151
|
Kurittu P, Khakipoor B, Brouwer MS, Heikinheimo A. Plasmids conferring resistance to extended-spectrum beta-lactamases including a rare IncN+IncR multireplicon carrying blaCTX-M-1 in Escherichia coli recovered from migrating barnacle geese ( Branta leucopsis). OPEN RESEARCH EUROPE 2021; 1:46. [PMID: 37645149 PMCID: PMC10446048 DOI: 10.12688/openreseurope.13529.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 08/31/2023]
Abstract
Background: Increasing antimicrobial resistance (AMR) is a global threat and wild migratory birds may act as mediators of resistant bacteria across country borders. Our objective was to study extended-spectrum beta-lactamase (ESBL) and plasmid-encoded AmpC (pAmpC) producing Escherichia coli in barnacle geese using whole genome sequencing (WGS) and to identify plasmids harboring bla genes. Methods: Barnacle geese feces (n=200) were collected during fall 2017 and spring 2018 from an urban area in Helsinki, Finland. ESBL/AmpC-producing E. coli were recovered from nine samples (4.5%) and isolates were subjected to WGS on both short- and long-read sequencers, enabling hybrid assembly and determination of the genomic location of bla genes. Results: A rare multireplicon IncN+IncR was recovered from one isolate carrying bla CTX-M-1 in addition to aadA2b, lnu(F), and qnrS1. Moreover, rarely detected IncY plasmids in two isolates were found to harbor multiple resistance genes in addition to the human-associated bla CTX-M-15. Poultry-associated bla CMY-2 was identified from the widely distributed IncI1 and IncK plasmids from four different isolates. One isolate harbored an IncI1 plasmid with bla CTX-M-1 and flor. A chromosomal point mutation in the AmpC promoter was identified in one of the isolates. WGS analysis showed isolates carried multiple resistance and virulence genes and harbored multiple different plasmid replicons in addition to bla-carrying plasmids. Conclusions: Our findings suggest that wild migratory birds serve as a limited source of ESBL/AmpC-producing E. coli and may act as disseminators of the epidemic plasmid types IncI1 and IncK but also rarely detected plasmid types carrying multidrug resistance. Human and livestock-associated ESBL enzyme types were recovered from samples, suggesting a potential for interspecies transmission. WGS offers a thorough method for studying AMR from different sources and should be implemented more widely in the future for AMR surveillance and detection. Understanding plasmid epidemiology is vital for efforts to mitigate global AMR spread.
Collapse
Affiliation(s)
- Paula Kurittu
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Banafsheh Khakipoor
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Laboratory and Research Division, Microbiology Unit, Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
152
|
Hickman RA, Leangapichart T, Lunha K, Jiwakanon J, Angkititrakul S, Magnusson U, Sunde M, Järhult JD. Exploring the Antibiotic Resistance Burden in Livestock, Livestock Handlers and Their Non-Livestock Handling Contacts: A One Health Perspective. Front Microbiol 2021; 12:651461. [PMID: 33959112 PMCID: PMC8093850 DOI: 10.3389/fmicb.2021.651461] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/16/2021] [Indexed: 01/14/2023] Open
Abstract
Antibiotics are freqeuently used in the livestock sector in low- and middle-income countries for treatment, prophylaxis, and growth promotion. However, there is limited information into the zoonotic prevalence and dissemination patterns of antimicrobial resistance (AMR) within these environments. In this study we used pig farming in Thailand as a model to explore AMR; 156 pig farms were included, comprising of small-sized (<50 sows) and medium-sized (≥100 sows) farms, where bacterial isolates were selectively cultured from animal rectal and human fecal samples. Bacterial isolates were subjected to antimicrobial susceptibility testing (AST), and whole-genome sequencing. Our results indicate extensive zoonotic sharing of antibiotic resistance genes (ARGs) by horizontal gene transfer. Resistance to multiple antibiotics was observed with higher prevalence in medium-scale farms. Zoonotic transmission of colistin resistance in small-scale farms had a dissemination gradient from pigs to handlers to non-livestock contacts. We highly recommend reducing the antimicrobial use in animals’ feeds and medications, especially the last resort drug colistin.
Collapse
Affiliation(s)
- Rachel A Hickman
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | | | - Kamonwan Lunha
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jatesada Jiwakanon
- Research Group for Animal Health Technology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sunpetch Angkititrakul
- Research Group for Animal Health Technology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Ulf Magnusson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marianne Sunde
- Section for Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Josef D Järhult
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
153
|
Strauss RA, Herrera-Leon L, Guillén AC, Castro JS, Lorenz E, Carvajal A, Hernandez E, Navas T, Vielma S, Lopez N, Lopez MG, Aurenty L, Navas V, Rosas MA, Drummond T, Martínez JG, Hernández E, Bertuglia F, Andrade O, Torres J, May J, Herrera-Leon S, Eibach D. Molecular and epidemiologic characterization of the diphtheria outbreak in Venezuela. Sci Rep 2021; 11:6378. [PMID: 33737710 PMCID: PMC7973433 DOI: 10.1038/s41598-021-85957-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/09/2021] [Indexed: 11/09/2022] Open
Abstract
In 2016, Venezuela faced a large diphtheria outbreak that extended until 2019. Nasopharyngeal or oropharyngeal samples were prospectively collected from 51 suspected cases and retrospective data from 348 clinical records was retrieved from 14 hospitals between November 2017 and November 2018. Confirmed pathogenic Corynebactrium isolates were biotyped. Multilocus Sequence Typing (MLST) was performed followed by next-generation-based core genome-MLST and minimum spanning trees were generated. Subjects between 10 and 19 years of age were mostly affected (n = 95; 27.3%). Case fatality rates (CFR) were higher in males (19.4%), as compared to females (15.8%). The highest CFR (31.1%) was observed among those under 5, followed by the 40 to 49 age-group (25.0%). Nine samples corresponded to C. diphtheriae and 1 to C. ulcerans. Two Sequencing Types (ST), ST174 and ST697 (the latter not previously described) were identified among the eight C. diphtheriae isolates from Carabobo state. Cg-MLST revealed only one cluster also from Carabobo. The Whole Genome Sequencing analysis revealed that the outbreak seemed to be caused by different strains with C. diphtheriae and C. ulcerans coexisting. The reemergence and length of this outbreak suggest vaccination coverage problems and an inadequate control strategy.
Collapse
Affiliation(s)
| | | | | | - Julio S Castro
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Eva Lorenz
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ana Carvajal
- Hospital Universitario de Caracas, Caracas, Venezuela
| | | | - Trina Navas
- Hospital General Los Magallanes de Catia, Caracas, Venezuela
| | | | | | - Maria G Lopez
- Hospital de Niños José Manuel de Los Ríos, Caracas, Venezuela
| | - Lisbeth Aurenty
- Hospital de Niños José Manuel de Los Ríos, Caracas, Venezuela
| | - Valeria Navas
- Hospital Universitario de Maracaibo, Maracaibo, Venezuela
| | - Maria A Rosas
- Ciudad Hospitalaria Dr Henrique Tejera, Carabobo, Venezuela
| | | | | | | | | | - Omaira Andrade
- Centro Clinico-Materno Leopoldo Aguerrevere, Caracas, Venezuela
| | - Jaime Torres
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Jürgen May
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Daniel Eibach
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
154
|
Karlsen ST, Vesth TC, Oregaard G, Poulsen VK, Lund O, Henderson G, Bælum J. Machine learning predicts and provides insights into milk acidification rates of Lactococcus lactis. PLoS One 2021; 16:e0246287. [PMID: 33720959 PMCID: PMC7959382 DOI: 10.1371/journal.pone.0246287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/17/2021] [Indexed: 11/18/2022] Open
Abstract
Lactococcus lactis strains are important components in industrial starter cultures for cheese manufacturing. They have many strain-dependent properties, which affect the final product. Here, we explored the use of machine learning to create systematic, high-throughput screening methods for these properties. Fast acidification of milk is such a strain-dependent property. To predict the maximum hourly acidification rate (Vmax), we trained Random Forest (RF) models on four different genomic representations: Presence/absence of gene families, counts of Pfam domains, the 8 nucleotide long subsequences of their DNA (8-mers), and the 9 nucleotide long subsequences of their DNA (9-mers). Vmax was measured at different temperatures, volumes, and in the presence or absence of yeast extract. These conditions were added as features in each RF model. The four models were trained on 257 strains, and the correlation between the measured Vmax and the predicted Vmax was evaluated with Pearson Correlation Coefficients (PC) on a separate dataset of 85 strains. The models all had high PC scores: 0.83 (gene presence/absence model), 0.84 (Pfam domain model), 0.76 (8-mer model), and 0.85 (9-mer model). The models all based their predictions on relevant genetic features and showed consensus on systems for lactose metabolism, degradation of casein, and pH stress response. Each model also predicted a set of features not found by the other models.
Collapse
Affiliation(s)
- Signe Tang Karlsen
- Chr. Hansen A/S, Hoersholm, Denmark
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
- * E-mail:
| | | | | | | | - Ole Lund
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | | | |
Collapse
|
155
|
Valdezate S, Cobo F, Monzón S, Medina-Pascual MJ, Zaballos Á, Cuesta I, Pino-Rosa S, Villalón P. Genomic Background and Phylogeny of cfiA-Positive Bacteroides fragilis Strains Resistant to Meropenem-EDTA. Antibiotics (Basel) 2021; 10:antibiotics10030304. [PMID: 33809460 PMCID: PMC8001070 DOI: 10.3390/antibiotics10030304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Bacteroides fragilis shows high antimicrobial resistance (AMR) rates and possesses numerous AMR mechanisms. Its carbapenem-resistant strains (metallo-β-lactamase cfiA-positive) appear as an emergent, evolving clade. Methods: This work examines the genomes, taxonomy, and phylogenetic relationships with respect to other B. fragilis genomes of two B. fragilis strains (CNM20180471 and CNM20200206) resistant to meropenem+EDTA and other antimicrobial agents. Results: Both strains possessed cfiA genes (cfiA14b and the new cfiA28), along with other AMR mechanisms. The presence of other efflux-pump genes, mexAB/mexJK/mexXY-oprM, acrEF/mdtEF-tolC, and especially cusR, which reduces the entry of carbapenem via the repression of porin OprD, may be related to meropenem–EDTA resistance. None of the detected insertion sequences were located upstream of cfiA. The genomes of these and other B. fragilis strains that clustered together in phylogenetic analyses did not meet the condition of >95% average nucleotide/amino acid identity, or >70% in silico genome-to-genome hybridization similarity, to be deemed members of the same species, although <1% difference in the genomic G+C content was seen with respect to the reference genome B. fragilis NCTC 9343T. Conclusions: Carbapenem-resistant strains may be considered a distinct clonal entity, and their surveillance is recommended given the ease with which they appear to acquire AMR.
Collapse
Affiliation(s)
- Sylvia Valdezate
- National Centre of Microbiology, Reference and Research Laboratory for Taxonomy, Instituto de Salud Carlos III, Majadahonda, 280220 Madrid, Spain; (M.J.M.-P.); (S.P.-R.); (P.V.)
