151
|
Leboucher GP, Tsai YC, Yang M, Shaw KC, Zhou M, Veenstra TD, Glickman MH, Weissman AM. Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Mol Cell 2012; 47:547-57. [PMID: 22748923 PMCID: PMC3526191 DOI: 10.1016/j.molcel.2012.05.041] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/10/2012] [Accepted: 05/17/2012] [Indexed: 12/18/2022]
Abstract
Mitochondria play central roles in integrating pro- and antiapoptotic stimuli, and JNK is well known to have roles in activating apoptotic pathways. We establish a critical link between stress-induced JNK activation, mitofusin 2, which is an essential component of the mitochondrial outer membrane fusion apparatus, and the ubiquitin-proteasome system (UPS). JNK phosphorylation of mitofusin 2 in response to cellular stress leads to recruitment of the ubiquitin ligase (E3) Huwe1/Mule/ARF-BP1/HectH9/E3Histone/Lasu1 to mitofusin 2, with the BH3 domain of Huwe1 implicated in this interaction. This results in ubiquitin-mediated proteasomal degradation of mitofusin 2, leading to mitochondrial fragmentation and enhanced apoptotic cell death. The stability of a nonphosphorylatable mitofusin 2 mutant is unaffected by stress and protective against apoptosis. Conversely, a mitofusin 2 phosphomimic is more rapidly degraded without cellular stress. These findings demonstrate how proximal signaling events can influence both mitochondrial dynamics and apoptosis through phosphorylation-stimulated degradation of the mitochondrial fusion machinery.
Collapse
Affiliation(s)
- Guillaume P. Leboucher
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Department of Biology, Technion–Israel Institute of Technology, 32000 Haifa, Israel
| | - Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Mei Yang
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Kristin C. Shaw
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ming Zhou
- Laboratory of Proteomics and Analytical Technologies, Advanced Technologies Program, Science Application International Corporation-Frederick, Inc., National Cancer Institute, Frederick, MD 21702, USA
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, Advanced Technologies Program, Science Application International Corporation-Frederick, Inc., National Cancer Institute, Frederick, MD 21702, USA
| | - Michael H. Glickman
- Department of Biology, Technion–Israel Institute of Technology, 32000 Haifa, Israel
| | - Allan M. Weissman
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
152
|
BH3-only protein silencing contributes to acquired resistance to PLX4720 in human melanoma. Cell Death Differ 2012; 19:2029-39. [PMID: 22858545 DOI: 10.1038/cdd.2012.94] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
B-RAF is mutated to a constitutively active form in 8% of human cancers including 50% of melanomas. In clinical trials, the RAF inhibitor, PLX4032 (vemurafenib), caused partial or complete responses in 48-81% of mutant B-RAF harboring melanoma patients. However, the average duration of response was 6-7 months before tumor regrowth, indicating the acquisition of resistance to PLX4032. To understand the mechanisms of resistance, we developed mutant B-RAF melanoma cells that displayed resistance to RAF inhibition through continuous culture with PLX4720 (the tool compound for PLX4032). Resistance was associated with a partial reactivation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, recovery of G1/S cell-cycle events, and suppression of the pro-apoptotic B-cell leukemia/lymphoma 2 (Bcl-2) homology domain 3 (BH3)-only proteins, Bcl-2-interacting mediator of cell death-extra large (Bim-EL) and Bcl-2 modifying factor (Bmf). Preventing ERK1/2 reactivation with MEK (mitogen-activated protein/extracellular signal-regulated kinase kinase) inhibitors blocked G1-S cell-cycle progression but failed to induce apoptosis or upregulate Bim-EL and Bmf. Treatment with the histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid, led to de-repression of Bim-EL and enhanced cell death in the presence of PLX4720 or AZD6244 in resistant cells. These data indicate that acquired resistance to PLX4032/4720 likely involves ERK1/2 pathway reactivation as well as ERK1/2-independent silencing of BH3-only proteins. Furthermore, combined treatment of HDAC inhibitors and MEK inhibitors may contribute to overcoming PLX4032 resistance.
Collapse
|
153
|
Nakanome A, Brydun A, Matsumoto M, Ota K, Funayama R, Nakayama K, Ono M, Shiga K, Kobayashi T, Igarashi K. Bach1 is critical for the transformation of mouse embryonic fibroblasts by RasV12 and maintains ERK signaling. Oncogene 2012; 32:3231-45. [DOI: 10.1038/onc.2012.336] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 06/07/2012] [Accepted: 06/20/2012] [Indexed: 12/23/2022]
|
154
|
Increased BRAF heterodimerization is the common pathogenic mechanism for noonan syndrome-associated RAF1 mutants. Mol Cell Biol 2012; 32:3872-90. [PMID: 22826437 DOI: 10.1128/mcb.00751-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Noonan syndrome (NS) is a relatively common autosomal dominant disorder characterized by congenital heart defects, short stature, and facial dysmorphia. NS is caused by germ line mutations in several components of the RAS-RAF-MEK-extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway, including both kinase-activating and kinase-impaired alleles of RAF1 (∼3 to 5%), which encodes a serine-threonine kinase for MEK1/2. To investigate how kinase-impaired RAF1 mutants cause NS, we generated knock-in mice expressing Raf1(D486N). Raf1(D486N/+) (here D486N/+) female mice exhibited a mild growth defect. Male and female D486N/D486N mice developed concentric cardiac hypertrophy and incompletely penetrant, but severe, growth defects. Remarkably, Mek/Erk activation was enhanced in Raf1(D486N)-expressing cells compared with controls. RAF1(D486N), as well as other kinase-impaired RAF1 mutants, showed increased heterodimerization with BRAF, which was necessary and sufficient to promote increased MEK/ERK activation. Furthermore, kinase-activating RAF1 mutants also required heterodimerization to enhance MEK/ERK activation. Our results suggest that an increased heterodimerization ability is the common pathogenic mechanism for NS-associated RAF1 mutations.
