151
|
Lei S, Pulakat L, Gavini N. Genetic analysis of nif regulatory genes by utilizing the yeast two-hybrid system detected formation of a NifL-NifA complex that is implicated in regulated expression of nif genes. J Bacteriol 1999; 181:6535-9. [PMID: 10515947 PMCID: PMC103792 DOI: 10.1128/jb.181.20.6535-6539.1999] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In diazotrophic organisms, nitrogenase synthesis and activity are tightly regulated. Two genes, nifL and nifA, are implicated as playing a major role in this regulation. NifA is a transcriptional activator, and its activity is inhibited by NifL in response to availability of excess fixed nitrogen and high O(2) tension. It was postulated that NifL binds to NifA to inhibit NifA-mediated transcriptional activation of nif genes. Mutational analysis combined with transcriptional activation studies clearly is in agreement with the proposal that NifL interacts with NifA. However, several attempts to identify NifA-NifL interactions by using methods such as coimmunoprecipitations and chemical cross-linking experiments failed to detect direct interactions between these proteins. Here we have taken a genetic approach, the use of a yeast two-hybrid protein-protein interaction assay system, to investigate NifL interaction with NifA. A DNA fragment corresponding to the kinase-like domain of nifL was PCR amplified and was used to generate translation fusions with the DNA binding domain and the DNA activation domain of the yeast transcriptional activator GAL4 in yeast two-hybrid vectors. Similarly, a DNA fragment corresponding to the catalytic domain of nifA was PCR amplified and used to generate translation fusions with the DNA-binding domain and the DNA-activation domain of GAL4 in yeast two-hybrid vectors. After introducing appropriate plasmid combinations in yeast cells, the existance of direct interaction between NifA and NifL was analyzed with the MATCHMAKER yeast two-hybrid system by testing for the expression of lacZ and his3 genes. These analyses showed that the kinase-like domain of NifL directly interacts with the catalytic domain of NifA.
Collapse
Affiliation(s)
- S Lei
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | | | | |
Collapse
|
152
|
Chatelet C, Gaillard J, Pétillot Y, Louwagie M, Meyer J. A [2Fe-2S] protein from the hyperthermophilic bacterium Aquifex aeolicus. Biochem Biophys Res Commun 1999; 261:885-9. [PMID: 10441520 DOI: 10.1006/bbrc.1999.1138] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Overexpression in Escherichia coli of the fdx4 gene from Aquifex aeolicus has allowed isolation and characterization of the first hyperthermophilic [2Fe-2S](Scys)(4) protein, a homodimer of M = 2 x 12.4 kDa with one [2Fe-2S] cluster per subunit. This protein is undamaged by heating to 100 degrees C for at least three hours. The primary structure, in particular the characteristic distribution of the four cysteine ligands of the metal site, and the spectroscopic properties of the A. aeolicus protein relate it to well characterized [2Fe-2S] proteins from Clostridium pasteurianum and Azotobacter vinelandii. These proteins are also homologous to subunits or domains of hydrogenases and NADH-ubiquinone oxidoreductase (Complex I) of respiratory chains. The A. aeolicus [2Fe-2S] protein is thus representative of a presumably novel protein fold involved in a variety of functions in very diverse cellular backgrounds.
Collapse
Affiliation(s)
- C Chatelet
- Département de Biologie Moléculaire et Structurale, CEA-Grenoble, Grenoble, 38054, France
| | | | | | | | | |
Collapse
|
153
|
Rangaraj P, Ryle MJ, Lanzilotta WN, Ludden PW, Shah VK. In vitro biosynthesis of iron-molybdenum cofactor and maturation of the nif-encoded apodinitrogenase. Effect of substitution for NifH with site-specifically altered forms of NifH. J Biol Chem 1999; 274:19778-84. [PMID: 10391920 DOI: 10.1074/jbc.274.28.19778] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NifH has three different roles in the nitrogenase enzyme system. Apart from serving as the physiological electron donor to dinitrogenase, NifH is involved in iron-molybdenum cofactor (FeMo-co) biosynthesis and in maturation of the FeMo-co-deficient form of apodinitrogenase to a FeMo-co-activable form (apodinitrogenase maturation). The exact roles of NifH in these processes are not well understood. In the present study, the features of NifH required for the aforementioned processes have been investigated by the use of site-specifically altered forms of the enzyme. The ability of six altered forms of NifH inactive in substrate reduction (K15R, D39N, D43N, L127Delta, D129E, and F135Y) to function in in vitro FeMo-co synthesis and apodinitrogenase maturation reactions was investigated. We report that the ability of NifH to bind and not hydrolyze MgATP is required for it to function in these processes. We also present evidence that the ability of NifH to function in these processes is not dictated by the properties known to be required for its function in electron transfer to dinitrogenase. Evidence toward the existence of separate, overlapping sites on NifH for each of its functions (substrate reduction, FeMo-co biosynthesis, and apodinitrogenase maturation) is presented.
Collapse
Affiliation(s)
- P Rangaraj
- Department of Biochemistry and Center for the Study of Nitrogen Fixation, College of Agricultural and Life Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
154
|
Rüttimann-Johnson C, Staples CR, Rangaraj P, Shah VK, Ludden PW. A vanadium and iron cluster accumulates on VnfX during iron-vanadium-cofactor synthesis for the vanadium nitrogenase in Azotobacter vinelandii. J Biol Chem 1999; 274:18087-92. [PMID: 10364262 DOI: 10.1074/jbc.274.25.18087] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vnf-encoded nitrogenase from Azotobacter vinelandii contains an iron-vanadium cofactor (FeV-co) in its active site. Little is known about the synthesis pathway of FeV-co, other than that some of the gene products required are also involved in the synthesis of the iron-molybdenum cofactor (FeMo-co) of the widely studied molybdenum-dinitrogenase. We have found that VnfX, the gene product of one of the genes contained in the vnf-regulon, accumulates iron and vanadium in a novel V-Fe cluster during synthesis of FeV-co. The electron paramagnetic resonance (EPR) and metal analyses of the V-Fe cluster accumulated on VnfX are consistent with a VFe7-8Sx precursor of FeV-co. The EPR spectrum of VnfX with the V-Fe cluster bound strongly resembles that of isolated FeV-co and a model VFe3S4 compound. The V-Fe cluster accumulating on VnfX does not contain homocitrate. No accumulation of V-Fe cluster on VnfX was observed in strains with deletions in genes known to be involved in the early steps of FeV-co synthesis, suggesting that it corresponds to a precursor of FeV-co. VnfX purified from a nifB strain incapable of FeV-co synthesis has a different electrophoretic mobility in native anoxic gels than does VnfX, which has the V-Fe cluster bound. NifB-co, the Fe and S precursor of FeMo-co (and presumably FeV-co), binds to VnfX purified from the nifB strain, producing a shift in its electrophoretic mobility on anoxic native gels. The data suggest that a precursor of FeV-co that contains vanadium and iron accumulates on VnfX, and thus, VnfX is involved in the synthesis of FeV-co.
Collapse
Affiliation(s)
- C Rüttimann-Johnson
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
155
|
Abstract
PAS domains are newly recognized signaling domains that are widely distributed in proteins from members of the Archaea and Bacteria and from fungi, plants, insects, and vertebrates. They function as input modules in proteins that sense oxygen, redox potential, light, and some other stimuli. Specificity in sensing arises, in part, from different cofactors that may be associated with the PAS fold. Transduction of redox signals may be a common mechanistic theme in many different PAS domains. PAS proteins are always located intracellularly but may monitor the external as well as the internal environment. One way in which prokaryotic PAS proteins sense the environment is by detecting changes in the electron transport system. This serves as an early warning system for any reduction in cellular energy levels. Human PAS proteins include hypoxia-inducible factors and voltage-sensitive ion channels; other PAS proteins are integral components of circadian clocks. Although PAS domains were only recently identified, the signaling functions with which they are associated have long been recognized as fundamental properties of living cells.
Collapse
Affiliation(s)
- B L Taylor
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350, USA.
| | | |
Collapse
|
156
|
Shah VK, Rangaraj P, Chatterjee R, Allen RM, Roll JT, Roberts GP, Ludden PW. Requirement of NifX and other nif proteins for in vitro biosynthesis of the iron-molybdenum cofactor of nitrogenase. J Bacteriol 1999; 181:2797-801. [PMID: 10217770 PMCID: PMC93721 DOI: 10.1128/jb.181.9.2797-2801.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The iron-molybdenum cofactor (FeMo-co) of nitrogenase contains molybdenum, iron, sulfur, and homocitrate in a ratio of 1:7:9:1. In vitro synthesis of FeMo-co has been established, and the reaction requires an ATP-regenerating system, dithionite, molybdate, homocitrate, and at least NifB-co (the metabolic product of NifB), NifNE, and dinitrogenase reductase (NifH). The typical in vitro FeMo-co synthesis reaction involves mixing extracts from two different mutant strains of Azotobacter vinelandii defective in the biosynthesis of cofactor or an extract of a mutant strain complemented with the purified missing component. Surprisingly, the in vitro synthesis of FeMo-co with only purified components failed to generate significant FeMo-co, suggesting the requirement for one or more other components. Complementation of these assays with extracts of various mutant strains demonstrated that NifX has a role in synthesis of FeMo-co. In vitro synthesis of FeMo-co with purified components is stimulated approximately threefold by purified NifX. Complementation of these assays with extracts of A. vinelandii DJ42. 48 (DeltanifENX DeltavnfE) results in a 12- to 15-fold stimulation of in vitro FeMo-co synthesis activity. These data also demonstrate that apart from the NifX some other component(s) is required for the cofactor synthesis. The in vitro synthesis of FeMo-co with purified components has allowed the detection, purification, and identification of an additional component(s) required for the synthesis of cofactor.