- Correspondence: ; Tel.: +34-91-822-3734; Fax: +34-91-509-7966
| | - Fernando Cobo
- Department of Microbiology, Instituto Biosanitario de Granada, University Hospital of Virgen de las Nieves, Avda. Fuerzas Armadas s/n, 18014 Granada, Spain; (F.C.); (S.M.); (I.C.)
| | - Sara Monzón
- Department of Microbiology, Instituto Biosanitario de Granada, University Hospital of Virgen de las Nieves, Avda. Fuerzas Armadas s/n, 18014 Granada, Spain; (F.C.); (S.M.); (I.C.)
| | - María J. Medina-Pascual
- National Centre of Microbiology, Reference and Research Laboratory for Taxonomy, Instituto de Salud Carlos III, Majadahonda, 280220 Madrid, Spain; (M.J.M.-P.); (S.P.-R.); (P.V.)
| | - Ángel Zaballos
- Bionformatics Unit, Applied Services, Training and Research, Instituto de Salud Carlos III, Majadahonda, 280220 Madrid, Spain;
- Genomics Unit, Applied Services, Training and Research, Instituto de Salud Carlos III, Majadahonda, 280220 Madrid, Spain
| | - Isabel Cuesta
- Department of Microbiology, Instituto Biosanitario de Granada, University Hospital of Virgen de las Nieves, Avda. Fuerzas Armadas s/n, 18014 Granada, Spain; (F.C.); (S.M.); (I.C.)
| | - Silvia Pino-Rosa
- National Centre of Microbiology, Reference and Research Laboratory for Taxonomy, Instituto de Salud Carlos III, Majadahonda, 280220 Madrid, Spain; (M.J.M.-P.); (S.P.-R.); (P.V.)
| | - Pilar Villalón
- National Centre of Microbiology, Reference and Research Laboratory for Taxonomy, Instituto de Salud Carlos III, Majadahonda, 280220 Madrid, Spain; (M.J.M.-P.); (S.P.-R.); (P.V.)
| |
Collapse
|
156
|
Nüesch-Inderbinen M, Raschle S, Stevens MJA, Schmitt K, Stephan R. Linezolid-resistant Enterococcus faecalis ST16 harbouring optrA on a Tn6674-like element isolated from surface water. J Glob Antimicrob Resist 2021; 25:89-92. [PMID: 33705941 DOI: 10.1016/j.jgar.2021.02.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/21/2021] [Accepted: 02/25/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES The objective of this work was to characterise an optrA-carrying Enterococcus faecalis ST16 isolate recovered from a river water sample in Switzerland. METHODS Linezolid-resistant E. faecalis F102 was recovered from surface water in Switzerland and was subjected to comprehensive genotypic characterisation and analysis of the genetic environment of the oxazolidinone/phenicol resistance gene optrA. Whole-genome sequencing (WGS) was performed to detect linezolid resistance mechanisms, including mutations in 23S rRNA and ribosomal protein genes as well as acquired resistance genes. The isolate was further characterised by multilocus sequence typing (MLST) and identification of virulence genes. RESULTS WGS detected the presence of optrA identical to the original optrA gene from E. faecalis E349. Analysis of the genetic environment revealed the association of optrA with fexA and a Tn6674-like transposon in co-existence with spc and erm(A) resistance genes. Sequence alignment indicated that the genetic environment of optrA was identical to a Tn6674-like variant from E. faecalis previously isolated from diseased and healthy humans and food-producing animals in the Asia-Pacific region. Enterococcus faecalis F102 did not contain any mutations in 23S rRNA or in genes encoding ribosomal proteins L3, L4 and L22. A total of 14 other resistance genes and 16 virulence genes were detected. Enterococcus faecalis F102 was assigned in silico to ST16. CONCLUSION The spread of optrA-carrying E. faecalis ST16 with a high pathogenic potential in surface water is a worrisome aspect from a public-health perspective.
Collapse
Affiliation(s)
- Magdalena Nüesch-Inderbinen
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 272, CH-8057 Zürich, Switzerland.
| | - Susanne Raschle
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 272, CH-8057 Zürich, Switzerland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 272, CH-8057 Zürich, Switzerland
| | - Kira Schmitt
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 272, CH-8057 Zürich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 272, CH-8057 Zürich, Switzerland
| |
Collapse
|
157
|
Larkin PMK, Mortimer L, Malenfant JH, Gaynor P, Contreras DA, Garner OB, Yang S, Allyn P. Investigation of Phylogeny and Drug Resistance Mechanisms of Elizabethkingia anophelis Isolated from Blood and Lower Respiratory Tract. Microb Drug Resist 2021; 27:1259-1264. [PMID: 33656389 DOI: 10.1089/mdr.2020.0263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Elizabethkingia species are environmental bacteria associated with opportunistic infections in vulnerable populations. Traditionally, Elizabethkingia meningoseptica was considered the predominant pathogenic species. However, commercial identification systems have routinely misidentified Elizabethkingia anophelis as E. meningoseptica, leading to a mischaracterization of clinical strains and an underestimation of the role of E. anophelis in human disease. Elizabethkingia spp. harbor multidrug resistance (MDR) genes that pose challenges for treatment. Differentiation between Elizabethkingia spp. is particularly important due to differences in antimicrobial resistance (AMR) and epidemiological investigation. In this study, we describe a case of MDR E. anophelis isolated from the blood and lower respiratory tract of a patient who was successfully treated with minocycline. These isolates were initially misidentified by matrix assisted laser desorption ionization-time of flight as E. meningoseptica, whereas whole genome sequencing (WGS) confirmed the isolates as E. anophelis with the closest related strain being E. anophelis NUHP1, which was implicated in a 2012 outbreak in Singapore. Several AMR genes (blaBlaB, blaBlaGOB, blaCME, Sul2, erm(F), and catB) were identified by WGS, confirming the mechanisms for MDR. This case emphasizes the utility of WGS for correct speciation, elucidation of resistance genes, and relatedness to other outbreak strains. As E. anophelis is associated with a high mortality and has been found in hospital system sinks, WGS is critically important for determining strain relatedness and tracking outbreaks in the hospital setting.
Collapse
Affiliation(s)
- Paige M K Larkin
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Leanne Mortimer
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Jason H Malenfant
- Division of Infectious Diseases, UCLA Medical Center, University of California, Los Angeles, Los Angeles, California, USA.,Department of Medicine, UCLA Medical Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Pryce Gaynor
- Division of Infectious Diseases, UCLA Medical Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Deisy A Contreras
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Omai B Garner
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Shangxin Yang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Paul Allyn
- Division of Infectious Diseases, UCLA Medical Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
158
|
Yadav S, Kapley A. Antibiotic resistance: Global health crisis and metagenomics. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 29:e00604. [PMID: 33732632 PMCID: PMC7937537 DOI: 10.1016/j.btre.2021.e00604] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/11/2021] [Accepted: 02/18/2021] [Indexed: 02/08/2023]
Abstract
Antibiotic resistance is a global problem which affects human health. The imprudent use of antibiotics (medicine, agriculture, aquaculture, and food industry) has resulted in the broader dissemination of resistance. Urban wastewater & sewage treatment plants act as the hotspot for the widespread of antimicrobial resistance. Natural environment also plays an important role in the dissemination of resistance. Mapping of antibiotic resistance genes (ARGS) in environment is essential for mitigating antimicrobial resistance (AMR) widespread. Therefore, the review article emphasizes on the application of metagenomics for the surveillance of antimicrobial resistance. Metagenomics is the next generation tool which is being used for cataloging the resistome of diverse environments. We summarize the different metagenomic tools that can be used for mining of ARGs and acquired AMR present in the metagenomic data. Also, we recommend application of targeted sequencing/ capture platform for mapping of resistome with higher specificity and selectivity.
Collapse
Affiliation(s)
- Shailendra Yadav
- Director’s Research Cell, National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| | - Atya Kapley
- Director’s Research Cell, National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| |
Collapse
|
159
|
Cornelius AJ, Huq M, On SLW, French NP, Vandenberg O, Miller WG, Lastovica AJ, Istivan T, Biggs PJ. Genetic characterisation of Campylobacter concisus: Strategies for improved genomospecies discrimination. Syst Appl Microbiol 2021; 44:126187. [PMID: 33677170 DOI: 10.1016/j.syapm.2021.126187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/08/2023]
Abstract
Although at least two genetically distinct groups, or genomospecies, have been well documented for Campylobacter concisus, no phenotype has yet been identified for their differentiation and thus formal description as separate species. C. concisus has been isolated from a variety of sites in the human body, including saliva and stool samples from both healthy and diarrhoeic individuals. We evaluated the ability of a range of whole genome-based tools to distinguish between the two C. concisus genomospecies (GS) using a collection of 190 C. concisus genomes. Nine genomes from related Campylobacter species were included in some analyses to provide context. Analyses incorporating sequence analysis of multiple ribosomal genes generated similar levels of C. concisus GS discrimination as genome-wide comparisons. The C. concisus genomes formed two groups; GS1 represented by ATCC 33237T and GS2 by CCUG 19995. The two C. concisus GS were separated from the nine genomes of related species. GS1 and GS2 also differed in G+C content with medians of 37.56% and 39.51%, respectively. The groups are consistent with previously established GS and are supported by DNA reassociation results. Average Nucleotide Identity using MUMmer (ANIm) and Genome BLAST Distance Phylogeny generated in silico DNA-DNA hybridisation (isDDH) (against ATCC 33237T and CCUG 19995), plus G+C content provides cluster-independent GS discrimination suitable for routine use. Pan-genomic analysis identified genes specific to GS1 and GS2. WGS data and genomic species identification methods support the existence of two GS within C. concisus. These data provide genome-level metrics for strain identification to genomospecies level.
Collapse
Affiliation(s)
- Angela J Cornelius
- Institute of Environmental Science and Research Ltd, P.O. Box 29181, Christchurch 8540, New Zealand.
| | - Mohsina Huq
- School of Science, RMIT University, G.P.O. Box 2476, Bundoora, Victoria 3001, Australia
| | - Stephen L W On
- Lincoln University, P.O. Box 85084, Lincoln 7647, New Zealand
| | - Nigel P French
- Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Olivier Vandenberg
- National Reference Centre for Campylobacter, Laboratoire Hospitalier Universitaire de Bruxelles, 322 rue Haute, 1000 Brussels, Belgium; School of Public Health, Campus Erasme - Bâtiment A, Route de Lennik 808 - CP591, Université Libre de Bruxelles, 1070 Bruxelles, Belgium
| | - William G Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA
| | - Albert J Lastovica
- University of Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Taghrid Istivan
- School of Science, RMIT University, G.P.O. Box 2476, Bundoora, Victoria 3001, Australia
| | - Patrick J Biggs
- Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
160
|
Kurittu P, Khakipoor B, Aarnio M, Nykäsenoja S, Brouwer M, Myllyniemi AL, Vatunen E, Heikinheimo A. Plasmid-Borne and Chromosomal ESBL/AmpC Genes in Escherichia coli and Klebsiella pneumoniae in Global Food Products. Front Microbiol 2021; 12:592291. [PMID: 33613476 PMCID: PMC7886708 DOI: 10.3389/fmicb.2021.592291] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/14/2021] [Indexed: 01/09/2023] Open
Abstract
Plasmid-mediated extended-spectrum beta-lactamase (ESBL), AmpC, and carbapenemase producing Enterobacteriaceae, in particular Escherichia coli and Klebsiella pneumoniae, with potential zoonotic transmission routes, are one of the greatest threats to global health. The aim of this study was to investigate global food products as potential vehicles for ESBL/AmpC-producing bacteria and identify plasmids harboring resistance genes. We sampled 200 food products purchased from Finland capital region during fall 2018. Products originated from 35 countries from six continents and represented four food categories: vegetables (n = 60), fruits and berries (n = 50), meat (n = 60), and seafood (n = 30). Additionally, subsamples (n = 40) were taken from broiler meat. Samples were screened for ESBL/AmpC-producing Enterobacteriaceae and whole genome sequenced to identify resistance and virulence genes and sequence types (STs). To accurately identify plasmids harboring resistance and virulence genes, a hybrid sequence analysis combining long- and short-read sequencing was employed. Sequences were compared to previously published plasmids to identify potential epidemic plasmid types. Altogether, 14 out of 200 samples were positive for ESBL/AmpC-producing E. coli and/or K. pneumoniae. Positive samples were recovered from meat (18%; 11/60) and vegetables (5%; 3/60) but were not found from seafood or fruit. ESBL/AmpC-producing E. coli and/or K. pneumoniae was found in 90% (36/40) of broiler meat subsamples. Whole genome sequencing of selected isolates (n = 21) revealed a wide collection of STs, plasmid replicons, and genes conferring multidrug resistance. blaCTX–M–15-producing K. pneumoniae ST307 was identified in vegetable (n = 1) and meat (n = 1) samples. Successful IncFII plasmid type was recovered from vegetable and both IncFII and IncI1-Iγ types from meat samples. Hybrid sequence analysis also revealed chromosomally located beta-lactamase genes in two of the isolates and indicated similarity of food-derived plasmids to other livestock-associated sources and also to plasmids obtained from human clinical samples from various countries, such as IncI type plasmid harboring blaTEM–52C from a human urine sample obtained in the Netherlands which was highly similar to a plasmid obtained from broiler meat in this study. Results indicate certain foods contain bacteria with multidrug resistance and pose a possible risk to public health, emphasizing the importance of surveillance and the need for further studies on epidemiology of epidemic plasmids.
Collapse
Affiliation(s)
- Paula Kurittu
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Banafsheh Khakipoor
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.,Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
161
|
Olajide AM, Chen S, LaPointe G. Markers to Rapidly Distinguish Bacillus paralicheniformis From the Very Close Relative, Bacillus licheniformis. Front Microbiol 2021; 11:596828. [PMID: 33505369 PMCID: PMC7829221 DOI: 10.3389/fmicb.2020.596828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
As close relatives, Bacillus paralicheniformis is often wrongly identified as Bacillus licheniformis. In this study, two genetic markers are presented based on fenC and fenD from the fengycin operon of B. paralicheniformis to rapidly distinguish it from B. licheniformis. The fengycin operon is one of the few present in B. paralicheniformis but absent in B. lichenformis up to date. Using these markers, two presumptive B. paralicheniformis isolates each were recovered from a set of isolates previously identified as B. licheniformis by Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) or identified only to genus level as Bacillus by 16S ribosomal RNA (rRNA) gene sequencing, respectively. Whole genome sequencing of the four isolates confirmed their identity as B. paralicheniformis having the closest similarity with B. paralicheniformis ATCC 9945a (GenBank: CP005965.1) with a 7,682 k-mer score and 97.22% Average Nucleotide Identity (ANI). ANI of 100% suggests that the four isolates are highly similar. Further analysis will be necessary to determine if finer differences exist among these isolates at the level of single nucleotide polymorphisms.