Collapse
|
155
|
Caunt CJ, Perett RM, Fowkes RC, McArdle CA. Mechanisms of GnRH-induced extracellular signal-regulated kinase nuclear localization. PLoS One 2012; 7:e40077. [PMID: 22808094 PMCID: PMC3395631 DOI: 10.1371/journal.pone.0040077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/05/2012] [Indexed: 12/11/2022] Open
Abstract
Gonadotropin-releasing hormone receptors (GnRHR) mediate activation and nuclear translocation of the extracellular signal regulated kinases 1 and 2 (ERK) by phosphorylation on the TEY motif. This is necessary for GnRH to initiate transcriptional programmes controlling fertility, but mechanisms that govern ERK targeting are unclear. Using automated microscopy to explore ERK regulation in single cells, we find that GnRHR activation induces marked redistribution of ERK to the nucleus and that this effect can be uncoupled from the level of TEY phosphorylation of ERK. Thus, 5 min stimulation with 100 nM GnRH increased phospho-ERK levels (from 89 ± 34 to 555 ± 45 arbitrary fluorescence units) and increased the nuclear:cytoplasmic (N:C) ERK ratio (from 1.36 ± 0.06 to 2.16 ± 0.05) in the whole cell population, but it also significantly increased N:C ERK in cells binned according to phospho-ERK levels. This phosphorylation unattributable component of the ERK translocation response occurs at a broad range of GnRHR expression levels, in the presence of tyrosine phosphatase and protein synthesis inhibitors, and in ERK mutants unable to undergo catalytic activation. It also occurred in mutants incapable of binding the DEF (docking site for ERK, F/Y-X-F/Y-P) domains found in many ERK binding partners. It was however, reduced by MEK or PKC inhibition and by mutations preventing TEY phosphorylation or that abrogate ERK binding to D (docking) domain partners. We therefore show that TEY phosphorylation of ERK is necessary, but not sufficient for the full nuclear localization response. We further show that this "phosphorylation unattributable" component of GnRH-mediated ERK nuclear translocation requires both PKC activity and association with partner proteins via the D-domain.
Collapse
Affiliation(s)
- Christopher J. Caunt
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Rebecca M. Perett
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Robert C. Fowkes
- Endocrine Signaling Group, Royal Veterinary College, London, United Kingdom
| | - Craig A. McArdle
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
156
|
Ascierto PA, Kirkwood JM, Grob JJ, Simeone E, Grimaldi AM, Maio M, Palmieri G, Testori A, Marincola FM, Mozzillo N. The role of BRAF V600 mutation in melanoma. J Transl Med 2012; 10:85. [PMID: 22554099 PMCID: PMC3391993 DOI: 10.1186/1479-5876-10-85] [Citation(s) in RCA: 533] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/03/2012] [Indexed: 12/19/2022] Open
Abstract
BRAF is a serine/threonine protein kinase activating the MAP kinase/ERK-signaling pathway. About 50 % of melanomas harbors activating BRAF mutations (over 90 % V600E). BRAFV600E has been implicated in different mechanisms underlying melanomagenesis, most of which due to the deregulated activation of the downstream MEK/ERK effectors. The first selective inhibitor of mutant BRAF, vemurafenib, after highly encouraging results of the phase I and II trial, was compared to dacarbazine in a phase III trial in treatment-naïve patients (BRIM-3). The study results showed a relative reduction of 63 % in risk of death and 74 % in risk of tumor progression. Considering all trials so far completed, median overall survival reached approximately 16 months for vemurafenib compared to less than 10 months for dacarbazine treatment. Vemurafenib has been extensively tested on melanoma patients expressing the BRAFV600E mutated form; it has been demonstrated to be also effective in inhibiting melanomas carrying the V600K mutation. In 2011, both FDA and EMA therefore approved vemurafenib for metastatic melanoma carrying BRAFV600 mutations. Some findings suggest that continuation of vemurafenib treatment is potentially beneficial after local therapy in a subset of patients with disease progression (PD). Among who continued vemurafenib >30 days after local therapy of PD lesion(s), a median overall survival was not reached, with a median follow-up of 15.5 months from initiation of BRAF inhibitor therapy. For patients who did not continue treatment, median overall survival from the time of disease progression was 1.4 months. A clinical phase I/II trial is evaluating the safety, tolerability and efficacy of vemurafenib in combination with the CTLA-4 inhibitor mAb ipilimumab. In the BRIM-7 trial vemurafenib is tested in association with GDC-0973, a potent and highly selective inhibitor of MEK1/2. Preliminary data seem to indicate that an additional inhibitor of mutated BRAF, GSK2118436, might be also active on a wider range of BRAF mutations (V600E-K-D-R); actually, treatment with such a compound is under evaluation in a phase III study among stage III-IV melanoma patients positive for BRAF mutations. Overall, BRAF inhibitors were well tolerated; common adverse events are arthralgia, rash, fatigue, alopecia, keratoacanthoma or cutaneous squamous-cell carcinoma, photosensitivity, nausea, and diarrhea, with some variants between different inhibitors.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Department of Melanoma, Istituto Nazionale Tumori Fondazione “G. Pascale”, Naples, Italy
- Unit of Medical Oncology and Innovative Therapy, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione G. Pascale”, Via Mariano Semmola, 80131, Naples, Italy
| | - John M Kirkwood
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Jean-Jacques Grob
- Hopital de la Timone, and Aix-Marseille Univ, 264 Rue St Pierre, 13885, Marseille CEDEX 05, Marseille, France
| | - Ester Simeone
- Department of Melanoma, Istituto Nazionale Tumori Fondazione “G. Pascale”, Naples, Italy
| | - Antonio M Grimaldi
- Department of Melanoma, Istituto Nazionale Tumori Fondazione “G. Pascale”, Naples, Italy
| | - Michele Maio
- Medical Oncology and Immunotherapy, Department. of Oncology, University Hospital of of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council (CNR), Sassari, Italy
| | - Alessandro Testori
- Melanoma and muscle-cutaneous sarcomas Division, Istituto Europeo di Oncologia, Milan, Italy
| | - Francesco M Marincola
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Center for Human Immunology (CHI), NIH, Bethesda, MD, USA
| | - Nicola Mozzillo
- Department of Melanoma, Istituto Nazionale Tumori Fondazione “G. Pascale”, Naples, Italy
| |
Collapse
|
157
|
Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 2012; 149:307-21. [PMID: 22500798 DOI: 10.1016/j.cell.2012.02.053] [Citation(s) in RCA: 595] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 01/06/2012] [Accepted: 02/06/2012] [Indexed: 12/29/2022]
Abstract
Kinase inhibitors have limited success in cancer treatment because tumors circumvent their action. Using a quantitative proteomics approach, we assessed kinome activity in response to MEK inhibition in triple-negative breast cancer (TNBC) cells and genetically engineered mice (GEMMs). MEK inhibition caused acute ERK activity loss, resulting in rapid c-Myc degradation that induced expression and activation of several receptor tyrosine kinases (RTKs). RNAi knockdown of ERK or c-Myc mimicked RTK induction by MEK inhibitors, and prevention of proteasomal c-Myc degradation blocked kinome reprogramming. MEK inhibitor-induced RTK stimulation overcame MEK2 inhibition, but not MEK1 inhibition, reactivating ERK and producing drug resistance. The C3Tag GEMM for TNBC similarly induced RTKs in response to MEK inhibition. The inhibitor-induced RTK profile suggested a kinase inhibitor combination therapy that produced GEMM tumor apoptosis and regression where single agents were ineffective. This approach defines mechanisms of drug resistance, allowing rational design of combination therapies for cancer.