Collapse
Affiliation(s)
- V K Shah
- Departments of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
157
|
Smith BE. Structure, Function, and Biosynthesis of the Metallosulfur Clusters in Nitrogenases. ADVANCES IN INORGANIC CHEMISTRY 1999. [DOI: 10.1016/s0898-8838(08)60078-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
158
|
Christiansen J, Goodwin PJ, Lanzilotta WN, Seefeldt LC, Dean DR. Catalytic and biophysical properties of a nitrogenase Apo-MoFe protein produced by a nifB-deletion mutant of Azotobacter vinelandii. Biochemistry 1998; 37:12611-23. [PMID: 9730834 DOI: 10.1021/bi981165b] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A Zn-immobilized metal-affinity chromatography technique was used to purify a poly-histidine-tagged, FeMo-cofactorless MoFe protein (apo-MoFe protein) from a nifB-deletion mutant of Azotobacter vinelandii. Apo-MoFe protein prepared in this way was obtained in sufficient concentrations for detailed catalytic, kinetic, and spectroscopic analyses. Metal analysis and electron paramagnetic resonance spectroscopy (EPR) were used to show that the apo-MoFe protein does not contain FeMo-cofactor. The EPR of the as-isolated apo-MoFe protein is featureless except for a minor S = 1/2 signal probably arising from the presence of either a damaged P cluster or a P cluster precursor. The apo-MoFe protein has an alpha2beta2 subunit composition and can be activated to 80% of the theoretical MoFe protein value by the addition of isolated FeMo-cofactor. Oxidation of the as-isolated apo-MoFe protein by indigodisulfonate was used to elicit the parallel mode EPR signal indicative of the two-electron oxidized form of the P cluster (P2+). The midpoint potential of the PN/P2+ redox couple for the apo-MoFe protein was shown to be shifted by -63 mV when compared to the same redox couple for the intact MoFe protein. Although the apo-MoFe protein is not able to catalyze the reduction of substrates under turnover conditions, it does support the hydrolysis of MgATP at 60% of the rate supported by the MoFe protein when incubated in the presence of Fe protein. The ability of the apo-MoFe protein to specifically interact with the Fe protein was also shown by stopped-flow techniques and by formation of an apo-MoFe protein-Fe protein complex. Finally, the two-electron oxidized form of the apo-MoFe protein could be reduced to the one-electron oxidized form (P1+) in a reaction that required Fe protein and MgATP. These results are interpreted to indicate that the apo-MoFe protein produced in a nifB-deficient genetic background [corrected] contains intact P clusters and P cluster polypeptide environments. Small changes in the electronic properties of P clusters contained within the apo-MoFe protein are most likely caused by slight perturbations in their polypeptide environments.
Collapse
Affiliation(s)
- J Christiansen
- Department of Biochemistry, Fralin Biotechnology Center, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | | | | | | | |
Collapse
|
159
|
Kirby J, Wright F, Flint HJ. A cysteine desulphurase gene from the cellulolytic rumen anaerobe Ruminococcus flavefaciens. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1386:233-7. [PMID: 9675295 DOI: 10.1016/s0167-4838(98)00062-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A gene whose predicted product shows 40-50% sequence identity with the products of nifS genes from nitrogen-fixing bacteria was found downstream from a cellulase gene in a DNA fragment from the cellulolytic rumen anaerobe, Ruminococcus flavefaciens 17. The R. flavefaciens gene product released sulphur from l-cysteine when expressed in Escherichia coli, indicating that the R. flavefaciens NifS enzyme may play a role in sulphuration, perhaps, as in nitrogen-fixing bacteria, supplying sulphur to FeS proteins. Sequences hybridising with the R. flavefaciens 17 nifS-like gene were also detected in R. flavefaciens 007 and in R. albus SY3.
Collapse
Affiliation(s)
- J Kirby
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | | | | |
Collapse
|
160
|
Zheng L, Cash VL, Flint DH, Dean DR. Assembly of iron-sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J Biol Chem 1998; 273:13264-72. [PMID: 9582371 DOI: 10.1074/jbc.273.21.13264] [Citation(s) in RCA: 507] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An enzyme having the same L-cysteine desulfurization activity previously described for the NifS protein was purified from a strain of Azotobacter vinelandii deleted for the nifS gene. This protein was designated IscS to indicate its proposed role in iron-sulfur cluster assembly. Like NifS, IscS is a pyridoxal-phosphate containing homodimer. Information gained from microsequencing of oligopeptides obtained by tryptic digestion of purified IscS was used to design a strategy for isolation and DNA sequence analysis of a 7,886-base pair A. vinelandii genomic segment that includes the iscS gene. The iscS gene is contained within a gene cluster that includes homologs to nifU and another gene contained within the major nif cluster of A. vinelandii previously designated orf6. These genes have been designated iscU and iscA, respectively. Information available from complete genome sequences of Escherichia coli and Hemophilus influenzae reveals that they also encode iscSUA gene clusters. A wide conservation of iscSUA genes in nature and evidence that NifU and NifS participate in the mobilization of iron and sulfur for nitrogenase-specific iron-sulfur cluster formation suggest that the products of the iscSUA genes could play a general role in the formation or repair of iron-sulfur clusters. The proposal that IscS is involved in mobilization of sulfur for iron-sulfur cluster formation in A. vinelandii is supported by the presence of a cysE-like homolog in another gene cluster located immediately upstream from the one containing the iscSUA genes. O-Acetylserine synthase is the product of the cysE gene, and it catalyzes the rate-limiting step in cysteine biosynthesis. A similar cysE-like gene is also located within the nif gene cluster of A. vinelandii. The likely role of such cysE-like gene products is to increase the cysteine pool needed for iron-sulfur cluster formation. Another feature of the iscSUA gene cluster region from A. vinelandii is that E. coli genes previously designated as hscB, hscA, and fdx are located immediately downstream from, and are probably co-transcribed with, the iscSUA genes. The hscB, hscA, and fdx genes are also located adjacent to the iscSUA genes in both E. coli and H. influenzae. The E. coli hscA and hscB gene products have previously been shown to bear primary sequence identity when respectively compared with the dnaK and dnaJ gene products and have been proposed to be members of a heat-shock-cognate molecular chaperone system of unknown function. The close proximity and apparent co-expression of iscSUA and hscBA in A. vinelandii indicate that the proposed chaperone function of the hscBA gene products could be related to the maturation of iron-sulfur cluster-containing proteins. Attempts to place non-polar insertion mutations within either A. vinelandii iscS or hscA revealed that such mutations could not be stably maintained in the absence of the corresponding wild-type allele. These results reveal a very strong selective pressure against the maintenance of A. vinelandii iscS or hscA knock-out mutations and suggest that such mutations are either lethal or highly deleterious. In contrast to iscS or hscA, a strain having a polar insertion mutation within the cysE-like gene was readily isolated and could be stably maintained. These results show that the cysE-like gene located upstream from iscS is not essential for cell growth and that the cysE-like gene and the iscSUA-hscBA-fdx genes are contained within separate transcription units.
Collapse
Affiliation(s)
- L Zheng
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061-0346, USA
| | | | | | | |
Collapse
|
161
|
Hausman BS, Williamson JA, Schreiner RP, Pulakat L, Gavini N. The rfb genes in Azotobacter vinelandii are arranged in a rfbFGC gene cluster: a significant deviation to the arrangement of the rfb genes in Enterobacteriaceae. Biochem Biophys Res Commun 1998; 245:572-82. [PMID: 9571197 DOI: 10.1006/bbrc.1998.8423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the identification of rfbF and rfbC located adjacent to the previously identified rfbG (Gavini et. al. Biochem. Biophys. Res. Commun. 1997, 240, 153-161) from the non-symbiotic, non-pathogenic soil bacterium Azotobacter vinelandii. The rfbF open reading frame encodes a putative polypeptide of 256 amino acids. This polypeptide shares a homology of 74% with the RfbF of Synechocystis sp. and a 70% homology with the AscA of Yersinia pseudotuberculosis which function as alpha-D-glucose-1-phosphate cytidylyltransferases in the biosynthesis of the O-antigen. The rfbC encodes a putative polypeptide of 186 amino acids. It shows strongest homology to the RfbC of Synechocystis sp. (64%) and Salmonella typhimurium (40%). RfbC functions as a dTDP-4-Dehydrorhamnose 3,5-Epimerase. The genes identified here have a low G + C content (approximately 56%) as compared to the A. vinelandii chromosome (approximately 63%) which is characteristic of the rfb clusters identified in other bacteria and may be indicative of the acquisition of the rfb genes by interspecific gene transfer. Despite the high level of sequence conservation, the organization of the rfb genes in A. vinelandii deviates from the arrangement of the most thoroughly studied rfb gene clusters of Enterobacteriaceae.