Collapse
Affiliation(s)
- Atinuke M Olajide
- CRIFS, Department of Food Science, University of Guelph, Ontario, ON, Canada
| | - Shu Chen
- Agriculture and Food Laboratory, Laboratory Services Division, University of Guelph, Ontario, ON, Canada
| | - Gisèle LaPointe
- CRIFS, Department of Food Science, University of Guelph, Ontario, ON, Canada
| |
Collapse
|
162
|
Genomic Characterization of Clinical Extensively Drug-Resistant Acinetobacter pittii Isolates. Microorganisms 2021; 9:microorganisms9020242. [PMID: 33503968 PMCID: PMC7912037 DOI: 10.3390/microorganisms9020242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 01/26/2023] Open
Abstract
Carbapenem-resistant Acinetobacter pittii (CRAP) is a causative agent of nosocomial infections. This study aimed to characterize clinical isolates of CRAP from a tertiary hospital in Northeast Thailand. Six isolates were confirmed as extensively drug-resistant Acinetobacter pittii (XDRAP). The blaNDM-1 gene was detected in three isolates, whereas blaIMP-14 and blaIMP-1 were detected in the others. Multilocus sequence typing with the Pasteur scheme revealed ST220 in two isolates, ST744 in two isolates, and ST63 and ST396 for the remaining two isolates, respectively. Genomic characterization revealed that six XDRAP genes contained antimicrobial resistance genes: ST63 (A436) and ST396 (A1) contained 10 antimicrobial resistance genes, ST220 (A984 and A864) and ST744 (A56 and A273) contained 9 and 8 antimicrobial resistance genes, respectively. The single nucleotide polymorphism (SNP) phylogenetic tree revealed that the isolates A984 and A864 were closely related to A. pittii YB-45 (ST220) from China, while A436 was related to A. pittii WCHAP100020, also from China. A273 and A56 isolates (ST744) were clustered together; these isolates were closely related to strains 2014S07-126, AP43, and WCHAP005069, which were isolated from Taiwan and China. Strict implementation of infection control based upon the framework of epidemiological analyses is essential to prevent outbreaks and contain the spread of the pathogen. Continued surveillance and close monitoring with molecular epidemiological tools are needed.
Collapse
|
163
|
Streptococcus pseudopneumoniae: Use of Whole-Genome Sequences To Validate Species Identification Methods. J Clin Microbiol 2021; 59:JCM.02503-20. [PMID: 33208473 DOI: 10.1128/jcm.02503-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 11/20/2022] Open
Abstract
A correct identification of Streptococcus pseudopneumoniae is a prerequisite for investigating the clinical impact of the bacterium. The identification has traditionally relied on phenotypic methods. However, these phenotypic traits have been shown to be unreliable, with some S. pseudopneumoniae strains giving conflicting results. Therefore, sequence-based identification methods have increasingly been used for identification of S. pseudopneumoniae In this study, we used 64 S. pseudopneumoniae strains, 59 S. pneumoniae strains, 22 S. mitis strains, 24 S. oralis strains, 6 S. infantis strains, and 1 S. peroris strain to test the capability of three single genes (rpoB, gyrB, and recA), two multilocus sequence analysis (MLSA) schemes, the single nucleotide polymorphism (SNP)-based phylogeny tool CSI phylogeny, a k-mer-based identification method (KmerFinder), average nucleotide identity (ANI) using fastANI, and core genome analysis to identify S. pseudopneumoniae Core genome analysis and CSI phylogeny were able to cluster all strains into distinct clusters related to their respective species. It was not possible to identify all S. pseudopneumoniae strains correctly using only one of the single genes. The MLSA schemes were unable to identify some of the S. pseudopneumoniae strains, which could be misidentified. KmerFinder identified all S. pseudopneumoniae strains but misidentified one S. mitis strain as S. pseudopneumoniae, and fastANI differentiated between S. pseudopneumoniae and S. pneumoniae using an ANI cutoff of 96%.
Collapse
|
164
|
Naorem RS, Blom J, Fekete C. Genome-wide comparison of four MRSA clinical isolates from Germany and Hungary. PeerJ 2021; 9:e10185. [PMID: 33520430 PMCID: PMC7811285 DOI: 10.7717/peerj.10185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is a drug-resistant pathogen, capable of colonizing diverse ecological niches and causing a broad spectrum of infections related to a community and healthcare. In this study, we choose four methicillin-resistant S. aureus (MRSA) clinical isolates from Germany and Hungary based on our previous polyphasic characterization finding. We assumed that the selected strains have a different genetic background in terms of the presence of resistance and virulence genes, prophages, plasmids, and secondary metabolite biosynthesis genes that may play a crucial role in niche adaptation and pathogenesis. To clarify these assumptions, we performed a comparative genome analysis of these strains and observed many differences in their genomic compositions. The Hungarian isolates (SA H27 and SA H32) with ST22-SCCmec type IVa have fewer genes for multiple-drug resistance, virulence, and prophages reported in Germany isolates. Germany isolate, SA G6 acquires aminoglycoside (ant(6)-Ia and aph(3’)-III) and nucleoside (sat-4) resistance genes via phage transduction and may determine its pathogenic potential. The comparative genome study allowed the segregation of isolates of geographical origin and differentiation of the clinical isolates from the commensal isolates. This study suggested that Germany and Hungarian isolates are genetically diverse and showing variation among them due to the gain or loss of mobile genetic elements (MGEs). An interesting finding is the addition of SA G6 genome responsible for the drastic decline of the core/pan-genome ratio curve and causing the pan-genome to open wider. Functional characterizations revealed that S. aureus isolates survival are maintained by the amino acids catabolism and favor adaptation to growing in a protein-rich medium. The dispersible and singleton genes content of S. aureus genomes allows us to understand the genetic variation among the CC5 and CC22 groups. The strains with the same genetic background were clustered together, which suggests that these strains are highly alike; however, comparative genome analysis exposed that the acquisition of phage elements, and plasmids through the events of MGEs transfer contribute to differences in their phenotypic characters. This comparative genome analysis would improve the knowledge about the pathogenic S. aureus strain’s characterization, and responsible for clinically important phenotypic differences among the S. aureus strains.
Collapse
Affiliation(s)
- Romen Singh Naorem
- Department of General and Environmental Microbiology, University of Pécs, Pécs, Hungary
| | - Jochen Blom
- Bioinformatics & Systems Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Csaba Fekete
- Department of General and Environmental Microbiology, University of Pécs, Pécs, Hungary
| |
Collapse
|
165
|
Paveenkittiporn W, Kamjumphol W, Ungcharoen R, Kerdsin A. Whole-Genome Sequencing of Clinically Isolated Carbapenem-Resistant Enterobacterales Harboring mcr Genes in Thailand, 2016-2019. Front Microbiol 2021; 11:586368. [PMID: 33505364 PMCID: PMC7829498 DOI: 10.3389/fmicb.2020.586368] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/16/2020] [Indexed: 01/26/2023] Open
Abstract
Mobile colistin-resistant genes (mcr) have become an increasing public health concern. Since the first report of mcr-1 in Thailand in 2016, perspective surveillance was conducted to explore the genomic characteristics of clinical carbapenem-resistant Enterobacterales (CRE) isolates harboring mcr in 2016-2019. Thirteen (0.28%) out of 4,516 CRE isolates were found to carry mcr genes, including 69.2% (9/13) of E. coli and 30.8% (4/13) of K. pneumoniae isolates. Individual mcr-1.1 was detected in eight E. coli (61.5%) isolates, whereas the co-occurrence of mcr-1.1 and mcr-3.5 was seen in only one E. coli isolate (7.7%). No CRE were detected carrying mcr-2, mcr-4, or mcr-5 through to mcr-9. Analysis of plasmid replicon types carrying mcr revealed that IncX4 was the most common (61.5%; 8/13), followed by IncI2 (15.4%; 2/13). The minimum inhibitory concentration values for colistin were in the range of 4-16 μg/ml for all CRE isolates harboring mcr, suggesting they have 100% colistin resistance. Clermont phylotyping of nine mcr-harboring carbapenem-resistant E. coli isolates demonstrated phylogroup C was predominant in ST410. In contrast, ST336 belonged to CC17, and the KL type 25 was predominant in carbapenem-resistant K. pneumoniae isolates. This report provides a comprehensive insight into the prevalence of mcr-carrying CRE from patients in Thailand. The information highlights the importance of strengthening official active surveillance efforts to detect, control, and prevent mcr-harboring CRE and the need for rational drug use in all sectors.
Collapse
Affiliation(s)
- Wantana Paveenkittiporn
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Watcharaporn Kamjumphol
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Nakhon, Thailand
| |
Collapse
|
166
|
Fuentes-Castillo D, Sellera FP, Goldberg DW, Fontana H, Esposito F, Cardoso B, Ikeda J, Kyllar A, Catão-Dias JL, Lincopan N. Colistin-resistant Enterobacter kobei carrying mcr-9.1 and bla CTX-M-15 infecting a critically endangered franciscana dolphin (Pontoporia blainvillei), Brazil. Transbound Emerg Dis 2021; 68:3048-3054. [PMID: 33411986 PMCID: PMC9290994 DOI: 10.1111/tbed.13980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022]
Abstract
The emergence of mobile mcr genes mediating resistance to colistin is a critical public health issue that has hindered the treatment of serious infections caused by multidrug-resistant pathogens in humans and other animals. We report the emergence of the mcr-9.1 gene in a polymyxin-resistant extended-spectrum β-lactamase (ESBL)-producing Enterobacter kobei infecting a free-living franciscana dolphin (Pontoporia blainvillei), threatened with extinction in South America. Genomic analysis confirmed the presence of genes conferring resistance to clinically relevant β-lactam [blaCTX-M-15 , blaACT-9 , blaOXA-1 and blaTEM-1B ], aminoglycoside [aac(3)-IIa, aadA1, aph(3'')-Ib and aph(6)-Id], trimethoprim [dfrA14], tetracycline [tetA], quinolone [aac(6')-Ib-cr and qnrB1], fosfomycin [fosA], sulphonamide [sul2] and phenicol [catA1 and catB3] antibiotics. The identification of mcr-9.1 in a CTX-M-15-producing pathogen infecting a critically endangered animal is of serious concern, which should be interpreted as a sign of further spread of critical priority pathogens and their resistance genes in threatened ecosystems.
Collapse
Affiliation(s)
- Danny Fuentes-Castillo
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.,One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Fábio P Sellera
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Daphne W Goldberg
- Econservation/Santos Basin Beach Monitoring Project, Rio de Janeiro, Brazil
| | - Herrison Fontana
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Brenda Cardoso
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Joana Ikeda
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel' (MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Anneliese Kyllar
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel' (MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Rio de Janeiro, Brazil.,CTA/Santos Basin Beach Monitoring Project, Rio de Janeiro, Brazil
| | - José L Catão-Dias
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil.,Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
167
|
Perdigão J, Caneiras C, Elias R, Modesto A, Spadar A, Phelan J, Campino S, Clark TG, Costa E, Saavedra MJ, Duarte A. Genomic Epidemiology of Carbapenemase Producing Klebsiella pneumoniae Strains at a Northern Portuguese Hospital Enables the Detection of a Misidentified Klebsiella variicola KPC-3 Producing Strain. Microorganisms 2020; 8:E1986. [PMID: 33322205 PMCID: PMC7763156 DOI: 10.3390/microorganisms8121986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
The evolutionary epidemiology, resistome, virulome and mobilome of thirty-one multidrug resistant Klebsiella pneumoniae clinical isolates from the northern Vila Real region of Portugal were characterized using whole-genome sequencing and bioinformatic analysis. The genomic population structure was dominated by two main sequence types (STs): ST147 (n = 17; 54.8%) and ST15 (n = 6; 19.4%) comprising four distinct genomic clusters. Two main carbapenemase coding genes were detected (blaKPC-3 and blaOXA-48) along with additional extended-spectrum β-lactamase coding loci (blaCTX-M-15, blaSHV-12, blaSHV-27, and blaSHV-187). Moreover, whole genome sequencing enabled the identification of one Klebsiella variicola KPC-3 producer isolate previously misidentified as K. pneumoniae, which in addition to the blaKPC-3 carbapenemase gene, bore the chromosomal broad spectrum β-lactamase blaLEN-2 coding gene, oqxAB and fosA resistance loci. The blaKPC-3 genes were located in a Tn4401b transposon (K. variicolan = 1; K. pneumoniaen = 2) and Tn4401d isoform (K. pneumoniaen = 28). Overall, our work describes the first report of a blaKPC-3 producing K. variicola, as well as the detection of this species during infection control measures in surveillance cultures from infected patients. It also highlights the importance of additional control measures to overcome the clonal dissemination of carbapenemase producing clones.