Collapse
|
158
|
Abstract
The strength and duration of intracellular signalling pathway activation is a key determinant of the biological outcome of cells in response to extracellular cues. This has been particularly elucidated for the Ras/Raf/MEK [mitogen-activated growth factor/ERK (extracellular-signal-regulated kinase) kinase]/ERK signalling pathway with a number of studies in fibroblasts showing that sustained ERK signalling is a requirement for S-phase entry, whereas transient ERK signalling does not have this capability. A major unanswered question, however, is how a cell can sustain ERK activation, particularly when ERK-specific phosphatases are transcriptionally up-regulated by the pathway itself. A major point of ERK regulation is at the level of Raf, and, to sustain ERK activation in the presence of ERK phosphatases, sustained Raf activation is a requirement. Three Raf proteins exist in mammals, and the activity of all three is induced following growth factor stimulation of cells, but only B-Raf activity is maintained at later time points. This observation points to B-Raf as a regulator of sustained ERK activation. In the present review, we consider evidence for a link between B-Raf and sustained ERK activation, focusing on a potential role for the subcellular localization of B-Raf in this key physiological event.
Collapse
|
159
|
Baljuls A, Beck M, Oenel A, Robubi A, Kroschewski R, Hekman M, Rudel T, Rapp UR. The tumor suppressor DiRas3 forms a complex with H-Ras and C-RAF proteins and regulates localization, dimerization, and kinase activity of C-RAF. J Biol Chem 2012; 287:23128-40. [PMID: 22605333 DOI: 10.1074/jbc.m112.343780] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The maternally imprinted Ras-related tumor suppressor gene DiRas3 is lost or down-regulated in more than 60% of ovarian and breast cancers. The anti-tumorigenic effect of DiRas3 is achieved through several mechanisms, including inhibition of cell proliferation, motility, and invasion, as well as induction of apoptosis and autophagy. Re-expression of DiRas3 in cancer cells interferes with the signaling through Ras/MAPK and PI3K. Despite intensive research, the mode of interference of DiRas3 with the Ras/RAF/MEK/ERK signal transduction is still a matter of speculation. In this study, we show that DiRas3 associates with the H-Ras oncogene and that activation of H-Ras enforces this interaction. Furthermore, while associated with DiRas3, H-Ras is able to bind to its effector protein C-RAF. The resulting multimeric complex consisting of DiRas3, C-RAF, and active H-Ras is more stable than the two protein complexes H-Ras·C-RAF or H-Ras·DiRas3, respectively. The consequence of this complex formation is a DiRas3-mediated recruitment and anchorage of C-RAF to components of the membrane skeleton, suppression of C-RAF/B-RAF heterodimerization, and inhibition of C-RAF kinase activity.
Collapse
Affiliation(s)
- Angela Baljuls
- Theodor Boveri Institute of Bioscience, Department of Microbiology, University of Wuerzburg, 97074 Wuerzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Distinct requirement for an intact dimer interface in wild-type, V600E and kinase-dead B-Raf signalling. EMBO J 2012; 31:2629-47. [PMID: 22510884 DOI: 10.1038/emboj.2012.100] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 03/23/2012] [Indexed: 12/11/2022] Open
Abstract
The dimerisation of Raf kinases involves a central cluster within the kinase domain, the dimer interface (DIF). Yet, the importance of the DIF for the signalling potential of wild-type B-Raf (B-Raf(wt)) and its oncogenic counterparts remains unknown. Here, we show that the DIF plays a pivotal role for the activity of B-Raf(wt) and several of its gain-of-function (g-o-f) mutants. In contrast, the B-Raf(V600E), B-Raf(insT) and B-Raf(G469A) oncoproteins are remarkably resistant to mutations in the DIF. However, compared with B-Raf(wt), B-Raf(V600E) displays extended protomer contacts, increased homodimerisation and incorporation into larger protein complexes. In contrast, B-Raf(wt) and Raf-1(wt) mediated signalling triggered by oncogenic Ras as well as the paradoxical activation of Raf-1 by kinase-inactivated B-Raf require an intact DIF. Surprisingly, the B-Raf DIF is not required for dimerisation between Raf-1 and B-Raf, which was inactivated by the D594A mutation, sorafenib or PLX4720. This suggests that paradoxical MEK/ERK activation represents a two-step mechanism consisting of dimerisation and DIF-dependent transactivation. Our data further implicate the Raf DIF as a potential target against Ras-driven Raf-mediated (paradoxical) ERK activation.
Collapse
|
161
|
Tumour cell responses to MEK1/2 inhibitors: acquired resistance and pathway remodelling. Biochem Soc Trans 2012; 40:73-8. [DOI: 10.1042/bst20110647] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Raf/MEK1/2 [mitogen-activated protein kinase/ERK (extracellular-signal-regulated kinase) kinase 1/2]/ERK1/2 signalling pathway is frequently activated in human tumours due to mutations in BRAF or KRAS. B-Raf and MEK1/2 inhibitors are currently undergoing clinical evaluation, but their ultimate success is likely to be limited by acquired drug resistance. We have used colorectal cancer cell lines harbouring mutations in B-Raf or K-Ras to model acquired resistance to the MEK1/2 inhibitor selumetinib (AZD6244). Selumetinib-resistant cells were refractory to other MEK1/2 inhibitors in cell proliferation assays and exhibited a marked increase in MEK1/2 and ERK1/2 activity and cyclin D1 abundance when assessed in the absence of inhibitor. This was driven by a common mechanism in which resistant cells exhibited an intrachromosomal amplification of their respective driving oncogene, B-Raf V600E or K-RasG13D. Despite the increased signal flux from Raf to MEK1/2, resistant cells maintained in drug actually exhibited the same level of ERK1/2 activity as parental cells, indicating that the pathway is remodelled by feedback controls to reinstate the normal level of ERK1/2 signalling that is required and sufficient to maintain proliferation in these cells. These results provide important new insights into how tumour cells adapt to new therapeutics and highlight the importance of homoeostatic control mechanisms in the Raf/MEK1/2/ERK1/2 signalling cascade.
Collapse
|
162
|
Osborne JK, Zaganjor E, Cobb MH. Signal control through Raf: in sickness and in health. Cell Res 2011; 22:14-22. [PMID: 22143568 DOI: 10.1038/cr.2011.193] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade is the prototype mammalian mitogen-activated protein kinase (MAPK) signaling cascade that regulates a number of processes, including proliferation, differentiation, survival, migration, stress responses and apoptosis. How this seemingly linear cascade is modulated to achieve a specific cellular function has been a main focus of the field. In this review, we describe new as well as old findings in the regulation of the ERK1/2 pathway in normal and disease states via MAP3Ks.