Collapse
Affiliation(s)
- B S Hausman
- Department of Biological Sciences, Bowling Green State University, Ohio 43403, USA
| | | | | | | | | |
Collapse
|
162
|
Lee SH, Pulakat L, Parker KC, Gavini N. Genetic analysis on the NifW by utilizing the yeast two-hybrid system revealed that the NifW of Azotobacter vinelandii interacts with the NifZ to form higher-order complexes. Biochem Biophys Res Commun 1998; 244:498-504. [PMID: 9514861 DOI: 10.1006/bbrc.1998.8119] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitrogenase is a complex metalloenzyme composed of two separately purified proteins designated the Fe-protein and the MoFe-protein. Apart from these two proteins, a number of accessory proteins are essential for the maturation and assembly of nitrogenase. Even though experimental evidence suggests that these accessory proteins are required for nitrogenase activity, the exact roles played by many of these proteins in the functions of nitrogenase are unclear. Our studies were directed to understand the role of two nif accessory proteins, the NifW and the NifZ in the biological nitrogen fixation. To accomplish this, we have utilized a genetic method, the Yeast based Two-Hybrid protein-protein interaction assay. This analysis showed that the NifW could interact with itself to make a multimeric complex. In contrast, the NifZ could not interact with itself. However, the NifZ could interact with the NifW. Previously it was shown that mutating either the NifW or the NifZ have similar effects on the activity of nitrogenase. This observation indicated that both these proteins may exert their regulation on the nitrogenase by a common pathway. Furthermore, it was suggested that the NifW plays a role in the oxygen-protection of the MoFe-protein by direct physical interaction. Our observation that the NifW can interact with itself as well as with the NifZ, suggests that the NifW and the NifZ may form a higher order complex and such a complex may be needed to exert the effects of the NifW or the NifZ on the nitrogenase activity.
Collapse
Affiliation(s)
- S H Lee
- Department of Biological Sciences, Bowling Green State University, Ohio 43403, USA
| | | | | | | |
Collapse
|
163
|
Kessler PS, Blank C, Leigh JA. The nif gene operon of the methanogenic archaeon Methanococcus maripaludis. J Bacteriol 1998; 180:1504-11. [PMID: 9515920 PMCID: PMC107051 DOI: 10.1128/jb.180.6.1504-1511.1998] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nitrogen fixation occurs in two domains, Archaea and Bacteria. We have characterized a nif (nitrogen fixation) gene cluster in the methanogenic archaeon Methanococcus maripaludis. Sequence analysis revealed eight genes, six with sequence similarity to known nif genes and two with sequence similarity to glnB. The gene order, nifH, ORF105 (similar to glnB), ORF121 (similar to glnB), nifD, nifK, nifE, nifN, and nifX, was the same as that found in part in other diazotrophic methanogens and except for the presence of the glnB-like genes, also resembled the order found in many members of the Bacteria. Using transposon insertion mutagenesis, we determined that an 8-kb region required for nitrogen fixation corresponded to the nif gene cluster. Northern analysis revealed the presence of either a single 7.6-kb nif mRNA transcript or 10 smaller mRNA species containing portions of the large transcript. Polar effects of transposon insertions demonstrated that all of these mRNAs arose from a single promoter region, where transcription initiated 80 bp 5' to nifH. Distinctive features of the nif gene cluster include the presence of the six primary nif genes in a single operon, the placement of the two glnB-like genes within the cluster, the apparent physical separation of the cluster from any other nif genes that might be in the genome, the fragmentation pattern of the mRNA, and the regulation of expression by a repression mechanism described previously. Our study and others with methanogenic archaea reporting multiple mRNAs arising from gene clusters with only a single putative promoter sequence suggest that mRNA processing following transcription may be a common occurrence in methanogens.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Base Sequence
- Blotting, Northern
- Chromosome Mapping
- Cloning, Molecular
- DNA Transposable Elements
- DNA, Archaeal/analysis
- DNA, Archaeal/genetics
- Gene Expression
- Genes, Archaeal
- Methanococcus/genetics
- Methanococcus/metabolism
- Molecular Sequence Data
- Multigene Family
- Mutagenesis, Insertional
- Nitrogen Fixation/genetics
- Nitrogenase/genetics
- Open Reading Frames
- Operon
- Oxidoreductases
- PII Nitrogen Regulatory Proteins
- Plasmids
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Transcription, Genetic
Collapse
Affiliation(s)
- P S Kessler
- Department of Microbiology, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
164
|
Frazzon J, Schrank IS. Sequencing and complementation analysis of the nifUSV genes from Azospirillum brasilense. FEMS Microbiol Lett 1998; 159:151-8. [PMID: 9503607 DOI: 10.1111/j.1574-6968.1998.tb12854.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The functionality of nitrogenase in diazotrophic bacteria is dependent upon nif genes other than the structural nifH, D, and K genes which encode the enzyme subunit proteins. Such genes are involved in the activation of nif gene expression, maturation of subunit proteins, cofactor biosynthesis, and electron transport. In this work, approximately 5500 base pairs located within the major nif gene cluster of Azospirillum brasilense Sp7 have been sequenced. The deduced open reading frames were compared to the nif gene products of Azotobacter vinelandii and other diazotrophs. This analysis indicates the presence of five ORFs encoding ORF2, nifU, nifS, nifV, and ORF4 in the same sequential organization as found in other organisms. Consensus sigma 54 and NifA binding sites are present in the putative promoter region upstream of ORF2 in the A. brasilense sequence. The nifV gene of A. brasilense but not nifU or nifS complemented corresponding mutants strains of A. vinelandii.
Collapse
Affiliation(s)
- J Frazzon
- Departamento de Biotecnologia, Universidade Federal de Rio Grande do Sul, Brazil
| | | |
Collapse
|
165
|
Gavini N, Hausman BS, Pulakat L, Schreiner RP, Williamson JA. Identification and mutational analysis of rfbG, the gene encoding CDP-D-glucose-4,6-dehydratase, isolated from free living soil bacterium Azotobacter vinelandii. Biochem Biophys Res Commun 1997; 240:153-61. [PMID: 9367902 DOI: 10.1006/bbrc.1997.7545] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have identified the rfbG from a non-symbiotic and non-pathogenic soil bacterium, Azotobacter vinelandii. The nucleotide sequence analysis of the rfbG revealed an open reading frame that encodes a peptide of 360 amino acids. This deduced peptide shares 57% homology with the RfbG of Synechocystis and 47% homology with the RfbG of Yersinia pseudotuberculosis. The previously identified short-chain dehydrogenases/reductases family signature sequence is conserved in the sequence of the RfbG of A. vinelandii. Southern blotting analysis of A. vinelandii chromosome by probed with 1.1 kb PstI DNA fragment corresponding to rfbG revealed that it is present as single copy on A. vinelandii chromosome. Disrupting the rfbG present on the chromosome of A. vinelandii, by insertion of kanamycin resistance marker via homologous recombination, resulted in drastic changes in the growth characteristics. The rfbG-negative A. vinelandii grown in liquid medium exhibited agglutination that is characteristic of rfb- mutants of other bacteria, suggesting that we have cloned the functional copy of the rfbG of A. vinelandii.
Collapse
Affiliation(s)
- N Gavini
- Department of Biological Sciences, Bowling Green State University, Ohio 43403, USA.
| | | | | | | | | |
Collapse
|
166
|
Jock CA, Pulakat L, Lee S, Gavini N. Nucleotide sequence and genetic complementation analysis of lep from Azotobacter vinelandii. Biochem Biophys Res Commun 1997; 239:393-400. [PMID: 9344840 DOI: 10.1006/bbrc.1997.7452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The lep of Azotobacter vinelandii is an 852-base-pair open reading frame (ORF) which encodes a protein of 284 amino acid residues. The translated protein shares 75% homology with leader peptidase I isolated from Pseudomonas fluorescens and 37% homology with leader peptidase I isolated from Escherichia coli. Five highly conserved regions found in the family of leader peptidase I proteins are conserved in A. vinelandii Lep. The putative membrane topology of the protein seems similar to that of E. coli leader peptidase I based on the hydrophobicity analysis of the predicted amino acid sequence. Southern blotting analysis of the A. vinelandii chromosome by probing with lep specific DNA revealed that lep is present as a single copy per the chromosome. A multicopy plasmid carrying A. vinelandii lep could complement a temperature sensitive lep mutant of E. coli strain IT41, suggesting that we have identified the functional copy of lep present on A. vinelandii genome.
Collapse
Affiliation(s)
- C A Jock
- Department of Biological Sciences, Bowling Green State University, Ohio 43403, USA
| | | | | | | |
Collapse
|
167
|
Wu G, Hill S, Kelly MJS, Sawers G, Poole RK. The cydR gene product, required for regulation of cytochrome bd expression in the obligate aerobe Azotobacter vinelandii, is an Fnr-like protein. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 7):2197-2207. [PMID: 9245809 DOI: 10.1099/00221287-143-7-2197] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cytochrome bd complex in the obligately aerobic diazotroph Azotobacter vinelandii is an oxidase, which, in vivo, has a low affinity for oxygen and is required for respiratory protection of nitrogenase. Mutations caused by insertion of Tn5-B20 upstream of the structural genes (cydAB) for cytochrome bd result in over-expression of this oxidase and, for unexplained reasons, inability of the organism to grow microaerobically. Cloning and sequencing of this upstream region revealed a gene, cydR. The deduced amino acid sequence of CydR indicates that it is a new member of the Fnr Class of regulators and that it represses cydAB expression. Refined mapping data for three insertions in cydR are presented. The cloned cydR gene complemented anaerobic growth of Escherichia coli fnr mutants and strongly enhanced expression of a narG-lacZ fusion in an E. coli fnr mutant.