Collapse
Affiliation(s)
- João Perdigão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-033 Lisboa, Portugal; (J.P.); (R.E.); (A.M.)
| | - Cátia Caneiras
- Laboratory of Microbiology Research in Environmental Health (EnviHealthMicro Lab), Institute of Environmental Health (ISAMB), Faculty of Medicine, Universidade de Lisboa, 1649-026 Lisboa, Portugal;
- Institute of Preventive Medicine and Public Health (IMP&SP), Faculty of Medicine, Universidade de Lisboa, 1649-026 Lisboa, Portugal
- Department of Microbiology and Immunology, Faculty of Pharmacy, Universidade de Lisboa, 1649-033 Lisboa, Portugal
| | - Rita Elias
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-033 Lisboa, Portugal; (J.P.); (R.E.); (A.M.)
| | - Ana Modesto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-033 Lisboa, Portugal; (J.P.); (R.E.); (A.M.)
| | - Anton Spadar
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (A.S.); (J.P.); (S.C.); (T.G.C.)
| | - Jody Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (A.S.); (J.P.); (S.C.); (T.G.C.)
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (A.S.); (J.P.); (S.C.); (T.G.C.)
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (A.S.); (J.P.); (S.C.); (T.G.C.)
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Eliana Costa
- Serviço de Patologia Clínica, Centro Hospitalar de Trás-os-Montes e Alto Douro, 5000-508 Vila Real, Portugal;
| | - Maria José Saavedra
- Laboratory Medical Microbiology, Department of Veterinary Sciences, CITAB-Centre for the Research and Technology Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Aida Duarte
- Department of Microbiology and Immunology, Faculty of Pharmacy, Universidade de Lisboa, 1649-033 Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Monte da Caparica, Portugal
| |
Collapse
|
168
|
Hilt EE, Fitzwater SP, Ward K, de St Maurice A, Chandrasekaran S, Garner OB, Yang S. Carbapenem Resistant Aeromonas hydrophila Carrying bla cphA7 Isolated From Two Solid Organ Transplant Patients. Front Cell Infect Microbiol 2020; 10:563482. [PMID: 33194801 PMCID: PMC7649429 DOI: 10.3389/fcimb.2020.563482] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/23/2020] [Indexed: 11/30/2022] Open
Abstract
Aeromonas hydrophila resides in a variety of aquatic environments. Infections with A. hydrophila mainly occur after contact with fresh or brackish water. Nosocomial infections with A. hydrophila can also occur. A. hydrophila infections can be difficult to treat due to both intrinsic and acquired antimicrobial resistance (AMR) mechanisms. In 2018–19, we isolated multi-drug resistant (MDR) A. hyrodphila from two solid organ transplant patients with intra-abdominal infections. We aimed to characterize their AMR mechanisms and to determine their genetic relatedness to aid epidemiological investigation. We performed whole genome sequencing (WGS) using Illumina MiSeq and Nanopore MinIon on 3 A. hydrophila isolates, with one isolate from Patient A (blood) and two isolates from Patient B (abdominal and T-tube fluid, isolated 2 weeks apart). Phenotypic assays included: Broth Microdilution (BMD), Modified Hodge Test (MHT), Modified Carbapenem Inactivation Method (mCIM), and EDTA Carbapenem Inactivation Method (eCIM). Data analyses were performed using CLCbio and Geneious. AMR genomic analysis revealed that all three isolates possess chromosomally encoded genes including blaOXA−12(oxacillinase), blacepS(AmpC), and blacphA7(metallo-beta-lactamase). All isolates tested strongly positive by MHT and mCIM, but only Patient B's second isolate (after 2 weeks of meropenem treatment) tested positive by eCIM. More intriguingly, Patient B's first isolate (before meropenem treatment) tested falsely susceptible to carbapenems by BMD, suggesting blacphA7 gene was not expressed constitutively. Phylogenetic analysis showed the two isolates from Patient B were highly similar with only 1 SNP difference. The isolate from Patient A only differed from Patient B's isolates by 35 and 36 SNPs, respectively, suggesting close genetic relatedness. Further epidemiological investigation is undergoing. We report the first cases of CphA-mediated carbapenem resistant A. hydrophila in the U.S. It is concerning that 1 out of 3 isolates tested falsely susceptible to carbapenems by BMD despite clear carbapenemase production shown by strongly positive MHT and mCIM. In both cases, meropenem was initially used to treat the patients. Clinicians and microbiologists in the US should be aware of the emerging MDR Aeromonas nosocomial infections and the potential false carbapenem susceptible results due to CphA-type carbapenemase, which may be induced during treatment.
Collapse
Affiliation(s)
- Evann E Hilt
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sean Patrick Fitzwater
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kevin Ward
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Annabelle de St Maurice
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sukantha Chandrasekaran
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Omai B Garner
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shangxin Yang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
169
|
Castro LM, Foong CP, Higuchi-Takeuchi M, Morisaki K, Lopes EF, Numata K, Mota AJ. Microbial prospection of an Amazonian blackwater lake and whole-genome sequencing of bacteria capable of polyhydroxyalkanoate synthesis. Polym J 2020. [DOI: 10.1038/s41428-020-00424-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
170
|
Jiang Y, Liu Y, Gao M, Xue M, Wang Z, Liang H. Nicotinamide riboside alleviates alcohol-induced depression-like behaviours in C57BL/6J mice by altering the intestinal microbiota associated with microglial activation and BDNF expression. Food Funct 2020; 11:378-391. [PMID: 31820774 DOI: 10.1039/c9fo01780a] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The gut microbiota play an important role in many central nervous system diseases through the gut microbiota-brain axis. Recent studies suggest that nicotinamide riboside (NR) has neuroprotective properties. However, it is unknown whether NR can prevent or protect against alcohol-induced depression. Furthermore, it is unclear whether its therapeutic action involves changes in the composition of the gut microbiome. Here, we investigated the effects of NR in the mouse model of alcohol-induced depression. Treatment with NR improved the alcohol-induced depressive behaviour in mice. In addition, NR decreased the number of activated microglia in the hippocampus, and it reduced the levels of pro-inflammatory (IL-1β, IL-6, and TNF-α) and anti-inflammatory (IL-10 and TGF-β) cytokines in the brain of mice with alcohol-induced depression. Furthermore, NR significantly upregulated BDNF and diminished the inhibition of the AKT/GSK3β/β-catenin signalling pathway in the hippocampus of these mice. 16S rRNA sequencing revealed that, compared with control and NR-treated mice, the gut microbiome richness and composition were significantly altered in the depressed mice. Spearman's correlation analysis showed that differential gut bacterial genera correlated with the levels of inflammation-related cytokines and BDNF in the brain. After faecal microbiota transplantation, cognitive behaviours, microglial activity, levels of cytokines and BDNF, and activation state of the AKT/GSK3β/β-catenin signalling pathway (which is downstream of the BDNF receptor, TrkB) in recipient mice were similar to those in donor mice. Collectively, our findings show that NR dietary supplementation protects against alcohol-induced depression-like behaviours, possibly by altering the composition of the gut microbiota.
Collapse
Affiliation(s)
- Yushan Jiang
- Department of Human Nutrition, College of Public Health, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | | | | | | | | | | |
Collapse
|
171
|
Sid Ahmed MA, Abdel Hadi H, Hassan AAI, Abu Jarir S, Al-Maslamani MA, Eltai NO, Dousa KM, Hujer AM, Sultan AA, Soderquist B, Bonomo RA, Ibrahim EB, Jass J, Omrani AS. Evaluation of in vitro activity of ceftazidime/avibactam and ceftolozane/tazobactam against MDR Pseudomonas aeruginosa isolates from Qatar. J Antimicrob Chemother 2020; 74:3497-3504. [PMID: 31504587 DOI: 10.1093/jac/dkz379] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/16/2019] [Accepted: 08/02/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES To investigate the in vitro activity of ceftazidime/avibactam and ceftolozane/tazobactam against clinical isolates of MDR Pseudomonas aeruginosa from Qatar, as well as the mechanisms of resistance. METHODS MDR P. aeruginosa isolated between October 2014 and September 2015 from all public hospitals in Qatar were included. The BD PhoenixTM system was used for identification and initial antimicrobial susceptibility testing, while Liofilchem MIC Test Strips (Liofilchem, Roseto degli Abruzzi, Italy) were used for confirmation of ceftazidime/avibactam and ceftolozane/tazobactam susceptibility. Ten ceftazidime/avibactam- and/or ceftolozane/tazobactam-resistant isolates were randomly selected for WGS. RESULTS A total of 205 MDR P. aeruginosa isolates were included. Of these, 141 (68.8%) were susceptible to ceftazidime/avibactam, 129 (62.9%) were susceptible to ceftolozane/tazobactam, 121 (59.0%) were susceptible to both and 56 (27.3%) were susceptible to neither. Twenty (9.8%) isolates were susceptible to ceftazidime/avibactam but not to ceftolozane/tazobactam and only 8 (3.9%) were susceptible to ceftolozane/tazobactam but not to ceftazidime/avibactam. Less than 50% of XDR isolates were susceptible to ceftazidime/avibactam or ceftolozane/tazobactam. The 10 sequenced isolates belonged to six different STs and all produced AmpC and OXA enzymes; 5 (50%) produced ESBL and 4 (40%) produced VIM enzymes. CONCLUSIONS MDR P. aeruginosa susceptibility rates to ceftazidime/avibactam and ceftolozane/tazobactam were higher than those to all existing antipseudomonal agents, except colistin, but were less than 50% in extremely resistant isolates. Non-susceptibility to ceftazidime/avibactam and ceftolozane/tazobactam was largely due to the production of ESBL and VIM enzymes. Ceftazidime/avibactam and ceftolozane/tazobactam are possible options for some patients with MDR P. aeruginosa in Qatar.
Collapse
Affiliation(s)
- Mazen A Sid Ahmed
- Microbiology Division, Hamad Medical Corporation, Doha, Qatar.,The Life Science Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Hamad Abdel Hadi
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | | | | | | | | | - Khalid M Dousa
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Andrea M Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Louis Stokes Cleveland, Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Bo Soderquist
- The Life Science Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Louis Stokes Cleveland, Department of Veterans Affairs Medical Center, Cleveland, OH, USA.,Departments of Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,The CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | | | - Jana Jass
- The Life Science Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Ali S Omrani
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
172
|
Whole-Genome Sequence of Bacillus subtilis WS1A, a Promising Fish Probiotic Strain Isolated from Marine Sponge of the Bay of Bengal. Microbiol Resour Announc 2020; 9:9/39/e00641-20. [PMID: 32972930 PMCID: PMC7516141 DOI: 10.1128/mra.00641-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study reports the draft genome sequence of a promising fish probiotic, Bacillus subtilis strain WS1A, that possesses antimicrobial activity against Aeromonas veronii and suppressed motile Aeromonas septicemia in Labeo rohita. The de novo assembly resulted in an estimated chromosome size of 4,148,460 bp, with 4,288 open reading frames. This study reports the draft genome sequence of a promising fish probiotic, Bacillus subtilis strain WS1A, that possesses antimicrobial activity against Aeromonas veronii and suppressed motile Aeromonas septicemia in Labeo rohita. The de novo assembly resulted in an estimated chromosome size of 4,148,460 bp, with 4,288 open reading frames.
Collapse
|
173
|
Whole-Genome Comparative and Pathogenicity Analysis of Salmonella enterica subsp. enterica Serovar Rissen. G3-GENES GENOMES GENETICS 2020; 10:2159-2170. [PMID: 32358017 PMCID: PMC7341144 DOI: 10.1534/g3.120.401201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salmonella are a type of bacteria known to cause food-borne illness. Their host range varies widely, and their susceptibility to the host determines its pathogenicity. Salmonella enterica serovar Rissen (S. Rissen) is a widely distributed serotype; however, its virulence and pathogenicity are poorly understood. In this study, the pathogenicity and antibiotic resistance of a representative S. Rissen isolate were investigated. The cell model results showed that S. Rissen preferred to replicate in human macrophage cells U937 compared to murine macrophage cells RAW264.7, suggesting that it has a level of host adaptability. Genome sequencing and comparison analysis revealed that the distribution and nonsynonymous single nucleotide polymorphisms of virulence factors in S. Rissen were similar to those in S. Typhi rather than to those in S. Typhimurium. Taken together, our results suggest that although S. Rissen is a common serotype distributed in swine herds, pork and chicken products, it has strong ability to infect humans.