Collapse
Affiliation(s)
- Jihan K Osborne
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9041, USA
| | | | | |
Collapse
|
163
|
Song C, Wang F, Ye M, Cheng K, Chen R, Zhu J, Tan Y, Wang H, Figeys D, Zou H. Improvement of the quantification accuracy and throughput for phosphoproteome analysis by a pseudo triplex stable isotope dimethyl labeling approach. Anal Chem 2011; 83:7755-62. [PMID: 21902226 DOI: 10.1021/ac201299j] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Accurately quantifying the changes of phosphorylation level on specific sites is crucial to understand the role of protein phosphorylation in physiological and pathological processes. Here, a pseudo triplex stable isotope dimethyl labeling approach was developed to improve the accuracy and the throughput of comprehensive quantitative phosphoproteome analyses. In this strategy, two identical samples are labeled with light and heavy isotopes, respectively, while another comparative sample is labeled with an intermediate isotope. Two replicated quantification results were achieved in just one experiment, and the relative standard deviation (RSD) criterion was used to control the quantification accuracy. Compared with the conventional duplex labeling approach, the number of quantified phosphopeptides increased nearly 50% and the experimental time was reduced by 50% under the same quantification accuracy. Combined with the automated online reversed phase-strong cation exchange-reversed phase (RP-SCX-RP) multidimensional separation system, a comparative phosphoproteome analysis of hepatocellular carcinoma (HCC) and normal human liver tissues was performed. Over 1800 phosphopeptides corresponding to ~2000 phosphorylation sites were quantified reliably in a 42 h multidimensional analysis. The pro-directed motifs, which were mainly associated with the extracellular signal-regulated kinases (ERKs), were observed as being overrepresented in the regulated phosphorylation sites, and some quantification results of phosphorylation sites were validated by the other studies. Therefore, this pseudo triplex labeling approach was demonstrated as a promising alternative for the comprehensive quantitative phosphoproteome analysis.
Collapse
Affiliation(s)
- Chunxia Song
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Strong negative feedback from Erk to Raf confers robustness to MAPK signalling. Mol Syst Biol 2011; 7:489. [PMID: 21613978 PMCID: PMC3130559 DOI: 10.1038/msb.2011.27] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 04/14/2011] [Indexed: 12/23/2022] Open
Abstract
This study shows that MAPK signalling is robust against protein level changes due to a strong negative feedback from Erk to Raf. Surprisingly, robustness is provided through a fast post-translational mechanism although variation of Erk levels occurs on a timescale of days. MAPK signalling is robust against variation in protein level. Robustness is mediated by a negative feedback to Raf. Loss of negative feedback due to mutation in B-Raf opens the door for targeted intervention.
Protein levels within signal transduction pathways vary strongly from cell to cell. For example, it has been reported that concentrations of the last kinase within the MAPK signalling module, Erk, varies about four-fold between clonal cells under the same conditions. In the present study, we analysed how signalling pathways can still process information quantitatively despite strong heterogeneity in protein levels. Mathematical analysis of isolated phosphorylation–dephosphorylation cycles predicts that phosphorylation of a signalling molecule is proportional to the protein concentration. We systematically perturbed the protein levels of Erk in human cell lines by siRNA. We found that the steady-state phosphorylation of Erk is very robust against perturbations of Erk protein level, suggesting that there are mechanisms that provide robustness to the pathway against protein fluctuations. Using mathematical modelling, we identified three potential mechanisms that may provide robustness against fluctuating protein levels: 1. Kinetic effects (saturation of the activating kinase Mek), 2. Transcriptional negative feedbacks, 3. Negative feedbacks on the post-translational level. By experimental analysis of the systems, which included analysis of Erk phosphorylation under Mek overexpression, measuring transcript levels of negative feedback regulators, and application of generic inhibitors of transcription and translation, we could exclude kinetic effects and transcriptional negative feedback as mechanisms of robustness. By analysing a panel of cell lines, we found that cells are robust as long as the signal passes through Raf-1. In contrast, cells where the pathway is activated by a mutation in B-Raf lose robustness. Detailed molecular analysis of the system shows that a single post-translational feedback to Raf mediates robustness. Thus, robustness is provided through a fast post-translational mechanism although variation of Erk levels occurs on a timescale of days. Protein levels within signal transduction pathways vary strongly from cell to cell. Here, we analysed how signalling pathways can still process information quantitatively despite strong heterogeneity in protein levels. We systematically perturbed the protein levels of Erk, the terminal kinase in the MAPK signalling pathway in a panel of human cell lines. We found that the steady-state phosphorylation of Erk is very robust against perturbations of Erk protein level. Although a multitude of mechanisms exist that may provide robustness against fluctuating protein levels, we found that one single feedback from Erk to Raf-1 accounts for the observed robustness. Surprisingly, robustness is provided through a fast post-translational mechanism although variation of Erk levels occurs on a timescale of days.
Collapse
|
165
|
Dumaz N. Mechanism of RAF isoform switching induced by oncogenic RAS in melanoma. Small GTPases 2011; 2:289-292. [PMID: 22292133 DOI: 10.4161/sgtp.2.5.17814] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/29/2011] [Accepted: 08/19/2011] [Indexed: 12/19/2022] Open
Abstract
BRAF and RAS are often mutated in cutaneous melanoma and both mutations stimulate the MAPK pathway. However the biological consequences of BRAF and NRAS mutations are different because when RAS is mutated in melanoma, cells use CRAF rather than BRAF to activate MEK/ERK. The mechanism of this BRAF to CRAF isoform switching in response to oncogenic RAS has recently been described. Activation of the MAPK pathway, which results from a mutation of NRAS, induces phosphorylation of BRAF on serine 151 by ERK which prevents its binding to NRAS. To circumvent this negative feedback inhibition of BRAF, melanoma cells containing a mutation of RAS use CRAF to activate MEK/ERK. However, because the cAMP pathway in melanocytes constitutively inhibits CRAF, RAF isoform switching in melanoma is accompanied by an inhibition of the cAMP pathway. This inhibition is due to an increase in phosphodiesterase activity, which degrades cAMP thereby preventing inhibition of CRAF by PKA. These data highlight the importance of CRAF downstream of oncogenic Ras in tumor development.