Collapse
Affiliation(s)
- Guanghui Wu
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Susan Hill
- Nitrogen Fixation Laboratory, John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - Mark J S Kelly
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Gary Sawers
- Nitrogen Fixation Laboratory, John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - Robert K Poole
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
168
|
Stricker O, Masepohl B, Klipp W, Böhme H. Identification and characterization of the nifV-nifZ-nifT gene region from the filamentous cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 1997; 179:2930-7. [PMID: 9139910 PMCID: PMC179056 DOI: 10.1128/jb.179.9.2930-2937.1997] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The nifV and leuA genes, which encode homocitrate synthase and alpha-isopropylmalate synthase, respectively, were cloned from the filamentous cyanobacterium Anabaena sp. strain PCC 7120 by a PCR-based strategy. Since the N-terminal parts of NifV and LeuA from other bacteria are highly similar to each other, a single pair of PCR primers was used to amplify internal fragments of both Anabaena strain 7120 genes. Sequence analysis of cloned PCR products confirmed the presence of two different nifV-like DNA fragments, which were subsequently used as nifV- and leuA-specific probes, respectively, to clone XbaI fragments of 2.1 kbp (pOST4) and 2.6 kbp (pOST2). Plasmid pOST4 carried the Anabaena strain 7120 nifV-nifZ-nifT genes, whereas pOST2 contained the leuA and dapF genes. The nifVZT genes were not located in close proximity to the main nif gene cluster in Anabaena strain 7120, and therefore nifVZT forms a second nif gene cluster in this strain. Overlaps between the nifV and nifZ genes and between the nifZ and nifT genes and the presence of a 1.8-kb transcript indicated that nifVZT might form one transcriptional unit. Transcripts of nifV were induced not only in a nitrogen-depleted culture but also by iron depletion irrespective of the nitrogen status. The nifV gene in Anabaena strain 7120 was interrupted by an interposon insertion (mutant strain BMB105) and by a plasmid integration via a single crossover with a nifV internal fragment as a site for recombination (mutant strain BMB106). Both mutant strains were capable of diazotrophic growth, and their growth rates were only slightly impaired compared to that of the wild type. Heterologous complementation of the Rhodobacter capsulatus nifV mutant R229I by the Anabaena strain 7120 nifV gene corroborated the assumption that Anabaena strain 7120 nifV also encodes a homocitrate synthase. In contrast, the Anabaena strain 7120 leuA gene did not complement the nifV mutation of R229I efficiently.
Collapse
Affiliation(s)
- O Stricker
- Botanisches Institut der Universität Bonn, Germany
| | | | | | | |
Collapse
|
169
|
|
170
|
Lanzilotta WN, Fisher K, Seefeldt LC. Evidence for electron transfer-dependent formation of a nitrogenase iron protein-molybdenum-iron protein tight complex. The role of aspartate 39. J Biol Chem 1997; 272:4157-65. [PMID: 9020128 DOI: 10.1074/jbc.272.7.4157] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nitrogenase-catalyzed substrate reduction reactions require the association of the iron (Fe) protein and the molybdenum-iron (MoFe) protein, electron transfer from the Fe protein to the MoFe protein coupled to the hydrolysis of MgATP, followed by protein-protein complex dissociation. This work examines the role of MgATP hydrolysis and electron transfer in the dissociation of the Fe protein-MoFe protein complex. Alteration of aspartate 39 to asparagine (D39N) in the nucleotide binding site of Azotobacter vinelandii Fe protein by site-directed mutagenesis resulted in an Fe protein-MoFe protein complex that did not dissociate after electron transfer. While the D39N Fe protein-MoFe protein complex was inactive in all substrate reduction reactions, the complex catalyzed both reductant-dependent and reductant-independent MgATP hydrolysis. Once docked to the MoFe protein, the D39N Fe protein was found to transfer one electron to the MoFe protein requiring MgATP hydrolysis, with an apparent first order rate constant of 0.02 s-1 compared with 140 s-1 for the wild-type Fe protein. Only following electron transfer to the MoFe protein did the D39N Fe protein form a tight complex with the MoFe protein, with no detectable dissociation rate. This was in contrast with the dissociation rate constant of the wild-type Fe protein from the MoFe protein following electron transfer of 5 s-1. Chemically oxidized D39N Fe protein with MgADP-bound did not form a tight complex with the MoFe protein, showing a dissociation rate similar to chemically oxidized wild-type Fe protein (3 s-1 for D39N Fe protein and 6 s-1 for wild-type Fe protein). These results suggest that electron transfer from the Fe protein to the MoFe protein within the protein-protein complex normally induces conformational changes which increase the affinity of the Fe protein for the MoFe protein. A model is presented in which Asp-39 participates in a nucleotide signal transduction pathway involved in component protein-protein dissociation.
Collapse
Affiliation(s)
- W N Lanzilotta
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | | | | |
Collapse
|
171
|
Ryle MJ, Seefeldt LC. The [4Fe-4S] cluster domain of the nitrogenase iron protein facilitates conformational changes required for the cooperative binding of two nucleotides. Biochemistry 1996; 35:15654-62. [PMID: 8961928 DOI: 10.1021/bi961886f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
MgATP binding and hydrolysis are central to all reduction reactions catalyzed by nitrogenase. The iron (Fe) protein component of nitrogenase is a homodimeric protein with a bridging [4Fe-4S] cluster and two nucleotide binding sites, one on each subunit. This work presents evidence that the [4Fe-4S] cluster domain of the nitrogenase Fe protein functions as a hinge region between the two nucleotide binding domains, participating in the cooperative binding of two nucleotides. Alanine residues at position 98 (located near the [4Fe-4S] cluster) of the Azotobacter vinelandii Fe protein were changed by means of site-directed mutagenesis to Val (V) and Gly (G), and the resulting altered proteins were purified and characterized. While the wild-type and A98G Fe proteins were found to bind two nucleotides (MgATP or MgADP) with strong cooperativity (Hill coefficient of 2), the A98V Fe protein was found to bind one nucleotide with no apparent cooperativity. The binding of two nucleotides to the wild-type Fe protein is known to induce protein conformational changes which are reflected as changes in the properties of the [4Fe-4S] cluster, including a change in the redox potential of the [4Fe-4S] cluster of -120 mV for MgATP binding (-300 to -420 mV) and of -160 mV for MgADP binding (-300 to -460 mV). The binding of one nucleotide to the A98V Fe protein was found to result in only half the lowering of the redox potential, with MgATP binding resulting in a -80 mV change (-280 to -360 mV) and MgADP binding resulting in a -50 mV change (-280 to -330 mV). Results from 1H NMR, EPR, and CD spectra, along with Fe chelation rates, were all consistent with the binding of a single nucleotide to the A98V Fe protein inducing a partial conformational change. Finally, the A98V Fe protein with one nucleotide bound, still bound to the molybdenum-iron protein but did not support MgATP hydrolysis, electron transfer, or substrate reduction. A model is discussed in which the [4Fe-4S] cluster domain can be viewed as a hinge region between the two nucleotide binding domains which facilitates conformational rearrangements required for the cooperative binding of a second nucleotide.
Collapse
Affiliation(s)
- M J Ryle
- Department of Chemistry and Biochemistry, Utah State University, Logan 84322, USA
| | | |
Collapse
|
172
|
Peters JW, Stowell MH, Rees DC. A leucine-rich repeat variant with a novel repetitive protein structural motif. NATURE STRUCTURAL BIOLOGY 1996; 3:991-4. [PMID: 8946850 DOI: 10.1038/nsb1296-991] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
173
|
|
174
|
Eady RR. Structureminus signFunction Relationships of Alternative Nitrogenases. Chem Rev 1996; 96:3013-3030. [PMID: 11848850 DOI: 10.1021/cr950057h] [Citation(s) in RCA: 552] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert R. Eady
- Nitrogen Fixation Laboratory, John Innes Institute, Colney Lane Norwich NR4 7UH U.K
| |
Collapse
|
175
|
Ryle MJ, Lanzilotta WN, Seefeldt LC. Elucidating the mechanism of nucleotide-dependent changes in the redox potential of the [4Fe-4S] cluster in nitrogenase iron protein: the role of phenylalanine 135. Biochemistry 1996; 35:9424-34. [PMID: 8755721 DOI: 10.1021/bi9608572] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nucleotide binding to the nitrogenase iron (Fe) protein results in a lowering of the redox potential of its [4Fe-4S] cluster by over 100 mV, and this is thought to be essential for electron transfer to the molybdenum-iron (MoFe) protein for substrate reduction. This work presents evidence for an important role of the strictly conserved phenylalanine at position 135, located near the [4Fe-4S] cluster of nitrogenase Fe protein, in defining both the redox potential and the nucleotide-induced changes in the redox potential of the [4Fe-4S] cluster. Phe 135 was changed by means of site-directed mutagenesis to the amino acids Tyr (F135Y), Ile (F135I), Trp (F135W), and His (F135H), and the altered proteins were purified to homogeneity. Minor changes in the UV/visible and EPR spectra arising from the [4Fe-4S] cluster were detected in the altered proteins, while dramatic changes were observed in the visible region circular dichroism (CD) spectrum, suggesting that Phe 135 contributes significantly to the chiroptical properties of the [4Fe-4S] cluster. Likewise, significant changes in the redox potentials of the Phe altered Fe proteins were observed, with shifts of +50 to +120 mV compared to the redox potential of the wild-type Fe protein (-300 mV). The shifts in redox potential for the altered Fe proteins appeared to correlate with changes in isotropically shifted proton NMR resonances assigned to cluster ligands. All of the Phe 135 altered Fe proteins were found to bind either MgADP or MgATP, while the reduced and oxidized states of the F135W and F135H altered Fe proteins had significantly higher affinities for binding MgATP when compared to the wild-type Fe protein. While MgATP binding to the wild-type and Phe 135 altered Fe proteins resulted in approximately -100 mV shifts in the redox potentials for all proteins, MgADP binding resulted in only -30 to -50 mV shifts for the altered proteins compared to a -160 mV shift for the wild-type Fe protein. The current results suggest that Phe 135 is important in defining the redox potential of the [4Fe-4S] cluster in the Fe protein and influences the MgADP (but not MgATP) induced modulation of the redox potential.
