151
|
Nixon JEJ, Wang A, Field J, Morrison HG, McArthur AG, Sogin ML, Loftus BJ, Samuelson J. Evidence for lateral transfer of genes encoding ferredoxins, nitroreductases, NADH oxidase, and alcohol dehydrogenase 3 from anaerobic prokaryotes to Giardia lamblia and Entamoeba histolytica. EUKARYOTIC CELL 2002; 1:181-90. [PMID: 12455953 PMCID: PMC118039 DOI: 10.1128/ec.1.2.181-190.2002] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Giardia lamblia and Entamoeba histolytica are amitochondriate, microaerophilic protists which use fermentation enzymes like those of bacteria to survive anaerobic conditions within the intestinal lumen. Genes encoding fermentation enzymes and related electron transport peptides (e.g., ferredoxins) in giardia organisms and amebae are hypothesized to be derived from either an ancient anaerobic eukaryote (amitochondriate fossil hypothesis), a mitochondrial endosymbiont (hydrogen hypothesis), or anaerobic bacteria (lateral transfer hypothesis). The goals here were to complete the molecular characterization of giardial and amebic fermentation enzymes and to determine the origins of the genes encoding them, when possible. A putative giardia [2Fe-2S]ferredoxin which had a hypothetical organelle-targeting sequence at its N terminus showed similarity to mitochondrial ferredoxins and the hydrogenosomal ferredoxin of Trichomonas vaginalis (another luminal protist). However, phylogenetic trees were star shaped, with weak bootstrap support, so we were unable to confirm or rule out the endosymbiotic origin of the giardia [2Fe-2S]ferredoxin gene. Putative giardial and amebic 6-kDa ferredoxins, ferredoxin-nitroreductase fusion proteins, and oxygen-insensitive nitroreductases each tentatively supported the lateral transfer hypothesis. Although there were not enough sequences to perform meaningful phylogenetic analyses, the unique common occurrence of these peptides and enzymes in giardia organisms, amebae, and the few anaerobic prokaryotes suggests the possibility of lateral transfer. In contrast, there was more robust phylogenetic evidence for the lateral transfer of G. lamblia genes encoding an NADH oxidase from a gram-positive coccus and a microbial group 3 alcohol dehydrogenase from thermoanaerobic prokaryotes. In further support of lateral transfer, the G. lamblia NADH oxidase and adh3 genes appeared to have an evolutionary history distinct from those of E. histolytica.
Collapse
Affiliation(s)
- Julie E J Nixon
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Affiliation(s)
- C E French
- Institute of Cell and Molecular Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK.
| | | | | |
Collapse
|
153
|
Abstract
In Escherichia coli, the response to oxidative stress due to elevated levels of superoxide is mediated, in part, by the soxRS regulon. One member of the soxRS regulon, nfsA, encodes the major oxygen-insensitive nitroreductase in Escherichia coli which catalyzes the reduction of nitroaromatic and nitroheterocyclic compounds by NADPH. In this study we investigate the regulation of nfsA in response to the superoxide generating compound paraquat. The transcription start site (TSS) of nfsA was located upstream of the ybjC gene, a small open reading frame of unknown function located directly upstream of nfsA, suggesting that these two genes form an operon. The activity of the promoter associated with this TSS was confirmed with lacZ fusions and was shown to be inducible by paraquat. Footprinting and band shift analysis showed that purified His-tagged SoxS protein binds to a 20-base sequence 10 bases upstream of the -35 promoter sequence in the forward orientation, suggesting that the ybjC-nfsA promoter is a class I SoxS-dependent promoter.
Collapse
Affiliation(s)
- E Suzanne Paterson
- Department of Biology, Carleton University,Ottawa, Ontario K1S 5B6, Canada
| | | | | |
Collapse
|
154
|
Díaz E, Ferrández A, Prieto MA, García JL. Biodegradation of aromatic compounds by Escherichia coli. Microbiol Mol Biol Rev 2001; 65:523-69, table of contents. [PMID: 11729263 PMCID: PMC99040 DOI: 10.1128/mmbr.65.4.523-569.2001] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications.