Collapse
Affiliation(s)
- Nicolas Dumaz
- INSERM; U976; Paris, France; Université Paris Diderot; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
166
|
Freeman AK, Morrison DK. 14-3-3 Proteins: diverse functions in cell proliferation and cancer progression. Semin Cell Dev Biol 2011; 22:681-7. [PMID: 21884813 PMCID: PMC3221730 DOI: 10.1016/j.semcdb.2011.08.009] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 08/16/2011] [Indexed: 12/27/2022]
Abstract
The 14-3-3 proteins were the first phosphoserine/phosphothreonine-binding proteins to be discovered, a finding that provided the foundation for their prominent role in cell signaling. 14-3-3 family members interact with a wide spectrum of proteins including transcription factors, biosynthetic enzymes, cytoskeletal proteins, signaling molecules, apoptosis factors, and tumor suppressors. The interaction with 14-3-3 can have a profound effect on a target protein, altering its localization, stability, conformation, phosphorylation state, activity, and/or molecular interactions. Thus, by modulating the function of a diverse array of binding partners, 14-3-3 proteins have become key regulatory components in many vital cellular processes - processes that are crucial for normal growth and development and that often become dysregulated in human cancer. This review will examine the recent advances that further elucidate the role of 14-3-3 proteins in normal growth and cancer signaling with a particular emphasis on the signaling pathways that impact cell proliferation, cell migration, and epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Alyson K. Freeman
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, MD 21702
| | - Deborah K. Morrison
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, MD 21702
| |
Collapse
|
167
|
Prolyl cis/trans isomerase signalling pathways in cancer. Curr Opin Pharmacol 2011; 11:281-7. [DOI: 10.1016/j.coph.2011.03.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 03/21/2011] [Indexed: 01/05/2023]
|
168
|
Abstract
Raf are conserved, ubiquitous serine/protein kinases discovered as the cellular elements hijacked by transforming retroviruses. The three mammalian RAF proteins (A, B and CRAF) can be activated by the human oncogene RAS, downstream from which they exert both kinase-dependent and kinase-independent, tumor-promoting functions. The kinase-dependent functions are mediated chiefly by the MEK/ERK pathway, whose activation is associated with proliferation in a broad range of human tumors. Almost 10 years ago, activating BRAF mutations were discovered in a subset of human tumors, and in the past year treatment with small-molecule RAF inhibitors has yielded unprecedented response rates in melanoma patients. Thus, Raf qualifies as an excellent molecular target for anticancer therapy. This review focuses on the role of BRAF and CRAF in different aspects of carcinogenesis, on the success of molecular therapies targeting Raf and the challenges they present.
Collapse
|
169
|
Karreth FA, Frese KK, DeNicola GM, Baccarini M, Tuveson DA. C-Raf is required for the initiation of lung cancer by K-Ras(G12D). Cancer Discov 2011; 1:128-36. [PMID: 22043453 DOI: 10.1158/2159-8290.cd-10-0044] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Ras/Raf/MEK/ERK (extracellular signal-regulated kinase) pathway is primarily responsible for mitogenesis in metazoans, and mutational activation of this pathway is common in cancer. A variety of selective chemical inhibitors directed against the mitogen-activated protein kinase pathway are now available for clinical investigation and thus the determination of the importance of each of the kinases in oncogenesis is paramount. We investigated the role of two Raf kinases, B-Raf and C-Raf, in Ras oncogenesis, and found that although B-Raf and C-Raf have overlapping functions in primary mesenchymal cells, C-Raf but not B-Raf is required for the proliferative effects of K-Ras(G12D) in primary epithelial cells. Furthermore, in a lung cancer mouse model, C-Raf is essential for tumor initiation by oncogenic K-Ras(G12D), whereas B-Raf is dispensable for this process. Our findings reveal that K-Ras(G12D) elicits its oncogenic effects primarily through C-Raf and suggest that selective C-Raf inhibition could be explored as a therapeutic strategy for K-Ras-dependent cancers.
Collapse
Affiliation(s)
- Florian A Karreth
- Li Ka Shing Centre, Cambridge Research Institute, Cancer Research UK, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
170
|
McKay MM, Ritt DA, Morrison DK. RAF inhibitor-induced KSR1/B-RAF binding and its effects on ERK cascade signaling. Curr Biol 2011; 21:563-8. [PMID: 21458265 PMCID: PMC3075323 DOI: 10.1016/j.cub.2011.02.033] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 01/05/2023]
Abstract
RAF kinase inhibitors can induce ERK cascade signaling by promoting dimerization of RAF family members in the presence of oncogenic or normally activated RAS. This interaction is mediated by a dimer interface region in the RAF kinase domain that is conserved in members of the ERK cascade scaffold family, kinase suppressor of RAS (KSR). In this study, we find that most RAF inhibitors also induce the binding of KSR1 to wild-type and oncogenic B-RAF proteins, including V600E B-RAF, but promote little complex formation between KSR1 and C-RAF. The inhibitor-induced KSR1/B-RAF interaction requires direct binding of the drug to B-RAF and is dependent on conserved dimer interface residues in each protein, but, unexpectedly, is not dependent on binding of B-RAF to activated RAS. Inhibitor-induced KSR/B-RAF complex formation can occur in the cytosol and is observed in normal mouse fibroblasts, as well as a variety of human cancer cell lines. Strikingly, we find that KSR1 competes with C-RAF for inhibitor-induced binding to B-RAF and, as a result, alters the effect of the inhibitors on ERK cascade signaling.
Collapse
Affiliation(s)
- Melissa M. McKay
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702
| | - Daniel A. Ritt
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702
| | - Deborah K. Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702
| |
Collapse
|
171
|
ERK and PDE4 cooperate to induce RAF isoform switching in melanoma. Nat Struct Mol Biol 2011; 18:584-91. [PMID: 21478863 DOI: 10.1038/nsmb.2022] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 01/26/2011] [Indexed: 01/02/2023]
Abstract
Melanocytes use BRAF to activate the MAP kinase (MAPK) pathway because CRAF is inhibited by the cyclic AMP (cAMP) pathway in these cells. By contrast, melanomas harboring Ras mutations use CRAF to activate the MAPK pathway. We describe the molecular mechanism of Raf isoform switching and cAMP pathway disruption, which take place during melanocyte transformation. We show that overactivation of the MAPK pathway, induced by the oncogenic Ras in melanoma, induces constitutive phosphorylation of BRAF on Ser151 by ERK, which inhibits NRAS-BRAF interaction . We also demonstrate that melanoma cells have elevated cAMP phosphodiesterase activity owing to overexpression of the cAMP-specific phosphodiesterase-4 enzymes; this activity inhibits cAMP signaling and allows CRAF reactivation in these cells. Reactivating the cAMP pathway inhibits proliferation and induces apoptosis of Ras-mutated melanoma cells, suggesting a new therapeutic approach for treating melanomas harboring Ras mutations.