Collapse
|
174
|
Complete Genome Sequences of Seven Avibacterium paragallinarum Isolates from Poultry Farms in Pennsylvania, USA. Microbiol Resour Announc 2020; 9:9/27/e00654-20. [PMID: 32616650 PMCID: PMC7330252 DOI: 10.1128/mra.00654-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avibacterium paragallinarum, the causative agent of infectious coryza, causes significant economic losses to the poultry industry due to increased culling rates in growing chickens and decreased egg production in layers. We present the complete genome sequences of seven strains of Avibacterium paragallinarum isolated from poultry farms in Pennsylvania during 2019. Avibacterium paragallinarum, the causative agent of infectious coryza, causes significant economic losses to the poultry industry due to increased culling rates in growing chickens and decreased egg production in layers. We present the complete genome sequences of seven strains of Avibacterium paragallinarum isolated from poultry farms in Pennsylvania during 2019.
Collapse
|
175
|
Collis RM, Biggs PJ, Midwinter AC, Browne AS, Wilkinson DA, Irshad H, French NP, Brightwell G, Cookson AL. Genomic epidemiology and carbon metabolism of Escherichia coli serogroup O145 reflect contrasting phylogenies. PLoS One 2020; 15:e0235066. [PMID: 32584859 PMCID: PMC7316241 DOI: 10.1371/journal.pone.0235066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are a leading cause of foodborne outbreaks of human disease, but they reside harmlessly as an asymptomatic commensal in the ruminant gut. STEC serogroup O145 are difficult to isolate as routine diagnostic methods are unable to distinguish non-O157 serogroups due to their heterogeneous metabolic characteristics, resulting in under-reporting which is likely to conceal their true prevalence. In light of these deficiencies, the purpose of this study was a twofold approach to investigate enhanced STEC O145 diagnostic culture-based methods: firstly, to use a genomic epidemiology approach to understand the genetic diversity and population structure of serogroup O145 at both a local (New Zealand) (n = 47) and global scale (n = 75) and, secondly, to identify metabolic characteristics that will help the development of a differential media for this serogroup. Analysis of a subset of E. coli serogroup O145 strains demonstrated considerable diversity in carbon utilisation, which varied in association with eae subtype and sequence type. Several carbon substrates, such as D-serine and D-malic acid, were utilised by the majority of serogroup O145 strains, which, when coupled with current molecular and culture-based methods, could aid in the identification of presumptive E. coli serogroup O145 isolates. These carbon substrates warrant subsequent testing with additional serogroup O145 strains and non-O145 strains. Serogroup O145 strains displayed extensive genetic heterogeneity that was correlated with sequence type and eae subtype, suggesting these genetic markers are good indicators for distinct E. coli phylogenetic lineages. Pangenome analysis identified a core of 3,036 genes and an open pangenome of >14,000 genes, which is consistent with the identification of distinct phylogenetic lineages. Overall, this study highlighted the phenotypic and genotypic heterogeneity within E. coli serogroup O145, suggesting that the development of a differential media targeting this serogroup will be challenging.
Collapse
Affiliation(s)
- Rose M. Collis
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patrick J. Biggs
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Anne C. Midwinter
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - A. Springer Browne
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - David A. Wilkinson
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Hamid Irshad
- Animal Health Programme, National Agricultural Research Centre, Islamabad, Pakistan
| | - Nigel P. French
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Gale Brightwell
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Adrian L. Cookson
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- * E-mail:
| |
Collapse
|
176
|
Molecular Characterization and Antimicrobial Susceptibilities of Nocardia Species Isolated from the Soil; A Comparison with Species Isolated from Humans. Microorganisms 2020; 8:microorganisms8060900. [PMID: 32549367 PMCID: PMC7355893 DOI: 10.3390/microorganisms8060900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 01/08/2023] Open
Abstract
Nocardia species, one of the most predominant Actinobacteria of the soil microbiota, cause infection in humans following traumatic inoculation or inhalation. The identification, typing, phylogenetic relationship and antimicrobial susceptibilities of 38 soil Nocardia strains from Lara State, Venezuela, were studied by 16S rRNA and gyrB (subunit B of topoisomerase II) genes, multilocus sequence analysis (MLSA), whole-genome sequencing (WGS), and microdilution. The results were compared with those for human strains. Just seven Nocardia species with one or two strains each, except for Nocardia cyriacigeorgica with 29, were identified. MLSA confirmed the species assignments made by 16S rRNA and gyrB analyses (89.5% and 71.0% respectively), and grouped each soil strain with its corresponding reference and clinical strains, except for 19 N. cyriacigeorgica strains found at five locations which grouped into a soil-only cluster. The soil strains of N. cyriacigeorgica showed fewer gyrB haplotypes than the examined human strains (13 vs. 17) but did show a larger number of gyrB SNPs (212 vs. 77). Their susceptibilities to antimicrobials were similar except for beta-lactams, fluoroquinolones, minocycline, and clarithromycin, with the soil strains more susceptible to the first three (p ≤ 0.05). WGS was performed on four strains belonging to the soil-only cluster and on two outside it, and the results compared with public N. cyriacigeorgica genomes. The average nucleotide/amino acid identity, in silico genome-to-genome hybridization similarity, and the difference in the genomic GC content, suggest that some strains of the soil-only cluster may belong to a novel subspecies or even a new species (proposed name Nocardia venezuelensis).
Collapse
|
177
|
Ekwanzala MD, Dewar JB, Kamika I, Momba MNB. Comparative genomics of vancomycin-resistant Enterococcus spp. revealed common resistome determinants from hospital wastewater to aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137275. [PMID: 32109727 DOI: 10.1016/j.scitotenv.2020.137275] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
The rise of vancomycin-resistant Enterococcus spp. (VRE) has led to treatment challenges in hospital settings worldwide. Hospital wastewater (HW) might disseminate this threat to the aquatic environment. Thus, this study elucidates the VRE resistance quotient (RQ) of different environmental matrixes in wastewater and compares genomic determinants of VRE strains recovered from HW to water resources. Presumptive Enterococcus spp. and VRE were quantified and isolated using standard microbiological procedures. Fourteen VRE genomes were then sequenced using an Illumina HiSeq X™ Ten platform. Subsequently, VRE genomes were compared based on antibiotic resistance genes, plasmids, bacteriophages, insertion sequences, transposons, virulence and pathogenicity. Wastewater effluent showed the highest RQ among all sampled matrixes. The phylogeny of vancomycin-resistant E. faecalis (VREfs) and E. faecium (VREfm) revealed a tree structure based on their respective sequence type. A comparative genomic analysis of 14 genomes highlighted regions encoding phage protein, phage holin, phage integrase, integrase and transposase on both query genomes and the reference genome. Acquired resistance to vancomycin was conferred by vanA, vanN, vanL, vanG and the intrinsic resistance vanC operons. Plasmids were dominated by the presence of conserved areas of the replication initiating genes (rep). The Tn3-like and Tn917 transposons were present in all erythromycin-carrying erm(B) isolated VRE genomes. All VRE genomes expect one were putatively predicted as human pathogens with varying degrees of virulence. The presence of such resistant bacteria in African water resource is of great public health concern. It is, therefore, recommended that these bacteria be tracked and characterised from different environments to contribute to improved epidemiological containment action.
Collapse
Affiliation(s)
- Mutshiene Deogratias Ekwanzala
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Arcadia Campus, Private Bag X680, Pretoria 0001, South Africa.
| | - John Barr Dewar
- Department of Life and Consumer Sciences, University of South Africa, Florida Campus, Johannesburg, South Africa
| | - Ilunga Kamika
- Nanotechnology and Water Sustainability Research Unit; School of Science; College of Science, Engineering and Technology; University of South Africa, Johannesburg, South Africa
| | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Arcadia Campus, Private Bag X680, Pretoria 0001, South Africa.
| |
Collapse
|
178
|
Draft Genome Sequence of an Unusually Multidrug-Resistant Strain of Achromobacter xylosoxidans from a Blood Isolate. Microbiol Resour Announc 2020; 9:9/22/e00194-20. [PMID: 32467264 PMCID: PMC7256251 DOI: 10.1128/mra.00194-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Achromobacter xylosoxidans strain DN2019 was isolated from blood of a septicemia patient. We describe the draft genome and antibiotic susceptibility of this strain. Achromobacter xylosoxidans strain DN2019 was isolated from blood of a septicemia patient. We describe the draft genome and antibiotic susceptibility of this strain.
Collapse
|
179
|
Genome Sequences of Clinical Isolates of NDM-1-Producing Klebsiella quasipneumoniae subsp. similipneumoniae and KPC-2-Producing Klebsiella quasipneumoniae subsp. quasipneumoniae from Brazil. Microbiol Resour Announc 2020; 9:9/10/e00089-20. [PMID: 32139569 PMCID: PMC7171209 DOI: 10.1128/mra.00089-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Klebsiella quasipneumoniae is an emerging pathogen in human medicine. We report draft genome sequences of NDM-1- and KPC-2-producing K. quasipneumoniae strains from inpatients in Brazil. K. quasipneumoniae subsp. quasipneumoniae and K. quasipneumoniae subsp. similipneumoniae harbored broad resistomes. These data could contribute to a better understanding of acquired resistance in K. quasipneumoniae. Klebsiella quasipneumoniae is an emerging pathogen in human medicine. We report draft genome sequences of NDM-1- and KPC-2-producing K. quasipneumoniae strains from inpatients in Brazil. K. quasipneumoniae subsp. quasipneumoniae and K. quasipneumoniae subsp. similipneumoniae harbored broad resistomes. These data could contribute to a better understanding of acquired resistance in K. quasipneumoniae.
Collapse
|
180
|
Genome Sequences of Uncommon Shiga Toxin-Producing Escherichia coli Serotypes. Microbiol Resour Announc 2020; 9:9/10/e01496-19. [PMID: 32139559 PMCID: PMC7171221 DOI: 10.1128/mra.01496-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a foodborne disease with worldwide outbreaks. STEC serotypes O157, O26, O45, O103, O111, O121, and O145 cause the most outbreaks. There is little published information regarding the other serotypes. We report the draft genome sequences for 11 uncommon STEC serotypes from Nebraska. Shiga toxin-producing Escherichia coli (STEC) is a foodborne disease with worldwide outbreaks. STEC serotypes O157, O26, O45, O103, O111, O121, and O145 cause the most outbreaks. There is little published information regarding the other serotypes. We report the draft genome sequences for 11 uncommon STEC serotypes from Nebraska.
Collapse
|
181
|
Golz JC, Epping L, Knüver MT, Borowiak M, Hartkopf F, Deneke C, Malorny B, Semmler T, Stingl K. Whole genome sequencing reveals extended natural transformation in Campylobacter impacting diagnostics and the pathogens adaptive potential. Sci Rep 2020; 10:3686. [PMID: 32111893 PMCID: PMC7048796 DOI: 10.1038/s41598-020-60320-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/05/2020] [Indexed: 11/09/2022] Open
Abstract
Campylobacter is the major bacterial agent of human gastroenteritis worldwide and represents a crucial global public health burden. Species differentiation of C. jejuni and C. coli and phylogenetic analysis is challenged by inter-species horizontal gene transfer. Routine real-time PCR on more than 4000 C. jejuni and C. coli field strains identified isolates with ambiguous PCR results for species differentiation, in particular, from the isolation source eggs. K-mer analysis of whole genome sequencing data indicated the presence of C. coli hybrid strains with huge amounts of C. jejuni introgression. Recombination events were distributed over the whole chromosome. MLST typing was impaired, since C. jejuni sequences were also found in six of the seven housekeeping genes. cgMLST suggested that the strains were phylogenetically unrelated. Intriguingly, the strains shared a stress response set of C. jejuni variant genes, with proposed roles in oxidative, osmotic and general stress defence, chromosome maintenance and repair, membrane transport, cell wall and capsular biosynthesis and chemotaxis. The results have practical impact on routine typing and on the understanding of the functional adaption to harsh environments, enabling successful spreading and persistence of Campylobacter.