Collapse
Affiliation(s)
- E Díaz
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain.
| | | | | | | |
Collapse
|
155
|
Esteve-Núñez A, Caballero A, Ramos JL. Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 2001; 65:335-52, table of contents. [PMID: 11527999 PMCID: PMC99030 DOI: 10.1128/mmbr.65.3.335-352.2001] [Citation(s) in RCA: 258] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitroaromatic compounds are xenobiotics that have found multiple applications in the synthesis of foams, pharmaceuticals, pesticides, and explosives. These compounds are toxic and recalcitrant and are degraded relatively slowly in the environment by microorganisms. 2,4,6-Trinitrotoluene (TNT) is the most widely used nitroaromatic compound. Certain strains of Pseudomonas and fungi can use TNT as a nitrogen source through the removal of nitrogen as nitrite from TNT under aerobic conditions and the further reduction of the released nitrite to ammonium, which is incorporated into carbon skeletons. Phanerochaete chrysosporium and other fungi mineralize TNT under ligninolytic conditions by converting it into reduced TNT intermediates, which are excreted to the external milieu, where they are substrates for ligninolytic enzymes. Most if not all aerobic microorganisms reduce TNT to the corresponding amino derivatives via the formation of nitroso and hydroxylamine intermediates. Condensation of the latter compounds yields highly recalcitrant azoxytetranitrotoluenes. Anaerobic microorganisms can also degrade TNT through different pathways. One pathway, found in Desulfovibrio and Clostridium, involves reduction of TNT to triaminotoluene; subsequent steps are still not known. Some Clostridium species may reduce TNT to hydroxylaminodinitrotoluenes, which are then further metabolized. Another pathway has been described in Pseudomonas sp. strain JLR11 and involves nitrite release and further reduction to ammonium, with almost 85% of the N-TNT incorporated as organic N in the cells. It was recently reported that in this strain TNT can serve as a final electron acceptor in respiratory chains and that the reduction of TNT is coupled to ATP synthesis. In this review we also discuss a number of biotechnological applications of bacteria and fungi, including slurry reactors, composting, and land farming, to remove TNT from polluted soils. These treatments have been designed to achieve mineralization or reduction of TNT and immobilization of its amino derivatives on humic material. These approaches are highly efficient in removing TNT, and increasing amounts of research into the potential usefulness of phytoremediation, rhizophytoremediation, and transgenic plants with bacterial genes for TNT removal are being done.
Collapse
Affiliation(s)
- A Esteve-Núñez
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientificas, Apdo Correos 419, E-18008 Granada, Spain
| | | | | |
Collapse
|
156
|
Jorgensen MA, Trend MA, Hazell SL, Mendz GL. Potential involvement of several nitroreductases in metronidazole resistance in Helicobacter pylori. Arch Biochem Biophys 2001; 392:180-91. [PMID: 11488591 DOI: 10.1006/abbi.2001.2427] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Susceptibility of Helicobacter pylori to the antibiotic metronidazole has been attributed to the activity of an oxygen-insensitive NADPH-dependent nitroreductase (RdxA), with resistance to this antimicrobial arising from null mutations in rdxA. To obtain a better understanding of the factors involved in resistance, nitroreductase and metronidazole reduction activities were investigated in matched pairs of clinical and laboratory-derived sensitive and resistant H. pylori strains. Significant differences in enzyme activities were observed between sensitive and resistant strains, suggesting that metronidazole susceptibility in H. pylori was associated with more than one enzyme activity. To establish the mutations occurring in rdxA, the genes from seventeen bacterial strains, including matched pairs were sequenced. To assess whether metronidazole was responsible for inducing random mutations in this gene, the complete nucleotide sequence of gene hp0630, encoding an NAD(P)H-quinone reductase which also has NADPH-dependent nitroreductase activity, was determined in the same strains. All resistant strains showed nonsense, missense, or frameshift mutations randomly throughout rdxA. In contrast, no mutations were observed in hp0630. The results confirmed the presence of rdxA null mutations in resistant strains and suggested that other factors involved in the metabolism of metronidazole contributed to the resistant phenotype.
Collapse
Affiliation(s)
- M A Jorgensen
- School of Microbiology and Immunology, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | |
Collapse
|
157
|
Jellen-Ritter AS, Kern WV. Enhanced expression of the multidrug efflux pumps AcrAB and AcrEF associated with insertion element transposition in Escherichia coli mutants Selected with a fluoroquinolone. Antimicrob Agents Chemother 2001; 45:1467-72. [PMID: 11302812 PMCID: PMC90490 DOI: 10.1128/aac.45.5.1467-1472.2001] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of fluoroquinolone resistance in Escherichia coli may be associated with mutations in regulatory gene loci such as marRAB that lead to increased multidrug efflux, presumably through activation of expression of the AcrAB multidrug efflux pump. We found that multidrug-resistant (MDR) phenotypes with enhanced efflux can also be selected by fluoroquinolones from marRAB- or acrAB-inactivated E. coli K-12 strains having a single mutation in the quinolone-resistance-determining region of gyrA. Mutant 3-AG100MKX, obtained from a mar knockout strain after two selection steps, showed enhanced expression of acrB in a reverse transcriptase PCR associated with insertion of IS186 into the AcrAB repressor gene acrR. In vitro selection experiments with acrAB knockout strains yielded MDR mutants after a single step. Enhanced efflux in these mutants was due to increased expression of acrEF and associated with insertion of IS2 into the upstream region of acrEF, presumably creating a hybrid promoter. These observations confirm the importance of efflux-associated nontarget gene mutations and indicate that transposition of genetic elements may have a role in the development of fluoroquinolone resistance in E. coli.