Collapse
|
172
|
Baljuls A, Mahr R, Schwarzenau I, Müller T, Polzien L, Hekman M, Rapp UR. Single substitution within the RKTR motif impairs kinase activity but promotes dimerization of RAF kinase. J Biol Chem 2011; 286:16491-503. [PMID: 21454547 DOI: 10.1074/jbc.m110.194167] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The serine/threonine kinase RAF is a central component of the MAPK cascade. Regulation of RAF activity is highly complex and involves recruitment to membranes and association with Ras and scaffold proteins as well as multiple phosphorylation and dephosphorylation events. Previously, we identified by molecular modeling an interaction between the N-region and the RKTR motif of the kinase domain in RAF and assigned a new function to this tetrapeptide segment. Here we found that a single substitution of each basic residue within the RKTR motif inhibited catalytic activity of all three RAF isoforms. However, the inhibition and phosphorylation pattern of C-RAF and A-RAF differed from B-RAF. Furthermore, substitution of the first arginine led to hyperphosphorylation and accumulation of A-RAF and C-RAF in plasma membrane fraction, indicating that this residue interferes with the recycling process of A-RAF and C-RAF but not B-RAF. In contrast, all RAF isoforms behave similarly with respect to the RKTR motif-dependent dimerization. The exchange of the second arginine led to exceedingly increased dimerization as long as one of the protomers was not mutated, suggesting that substitution of this residue with alanine may result in similar a structural rearrangement of the RAF kinase domain, as has been found for the C-RAF kinase domain co-crystallized with a dimerization-stabilizing RAF inhibitor. In summary, we provide evidence that each of the basic residues within the RKTR motif is indispensable for correct RAF function.
Collapse
Affiliation(s)
- Angela Baljuls
- Theodor-Boveri Institute of Bioscience, Department of Microbiology, University of Wuerzburg, Wuerzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
173
|
Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, Kolch W. Raf family kinases: old dogs have learned new tricks. Genes Cancer 2011; 2:232-60. [PMID: 21779496 PMCID: PMC3128629 DOI: 10.1177/1947601911407323] [Citation(s) in RCA: 281] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
First identified in the early 1980s as retroviral oncogenes, the Raf proteins have been the objects of intense research. The discoveries 10 years later that the Raf family members (Raf-1, B-Raf, and A-Raf) are bona fide Ras effectors and upstream activators of the ubiquitous ERK pathway increased the interest in these proteins primarily because of the central role that this cascade plays in cancer development. The important role of Raf in cancer was corroborated in 2002 with the discovery of B-Raf genetic mutations in a large number of tumors. This led to intensified drug development efforts to target Raf signaling in cancer. This work yielded not only recent clinical successes but also surprising insights into the regulation of Raf proteins by homodimerization and heterodimerization. Surprising insights also came from the hunt for new Raf targets. Although MEK remains the only widely accepted Raf substrate, new kinase-independent roles for Raf proteins have emerged. These include the regulation of apoptosis by suppressing the activity of the proapoptotic kinases, ASK1 and MST2, and the regulation of cell motility and differentiation by controlling the activity of Rok-α. In this review, we discuss the regulation of Raf proteins and their role in cancer, with special focus on the interacting proteins that modulate Raf signaling. We also describe the new pathways controlled by Raf proteins and summarize the successes and failures in the development of efficient anticancer therapies targeting Raf. Finally, we also argue for the necessity of more systemic approaches to obtain a better understanding of how the Ras-Raf signaling network generates biological specificity.
Collapse
Affiliation(s)
- David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
174
|
Udell CM, Rajakulendran T, Sicheri F, Therrien M. Mechanistic principles of RAF kinase signaling. Cell Mol Life Sci 2011; 68:553-65. [PMID: 20820846 PMCID: PMC11114552 DOI: 10.1007/s00018-010-0520-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/24/2010] [Accepted: 08/25/2010] [Indexed: 12/19/2022]
Abstract
The RAF family of kinases are key components acting downstream of receptor tyrosine kinases and cells employ several distinct mechanisms to strictly control their activity. RAF transitions from an inactive state, where the N-terminal regulatory region binds intramolecularly to the C-terminal kinase domain, to an open state capable of executing the phosphoryl transfer reaction. This transition involves changes both within and between the protein domains in RAF. Many different proteins regulate the transition between inactive and active states of RAF, including RAS and KSR, which are arguably the two most prominent regulators of RAF function. Recent developments have added several new twists to our understanding of RAF regulation. Among others, dimerization of the RAF kinase domain is emerging as a crucial step in the RAF activation process. The multitude of regulatory protein-protein interactions involving RAF remains a largely untapped area for therapeutic applications.
Collapse
Affiliation(s)
- Christian M. Udell
- Laboratory of Intracellular Signaling, Département de pathologie et de biologie cellulaire, Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC H3C 3J7 Canada
| | - Thanashan Rajakulendran
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Toronto, ON M5G 1X5 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Frank Sicheri
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Toronto, ON M5G 1X5 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Marc Therrien
- Laboratory of Intracellular Signaling, Département de pathologie et de biologie cellulaire, Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC H3C 3J7 Canada
| |
Collapse
|
175
|
Valluet A, Hmitou I, Davis S, Druillennec S, Larcher M, Laroche S, Eychène A. B-raf alternative splicing is dispensable for development but required for learning and memory associated with the hippocampus in the adult mouse. PLoS One 2010; 5:e15272. [PMID: 21203559 PMCID: PMC3008692 DOI: 10.1371/journal.pone.0015272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 11/03/2010] [Indexed: 12/21/2022] Open
Abstract
The B-raf proto-oncogene exerts essential functions during development and adulthood. It is required for various processes, such as placental development, postnatal nervous system myelination and adult learning and memory. The mouse B-raf gene encodes several isoforms resulting from alternative splicing of exons 8b and 9b located in the hinge region upstream of the kinase domain. These alternative sequences modulate the biochemical and biological properties of B-Raf proteins. To gain insight into the physiological importance of B-raf alternative splicing, we generated two conditional knockout mice of exons 8b and 9b. Homozygous animals with a constitutive deletion of either exon are healthy and fertile, and survive up to 18 months without any visible abnormalities, demonstrating that alternative splicing is not essential for embryonic development and brain myelination. However, behavioural analyses revealed that expression of exon 9b-containing isoforms is required for B-Raf function in hippocampal-dependent learning and memory. In contrast, mice mutated on exon 8b are not impaired in this function. Interestingly, our results suggest that exon 8b is present only in eutherians and its splicing is differentially regulated among species.
Collapse
Affiliation(s)
- Agathe Valluet
- Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
| | - Isabelle Hmitou
- Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
| | - Sabrina Davis
- Université Paris-Sud, Centre de Neurosciences Paris-Sud, Orsay, France
- CNRS UMR 8195, Orsay, France
| | - Sabine Druillennec
- Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
| | - Magalie Larcher
- Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
| | - Serge Laroche
- Université Paris-Sud, Centre de Neurosciences Paris-Sud, Orsay, France
- CNRS UMR 8195, Orsay, France
| | - Alain Eychène
- Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- * E-mail:
| |
Collapse
|
176
|
Wimmer R, Baccarini M. Partner exchange: protein-protein interactions in the Raf pathway. Trends Biochem Sci 2010; 35:660-8. [PMID: 20621483 DOI: 10.1016/j.tibs.2010.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/27/2010] [Accepted: 06/07/2010] [Indexed: 01/07/2023]
Abstract
The three-tiered Raf-MEK-ERK kinase module is activated downstream of Ras and has been traditionally linked to cellular proliferation. Mammals have three Raf, two Mek and two Erk genes. Recently, the analysis of protein-protein interactions in the pathway has begun to provide a rationale for the redundancy within each tier. New results show that the MEK-ERK-activating unit consists of Raf hetero- and homodimers; downstream of Raf, MEK1-MEK2 heterodimers and ERK dimers are required for temporal and spatial pathway regulation. Finally, C-Raf mediates pathway crosstalk downstream of Ras by directly binding to and inhibiting kinases engaged in other signaling cascades. Given the roles of these interactions in tumorigenesis, their study will provide new opportunities for molecule-based therapies that target the pathway.