Collapse
Affiliation(s)
- M J Ryle
- Department of Chemistry and Biochemistry, Utah State University, Logan 84322-0300, USA
| | | | | |
Collapse
|
176
|
Gennaro G, Hübner P, Sandmeier U, Yakunin AF, Hallenbeck PC. Cloning, characterization, and regulation of nifF from Rhodobacter capsulatus. J Bacteriol 1996; 178:3949-52. [PMID: 8682802 PMCID: PMC232658 DOI: 10.1128/jb.178.13.3949-3952.1996] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Rhodobacter capsulatus nifF gene and upstream sequence were cloned by using a probe based on the N-terminal sequence of NifF. nifF was found to not be contained in the previously described nif regions I, II, and III. Comparison of the deduced amino acid sequence showed that it is highly similar to NifF from Azotobacter vinelandii and NifF from Klebsiella pneumoniae. Analysis of translational fusions demonstrated that the regulation of transcription was the same as previously reported at the protein level. Insertional mutagen esis showed that NifF contributes significantly to nitrogenase activity under normal nitrogen-fixing conditions and that it is absolutely required for nitrogen fixation under iron limitation.
Collapse
Affiliation(s)
- G Gennaro
- Département de Microbiologie et Immunologie, Université de Montréal, Canada
| | | | | | | | | |
Collapse
|
177
|
Lanzilotta WN, Fisher K, Seefeldt LC. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex. Biochemistry 1996; 35:7188-96. [PMID: 8679547 DOI: 10.1021/bi9603985] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
MgA TP hydrolysis has been proposed to be absolutely required for electron transfer from the nitrogenase iron (Fe) protein to the molybdenum-iron (MoFe) protein. This work presents evidence for primary electron transfer from the Azotobacter vinelandii nitrogenase Fe protein to the MoFe protein in the absence of MgATP hydrolysis. Deletion of an amino acid (Leu 127) in a signal transduction pathway in the Fe protein resulted in an Fe protein conformation resembling the MgATP-bound state. This altered Fe protein (L127delta) was found to bind to the MoFe protein in the absence of MgATP, forming a tight protein complex. Both steady state and stopped-flow transient kinetic measurements suggest that two L127delta Fe proteins bind to one MoFe protein with an extremely high affinity. From pre-steady state kinetic determinations of the rate of complex dissociation, the affinity was found to be at least 350 times tighter than that of the wild-type A. vinelandii nitrogenase complex and at least 20 times tighter than that of the heterologous Clostridium pasteurianum Fe protein-A. vinelandii MoFe protein complex. The L127delta Fe protein-MoFe protein complex was isolated by gel filtration liquid chromatography. Scanning densitometry of an SDS gel of the complex isolated from the gel filtration column revealed a stoichiometry of 1.7 L 127 delta Fe proteins bound per MoFe protein. The L 127 delta Fe protein was found to transfer a single electron from its [4Fe-4S] cluster to the MoFe protein at a rate of 0.2s-1. This compares with the MgATP dependent electron transfer rate of 140 s-1 observed for transfer of an electron from the wild-type Fe protein to the MoFe protein. No substrate reduction (H+ or C2H2) was detected when wild-type MoFe protein was complemented with L 127 delta Fe protein. The MgATP-independent electron transfer from the L 127 delta Fe protein to the MoFe protein required active MoFe protein and was not inhibited by MgADP. EPR spectroscopy of the complex was employed to confirm the electron transfer reaction. These results show that Fe protein in a conformation resembling the MgATP-bound state can transfer at least one electron to the MoFe protein without the need for MgATP hydrolysis.
Collapse
Affiliation(s)
- W N Lanzilotta
- Department of Chemistry and Biochemistry, Utah State University, Logan 84322, USA
| | | | | |
Collapse
|
178
|
Simon HM, Homer MJ, Roberts GP. Perturbation of nifT expression in Klebsiella pneumoniae has limited effect on nitrogen fixation. J Bacteriol 1996; 178:2975-7. [PMID: 8631690 PMCID: PMC178037 DOI: 10.1128/jb.178.10.2975-2977.1996] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the nitrogenase system of Klebsiella pneumoniae, nifT is located between nifDK, the structural genes for dinitrogenase, and nifY, whose product is involved in nitrogenase maturation. It is, therefore, a reasonable hypothesis that the NifT protein might also have a role in the maturation of nitrogenase. However, the phenotypic characterization of nifT and nifT-overexpressing strains for effects on the regulation, maturation, and activity of nitrogenase identified no properties that were distinct from those of the wild type. We conclude that the K. pneumoniae NifT protein is not essential for nitrogen fixation under the conditions examined.
Collapse
Affiliation(s)
- H M Simon
- Department of Bacteriology, University of Wisconsin-Madison 53706, USA
| | | | | |
Collapse
|
179
|
Variations on a theme: Combined molecular chaperone and proteolysis functions in Clp/HSP100 proteins. J Biosci 1996. [DOI: 10.1007/bf02703106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
180
|
Chatterjee R, Allen RM, Ludden PW, Shah VK. Purification and characterization of the vnf-encoded apodinitrogenase from Azotobacter vinelandii. J Biol Chem 1996; 271:6819-26. [PMID: 8636105 DOI: 10.1074/jbc.271.12.6819] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The vnf-encoded apodinitrogenase (apodinitrogenase 2) has been purified from Azotobacter vinelandii strain CA117.30 (DeltanifKDB), and is an alpha2beta2delta2 hexamer. Apodinitrogenase 2 can be activated in vitro by the addition of the iron-vanadium cofactor (FeV-co) to form holodinitrogenase 2, which functions in C2H2, H+, and N2 reduction. Under certain conditions, the alpha2beta2delta2 hexamer dissociates to yield the free delta subunit (the VNFG protein) and a form of apodinitrogenase 2 that exhibits no C2H2, H+, or N2 reduction activities in the in vitro FeV-co activation assay; however, these activities can be restored upon addition of VNFG to the FeV-co activation assay system. No other vnf-, nif-, or non-nif-encoded proteins were able to replace the function of VNFG in the in vitro processing of alpha2beta2 apodinitrogenase 2 (in the presence of FeV-co) to a form capable of substrate reduction. Apodinitrogenase 2 is also activable in vitro by the iron-molybdenum cofactor to form a hybrid enzyme with unique properties, most notably the inability to reduce N2 and insensitivity to CO inhibition of C2H2 reduction.
Collapse
Affiliation(s)
- R Chatterjee
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, 53706, USA
| | | | | | | |
Collapse
|
181
|
Roberts MA, Wray JL. Cloning and characterization of an Arabidopsis thaliana cDNA clone encoding an organellar isoform of serine acetyltransferase. PLANT MOLECULAR BIOLOGY 1996; 30:1041-1049. [PMID: 8639741 DOI: 10.1007/bf00020814] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have cloned an Arabidopsis thaliana cDNA encoding serine acetyltransferase (EC 2.3.1.30) by functional complementation of the Escherichia coli cysE mutant JM15. The cDNA clone Sat-1 conferred serine acetyltransferase activity (with apparent Km for the two substrates acetyl CoA and L-serine of 0.043 and 3.47 mmol/dm3 respectively) on the cysE mutant. The 1515 bp full-length cDNA encodes a deduced protein of 391 amino acids which includes a putative chloroplastic targeting presequence. Northern analysis revealed a single message of 1.5 kb, while Southern hybridisation suggests a small multigene family of related sequences.
Collapse
Affiliation(s)
- M A Roberts
- Plant Sciences Laboratory, Research Division of Environmental and Evolutionary Biology, School of Biological and Medical Sciences, University of St. Andrews, Fife, UK
| | | |
Collapse
|
182
|
Premakumar R, Jacobitz S, Ricke SC, Bishop PE. Phenotypic characterization of a tungsten-tolerant mutant of Azotobacter vinelandii. J Bacteriol 1996; 178:691-6. [PMID: 8550501 PMCID: PMC177713 DOI: 10.1128/jb.178.3.691-696.1996] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A tungsten-tolerant mutant strain (CA6) of Azotobacter vinelandii first described in 1980 (P. E. Bishop, D. M. L. Jarlenski, and D. R. Hetherington, Proc. Natl. Acad. Sci. USA 77:7342-7346, 1980) has been further characterized. Results from growth experiments suggest that both nitrogenases 1 and 3 are utilized when CA6 grows in N-free medium containing Na2MoO4. Strain CA6.1.71, which lacks both nitrogenases 2 and 3, grew as well as strain CA in N-free medium containing Na2MoO4 after an initial lag. This indicates that nitrogenase 1 is fully functional in strain CA6. nifH-lacZ and anfH-lacZ transcriptional fusions were expressed in CA6 in the presence of Na2MoO4. Thus, in contrast to wild-type strain CA, transcription of the anfHDGK gene cluster in strain CA6 is not repressed by Mo. Expression of the vnfD-lacZ fusion was the same in both strains CA and CA6. In agreement with the results obtained with lac fusions, subunits of both nitrogenases 1 and 3 were found in protein extracts of CA6 cells grown in N-free medium containing Na2MoO4. However, CA6 cells, cultured in the presence of Na2WO4, accumulated nitrogenase 3 proteins without detectable amounts of nitrogenase 1 proteins. This indicates that expression of Mo-independent nitrogenase 3 is the basis for the tungsten tolerance phenotype of strain CA6. A measure of Mo accumulation as a function of time showed that accumulation by strain CA6 was slower than that for strain CA. When Mo accumulation was studied as a function of Na2MoO4 concentration, the two strains accumulated similar amounts of Mo in the concentration range of 0 to 1 microM Na2MoO4 during a 2-h period. Within the range of 1 to 5 microM Na2MoO4, Mo accumulation by strain CA increased linearly with increasing concentration whereas no further increases were observed for strain CA6. These results are consistent with the possibility that the tungsten tolerance mutation carried by CA6 is in a Mo transport system.