Collapse
Affiliation(s)
- A S Jellen-Ritter
- Section of Infectious Diseases and Clinical Immunology, Department of Medicine, University Hospital and Medical Center, D-89070 Ulm, Germany
| | | |
Collapse
|
158
|
Hughes MA, Williams PA. Cloning and characterization of the pnb genes, encoding enzymes for 4-nitrobenzoate catabolism in Pseudomonas putida TW3. J Bacteriol 2001; 183:1225-32. [PMID: 11157934 PMCID: PMC94995 DOI: 10.1128/jb.183.4.1225-1232.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida strain TW3 is able to metabolize 4-nitrotoluene via 4-nitrobenzoate (4NBen) and 3, 4-dihydroxybenzoic acid (protocatechuate [PCA]) to central metabolites. We have cloned, sequenced, and characterized a 6-kbp fragment of TW3 DNA which contains five genes, two of which encode the enzymes involved in the catabolism of 4NBen to PCA. In order, they encode a 4NBen reductase (PnbA) which is responsible for catalyzing the direct reduction of 4NBen to 4-hydroxylaminobenzoate with the oxidation of 2 mol of NADH per mol of 4NBen, a reductase-like enzyme (Orf1) which appears to have no function in the pathway, a regulator protein (PnbR) of the LysR family, a 4-hydroxylaminobenzoate lyase (PnbB) which catalyzes the conversion of 4-hydroxylaminobenzoate to PCA and ammonium, and a second lyase-like enzyme (Orf2) which is closely associated with pnbB but appears to have no function in the pathway. The central pnbR gene is transcribed in the opposite direction to the other four genes. These genes complete the characterization of the whole pathway of 4-nitrotoluene catabolism to the ring cleavage substrate PCA in P. putida strain TW3.
Collapse
Affiliation(s)
- M A Hughes
- School of Biological Sciences, University of Wales Bangor, Bangor, Gwynedd LL57 2UW, Wales, United Kingdom
| | | |
Collapse
|
159
|
Kwon DH, Lee M, Kim JJ, Kim JG, El-Zaatari FA, Osato MS, Graham DY. Furazolidone- and nitrofurantoin-resistant Helicobacter pylori: prevalence and role of genes involved in metronidazole resistance. Antimicrob Agents Chemother 2001; 45:306-8. [PMID: 11120984 PMCID: PMC90279 DOI: 10.1128/aac.45.1.306-308.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The prevalence of furazolidone, nitrofurantoin, and metronidazole resistance among Helicobacter pylori strains was assessed with 431 clinical isolates. Fifty-two percent were metronidazole resistant, compared to 2% (7 of 431) with resistance to furazolidone and nitrofurantoin. All seven furazolidone- and nitrofurantoin-resistant isolates were also metronidazole resistant. rdxA, frxA, and fdxB knockouts did not result in furazolidone or nitrofurantoin resistance. These data suggest that furazolidone and nitrofurantoin may be good alternatives to metronidazole for treating H. pylori infection.