Collapse
Affiliation(s)
- Julia C Golz
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Lennard Epping
- Robert Koch Institute, Microbial Genomics, Berlin, Germany
| | - Marie-Theres Knüver
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Maria Borowiak
- German Federal Institute for Risk Assessment, Department of Biological Safety, Study Centre for Genome Sequencing and Analysis, Berlin, Germany
| | - Felix Hartkopf
- Robert Koch Institute, Microbial Genomics, Berlin, Germany
| | - Carlus Deneke
- German Federal Institute for Risk Assessment, Department of Biological Safety, Study Centre for Genome Sequencing and Analysis, Berlin, Germany
| | - Burkhard Malorny
- German Federal Institute for Risk Assessment, Department of Biological Safety, Study Centre for Genome Sequencing and Analysis, Berlin, Germany
| | | | - Kerstin Stingl
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany.
| |
Collapse
|
182
|
Metaphylogenetic analysis of global sewage reveals that bacterial strains associated with human disease show less degree of geographic clustering. Sci Rep 2020; 10:3033. [PMID: 32080241 PMCID: PMC7033184 DOI: 10.1038/s41598-020-59292-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/22/2020] [Indexed: 11/16/2022] Open
Abstract
Knowledge about the difference in the global distribution of pathogens and non-pathogens is limited. Here, we investigate it using a multi-sample metagenomics phylogeny approach based on short-read metagenomic sequencing of sewage from 79 sites around the world. For each metagenomic sample, bacterial template genomes were identified in a non-redundant database of whole genome sequences. Reads were mapped to the templates identified in each sample. Phylogenetic trees were constructed for each template identified in multiple samples. The countries from which the samples were taken were grouped according to different definitions of world regions. For each tree, the tendency for regional clustering was determined. Phylogenetic trees representing 95 unique bacterial templates were created covering 4 to 71 samples. Varying degrees of regional clustering could be observed. The clustering was most pronounced for environmental bacterial species and human commensals, and less for colonizing opportunistic pathogens, opportunistic pathogens and pathogens. No pattern of significant difference in clustering between any of the organism classifications and country groupings according to income were observed. Our study suggests that while the same bacterial species might be found globally, there is a geographical regional selection or barrier to spread for individual clones of environmental and human commensal bacteria, whereas this is to a lesser degree the case for strains and clones of human pathogens and opportunistic pathogens.
Collapse
|
183
|
Wist V, Morach M, Schneeberger M, Cernela N, Stevens MJ, Zurfluh K, Stephan R, Nüesch-Inderbinen M. Phenotypic and Genotypic Traits of Vancomycin-Resistant Enterococci from Healthy Food-Producing Animals. Microorganisms 2020; 8:E261. [PMID: 32075283 PMCID: PMC7074742 DOI: 10.3390/microorganisms8020261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Food-producing animals may be a reservoir of vancomycin-resistant enterococci (VRE), potentially posing a threat to animal and public health. The aims of this study were to estimate the faecal carriage of VRE among healthy cattle (n = 362), pigs (n = 350), sheep (n = 218), and poultry (n = 102 flocks) in Switzerland, and to characterise phenotypic and genotypic traits of the isolates. VRE were isolated from caecum content of six bovine, and 12 porcine samples respectively, and from pooled faecal matter collected from 16 poultry flock samples. All isolates harboured vanA. Three different types of Tn1546-like elements carrying the vanA operon were identified. Conjugal transfer of vanA to human Enterococcus faecalis strain JH2-2 was observed for porcine isolates only. Resistance to tetracycline and erythromycin was frequent among the isolates. Our data show that VRE harbouring vanA are present in healthy food-producing animals. The vanA gene from porcine isolates was transferable to other enterococci and these isolates might play a role in the dissemination of VRE in the food production chain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Magdalena Nüesch-Inderbinen
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland; (V.W.); (M.M.); (M.S.); (N.C.); (K.Z.); (R.S.)
| |
Collapse
|
184
|
Whole-Genome Sequence of Fish-Pathogenic Enterococcus faecalis Strain BFFF11. Microbiol Resour Announc 2020; 9:9/7/e01447-19. [PMID: 32054709 PMCID: PMC7019064 DOI: 10.1128/mra.01447-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A fish-pathogenic bacterium, Enterococcus faecalis strain BFFF11, was isolated from a tilapia suffering from streptococcosis in a fish farm in the Gazipur district of Bangladesh. The whole genome of this strain, BFFF11, was 3,067,042 bp, with a GC content of 37.4%.
Collapse
|
185
|
Seth-Smith HMB, Casanova C, Sommerstein R, Meinel DM, Abdelbary MMH, Blanc DS, Droz S, Führer U, Lienhard R, Lang C, Dubuis O, Schlegel M, Widmer A, Keller PM, Marschall J, Egli A. Phenotypic and Genomic Analyses of Burkholderia stabilis Clinical Contamination, Switzerland. Emerg Infect Dis 2020; 25:1084-1092. [PMID: 31107229 PMCID: PMC6537712 DOI: 10.3201/eid2506.172119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A recent hospital outbreak related to premoistened gloves used to wash patients exposed the difficulties of defining Burkholderia species in clinical settings. The outbreak strain displayed key B. stabilis phenotypes, including the inability to grow at 42°C; we used whole-genome sequencing to confirm the pathogen was B. stabilis. The outbreak strain genome comprises 3 chromosomes and a plasmid, sharing an average nucleotide identity of 98.4% with B. stabilis ATCC27515 BAA-67, but with 13% novel coding sequences. The genome lacks identifiable virulence factors and has no apparent increase in encoded antimicrobial drug resistance, few insertion sequences, and few pseudogenes, suggesting this outbreak was an opportunistic infection by an environmental strain not adapted to human pathogenicity. The diversity among outbreak isolates (22 from patients and 16 from washing gloves) is only 6 single-nucleotide polymorphisms, although the genome remains plastic, with large elements stochastically lost from outbreak isolates.
Collapse
|
186
|
Huizinga P, Kluytmans-van den Bergh M, Rossen JW, Willemsen I, Verhulst C, Savelkoul PHM, Friedrich AW, García-Cobos S, Kluytmans J. Decreasing prevalence of contamination with extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E) in retail chicken meat in the Netherlands. PLoS One 2019; 14:e0226828. [PMID: 31891609 PMCID: PMC6938319 DOI: 10.1371/journal.pone.0226828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
Retail chicken meat is a potential source of extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E). In the past decade, vast national efforts were undertaken to decrease the antibiotic use in the veterinary sector, resulting in a 58% decrease in antibiotic sales in the sector between 2009 and 2014. This decrease in antibiotic use was followed by a decrease in ESBL-E prevalence in broilers. The current study investigates the prevalence of contamination with ESBL-E in retail chicken meat purchased in the Netherlands between December 2013 and August 2015. It looks at associations between the prevalence of contamination with ESBL-E and sample characteristics such as method of farming (free-range or conventional), supermarket chain of purchase and year of purchase. In the current study, 352 chicken meat samples were investigated for the presence of ESBL-E using selective culture methods. Six samples were excluded due to missing isolates or problems obtaining a good quality sequence leaving 346 samples for further analyses. Of these 346 samples, 188 (54.3%) were positive for ESBL-E, yielding 216 ESBL-E isolates (Escherichia coli (n = 204), Klebsiella pneumoniae (n = 11) and Escherichia fergusonii (n = 1)). All ESBL-E isolates were analysed using whole-genome sequencing. The prevalence of contamination with ESBL-E in retail chicken meat decreased from 68.3% in 2014 to 44.6% in 2015, absolute risk difference 23.7% (95% confidence interval (CI): 12.6% - 34.1%). The ESBL-E prevalence was lower in free-range chicken meat (36.4%) compared with conventional chicken meat (61.5%), absolute risk difference 25.2% (95% CI: 12.9% - 36.5%). The prevalence of contamination with ESBL-E varied between supermarket chains, the highest prevalence of contamination was found in supermarket chain 4 (76.5%) and the lowest in supermarket chain 1 (37.8%). Pairwise isolate comparisons using whole-genome multilocus sequence typing (wgMLST) showed that clustering of isolates occurs more frequently within supermarket chains than between supermarket chains. In conclusion, the prevalence of contamination with ESBL-E in retail chicken in the Netherlands decreased over time; nevertheless, it remains substantial and as such a potential source for ESBL-E in humans.
Collapse
Affiliation(s)
- Pepijn Huizinga
- Department of Infection Control, Amphia Hospital, Breda, the Netherlands
- Laboratory for Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands
| | - Marjolein Kluytmans-van den Bergh
- Department of Infection Control, Amphia Hospital, Breda, the Netherlands
- Amphia Academy Infectious Disease Foundation, Amphia Hospital, Breda, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - John W. Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Ina Willemsen
- Department of Infection Control, Amphia Hospital, Breda, the Netherlands
| | - Carlo Verhulst
- Department of Infection Control, Amphia Hospital, Breda, the Netherlands
| | - Paul H. M. Savelkoul
- Maastricht University Medical Center, Caphri School for Public Health and Primary Care, Department of Medical Microbiology, Maastricht, the Netherlands
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Department of Medical Microbiology & Infection Control, Amsterdam, the Netherlands
| | - Alexander W. Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Silvia García-Cobos
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Jan Kluytmans
- Department of Infection Control, Amphia Hospital, Breda, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
187
|
Bogomazova AN, Gordeeva VD, Krylova EV, Soltynskaya IV, Davydova EE, Ivanova OE, Komarov AA. Mega-plasmid found worldwide confers multiple antimicrobial resistance in Salmonella Infantis of broiler origin in Russia. Int J Food Microbiol 2019; 319:108497. [PMID: 31927155 DOI: 10.1016/j.ijfoodmicro.2019.108497] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/08/2019] [Accepted: 12/20/2019] [Indexed: 01/06/2023]
Abstract
Plasmids which are the mobile part of the bacterial genome can acquire and carry over genes conferring antimicrobial resistance, thus contributing to rapid adaptation of bacterial community to human-defined environment. In 2014, Israeli scientists have reported a large conjugative mega-plasmid pESI (plasmid for emerging S. Infantis) that provides multiple drug resistance (MDR) of Salmonella Infantis isolated from broilers. Later, very similar pESI-like plasmids have been found in Salmonella isolated from poultry in the United States, Italy, Switzerland, Hungary, and Japan. Here we report detection of pESI-like plasmids in Salmonella Infantis isolated from chicken food products in Russia. Whole genome sequencing of three MDR isolates revealed pESI-like plasmids in all three cases. These plasmids have such typical pESI features as a locus for siderophore yersiniabactin, a cluster of IncI1 conjugative genes, a cluster of type IV pilus genes, and three toxin-antitoxin modules. The pESI-like plasmids carry from two to five resistance genes in each isolate. In total, we observed six antimicrobial resistance genes associated with pESI-like plasmids (aadA1, blaCTX-M-14, dfrA14, sul1, tetA/tetR, tetM). Besides plasmid genes of antimicrobial resistance, all three MDR isolates of S. Infantis harbor a mutation in chromosomal gene gyrA (p.S83Y or p.D87Y) that is associated with resistance to fluoroquinolones. In addition, we performed a comparative bioinformatics meta-analysis of 25 pESI-like plasmids hosted by S. Infantis from the USA, Europe, Latin America, Israel, and Japan. This analysis identified a 173 kB sequence that is common for all pESI-like plasmids and carries virulence operons and toxin-antitoxin modules.
Collapse
Affiliation(s)
- Alexandra N Bogomazova
- The Russian State Center for Animal Feed and Drug Standardization and Quality (FGBU "VGNKI"), Zvenigorodskoe shosse 5, Moscow 132022, Russia.
| | - Veronika D Gordeeva
- The Russian State Center for Animal Feed and Drug Standardization and Quality (FGBU "VGNKI"), Zvenigorodskoe shosse 5, Moscow 132022, Russia
| | - Ekaterina V Krylova
- The Russian State Center for Animal Feed and Drug Standardization and Quality (FGBU "VGNKI"), Zvenigorodskoe shosse 5, Moscow 132022, Russia
| | - Irina V Soltynskaya
- The Russian State Center for Animal Feed and Drug Standardization and Quality (FGBU "VGNKI"), Zvenigorodskoe shosse 5, Moscow 132022, Russia
| | - Ekaterina E Davydova
- The Russian State Center for Animal Feed and Drug Standardization and Quality (FGBU "VGNKI"), Zvenigorodskoe shosse 5, Moscow 132022, Russia
| | - Olga E Ivanova
- The Russian State Center for Animal Feed and Drug Standardization and Quality (FGBU "VGNKI"), Zvenigorodskoe shosse 5, Moscow 132022, Russia
| | - Alexander A Komarov
- The Russian State Center for Animal Feed and Drug Standardization and Quality (FGBU "VGNKI"), Zvenigorodskoe shosse 5, Moscow 132022, Russia
| |
Collapse
|
188
|
Kerdsin A, Deekae S, Chayangsu S, Hatrongjit R, Chopjitt P, Takeuchi D, Akeda Y, Tomono K, Hamada S. Genomic characterization of an emerging bla KPC-2 carrying Enterobacteriaceae clinical isolates in Thailand. Sci Rep 2019; 9:18521. [PMID: 31811215 PMCID: PMC6898716 DOI: 10.1038/s41598-019-55008-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/20/2019] [Indexed: 01/02/2023] Open
Abstract
The rapidly increasing prevalence of carbapenem-resistant Enterobacteriaceae (CRE) over the past decade has increased concern in healthcare facilities and the impact on public health. The prevalence of blaKPC (KPC) in Thailand remains very low; only blaKPC-13 has been described previously. This study is the first to describe the characteristics of blaKPC-2-carrying Klebsiella pneumoniae, Escherichia coli, and Enterobacter asburiae in Thailand. The prevalence rate of blaKPC-2-carrying isolates was 0.13% among CRE isolates in our study. Based on carbapenem susceptibility testing, K. pneumoniae C1985 was resistant to meropenem and ertapenem, E. coli C1992 was resistant to meropenem, imipenem, and ertapenem, and E. asburiae C2135 was only resistant to imipenem. K. pneumoniae C1985 carried blaKPC-2, blaSHV-11, fosA, oqxA, and oqxB, while E. coli C1992 contained blaKPC-2 and mdf(A) and E. asburiae C2135 harbored blaKPC-2, blaACT-2, and qnrE1. The genetic features of blaKPC-2 in the 3 isolates revealed identical rearrangement and flanking regions. Analysis of genomic sequences from these 3 isolates revealed that the sequence types of K. pneumoniae C1985, E. coli C1992, and E. asburiae C2135 were ST4008, ST7297, and ST1249, respectively. The 3 blaKPC-2 isolates were from individual living cases. Two cases were colonization for K. pneumoniae C1985 and E. asburiae C2135 and the third case was hospital-acquired infection of E. coli C1992. Although the prevalence of blaKPC-2-carrying CRE is relatively low in this study, continued surveillance and close monitoring are warranted. In addition, prompt or early detection of CRE and strict implementation of infection control are essential to prevent outbreaks or rapid spread in hospitals.
