molecular Features Governing the Stability and Specificity of Functional Complex Formation by Mycobacterium tuberculosis CFP-10/ESAT-6 Family Proteins. J Biol Chem 2008; 283:17681-90. [DOI: 10.1074/jbc.m800123200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|