Collapse
Affiliation(s)
- R Premakumar
- USDA Agricultural Research Service, North Carolina State University, Raleigh 27695-7631, USA
| | | | | | | |
Collapse
|
183
|
Pulakat L, Hausman BS, Lei S, Gavini N. Nif- phenotype of Azotobacter vinelandii UW97. Characterization and mutational analysis. J Biol Chem 1996; 271:1884-9. [PMID: 8567634 DOI: 10.1074/jbc.271.4.1884] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have identified the molecular basis for the nitrogenase negative phenotype exhibited by Azotobacter vinelandii UW97. This strain was initially isolated following nitrosoguanidine mutagenesis. Recently, it was shown that this strain lacks the Fe protein activity, which results in the synthesis of a FeMo cofactor-deficient apodinitrogenase. Activation of this apodinitrogenase requires the addition of both MgATP and wild-type Fe protein to the crude extracts made by A. vinelandii UW97 (Allen, R.M., Homer, M.J., Chatterjee R., Ludden, P.W., Roberts, G.P., and Shah, V.K. (1993) J. Biol. Chem. 268 23670-23674). Earlier, we proposed the sequence of events in the MoFe protein assembly based on the biochemical and spectroscopic analysis of the purified apodinitrogenase from A. vinelandii DJ54 (Gavini, N., Ma, L., Watt, G., and Burgess, B.K. (1994) Biochemistry 33, 11842-11849). Taken together, these results imply that the assembly process of apodinitrogenase is arrested at the same step in both of these strains. Since A. vinelandii DJ54 is a delta nifH strain, this strain is not useful in identifying the features of the Fe protein involved in the MoFe protein assembly. Here, we report a systematic analysis of an A. vinelandii UW97 mutant and show that, unlike A. vinelandii DJ54, the nifH gene of A. vinelandii UW97 has no deletion in either coding sequence or the surrounding sequences. The specific mutation responsible for the Nif- phenotype of A. vinelandii UW97 is the substitution of a non-conserved serine at position 44 of the Fe protein by a phenylalanine as shown by DNA sequencing. Furthermore, oligonucleotide site-directed mutagenesis was employed to confirm that the Nif- phenotype in A. vinelandii UW97 is exclusively due to the substitution of the Fe protein residue serine 44 by phenylalanine. By contrast, replacing Ser-44 with alanine did not affect the Nif phenotype of A. vinelandii. Therefore, it seems that the Nif- phenotype of A. vinelandii UW97 is caused by a general structural disturbance of the Fe protein due to the presence of the bulky phenylalanine at position 44.
Collapse
Affiliation(s)
- L Pulakat
- Department of Biological Sciences, Bowling Green State University, Ohio 43403, USA
| | | | | | | |
Collapse
|
184
|
Mylona PV, Premakumar R, Pau RN, Bishop PE. Characteristics of orf1 and orf2 in the anfHDGK genomic region encoding nitrogenase 3 of Azotobacter vinelandii. J Bacteriol 1996; 178:204-8. [PMID: 8550418 PMCID: PMC177640 DOI: 10.1128/jb.178.1.204-208.1996] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In Azotobacter vinelandii, the anfHDGK operon encodes the subunits for the third nitrogenase complex. Two open reading frames (orf1 and orf2) located immediately downstream of anfK were shown to be required for diazotrophic growth under Mo- and V-deficient conditions. We have designated orf1 and orf2 anfO and anfR, respectively. Strains (CA115 and CA116) carrying in-frame deletions in anfO and anfR accumulate the subunits for nitrogenase 3 under Mo-deficient diazotrophic conditions. AnfO and AnfR are required for nitrogenase 3-dependent diazotrophic growth and 15N2 incorporation but not for acetylene reduction. AnfO contains a putative heme-binding domain that exhibits similarity to presumed heme-binding domains of P-450 cytochromes. Amino acid substitutions of Cys-158 show that this residue is required for fully functional AnfO as measured by diazotrophic growth under Mo- and V-deficient conditions. The nucleotide sequence of the region located immediately downstream of anfR has been determined. A putative rho-independent transcription termination site has been identified 250 bp from the 3' end of anfR. A third open reading frame (orf3), located downstream of anfR, does not appear to be required for diazotrophic growth under Mo- and V-deficient conditions.
Collapse
Affiliation(s)
- P V Mylona
- Agricultural Research Service, North Carolina State University, Raleigh 27695-7615, USA
| | | | | | | |
Collapse
|
185
|
Allen RM, Chatterjee R, Ludden PW, Shah VK. Incorporation of iron and sulfur from NifB cofactor into the iron-molybdenum cofactor of dinitrogenase. J Biol Chem 1995; 270:26890-6. [PMID: 7592933 DOI: 10.1074/jbc.270.45.26890] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
NifB-co is an iron- and sulfur-containing precursor to the iron-molybdenum cofactor (FeMo-co) of dinitrogenase. The synthesis of NifB-co requires at least the product of the nifB gene. Incorporation of 55Fe and 35S from NifB-co into FeMo-co was observed only when all components of the in vitro FeMo-co synthesis system were present. Incorporation of iron and sulfur from NifB-co into dinitrogenase was not observed in control experiments in which the apodinitrogenase (lacking FeMo-co) was initially activated with purified, unlabeled FeMo-co or in assays where NifB-co was oxygen-inactivated prior to addition to the synthesis system. These data clearly demonstrate that iron and sulfur from active NifB-co are specifically incorporated into FeMo-co of dinitrogenase and provide direct biochemical identification of an iron-sulfur precursor of FeMo-co. Under different in vitro FeMo-co synthesis conditions, iron and sulfur from NifB-co were associated with at least two other proteins (NIFNE and gamma) that are involved in the formation of active dinitrogenase. The results presented here suggest that multiple FeMo-co processing steps might occur on NIFNE and that FeMo-co synthesis is most likely completed prior to the association of FeMo-co with gamma.
Collapse
Affiliation(s)
- R M Allen
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison 53706, USA
| | | | | | | |
Collapse
|
186
|
Homer MJ, Dean DR, Roberts GP. Characterization of the gamma protein and its involvement in the metallocluster assembly and maturation of dinitrogenase from Azotobacter vinelandii. J Biol Chem 1995; 270:24745-52. [PMID: 7559591 DOI: 10.1074/jbc.270.42.24745] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Dinitrogenase, the enzyme capable of catalyzing the reduction of N2, is a heterotetramer (alpha 2 beta 2) and contains the iron-molybdenum cofactor (FeMo-co) at the active site of the enzyme. Mutant strains unable to synthesize FeMo-co accumulate an apo form of dinitrogenase, which is enzymatically inactive but can be activated in vitro by the addition of purified FeMo-co. Apodinitrogenase from certain mutant strains of Azotobacter vinelandii has a subunit composition of alpha 2 beta 2 gamma 2. The gamma subunit has been implicated as necessary for the efficient activation of apodinitrogenase in vitro. Characterization of gamma protein in crude extracts and partially pure fractions has suggested that it is a chaperone-insertase required by apodinitrogenase for the insertion of FeMo-co. These are three major forms of gamma protein detectable by Western analysis of native gels. An apodinitrogenase-associated form is found in extracts of nifB or nifNE strains and dissociates from the apocomplex upon addition of purified FeMo-co. A second form of gamma protein is unassociated with other proteins and exists as a homodimer. Both of these forms of gamma protein can be converted to a third form by the addition of purified FeMo-co. This conversion requires the addition of active FeMo-co and correlates with the incorporation of iron into gamma protein. Crude extracts that contain this form of gamma protein are capable of donating FeMo-co to apodinitrogenase, thereby activating the apodinitrogenase. These data support a model in which gamma protein is able to interact with both FeMo-co and apodinitrogenase, facilitate FeMo-co insertion into apodinitrogenase, and then dissociate from the activated dinitrogenase complex.
Collapse
Affiliation(s)
- M J Homer
- Department of Bacteriology, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
187
|
Isas JM, Yannone SM, Burgess BK. Azotobacter vinelandii NADPH:ferredoxin reductase cloning, sequencing, and overexpression. J Biol Chem 1995; 270:21258-63. [PMID: 7673160 DOI: 10.1074/jbc.270.36.21258] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Azotobacter vinelandii ferredoxin I (AvFdI) controls the expression of another protein that was originally designated Protein X. Recently we reported that Protein X is a NADPH-specific flavoprotein that binds specifically to FdI (Isas, J.M., and Burgess, B.K. (1994) J. Biol. Chem. 269, 19404-19409). The gene encoding this protein has now been cloned and sequenced. Protein X is 33% identical and has an overall 53% similarity with the fpr gene product from Escherichia coli that encodes NADPH:ferredoxin reductase. On the basis of this similarity and the similarity of the physical properties of the two proteins, we now designate Protein X as A. vinelandii NADPH:ferredoxin reductase and its gene as the fpr gene. The protein has been overexpressed in its native background in A. vinelandii by using the broad host range multicopy plasmid, pKT230. In addition to being regulated by FdI, the fpr gene product is overexpressed when A. vinelandii is grown under N2-fixing conditions even though the fpr gene is not preceded by a nif specific promoter. By analogy to what is known about fpr expression in E. coli, we propose that FdI may exert its regulatory effect on fpr by interacting with the SoxRS regulon.