Collapse
Affiliation(s)
- Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand.
| | | | | | - Rujirat Hatrongjit
- Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Dan Takeuchi
- Japan-Thailand Research Collaboration Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yukihiro Akeda
- Japan-Thailand Research Collaboration Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Osaka, Japan.,Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Osaka, Japan
| | - Kazunori Tomono
- Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Osaka, Japan.,Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Osaka, Japan
| | - Shigeyuki Hamada
- Japan-Thailand Research Collaboration Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
189
|
Chaudhry V, Patil PB. Evolutionary insights into adaptation of Staphylococcus haemolyticus to human and non-human niches. Genomics 2019; 112:2052-2062. [PMID: 31785311 DOI: 10.1016/j.ygeno.2019.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/16/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022]
Abstract
Staphylococcus haemolyticus is a well-known member of human skin microbiome and an emerging opportunistic human pathogen. Presently, evolutionary studies are limited to human isolates even though it is reported from plants with beneficial properties and in environmental settings. In the present study, we report isolation of novel S. haemolyticus strains from surface sterilized rice seeds and compare their genome to other isolates from diverse niches available in public domain. The study showed expanding nature of pan-genome and revealed set of genes with putative functions related to its adaptability. This is seen by presence of type II lanthipeptide cluster in rice isolates, metal homeostasis genes in an isolate from copper coin and gene encoding methicillin resistance in human isolates. The present study on differential genome dynamics and role of horizontal gene transfers has provided novel insights into capability for ecological diversification of a bacterium of significance to human health.
Collapse
Affiliation(s)
- Vasvi Chaudhry
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Sector - 39A, Chandigarh 160036, India
| | - Prabhu B Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Sector - 39A, Chandigarh 160036, India.
| |
Collapse
|
190
|
Ekwanzala MD, Dewar JB, Kamika I, Momba MNB. Tracking the environmental dissemination of carbapenem-resistant Klebsiella pneumoniae using whole genome sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:80-92. [PMID: 31319261 DOI: 10.1016/j.scitotenv.2019.06.533] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 05/10/2023]
Abstract
The emergence and dissemination of infections caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) are of great concern worldwide, as there are limited options for their treatment. Thus, in this study, whole-genome sequencing (WGS) was applied to assess CRKP distribution and dissemination from hospital settings to the aquatic environment in order to identify the extent of the problem. Samples were collected from hospital wastewaters and receiving water bodies. Susceptible K. pneumoniae and CRKP were enumerated and isolated using standard methods. Seventeen CRKP were DNA-sequenced using an Illumina HiSeq X™ platform. De novo assembly and annotation were performed using SPAdes and RAST, respectively. The study analysed antibiotic resistance traits (antibiotic resistant genes, mobile genetic elements, and virulence genes) in CRKP isolates. Although influent of wastewater harboured the highest CRKP, wastewater treatment plants were efficient in reducing the threat. In terms of resistance per matrix, benthic sediment proved to harbour more CRKP (22.88%) versus susceptible K. pneumoniae, as revealed by their resistant quotient analysis, while effluent of wastewaters (4.21%) and water bodies (4.64%) had the lowest CRKP loads. The disseminating CRKP consisted of six sequence types (ST) - ST307 (n = 7), a novel ST3559 (n = 5), ST15 (n = 2), and one isolate of each of ST39, 152 and 298. All CRKP isolates harboured β-lactams (blaCTX-M-15 and blaOXA-1), quinolone (oqxA and oqxB) and fosfomycin (fosA) resistance genes as well as virulence genes. This study highlights the dissemination of 'high' importance and novel ST CRKP from hospital wastewater to waterbodies. This is concerning, particularly in the African context where a sizable number of people still rely on direct water resources for household use, including drinking. Further research is needed to systematically track the occurrence and distribution of these bacteria so as to mitigate their threat.
Collapse
Affiliation(s)
- Mutshiene Deogratias Ekwanzala
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Arcadia Campus, Private BagX680, Pretoria 0001, South Africa
| | - John Barr Dewar
- Department of Life and Consumer Sciences, University of South Africa, Florida Campus, Johannesburg, South Africa
| | - Ilunga Kamika
- Department of Environmental Sciences, University of South Africa, Science Campus, Johannesburg, South Africa
| | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Arcadia Campus, Private BagX680, Pretoria 0001, South Africa.
| |
Collapse
|
191
|
Hrabak J, Bitar I, Papagiannitsis CC. Combination of mass spectrometry and DNA sequencing for detection of antibiotic resistance in diagnostic laboratories. Folia Microbiol (Praha) 2019; 65:233-243. [PMID: 31713118 DOI: 10.1007/s12223-019-00757-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
In the last two decades, microbiology laboratories have radically changed by the introduction of novel technologies, like Next-Generation Sequencing (NGS) and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS). Nevertheless, emergence of antibiotic-resistant microorganisms represents a global threat of current medicine, being responsible for increasing mortality and health-care direct and indirect costs. In addition, the identification of antibiotic-resistant microorganisms, like OXA-48 carbapenemase-producing Enterobacteriaceae, has been changeling for clinical microbiology laboratories. Even the cost of NGS technology and MALDI-TOF MS equipment is relatively high, both technologies are increasingly used in diagnostic and research protocols. Therefore, the aim of this review is to present applications of these technologies used in clinical microbiology, especially in detection of antibiotic resistance and its surveillance, and to propose a combinatory approach of MALDI-TOF MS and NGS for the investigation of microbial associated infections.
Collapse
Affiliation(s)
- Jaroslav Hrabak
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76/1655, 301 00, Plzen, Czech Republic
| | - Ibrahim Bitar
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76/1655, 301 00, Plzen, Czech Republic.
| | - Costas C Papagiannitsis
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76/1655, 301 00, Plzen, Czech Republic
| |
Collapse
|
192
|
Mesbah Zekar F, Granier SA, Touati A, Millemann Y. Occurrence of Third-Generation Cephalosporins-Resistant Klebsiella pneumoniae in Fresh Fruits and Vegetables Purchased at Markets in Algeria. Microb Drug Resist 2019; 26:353-359. [PMID: 31603740 DOI: 10.1089/mdr.2019.0249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study aimed to characterize third-generation cephalosporin (3GC)-resistant Klebsiella pneumoniae isolated from fresh fruits and vegetables purchased at Bejaia city, Algeria. K. pneumoniae isolates were identified by MALDI-TOF. Susceptibility to antibiotics was tested by the disk diffusion method. Whole genome sequencing (WGS) was carried out to determine sequence type (ST), plasmid incompatibility group (Inc.), and acquired antimicrobial resistance gene presence. A total of 13 3GC-resistant K. pneumoniae strains were isolated. WGS identified blaCTX-M-15 in 11 extended-spectrum-beta-lactamases (ESBL)-K. pneumoniae and blaDHA-1 in 2 AmpC-K. pneumoniae. The aac(6')lb-cr gene was identified in 8 out of 13 isolates. Multilocus sequence typing (MLST) evidenced five different STs, namely ST14, ST45, ST219, ST236, and ST882. MDR K. pneumoniae contaminated fresh fruits and vegetables, often eaten raw and inappropriately washed, may represent an underestimated public health threat. This study highlights that hygiene measures during harvesting and retail process are of utmost importance to limit further ESBL/AmpC spread to the consumer households.
Collapse
Affiliation(s)
- Ferielle Mesbah Zekar
- Laboratoire d'Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria.,Laboratoire de Sécurité des Aliments, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES), Université PARIS-EST, Maisons-Alfort, France
| | - Sophie A Granier
- Laboratoire de Sécurité des Aliments, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES), Université PARIS-EST, Maisons-Alfort, France.,Laboratoire de Fougères, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES), Fougères, France
| | - Abdelaziz Touati
- Laboratoire d'Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Yves Millemann
- Laboratoire de Sécurité des Aliments, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES), Université PARIS-EST, Maisons-Alfort, France.,Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
193
|
Ramirez-Hernandez A, Bugarel M, Kumar S, Thippareddi H, Brashears MM, Sanchez-Plata MX. Phenotypic and Genotypic Characterization of Antimicrobial Resistance in Salmonella Strains Isolated from Chicken Carcasses and Parts Collected at Different Stages during Processing. J Food Prot 2019; 82:1793-1801. [PMID: 31545106 DOI: 10.4315/0362-028x.jfp-19-056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chicken carcass and parts rinsate samples and fecal samples were collected at different stages in a commercial poultry processing facility. Microbiological analysis was conducted to determine the levels of multiple indicator microorganisms and prevalence of Salmonella. Antibiotic susceptibility testing was conducted on Salmonella isolates to determine antimicrobial resistance profiles. Whole genome sequencing was performed for tracing isolates in the processing chain, serotyping, and determining genetic features associated with virulence and antimicrobial resistance in the bacterial genome. The overall contamination rate was 55% for Salmonella. Prevalence increased by 80% in chicken parts compared with the previous processing site (postchill carcasses), suggesting possible cross-contamination during the cutting and deboning processes. The levels of indicator organisms were reduced significantly from the prescalding to the parts processing sites, by 3.22 log CFU/mL for aerobic plate count, 3.92 log CFU/mL for E. coli, 3.70 log CFU/mL for coliforms, and 3.40 log CFU/mL for Enterobacteriaceae. The most frequent resistance in Salmonella was associated with tetracycline (49 of 50, 98%) and streptomycin (43 of 50, 86%). Some Salmonella isolates featured resistance to the cephems class of antibiotics (up to 15%). Whole genome sequencing analysis of Salmonella isolates identified nine different clonal populations distributed throughout the samples taken at different stages; serotype Kentucky was the most commonly isolated. This study provides insights into microbial profiling and antibiotic-resistant strains of chicken rinsate samples during poultry processing.
Collapse
Affiliation(s)
- Alejandra Ramirez-Hernandez
- Animal and Food Sciences Department, Texas Tech University, Lubbock, Texas 79409 (ORCID: https://orcid.org/0000-0001-9580-5773 [A.R.-H.])
| | - Marie Bugarel
- Animal and Food Sciences Department, Texas Tech University, Lubbock, Texas 79409 (ORCID: https://orcid.org/0000-0001-9580-5773 [A.R.-H.])
| | - Sanjay Kumar
- Poultry Science Department, University of Georgia, Athens, Georgia 30602, USA
| | | | - Mindy M Brashears
- Animal and Food Sciences Department, Texas Tech University, Lubbock, Texas 79409 (ORCID: https://orcid.org/0000-0001-9580-5773 [A.R.-H.])
| | - Marcos X Sanchez-Plata
- Animal and Food Sciences Department, Texas Tech University, Lubbock, Texas 79409 (ORCID: https://orcid.org/0000-0001-9580-5773 [A.R.-H.])
| |
Collapse
|
194
|
Mbelle NM, Osei Sekyere J, Amoako DG, Maningi NE, Modipane L, Essack SY, Feldman C. Genomic analysis of a multidrug-resistant clinical Providencia rettgeri (PR002) strain with the novel integron ln1483 and an A/C plasmid replicon. Ann N Y Acad Sci 2019; 1462:92-103. [PMID: 31549428 DOI: 10.1111/nyas.14237] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 11/29/2022]
Abstract
Whole-genome sequence analysis was performed on a multidrug-resistant Providencia rettgeri PR002 clinical strain isolated from the urine of a hospitalized patient in Pretoria, South Africa, in 2013. The resistome, mobilome, pathogenicity island(s), as well as virulence and heavy-metal resistance genes of the isolate, were characterized using whole-genome sequencing and bioinformatic analysis. PR002 had a genome assembly size of 4,832,624 bp with a GC content of 40.7%, an A/C2 plasmid replicase gene, four integrons/gene cassettes, 17 resistance genes, and several virulence and heavy metal resistance genes, confirming PR002 as a human pathogen. A novel integron, In1483, harboring the gene blaOXA-2 , was identified, with other uncharacterized class 1 integrons harboring aacA4cr and dfrA1. Aac(3')-IIa and blaSCO-1 , as well as blaPER-7 , sul2, and tet(B), were found bracketed by composite Tn3 transposons, and IS91, IS91, and IS4 family insertion sequences, respectively. PR002 was resistant to all antibiotics tested except amikacin, carbapenems, cefotaxime-clavulanate, ceftazidime-clavulanate, cefoxitin, and fosfomycin. PR002 was closely related to PR1 (USA), PRET_2032 (SPAIN), DSM_1131, and NCTC7477 clinical P. rettgeri strains, but not close enough to suggest it was imported into South Africa from other countries. Multidrug resistance in P. rettgeri is rare, particularly in clinical settings, making this case an important incident requiring urgent attention. This is also the first report of an A/C plasmid in P. rettgeri. The array, multiplicity, and diversity of resistance and virulence genes in this strain are concerning, necessitating stringent infection control, antibiotic stewardship, and periodic resistance surveillance/monitoring policies to preempt further horizontal and vertical spread of these resistance genes.