Collapse
Affiliation(s)
- D H Kwon
- Department of Medicine, Baylor College of Medicine and Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
160
|
Jenks PJ, Ferrero RL, Tankovic J, Thiberge JM, Labigne A. Evaluation of nitrofurantoin combination therapy of metronidazole-sensitive and -resistant Helicobacter pylori infections in mice. Antimicrob Agents Chemother 2000; 44:2623-9. [PMID: 10991835 PMCID: PMC90126 DOI: 10.1128/aac.44.10.2623-2629.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The main objectives of this study were to determine whether the nitroreductase enzyme encoded by the rdxA gene of Helicobacter pylori was responsible for reductive activation of nitrofurantoin and whether a triple-therapy regimen with nitrofurantoin was able to eradicate metronidazole-sensitive and -resistant H. pylori infections from mice. The susceptibilities to nitrofurantoin of parent and isogenic rdxA mutant strains (three pairs), as well as a series of matched metronidazole-sensitive and -resistant strains isolated from mice (30) and patients (20), were assessed by agar dilution determination of the MIC. Groups of mice colonized with the metronidazole-sensitive H. pylori SS1 strain or a metronidazole-resistant rdxA SS1 mutant were treated with either metronidazole or nitrofurantoin as part of a triple-therapy regimen. One month after the completion of treatment the mice were sacrificed and their stomachs were cultured for H. pylori. The nitrofurantoin MICs for all strains tested were between 0.5 and 4.0 microg/ml. There was no significant difference between the susceptibility to nitrofurantoin of the parental strains and those of respective rdxA mutants or between those of matched metronidazole-sensitive and -resistant H. pylori isolates. The regimen with metronidazole eradicated infection from all eight SS1-infected mice and from one of eight mice inoculated with the rdxA mutant (P < or =0.001). The regimen with nitrofurantoin failed to eradicate infection from any of the six SS1-infected mice (P < or =0.001) and cleared infection from one of seven mice inoculated with the rdxA mutant. These results demonstrate that, despite the good in vitro activity of nitrofurantoin against H. pylori and the lack of cross-resistance between metronidazole and nitrofurantoin, eradication regimens involving nitrofurantoin are unable to eradicate either metronidazole-sensitive or -resistant H. pylori infections from mice.
Collapse
Affiliation(s)
- P J Jenks
- Unité de Pathogénie Bactérienne des Muqueuses, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | | | | | |
Collapse
|
161
|
Kitts CL, Green CE, Otley RA, Alvarez MA, Unkefer PJ. Type I nitroreductases in soil enterobacteria reduce TNT (2,4,6,-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). Can J Microbiol 2000; 46:278-82. [PMID: 10749541 DOI: 10.1139/w99-134] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many enteric bacteria express a type I oxygen-insensitive nitroreductase, which reduces nitro groups on many different nitroaromatic compounds under aerobic conditions. Enzymatic reduction of nitramines was also documented in enteric bacteria under anaerobic conditions. This study indicates that nitramine reduction in enteric bacteria is carried out by the type I, or oxygen-insensitive nitroreductase, rather than a type II enzyme. The enteric bacterium Morganella morganii strain B2 with documented hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) nitroreductase activity, and Enterobacter cloacae strain 96-3 with documented 2,4,6-trinitrotoluene (TNT) nitroreductase activity, were used here to show that the explosives TNT and RDX were both reduced by a type I nitroreductase. Morganella morganii and E. cloacae exhibited RDX and TNT nitroreductase activities in whole cell assays. Type I nitroreductase, purified from E. cloacae, oxidized NADPH with TNT or RDX as substrate. When expression of the E. cloacae type I nitroreductase gene was induced in an Escherichia coli strain carrying a plasmid, a simultaneous increase in TNT and RDX nitroreductase activities was observed. In addition, neither TNT nor RDX nitroreductase activity was detected in nitrofurazone-resistant mutants of M. morganii. We conclude that a type I nitroreductase present in these two enteric bacteria was responsible for the nitroreduction of both types of explosive.
Collapse
Affiliation(s)
- C L Kitts
- Environmental Biotechnology Institute, California Polytechnic State University, San Luis Obispo 93407, USA.
| | | | | | | | | |
Collapse
|
162
|
Liochev SI, Hausladen A, Fridovich I. Nitroreductase A is regulated as a member of the soxRS regulon of Escherichia coli. Proc Natl Acad Sci U S A 1999; 96:3537-9. [PMID: 10097071 PMCID: PMC22328 DOI: 10.1073/pnas.96.7.3537] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/1999] [Indexed: 11/18/2022] Open
Abstract
Nitroreductase A catalyzes the divalent reduction of nitro compounds, quinones, and dyes by NADPH. In this paper, nitroreductase A is induced in Escherichia coli by exposure to paraquat in a manner that depends on the expression of soxR. Nitroreductase activity was only slightly induced by paraquat in a strain bearing a mutational defect in the gene encoding nitroreductase A, but it was approximately 3-fold induced in the parental strain. Nitroreductase A thus appears to be a member of the soxRS regulon and probably contributes to the defenses against oxidative stress by minimizing the redox cycling attendant upon the univalent reduction of nitro compounds, quinones, and dyes.
Collapse
Affiliation(s)
- S I Liochev
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|