Collapse
Affiliation(s)
- J M Isas
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92717, USA
| | | | | |
Collapse
|
188
|
Roll JT, Shah VK, Dean DR, Roberts GP. Characteristics of NIFNE in Azotobacter vinelandii strains. Implications for the synthesis of the iron-molybdenum cofactor of dinitrogenase. J Biol Chem 1995; 270:4432-7. [PMID: 7876209 DOI: 10.1074/jbc.270.9.4432] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The products of the nifN and nifE genes of Azotobacter vinelandii function as a 200-kDa alpha 2 beta 2 tetramer (NIFNE) in the synthesis of the iron-molybdenum cofactor (FeMo-co) of nitrogenase, the enzyme system required for biological nitrogen fixation. NIFNE was purified using a modification of the published protocol. Immunoblot analysis of anoxic native gels indicated that distinct forms of NIFNE accumulate in strains deficient in either NIFB (delta nifB::kan delta nifDK) or NIFH (delta nifHDK). During the purification of NIFNE from the delta nifHDK mutant, its mobility in these gels changed, becoming similar to that of NIFNE from the delta nifB::kan delta nifDK mutant. While NIFB activity initially co-purified with the NIFNE activity from the delta nifHDK mutant, further purification of NIFNE activity resulted in the loss of the co-purifying NIFB activity; this loss correlated with the change in NIFNE mobility on native gels. These results suggest that the form of NIFNE accumulated in the delta nifHDK mutant is associated with NIFB activity in crude extract but loses this association during NIFNE purification. Addition of the purified metabolic product of NIFB, termed NifB-co, to either NIFNE purified from the delta nifHDK strain or to the NIFNE in crude extract of the delta nifB::kan delta nifDK strain caused a change in the mobility of NIFNE on anoxic native gels to that of the form accumulated in a delta nifHDK mutant. These results support a model where both NifB-co and dinitrogenase reductase participate in FeMo-co synthesis through NIFNE, which serves as a scaffold for this process.
Collapse
Affiliation(s)
- J T Roll
- Department of Bacteriology, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
189
|
Slack FJ, Serror P, Joyce E, Sonenshein AL. A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon. Mol Microbiol 1995; 15:689-702. [PMID: 7783641 DOI: 10.1111/j.1365-2958.1995.tb02378.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An insertion mutation was isolated that resulted in derepressed expression of the Bacillus subtillis dipeptide transport operon (dpp) during the exponential growth phase in rich medium. DNA flanking the site of insertion was found to encode an operon (codVWXY) of four potential open reading frames (ORFs). The deduced product of the codV ORF is similar to members of the lambda Int family; CodW and CodX are homologous to HsIV and HsIU, two putative heat-shock proteins from Escherichia coli, and to LapC and LapA, two gene products of unknown function from Pasteurella haemolytica. CodX also shares homology with a family of ATPases, including ClpX, a regulatory subunit of the E. coli ClpP protease. CodY does not have any homologues in the data-bases. The insertion mutation and all previously isolated spontaneous cod mutations were found to map in codY. In-frame deletion mutations in each of the other cod genes revealed that only codY is required for repression of dpp in nutrient-rich medium. The codY mutations partially relieved amino acid repression of the histidine utilization (hut) operon but had no effect on regulation of certain other early stationary phase-induced genes, such as spoVG and gsiA.
Collapse
Affiliation(s)
- F J Slack
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
190
|
Walmsley J, Toukdarian A, Kennedy C. The role of regulatory genes nifA, vnfA, anfA, nfrX, ntrC, and rpoN in expression of genes encoding the three nitrogenases of Azotobacter vinelandii. Arch Microbiol 1994; 162:422-9. [PMID: 7872838 DOI: 10.1007/bf00282107] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several regulatory gene mutants of Azotobacter vinelandii were tested for ability to synthesize functional nitrogenase-1 (Nif phenotype), nitrogenase-2 (Vnf), or nitrogenase-3 (Anf). While nifA mutants were Nif-, Vnf+, and Anf+/-, and ntrC mutants were Nif+, Vnf+, and Anf+, nifA ntrC double mutants were Nif-, Vnf-, and Anf-. A vnfA mutant was Nif+, Vnf+/-, and Anf+/-, and an anfA strain was Nif+, Vnf+, and Anf-. lacZ fusions in the nifH, vnfH, vnfD, anfH, and nifM genes of Azotobacter vinelandii were constructed and introduced into wild-type and regulatory mutants of A. vinelandii. Expression of these operons correlated with the growth phenotype of the regulatory mutants. Apparently either NifA or NtrC can activate expression of nifM. Also, expression of the anf operon required the NifA transcriptional activator, although there are no NifA binding sites at appropriate locations upstream of anfH (or anfA). The results confirm previous reports that VnfA and AnfA are required for expression of vnf and anf genes, respectively, and that VnfA is involved in repression of the nifHDK operon in the absence of molybdenum and of the anfHDGK operon in the presence of vanadium.
Collapse
Affiliation(s)
- J Walmsley
- Department of Plant Pathology, University of Arizona, Tucson 85721
| | | | | |
Collapse
|
191
|
Fu W, Jack RF, Morgan TV, Dean DR, Johnson MK. nifU gene product from Azotobacter vinelandii is a homodimer that contains two identical [2Fe-2S] clusters. Biochemistry 1994; 33:13455-63. [PMID: 7947754 DOI: 10.1021/bi00249a034] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nifU gene product is required for the full activation of the metalloenzyme nitrogenase, the catalytic component of biological nitrogen fixation. In the present work, a hybrid plasmid that contains the Azotobacter vinelandii nifU gene was constructed and used to hyperexpress the NIFU protein in Escherichia coli. Recombinant NIFU was purified to homogeneity and was found to be a homodimer of 33-kDa subunits with approximately two Fe atoms per subunit. The combination of UV/visible absorption, variable-temperature magnetic circular dichroism, EPR, and resonance Raman spectroscopies shows the presence of a [2Fe-2S]2+,+ center (Em = -254 mV) with complete cysteinyl coordination in each subunit. The electronic, magnetic, and vibrational properties of the [2Fe-2S]2+,+ center do not conform to those established for any of the spectroscopically distinct types of 2Fe ferredoxins. These distinctive properties appear to be a consequence of a novel arrangement of coordinating cysteinyl residues in NIFU, and the residues likely to be involved in cluster coordination are discussed in light of primary sequence comparisons to other putative [2Fe-2S] proteins. The observed physicochemical properties of NIFU and its constituent [2Fe-2S] cluster also provide insight into the role of this protein in nitrogenase metallocluster biosynthesis.
Collapse
Affiliation(s)
- W Fu
- Department of Chemistry, University of Georgia, Athens 30602
| | | | | | | | | |
Collapse
|
192
|
Moshiri F, Kim JW, Fu C, Maier RJ. The FeSII protein of Azotobacter vinelandii is not essential for aerobic nitrogen fixation, but confers significant protection to oxygen-mediated inactivation of nitrogenase in vitro and in vivo. Mol Microbiol 1994; 14:101-14. [PMID: 7830548 DOI: 10.1111/j.1365-2958.1994.tb01270.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The FeSII protein of Azotobacter vinelandii has been proposed to mediate the 'conformational protection' of the molybdenum-dependent nitrogenase components against oxygen inactivation. We have cloned and characterized the structural gene for the FeSII protein (the fesII locus). Hybridization studies did not reveal the presence of fesII-like genes in a number of diverse species of well-studied nitrogen-fixing bacteria, with the exception of Azotobacter chroococcum. The fesII locus is transcriptionally expressed during both nitrogen fixing and non-nitrogen fixing conditions, although the level of its message is upregulated by approximately 2.5-fold during nitrogen fixation. The promoter region was identified by primer extension analysis, and is similar to other sigma 70-type promoters. Mutants devoid of the FeSII protein were constructed. These mutants possessed growth characteristics on a variety of carbon substrates during non-diazotrophic as well as diazotrophic growth that were essentially indistinguishable from the wild-type strain. Nevertheless, the nitrogenase activity in cell-free extracts is significantly more sensitive to irreversible oxygen inactivation in the mutants as compared with the wild type. When treated with 250 mM NaCl (a condition known to dissociate FeSII from nitrogenase components), the wild-type and mutant extracts were equally hypersensitive to oxygen inactivation. Upon energy starvation, conditions in which 'respiratory protection' is inoperable, the MoFe and Fe proteins of nitrogenase are degraded much more rapidly in vivo in the deletion mutants, compared to the wild type. Strains relying on either the vanadium or the 'iron-only' alternative nitrogenases exhibited similar growth rates irrespective of the presence or absence of the FeSII protein, and the in vitro inactivation of the vanadium nitrogenase components was not affected by the lack of the FeSII protein. All in all, these results are consistent with a model whereby 'respiratory protection' is the major physiological mechanism responsible for the protection of all three nitrogenases during energy-supplemented growth. Upon energy starvation, however, 'conformational protection', mediated by the FeSII protein is capable of temporarily protecting the conventional molybdenum nitrogenase components from inactivation and subsequent degradation.
Collapse
Affiliation(s)
- F Moshiri
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | | | |
Collapse
|
193
|
Premakumar R, Loveless TM, Bishop PE. Effect of amino acid substitutions in a potential metal-binding site of AnfA on expression from the anfH promoter in Azotobacter vinelandii. J Bacteriol 1994; 176:6139-42. [PMID: 7928978 PMCID: PMC196836 DOI: 10.1128/jb.176.19.6139-6142.1994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
AnfA, an activator required for transcription of the structural genes encoding nitrogenase 3 (anfHDGK) in Azotobacter vinelandii, has a potential metal-binding site [(S19)H(C21)FTGE(C26)R] in its N terminus. Growth studies and expression of an anfH-lacZ fusion in mutants containing amino acid substitutions in this site indicate that Ser-19 is not required for AnfA activity whereas Cys-21 and Cys-26 are required. Residual expression of the anfH-lacZ fusion in AnfA- mutants was found to be due to activation by VnfA, the activator required for expression of genes encoding nitrogenase 2.