Collapse
Affiliation(s)
- Nontombi Marylucy Mbelle
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,National Health Laboratory Services, Pretoria, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Daniel Gyamfi Amoako
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Lesedi Modipane
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Sabiha Yusuf Essack
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Charles Feldman
- Department of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
195
|
Longo A, Losasso C, Vitulano F, Mastrorilli E, Turchetto S, Petrin S, Mantovani C, Dalla Pozza MC, Ramon E, Conedera G, Citterio CV, Ricci A, Barco L, Lettini AA. Insight into an outbreak of Salmonella Choleraesuis var. Kunzendorf in wild boars. Vet Microbiol 2019; 238:108423. [PMID: 31648730 DOI: 10.1016/j.vetmic.2019.108423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 10/26/2022]
Abstract
An unusual mortality of wild boars occurred in Italy from 2012 to 2015 due to Salmonella Choleraesuis infection. In order to confirm the occurrence of an outbreak of S. Choleraesuis in wild boars and to epidemically characterise the unique S. Choleraesuis biovar, a collection of isolates belonging to wild boars was investigated from the phenotypic, molecular and genomic points of view (PFGE and WGS). Moreover, the possibility of transmission to domestic pigs and humans, temporally and geographically close to the wild boar epidemic, was tested by also including in the panel isolates from infected domestic pigs and from one human case of infection. Wild boar isolates displayed a high genetic correlation, thus suggesting they are part of the same outbreak, with a common invasiveness potential. Conversely, no correlation between pig isolates and those from the other sources (wild boars and human) was found. However, the phylogenetic and PFGE analyses suggest a high degree of similarity between the human and the investigated wild boar outbreak isolates, implying the potential for the spread of Salmonella Choleraesuis among these species.
Collapse
Affiliation(s)
- Alessandra Longo
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| | - Carmen Losasso
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy.
| | - Federica Vitulano
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| | - Eleonora Mastrorilli
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| | - Sara Turchetto
- SCT2 - Treviso, Belluno and Venezia - O.U. Eco-pathology, Istituto Zooprofilattico Sperimentale delle Venezie, Belluno, Italy
| | - Sara Petrin
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| | - Claudio Mantovani
- Science Communication Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro PD, Italy
| | - Maria Cristina Dalla Pozza
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| | - Elena Ramon
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| | - Gabriella Conedera
- SCT4 - Friuli Venezia Giulia - Istituto Zooprofilattico Sperimentale delle Venezie, Pordenone, Italy
| | - Carlo V Citterio
- SCT2 - Treviso, Belluno and Venezia - O.U. Eco-pathology, Istituto Zooprofilattico Sperimentale delle Venezie, Belluno, Italy
| | - Antonia Ricci
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| | - Lisa Barco
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| | - Antonia Anna Lettini
- Department of Food Safety, National Reference Center for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| |
Collapse
|
196
|
Draft Genome Sequence of Salmonella bongori N19-781, a Clinical Strain from a Patient with Diarrhea. Microbiol Resour Announc 2019; 8:8/29/e00691-19. [PMID: 31320434 PMCID: PMC6639624 DOI: 10.1128/mra.00691-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of Salmonella bongori N19-781, a strain isolated from a patient with diarrhea, was sequenced. It consists of a 4.5-Mbp chromosome.
Collapse
|
197
|
Growth Rate of Escherichia coli During Human Urinary Tract Infection: Implications for Antibiotic Effect. Antibiotics (Basel) 2019; 8:antibiotics8030092. [PMID: 31336946 PMCID: PMC6783841 DOI: 10.3390/antibiotics8030092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli is the primary cause of urinary tract infection (UTI), which is one of the most frequent human infections. While much is understood about the virulence factors utilized by uropathogenic E. coli (UPEC), less is known about the bacterial growth dynamics taking place during infection. Bacterial growth is considered essential for successful host colonization and infection, and most antibiotics in clinical use depend on active bacterial growth to exert their effect. However, a means to measure the in situ bacterial growth rate during infection has been lacking. Due to faithful coordination between chromosome replication and cell growth and division in E. coli, chromosome replication provides a quantitative measure of the bacterial growth rate. In this study, we explored the potential for inferring in situ bacterial growth rate from a single urine sample in patients with E. coli bacteriuria by differential genome quantification (ori:ter) performed by quantitative PCR. We found active bacterial growth in almost all samples. However, this occurs with day-to-day and inter-patient variability. Our observations indicate that chromosome replication provides not only a robust measure of bacterial growth rate, but it can also be used as a means to evaluate antibiotic effect.
Collapse
|
198
|
Mathys DA, Mollenkopf DF, Feicht SM, Adams RJ, Albers AL, Stuever DM, Grooters SV, Ballash GA, Daniels JB, Wittum TE. Carbapenemase-producing Enterobacteriaceae and Aeromonas spp. present in wastewater treatment plant effluent and nearby surface waters in the US. PLoS One 2019; 14:e0218650. [PMID: 31242271 PMCID: PMC6594618 DOI: 10.1371/journal.pone.0218650] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 06/06/2019] [Indexed: 12/22/2022] Open
Abstract
Carbapenemase-producing bacteria (CPB) are rare, multidrug resistant organisms most commonly associated with hospitalized patients. Metropolitan wastewater treatment plants (WWTP) treat wastewater from large geographic areas which include hospitals and may serve as epidemiologic reservoirs for the maintenance or expansion of CPB that originate from hospitals and are ultimately discharged in treated effluent. However, little is known about the potential impact of these WWTP CPB on the local surface water and their risk to the public health. In addition, CPB that are present in surface water may ultimately disseminate to intensively-managed animal agriculture facilities where there is potential for amplification by extended-spectrum cephalosporins. To better understand the role of WWTPs in the dissemination of CPB in surface waters, we obtained samples of treated effluent, and both upstream and downstream nearby surface water from 50 WWTPs throughout the US. A total of 30 CPB with clinically-relevant genotypes were recovered from 15 WWTPs (30%) of which 13 (50%) serviced large metropolitan areas and 2 (8.3%) represented small rural populations (P < 0.05). Recovery of CPB was lowest among WWTPs that utilized ultraviolet radiation for primary disinfection (12%), and higher (P = 0.11) for WWTPs that used chlorination (42%) or that did not utilize disinfection (50%). We did not detect a difference in CPB recovery by sampling site, although fewer CPB were detected in upstream (8%) compared to effluent (20%) and downstream (18%) samples. Our results indicate that WWTP effluent and nearby surface waters in the US are routinely contaminated with CPB with clinically important genotypes including those producing Klebsiella pneumoniae carbapenemase (KPC) and New Delhi metallo-beta-lactamase (NDM). This is a concern for both public health and animal agriculture because introduction of CPB into intensively managed livestock populations could lead to their amplification and foodborne dissemination.
Collapse
Affiliation(s)
- Dimitria A. Mathys
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Dixie F. Mollenkopf
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Sydnee M. Feicht
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Rachael J. Adams
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Amy L. Albers
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - David M. Stuever
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Susan V. Grooters
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Gregory A. Ballash
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Joshua B. Daniels
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas E. Wittum
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
199
|
Verkola M, Pietola E, Järvinen A, Lindqvist K, Kinnunen PM, Heikinheimo A. Low prevalence of zoonotic multidrug-resistant bacteria in veterinarians in a country with prudent use of antimicrobials in animals. Zoonoses Public Health 2019; 66:667-678. [PMID: 31232511 DOI: 10.1111/zph.12619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
The occurrence of multidrug-resistant zoonotic bacteria in animals has been increasing worldwide. Working in close contact with livestock increases the risk of carriage of these bacteria. We investigated the occurrence of extended-spectrum beta-lactamase (ESBL) and plasmidic AmpC beta-lactamase producing Enterobacteriaceae (ESBL/pAmpC-PE) and livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in Finnish veterinarians (n = 320). In addition to microbiological samples, background information was collected. Bacterial whole genome sequencing was performed to deduce sequence types (STs), spa types and resistance genes of the isolates. In total, 3.0% (9/297) of the veterinarians carried ESBL producing Escherichia coli, with one ESBL producing E. coli isolate producing also AmpC. Seven different STs, sequences of several different plasmid groups as well as several different blaESBL/pAmpC genes existed in different combinations. No carbapenemase or colistin resistance genes were detected. MRSA was detected in 0.3% (1/320) of the samples. The strain belonged to LA-MRSA clonal complex (CC) 398 (ST398, spa type 011, lacking Panton-Valentine leukocidin genes). In conclusion, this study shows low carriage of multidrug-resistant zoonotic bacteria in Finnish veterinarians. However, finding LA-MRSA for the first time in a sample from a veterinarian in a country with prudent use of animal antimicrobials and regarding the recent rise of LA-MRSA on Finnish pig farms, a strong recommendation to protect people working in close contact with animals carrying LA-MRSA CC398 is given. Further studies are needed to explain why the prevalence of LA-MRSA in veterinarians is lower in Finland than in other European countries.
Collapse
Affiliation(s)
- Marie Verkola
- Elintarvikehygienian ja ympäristöterveyden osasto, Eläinlääketieteellinen tiedekunta, Helsingin yliopisto, Helsinki, Finland
| | - Eeva Pietola
- Elintarvikehygienian ja ympäristöterveyden osasto, Eläinlääketieteellinen tiedekunta, Helsingin yliopisto, Helsinki, Finland
| | - Asko Järvinen
- Infektiosairauksien linja, Tulehduskeskus, Helsingin yliopistollinen keskussairaala ja Helsingin yliopisto, Helsinki, Finland
| | - Kristian Lindqvist
- Yliopistopalvelut, Lähipalvelutiimi Viikki, Helsingin yliopisto, Helsinki, Finland
| | - Paula M Kinnunen
- Eläinlääketieteellisten biotieteiden osasto, Eläinlääketieteellinen tiedekunta, Helsingin yliopisto, Helsinki, Finland.,Ruokavirasto, Helsinki, Finland
| | - Annamari Heikinheimo
- Elintarvikehygienian ja ympäristöterveyden osasto, Eläinlääketieteellinen tiedekunta, Helsingin yliopisto, Helsinki, Finland.,Ruokavirasto, Helsinki, Finland
| |
Collapse
|
200
|
Deterministic processes structure bacterial genetic communities across an urban landscape. Nat Commun 2019; 10:2643. [PMID: 31201324 PMCID: PMC6572833 DOI: 10.1038/s41467-019-10595-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/17/2019] [Indexed: 11/08/2022] Open
Abstract
Land-use change is predicted to act as a driver of zoonotic disease emergence through human exposure to novel microbial diversity, but evidence for the effects of environmental change on microbial communities in vertebrates is lacking. We sample wild birds at 99 wildlife-livestock-human interfaces across Nairobi, Kenya, and use whole genome sequencing to characterise bacterial genes known to be carried on mobile genetic elements (MGEs) within avian-borne Escherichia coli (n = 241). By modelling the diversity of bacterial genes encoding virulence and antimicrobial resistance (AMR) against ecological and anthropogenic forms of urban environmental change, we demonstrate that communities of avian-borne bacterial genes are shaped by the assemblage of co-existing avian, livestock and human communities, and the habitat within which they exist. In showing that non-random processes structure bacterial genetic communities in urban wildlife, these findings suggest that it should be possible to forecast the effects of urban land-use change on microbial diversity.
Collapse
|