Collapse
Affiliation(s)
- Reiner Wimmer
- University of Vienna, Center for Molecular Biology, Max F. Perutz Laboratories, Doktor-Bohr-Gasse 9, A-1030 Vienna, Austria
| | | |
Collapse
|
177
|
Calcineurin increases glucose activation of ERK1/2 by reversing negative feedback. Proc Natl Acad Sci U S A 2010; 107:22314-9. [PMID: 21135229 DOI: 10.1073/pnas.1016630108] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In pancreatic β cells, ERK1 and ERK2 participate in nutrient sensing, and their activities rise and fall as a function of glucose concentration over the physiologic range. Glucose metabolism triggers calcium influx and release of calcium from intracellular stores to activate ERK1/2. Calcium influx also activates the calcium-dependent phosphatase calcineurin, which is required for maximal ERK1/2 activation by glucose. Calcineurin controls insulin gene expression by ERK1/2-dependent and -independent mechanisms. Here, we show that, in β cells, glucose activates the ERK1/2 cascade primarily through B-Raf. Glucose activation of B-Raf, like that of ERK1/2, is calcineurin-sensitive. Calcineurin binds to B-Raf in both unstimulated and stimulated cells. We show that B-Raf is a calcineurin substrate; among calcineurin target residues on B-Raf is T401, a site of negative feedback phosphorylation by ERK1/2. Blocking calcineurin activity in β cells prevents dephosphorylation of B-Raf T401 and decreases B-Raf and ERK1/2 activities. We conclude that the major calcineurin-dependent event in glucose sensing by ERK1/2 is the activation of B-Raf.
Collapse
|
178
|
Cirit M, Wang CC, Haugh JM. Systematic quantification of negative feedback mechanisms in the extracellular signal-regulated kinase (ERK) signaling network. J Biol Chem 2010; 285:36736-44. [PMID: 20847054 PMCID: PMC2978602 DOI: 10.1074/jbc.m110.148759] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/20/2010] [Indexed: 12/28/2022] Open
Abstract
Cell responses are actuated by tightly controlled signal transduction pathways. Although the concept of an integrated signaling network replete with interpathway cross-talk and feedback regulation is broadly appreciated, kinetic data of the type needed to characterize such interactions in conjunction with mathematical models are lacking. In mammalian cells, the Ras/ERK pathway controls cell proliferation and other responses stimulated by growth factors, and several cross-talk and feedback mechanisms affecting its activation have been identified. In this work, we take a systematic approach to parse the magnitudes of multiple regulatory mechanisms that attenuate ERK activation through canonical (Ras-dependent) and non-canonical (PI3K-dependent) pathways. In addition to regulation of receptor and ligand levels, we consider three layers of ERK-dependent feedback: desensitization of Ras activation, negative regulation of MEK kinase (e.g. Raf) activities, and up-regulation of dual-specificity ERK phosphatases. Our results establish the second of these as the dominant mode of ERK self-regulation in mouse fibroblasts. We further demonstrate that kinetic models of signaling networks, trained on a sufficient diversity of quantitative data, can be reasonably comprehensive, accurate, and predictive in the dynamical sense.
Collapse
Affiliation(s)
- Murat Cirit
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695
| | - Chun-Chao Wang
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695
| | - Jason M. Haugh
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
179
|
Jiang CC, Lai F, Thorne RF, Yang F, Liu H, Hersey P, Zhang XD. MEK-independent survival of B-RAFV600E melanoma cells selected for resistance to apoptosis induced by the RAF inhibitor PLX4720. Clin Cancer Res 2010; 17:721-30. [PMID: 21088259 DOI: 10.1158/1078-0432.ccr-10-2225] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To examine mechanisms that determine long-term responses of B-RAF(V600E) melanoma cells to B-RAF inhibitors. EXPERIMENTAL DESIGN B-RAF(V600E) melanoma cells were exposed to the B-RAF inhibitor PLX4720 for prolonged periods to select for cells resistant to apoptosis induced by the inhibitor. The resultant cells were analyzed for activation of extracellular signal regulated kinase (ERK), MAP/ERK kinase (MEK), and Akt, and related signals. Their roles in survival of the cells were also examined. RESULTS B-RAF(V600E) melanoma cells selected for resistant to PLX4720-induced apoptosis retained the V600E mutation in B-RAF, and proliferated steadily in the presence of the inhibitor, albeit with slow growth rate. These cells displayed high levels of ERK activation, that is, at least in part, independent of the conventional RAF/MEK/ERK pathway, as MEK activation was low and inhibition of MEK did not significantly block activation of ERK. In contrast, extracellular signals appeared involved. This was associated with elevated activation of the phosphoinositide 3-kinase (PI3k)/Akt pathway and could be inhibited by serum starvation and inhibition of PI3k/Akt. Inhibition of MEK did not impact on survival of these cells, whereas serum starvation, inhibition of PI3K/Akt, and inhibition of ERK1/2 reduced their viability. CONCLUSIONS These results indicate that sensitivity to induction of apoptosis may be a major determinant of long-term responses of B-RAF(V600E) melanomas to specific inhibitors and suggest that rebound melanoma growth after initial treatment with the inhibitors may not be responsive to MEK inhibitors, but may be susceptible to inhibition of the PI3k/Akt pathway.
Collapse
Affiliation(s)
- Chen Chen Jiang
- Immunology and Oncology Unit, Newcastle, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
180
|
Kaplan FM, Shao Y, Mayberry MM, Aplin AE. Hyperactivation of MEK-ERK1/2 signaling and resistance to apoptosis induced by the oncogenic B-RAF inhibitor, PLX4720, in mutant N-RAS melanoma cells. Oncogene 2010; 30:366-71. [PMID: 20818433 DOI: 10.1038/onc.2010.408] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Activating mutations in B-RAF and N-RAS occur in ∼60 and ∼15% of melanomas, respectively. The most common mutation in B-RAF is V600E, which activates B-RAF and the downstream MEK-ERK1/2 pathway. Thus, B-RAF(V600E) is a viable therapeutic target. PLX4720 is a selective inhibitor of mutant B-RAF and its analog, PLX4032, is currently undergoing clinical trials in melanoma. However, the effects of PLX4720 across the genotypic spectrum in melanoma remain unclear. Here, we describe that PLX4720 treatment rapidly induces hyperactivation of the MEK-ERK1/2 pathway in mutant N-RAS melanoma cells. Furthermore, we demonstrate that C-RAF is the major RAF isoform involved in this process. Importantly, PLX4720-induced hyperactivation of the MEK-ERK1/2 pathway promotes resistance to apoptosis in both non-invasive and invasive mutant N-RAS melanoma cells but does not enhance cell cycle properties. These findings underscore the need to genotypically stratify melanoma patients before enrollment on a mutant B-RAF inhibitor trial.