Collapse
Affiliation(s)
- R Premakumar
- Agricultural Research Service, U.S. Department of Agriculture, Raleigh, North Carolina
| | | | | |
Collapse
|
194
|
Abstract
This review presents a comparison between the complex genetic regulatory networks that control nitrogen fixation in three representative rhizobial species, Rhizobium meliloti, Bradyrhizobium japonicum, and Azorhizobium caulinodans. Transcription of nitrogen fixation genes (nif and fix genes) in these bacteria is induced primarily by low-oxygen conditions. Low-oxygen sensing and transmission of this signal to the level of nif and fix gene expression involve at least five regulatory proteins, FixL, FixJ, FixK, NifA, and RpoN (sigma 54). The characteristic features of these proteins and their functions within species-specific regulatory pathways are described. Oxygen interferes with the activities of two transcriptional activators, FixJ and NifA. FixJ activity is modulated via phosphorylation-dephosphorylation by the cognate sensor hemoprotein FixL. In addition to the oxygen responsiveness of the NifA protein, synthesis of NifA is oxygen regulated at the level of transcription. This type of control includes FixLJ in R. meliloti and FixLJ-FixK in A. caulinodans or is brought about by autoregulation in B. japonicum. NifA, in concert with sigma 54 RNA polymerase, activates transcription from -24/-12-type promoters associated with nif and fix genes and additional genes that are not directly involved in nitrogen fixation. The FixK proteins constitute a subgroup of the Crp-Fnr family of bacterial regulators. Although the involvement of FixLJ and FixK in nifA regulation is remarkably different in the three rhizobial species discussed here, they constitute a regulatory cascade that uniformly controls the expression of genes (fixNOQP) encoding a distinct cytochrome oxidase complex probably required for bacterial respiration under low-oxygen conditions. In B. japonicum, the FixLJ-FixK cascade also controls genes for nitrate respiration and for one of two sigma 54 proteins.
Collapse
Affiliation(s)
- H M Fischer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| |
Collapse
|
195
|
Woodley P, Drummond M. Redundancy of the conserved His residue in Azotobacter vinelandii NifL, a histidine autokinase homologue which regulates transcription of nitrogen fixation genes. Mol Microbiol 1994; 13:619-26. [PMID: 7997174 DOI: 10.1111/j.1365-2958.1994.tb00456.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The NifL protein of Azotobacter vinelandii inhibits NifA, the activator of nif (nitrogen fixation) transcription, in response to oxygen and fixed nitrogen. NifL shows strong homology in its C-terminal domain to the histidine autokinase domains of the canonical two-component sensor proteins, including the region around His-304, which corresponds to the residue known to be phosphorylated in other systems. To examine the mechanism of sensory transduction by NifL, mutations encoding 10 substitutions for His-304 were introduced into the A. vinelandii chromosome. Regulation of nif transcription was measured using acetylene reduction and RNA blots. The substitutions His-304-->Arg and His-304-->Pro impaired regulation by both fixed nitrogen and oxygen, but substitution of Ala, Phe, Ile, Lys, Asn, Ser, Thr, Val had no effect. None of the mutants, including His-304-->Arg and His-304-->Pro, excreted ammonium during diazotrophy, a phenotype of nifL deletion mutants, suggesting that the molecular basis of this effect differs from that responsible for the inhibition of nif transcription. The data show conclusively that phosphorylation of His-304 is not essential for any of the known functions of A. vinelandii NifL. Homology to the family of histidine autokinases is therefore inadequate evidence for a mechanism of sensory transduction involving phosphorylation of the conserved histidine residue.
Collapse
Affiliation(s)
- P Woodley
- AFRC IPSR Nitrogen Fixation Laboratory, University of Sussex, Brighton, UK
| | | |
Collapse
|
196
|
Maldonado R, Jiménez J, Casadesús J. Changes of ploidy during the Azotobacter vinelandii growth cycle. J Bacteriol 1994; 176:3911-9. [PMID: 8021173 PMCID: PMC205588 DOI: 10.1128/jb.176.13.3911-3919.1994] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The size of the Azotobacter vinelandii chromosome is approximately 4,700 kb, as calculated by pulsed-field electrophoretic separation of fragments digested with the rarely cutting endonucleases SpeI and SwaI. Surveys of DNA content per cell by flow cytometry indicated the existence of ploidy changes during the A. vinelandii growth cycle in rich medium. Early-exponential-phase cells have a ploidy level similar to that of Escherichia coli or Salmonella typhimurium (probably ca. four chromosomes per cell), but a continuous increase of DNA content per cell is observed during growth. Late-exponential-phase cells may contain > 40 chromosomes per cell, while cells in the early stationary stage may contain > 80 chromosomes per cell. In late-stationary-phase cultures, the DNA content per cell is even higher, probably over 100 chromosome equivalents per cell. A dramatic change is observed in old stationary-phase cultures, when the population of highly polyploid bacteria segregates cells with low ploidy. The DNA content of the latter cells resembles that of cysts, suggesting that the process may reflect the onset of cyst differentiation. Cells with low ploidy are also formed when old stationary-phase cultures are diluted into fresh medium. Addition of rifampin to exponential-phase cultures causes a rapid increase in DNA content, indicating that A. vinelandii initiates multiple rounds of chromosome replication per cell division. Growth in minimal medium does not result in the spectacular changes of ploidy observed during rapid growth; this observation suggests that the polyploidy of A. vinelandii may not exist outside the laboratory.
Collapse
Affiliation(s)
- R Maldonado
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | |
Collapse
|
197
|
Affiliation(s)
- C Ouzounis
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
198
|
Purification and characterization of nitrogenase from a delta nifW strain of Azotobacter vinelandii. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41765-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
199
|
Leong-Morgenthaler P, Oliver SG, Hottinger H, Söll D. A Lactobacillus nifS-like gene suppresses an Escherichia coli transaminase B mutation. Biochimie 1994; 76:45-9. [PMID: 8031904 DOI: 10.1016/0300-9084(94)90061-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nifS gene was first identified in nitrogen-fixing bacteria where its protein product is essential for efficient nitrogen fixation. Here, we demonstrate that a nifS-like gene also occurs in Lactobacillus bulgaricus, an organism which does not fix nitrogen, and that the nifS gene product suppresses the leucine auxotrophy of an ilvD, ilvE Escherichia coli strain. The known nifS genes from prokaryotes and eukaryotes exhibit a high degree of sequence conservation although the genes have diverse functions, as shown by their ability to complement or suppress dissimilar mutations. It was suggested that the nifS gene products represent a group of enzymes which mediate a specific chemical reaction common to diverse metabolic pathways. The purified NifS protein from Azotobacter vinelandii was experimentally shown to be a pyridoxal phosphate-dependent cysteine desulfurase. Curiously, the NifS proteins exhibit also a remarkable sequence homology to a new class of pyridoxal phoshate-dependent aminotransferases. We show that the L bulgaricus NifS-like protein is able to replace in vivo transaminase B in E coli. This experimental observation supports the prediction that some NifS-like proteins may be aminotransferases.
Collapse
|
200
|
Tibbles BJ, Rawlings DE. Characterization of nitrogen-fixing bacteria from a temperate saltmarsh lagoon, including isolates that produce ethane from acetylene. MICROBIAL ECOLOGY 1994; 27:65-80. [PMID: 24190169 DOI: 10.1007/bf00170115] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/1993] [Revised: 09/08/1993] [Indexed: 06/02/2023]
Abstract
Nitrogen-fixing bacteria were isolated from sediments and water of a saltmarsh lagoon on the west coast of South Africa, and characterized according to factors that regulate nitrogen fixation in the marine environment. The majority of isolates were assigned to the Photobacterium or Vibrio genera on the basis of physiological and biochemical characteristics. One isolate was further assigned to the species Vibrio diazotrophicus. Carbohydrate utilization by each diazotrophic isolate was examined. Abilities of the isolates to utilize a range of mono-, di-, and polysaccharides largely reflected the predicted availability of organic carbon and energy in the lagoon, except that chitin was not utilized. Biochemical tests on the utilization of combined nitrogen showed that one isolate could utilize nitrate, and that this strain was susceptible to full repression of nitrogenase activity by 10mM nitrate. Urease activity was not detected in any of the isolates. In the absence of molybdenum two of the isolates, a Photobacterium spp. and V. diazotrophicus, reduced acetylene to ethylene and ethane, a property frequently associated with the activity of alternative nitrogenases. Addition of 25µM molybdenum inhibited ethane production by V. diazotrophicus, but stimulated ethylene and ethane production by the Photobacterium isolate. Addition of 28µM vanadium did not appear to regulate ethane production by either strain. Assays of nitrogenase activity in sediments from which some isolates were obtained indicated that molybdenum was not limiting nitrogenase activity at naturally-occurring concentrations. Southern hybridizations of the chromosomes of these strains with the anfH and vnfH genes of Azotobacter vinelandii and the nifH gene of Klebsiella pneumoniae indicated the presence of only one nitrogenase in these isolates.
Collapse
Affiliation(s)
- B J Tibbles
- Marine Biology Research Institute, Department of Zoology, University of Cape Town, 7700, Private Bag Rondebosch, South Africa
| | | |
Collapse
|