Collapse
Affiliation(s)
- F M Kaplan
- Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
181
|
Inamdar GS, Madhunapantula SV, Robertson GP. Targeting the MAPK pathway in melanoma: why some approaches succeed and other fail. Biochem Pharmacol 2010; 80:624-37. [PMID: 20450891 PMCID: PMC2897908 DOI: 10.1016/j.bcp.2010.04.029] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/19/2010] [Accepted: 04/27/2010] [Indexed: 12/19/2022]
Abstract
The Mitogen Activated Protein Kinase (MAPK) pathway plays a key role in melanoma development making it an important therapeutic target. In normal cells, the tightly regulated pathway relays extracellular signals from cell membrane to nucleus via a cascade of phosphorylation events. In melanomas, dysregulation of the MAPK pathway occurs frequently due to activating mutations in the B-RAF and RAS genes or other genetic or epigenetic modifications, leading to increased signaling activity promoting cell proliferation, invasion, metastasis, migration, survival and angiogenesis. However, identification of ideal pathway member to therapeutically target for maximal clinical benefit to melanoma patients remains a challenge. This review provides an overview of the obstacles faced targeting the MAPK pathway and why certain therapeutic approaches succeed while others fail. The review summarizes the roles played by the proteins, therapeutic potential and the drugs available to target each member of the pathway as well as concerns related to each. Potential for targeting multiple points and inhibiting other pathways along with MAPK inhibition for optimal efficacy are discussed along with explanations for development of drug resistance, which includes discussions related to cross-talk between pathways, RAF kinase isoform switching and phosphatase deregulation. Finally, the use of nanotechnology is reviewed as an approach to target the MAPK pathway using both genetic and pharmacological agents simultaneously targeting multiple points in the pathway or in combination with other cascades.
Collapse
Affiliation(s)
- Gajanan S Inamdar
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | | | - Gavin P. Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- The Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
182
|
Namgoong GM, Khanal P, Cho HG, Lim SC, Oh YK, Kang BS, Shim JH, Yoo JC, Choi HS. The prolyl isomerase Pin1 induces LC-3 expression and mediates tamoxifen resistance in breast cancer. J Biol Chem 2010; 285:23829-23841. [PMID: 20479004 PMCID: PMC2911270 DOI: 10.1074/jbc.m109.092874] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 05/15/2010] [Indexed: 02/05/2023] Open
Abstract
Endocrine therapies, which inhibit estrogen receptor signaling, are the most common and effective treatments for estrogen receptoralpha-positive breast cancer. However, the utility of these agents is limited by the frequent development of resistance, and the precise mechanisms underlying endocrine therapy resistance remain incompletely understood. Here, we demonstrate that peptidyl-prolyl isomerase Pin1 is an important determinant of resistance to tamoxifen and show that Pin1 increases E2F-4- and Egr-1-driven expression of LC-3 as a result of an increased interaction with and phosphorylation of MEK1/2. In human tamoxifen-resistant breast cancer, our results show a significant correlation between Pin1 overexpression and high levels of LC-3. Promoter activity as well as expression levels of Pin1 were drastically higher in tamoxifen-resistant MCF7 cells than control MCF7 cells, as were levels of LC-3 mRNA and protein, an autophagy marker. Pin1(-/-) mouse embryonic fibroblasts showed lower 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MEK1/2 phosphorylation than Pin1(+/+) mouse embryonic fibroblasts. Silencing of Pin1 expression inhibited TPA-induced MEK1/2 phosphorylation in MCF7 cells. Moreover, PD98059, a specific inhibitor of MEK1/2, and juglone, a potent Pin1 inhibitor, significantly suppressed the TPA-induced expression of E2F-4 as well as Egr-1 transcription factors, which control LC-3 gene expression. Importantly, 4-hydroxy tamoxifen, when used in combination with silencing of Pin1 or LC-3, increased cleaved poly(ADP-ribose) polymerase and DNA fragmentation to inhibit cologenic growth of MCF7 cells. We therefore link the Pin1-MEK pathway and LC-3-mediated tamoxifen resistance and show the therapeutic potential of Pin1 in the treatment of tamoxifen-resistant breast cancer.
Collapse
Affiliation(s)
| | - Prem Khanal
- From the BK21 Project Team, College of Pharmacy, and
| | - Hae-Guk Cho
- From the BK21 Project Team, College of Pharmacy, and
| | | | - Yoon Kyeong Oh
- Radiation Oncology, School of Medicine, Chosun University, Gwangju 501-759
| | - Bong Seok Kang
- the Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 702-701, and
| | - Jeong-Hyun Shim
- the School of Dentistry, Chonbuk National University, Jeonju 561-756, South Korea
| | - Jin-Cheol Yoo
- From the BK21 Project Team, College of Pharmacy, and
| | | |
Collapse
|
183
|
Roskoski R. RAF protein-serine/threonine kinases: structure and regulation. Biochem Biophys Res Commun 2010; 399:313-7. [PMID: 20674547 DOI: 10.1016/j.bbrc.2010.07.092] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 07/25/2010] [Indexed: 01/02/2023]
Abstract
A-RAF, B-RAF, and C-RAF are a family of three protein-serine/threonine kinases that participate in the RAS-RAF-MEK-ERK signal transduction cascade. This cascade participates in the regulation of a large variety of processes including apoptosis, cell cycle progression, differentiation, proliferation, and transformation to the cancerous state. RAS mutations occur in 15-30% of all human cancers, and B-RAF mutations occur in 30-60% of melanomas, 30-50% of thyroid cancers, and 5-20% of colorectal cancers. Activation of the RAF kinases requires their interaction with RAS-GTP along with dephosphorylation and also phosphorylation by SRC family protein-tyrosine kinases and other protein-serine/threonine kinases. The formation of unique side-to-side RAF dimers is required for full kinase activity. RAF kinase inhibitors are effective in blocking MEK1/2 and ERK1/2 activation in cells containing the oncogenic B-RAF Val600Glu activating mutation. RAF kinase inhibitors lead to the paradoxical increase in RAF kinase activity in cells containing wild-type B-RAF and wild-type or activated mutant RAS. C-RAF plays a key role in this paradoxical increase in downstream MEK-ERK activation.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116, Box 19, Horse Shoe, NC 28742, USA.
| |
Collapse
|
184
|
|